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ABSTRACT

With the rapid growth of Machine Learning (ML) in recent
years, more and more technical issues, which were usually
solved by model-based solutions, have an opportunity to
be solved with data driven solutions. Underwater Doppler
effect was tackled with model-based solutions in tracking
the motion and compensating the interference caused by
multipath Doppler effect in communications. However, a too
complex model for the harsh underwater conditions leads to
massive computation and becomes an obstacle for the real-
time Doppler compensation. In this research, we adopt ML
techniques to solve underwater Doppler issues. We propose
ML-based tracking and a tracking-aid ML-based compensa-
tion. The results show that joint tracking and compensation
method have tap choosing accuracy 96.7%, 86.7%, 100% and
93.3% in different power ratios of the two-dominant path con-
dition with fine tree, linear Support Vector Machine (SVM),
quadratic SVM and cubic SVM.
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1 INTRODUCTION

Overview: Nowadays, underwater wireless communications
have played an important role in the military, commercial,
and scientific fields [1]. The applications include natural
resource exploration, scientific ocean exploration, oceanic
environment monitoring, and communications between sub-
marines [2]. For many of these applications, a reliable un-
derwater wireless communication system over long-range
distances is in urgent demand. Given the harshness of the
environment, improvements at the physical layer are very
important for underwater wireless communications and net-
works—including static sensing nodes are beneficial to the
applications in communication between Autonomous Under-
water Vehicles (AUVs), Bouys and water floor base stations.
One of the main-stream underwater wireless communica-
tions is UnderWater Acoustic (UWA) communication, which
suffers low attenuation and covers a communication range
of up to kilometers [19]. However, the underwater acoustic
wave has a speed of as slow as 1500 m/s, leading to high
multipath delay. Moreover, the Doppler effects caused by
the dynamic water wave and moving AUVs make the UWA
communications even more challenging [14].

Motivation: In UWA communications, the Doppler effect
results from the motion of the transmitter, the motion of the
receiver, and the motion of the water wave [12, 23], leading
to the frequency shift in the received signals and making
the demodulation difficult at the receiver. In previous works
on tackling with the Doppler estimation, the assumed condi-
tions are usually simple. The simplest condition is: one object
is moving and the other is fixed, when only considering one
path of the transmission without any multipath, for example,
reflections from the sea surface or the seafloor. The Doppler
effect can be effectively solved with the conventional meth-
ods like Digital Phase-Locked Loop (DPLL) combined with
Decision Feedback Equalizer (DFE) or autocorrelation com-
bined with compensation algorithms [21, 22]. Recently, more
works are dedicated in the multipath Doppler effect situa-
tions, where the multipath signals from different angles of
arrivals cause the issue of demodulation to be more sticky. In
the model-based solutions for the multipath Doppler effect
scenario, the most common way is to enlarge the number of
taps in the feedback compensation loop. For each multipath,
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one more tap is needed for doing the Doppler compensation,
and one additional tap in the feedback loop of the time syn-
chronization is required. Although the model-based methods
have been proved to compensate the multipath Doppler ef-
fects effectively, there are challenges still unsolved: (i) If the
number of the strong reflections is unknown at the receiver,
the number of taps for the compensation becomes hard to
be designed and decided, which leads to compromised per-
formance of the Doppler compensation. (ii) The multipath
effect caused by the strong reflection is more difficult to be
compensated since the number of the paths is hard to get
and the ratio between the direct path and other paths is also
hard to acquire in the model-based solution. (iii) When using
a large number of taps in the feedback loop of the Doppler
compensation, the high computation cost becomes an ob-
stacle if we want to do the real-time Doppler compensation
further.

Proposed Solution: In this paper, we propose a joint
ML-based method to do tracking and compensation for the
severely influenced signal by the Doppler effect in different
settings of the environment. An ML-based tracker is trained
with Phase Shift Keying (PSK) signals corresponding to differ-
ent relative speeds of the Transmitter (Tx) and Receiver (Rx).
When the Rx receives signals, the received signals will first
be classified by the ML-based tracker. After tracker is an
ML-based digital compensator. The compensator is designed
based on the previous methods of combining the DPLLs and
the DFE, where the DPLL loops in the feedback filter are
transferred to taps for training the compensator. Each tap
has been designed to solve a Line of Sight (LOS) received
signal plus a strong path reflection which we call the Second
Dominant Path (SDP) condition as shown in Figure 1(a). It
can be tuned with different K, which is defined by the power
ratio of the LOS and other paths in the Rician channel and
Doppler shifted frequency ratio D, which is the frequency
ratio Doppler shifted frequency f; over the central carrier fre-
quency f.. After training with the data set and added features
from ML-based Doppler tracking output, the compensator
can choose the most appropriate tap for the DFE to deal with
the severe Doppler influenced signals with the aid of the
output of the ML tracker.

Contributions: In this research, we demonstrate the fea-
sibility of taking machine learning into a field, which model-
based solution is taking the vast majority. Although the data-
driven-only method might perform just passable, we design
a new architecture to let data driven method stand upon
the shoulders of model-based methods such as Doppler com-
pensation. The ML-based joint Doppler tracking and com-
pensation method is proposed. We present the ML-based
compensation with validation in the same underwater chan-
nel environment. The contributions are as follows:
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e Multipath feedback tap loops for compensating mul-
tipath Dopper interference have become popular re-
cently. We adopt data driven methods to simplify the
feedback loop without scarifying compensation per-
formance.

o In the Binary phase-shift keying (BPSK) Rician channel
simulation, we confirm the relationship between the
power ratio K, and acquired Bit Error Rate (BER).

e The simulation results show that the joint tracking
and compensating can improve the accuracy from the
worst case solely with ML 26.7% to up to 100% jointly
with sacrificing a little in prediction speed and it has
BER improvement over ten times when choosing the
proper DFE tap.

Article Organization: Section 2 presents the relevant
publications and the background. Section 3 describes our
proposed solution, including the model-based solution and
the data driven solution. Section 4 shows the performance
of our proposed solution. And in Section 5, we draw the
conclusion.

2 RELATED WORKS AND BACKGROUND

In [17], we propose a modulation method, namely Orthogo-
nal Frequency Division Multiplexing (OFDM)-based Pulse
Position Modulation (PPM), which shows high robustness in
underwater wireless optical communications, but does not
suit the UWA communications due to the high multipath
delay. In [18], we study the video transmissions in UWA
channels by conducting experiments in a swimming pool.
A full-duplex underwater communication self-interference
cancellation is investigated in [10]. We simulate and emu-
late the underwater communication in Binary Phase-Shift
Keying (BPSK) modulation to demonstrate how we solve
multipath interference via beamforming techniques. In [16],
we derive a novel modulation scheme named Circular Time
Shift Modulation (CTSM) for UWA. However, the Doppler
effect isn’t discussed in our previous works. In [15], we
propose the Spatial Modulation-based Orthogonal Signal-
Division Multiplexing (SM-OSDM), which defends against
the Doppler effects by spatial diversity. Authors in [6] discuss
the channel model of multipath, but the Doppler effect is not
considered. There have been massive model-based methods
for solving the Doppler effect in underwater communica-
tions, including DFE, PLL etc. These methods require mas-
sive computation when the model becomes more complex
to tackle the harsh underwater environment. In the previ-
ous study, the underwater environment is simply assumed
to be the direct path, sea surface reflection and seafloor re-
flection. In [3] the multipath Doppler tracking is improved
by a dynamic programming-inspired method, called Online
Segmented Recursive Least-Squares (OSRLS) to sequentially
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Figure 1: (a) An illustrative example of a Line of Sight (LOS) with a Second Dominant Path (SDP) Doppler scenario. Where
two components dominate, the behavior is best modeled with the Rayleigh and Rician fading channel; (b) Example where the
Doppler frequency shift impacts the LOS,—o channel component. Additionally, the process of the relative speed v4p estimation
with the corresponding angles between ROV "A" and "B" are presented.

estimate the time-varying non-uniform Doppler across differ-
ent multipath arrivals. The piece-wise-linear Markov model
is used to approximate the nonlinear time distortion further
simplify the procedure. In [13], an optimization framework
for tracking Doppler shifts in acoustic motion is proposed
by combining the Frequency Modulated Continuous Wave-
form (FMCW) to enhance the accuracy. Authors in [5] pro-
pose a DFE with multiple DPLLs to compensate the phase
shift caused by Doppler effects in multipath delay in UWA
communications, which enhances the system robustness ef-
fectively compared with traditional DFE with only one DPLL.
Authors in [11] propose a joint Doppler scale estimation and
timing synchronization method in UWA channels, where the
Superimposed Hyperbolic Frequency Modulation (HFM) is
applied as the preamble. The simulation results show that the
Doppler factor can be estimated correctly, and the deviation
of timing synchronization can be corrected effectively. In [8],
a new architecture of ML circuit is presented. The voltage
based Resistive Processing Unit (VRPU) design combined
with the diode based activation function circuit expands the
feasibility for adopting analog Neural Network into more
cases. Based on the concept of VRPU, more analog machine
learning circuits are presented in [7]. SVM with kernels in-
cluding linear, polynomial and Gaussian kernels have been
proposed to work on the top of VRPUs. These circuits can
serve as a pre-stage of the hybrid system, which only triggers
the powerful digital ML circuit to achieve a power-saving
anomaly detection. Recently we proposed a ultra-low power
analog recurrent neural network design [9]. By reusing the
hardware resources in the circuit, it explored the possibility
to apply smart system into micro-Watts level. Above ML
designs are prospective to execute the DFE smart chooser
proposed in this research in multipath Doppler effected chan-
nels.

3 PROPOSED SOLUTION

In this section, we demonstrate the model-based solution,
which is the fundamental theory of the Doppler compensa-
tion. To realize effective Doppler compensation as well as
reducing the computation cost, we propose our data driven
solution, which is composed of ML-based Doppler tracking
and ML-based Doppler compensation. We propose the joint
Doppler tracking and compensation to effectively address the
issue of Doppler frequency shifts in UWA communications.

Model-Based Solution: As for the Doppler tracking, we
start from the simplest set of available sensors and only con-
sider information about ROVs’ absolute velocity and their
planned trajectories shown in Figure 1(b). These parame-
ters allow communicating partners, denoted as ROV 4 and
ROVjp to estimate the potential Doppler shift of the direct
path LOS,,=¢ with the projected velocities )4 and v onto the
common LOS direction 04p, the Doppler shifted frequency
fs is expressed as,

fi= 0

The term c is the velocity of the sound wave in the water and
fc is the frequency of the carrier wave. vy is the horizontal
component of the speed V4 can be acquired as vy = V4 cos 04,
same as U in the Figure 1(b). If we consider another strong
reflection, which is a signal reflected by a boat as we label
“C”, the Doppler effected frequency between A, B and C can
be presented as,

fi=pl )

where 04¢c and 0cp are common LOS directions between
“AC” and “CB”, correspondingly.

Assume x(t) is the transmitted signal at the baseband.
With a carry frequency of f;, the transmitted signal at the
passband s(t) can be expressed by,

s(t) =Re {x(t) expli2zf.(t - tOTx)]}, (3)

(U4 + UB) cos O4p

(U4 + vg) cos B¢ + (ve + Up) cos Ocg]
. .
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where Re{-} means the real part; tOT *
point of the transmission.

On the Doppler compensation side. During the conven-
tional demodulation based on combining the DFE with a
DPLL (as shown in Figure 2(a)), the feedforward filter com-
pensates the channel response of the direct signal, the DPLL
compensates the nonlinear component of the phase shifts
(/)év L(t), and the feedback filter compensates the channel
responses of the multipath signals. In the upgrade demodula-
tion shown in Figure 2(b), DFE with additional DPLLs, more
DPLLs are added to the feedback filter to suppress the phase
shifts of the multipath signals. Among the feedback loops,
the term b?b combined with summation ¢;...¢px. The perfor-
mance is improved, but the computation cost is increased.
Moreover, in real-time communications, the process of DFE
with additional DPLLs cost more time and result in a higher
delay in transmissions. In our work, we propose an ML tap
chooser in the feedback loop 2(c). Each tap in the ML-based
solution b}{b combined with summation ¢;...¢x we define
as a unique setting T,,, and two neighbor taps are labeled
as T, and T,;. For solving one direct path LOS,—y plus
SDP condition setting, we must consider the combination in
power ratio of the LOS,,—y and other paths K and Doppler
shift frequency ratio D, to reduce the complexity and save
time.

Data Driven Solution: In the data driven solution, the
first target is Doppler tracking with supervised machine
learning. The existing Doppler tracking methods are almost
model-based and the model-based techniques are mature.
However, for a heavy multipath effect influenced environ-
ment, the accurate estimation requires a high complexity
model with the Cross-Ambiguity Function (CAF) or the
Single-Branch Autocorrelation (SBA) [20]. Data driven gives
an opportunity to avoid the complex model. In the data
driven method, we shrink the conditions to most likely ap-
pear Doppler shift as labels. For example, in underwater
communication, neither Tx or Rx can have a velocity the
same as a jet. We train the machine learning model with rea-
sonable velocity induced phase shift of the received signals.

Linear Discriminant Analysis (LDA) can be used to per-
form supervised dimensionality reduction by projecting the
input data to a linear subspace consisting of the directions
which maximize the separation between classes. The dimen-
sion of the output is necessarily less than the number of
classes, so this is, in general, a rather strong dimensionality
reduction and only makes sense in a multiclass setting, i.e.,
Doppler shifted phases from different parameters. LDA can
be derived from simple probabilistic models, which model the
class conditional distribution of the data P(Zr(t)|¢(t) = @x)
for each class ¢y, a situation of the multipath Doppler sce-
nario. Predictions can then be obtained by using Bayes’ rule,

is the starting time
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for each training sample r(t)€R?,
P = il er(y) = IS PO =00

_ PUr®g@) = ¢ P(P(1) = )
LP(r(0)]g(1) = ¢)P((t) = d1) "

and we select the class ¢ that maximizes this posterior
probability.

Naive Bayes methods are a set of supervised learning al-
gorithms based on applying Bayes’ theorem with the “naive”
assumption of conditional independence between every pair
of features given the value of the class variable. In the Normal,
as known as Gaussian distribution. In the Kernel Distribu-
tion, the “kernel” distribution is appropriate for predictors
that have a continuous distribution. By default, the kernel
is the normal kernel, and the classifier selects a width auto-
matically for each class and predictor. Given class variable
£r(t) and dependent feature vector ¢; through ¢, we have
the following classification rule,

K
P(Lr(t)|1, . Pi) o< P(£Lr (1)) l__[P(qﬁiIr(t)),
= (5)
7 = arg max P(£r(t)) HP(¢i|r(t)).

i=1
The SVM function stated as follows: Maximize the geomet-
rical margin subject to all the training data with a functional
margin greater than a constant. The functional margin is
equal to W7 X + b, which is the equation of the hyper-plane
used for linear separation. As we deal with non-linearly sepa-
rable conditions, we use different kernel functions to project
data onto high dimension space to solve the problem, which
can not be tackled in the initial space. A quadratic decision
function capable of separating non-linear data is used [4].
The geometrical margin is proved to be equal to the inverse
of the norm of the gradient of the decision function. The
functional margin is the equation of the quadratic function.
W is called the Objective function satisfying,

n 1 n n
W(A) = ;al 2 ;;%%yzy](xz 'x]) (6)
Here, x, y and « are the parameters on the hyper-plane. W is
called the Objective function, which is a quadratic equation
and has to be maximized; it is a function of all «;...a,, repre-
sented as A corresponding to our Doppler features ¢;...¢.
Cubic SVM type classifier is employed where the kernel func-
tion of the classifier is cubic given as K (x;, x;) = (xl.T, x;)>.
Subsequently, we introduce the joint Doppler tracking and
compensation solution. The Doppler effect allows the mea-
surement of the distance, velocity and acceleration between
a transmitter from water and a receiver on the seafloor by
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Figure 2: (a) Conventional Decision Feedback Equalizer (DFE) with only one Digital Phase-Locked Loop (DPPL) for solving
simple Doppler effect; (b) Additional DPLLs modified DFE for solving multipath Doppler effect; and (c) ML-based DFE for more
complex Doppler effect scenario. aI);I f is the tap of the feedforward filter. b?b is the tap of the feedback filter.

Table 1: Doppler tracking with different ML methods under different Doppler shift in LOS.

Fine Linear Gaussian Naive | Kernel Naive | Linear | Quadratic | Cubic
Tree | Discriminant Bayes Bayes SVM SVM SVM
Accuracy 73.3% 100% 56.7% 63.3% 100% 100% 100%
Total cost 8 0 13 11 0 0 0
Prediction speed (obs/sec) | 160 160 140 13 160 150 160
Training time (sec) 2.19 1.57 3.41 32.45 1.8 1.95 1.71

observing how the frequency received from the transmitter
changes as it approaches the transmitter, is overhead and
moves away. We present an ML-based Doppler tracking by
training with time domain Rician channel frequency shifted
signals. For example, we can shift signals by 100 Hz, 300 Hz or
500 Hz in a carrier wave that has a central frequency 10 kHz
to train the classification learner for D = 0.01,0.03,0.05.
Each Doppler shift represents one relative velocity condition
of the LOS,— and the multipath influences caused by the
channel. The time signal is sampled with 1000 points as the
source of the training data, which means 1000 features for
training the ML model. The data driven method simplifies
the potential Doppler frequency shift compensation corre-
spond to the difficult Doppler effects introduced by the real
situation. Unlike the model-based method, the data driven
can (i) avoid unnecessary frequency shift band thus reducing
the complexity of the model, and (ii) decrease the number of
self correlation or DPPLs and thereby save the computation
time.

In order to valid the proposed ML-based DFE, a more
complex Doppler scenario is considered. Compared with
previous works, which consider moving objects and their
direct path and multipath on the main path, we simulate the
Doppler effected signals with Rician channel, the K-factor in
the channel help to generate more complex condition, which
means not only the main path of the direct and reflected
paths are considered, other dominant paths can be consid-
ered with their separate parameters as we put them together.

In the LOS plus SDP scenario, as the object A is moving
toward x direction at velocity vy, object B is moving toward
x direction at velocity vp, and object C is moving toward x
direction at velocity vcy. When the object A is transmitting
signals to the object B, the object B receive the LOS signal
from A affected by the relative velocity between A and B.
Besides, another strong reflection path from object C is con-
sidered and analyzed as another dominant path in the Rician
channel, i.e., SDP. The SDP signal is affected by the relative
speed between A and C. Under this condition, the Rician
channel provides these two dominant multipath influences
by different K factors and different Doppler phase shifts.

4 PERFORMANCE EVALUATION

In this section, massive simulations in underwater channels
are deployed. The ML-based Doppler tracker is trained to di-
rectly classify the shifted frequency. Secondly, we design an
ML-based tap chooser in the feedback loop for the Doppler
compensation. The tap chooser is trained with different com-
binations of the more complex underwater Doppler environ-
ment, i.e., a major LOS plus an SDP. We train the tap chooser
with different K and D combinations in these two signal
paths. Afterward, we jointly do the Doppler compensation
with the tracking result and the tap chooser to achieve a fast
and power saving Doppler compensation compared with the
existing model-based methods.
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Figure 3: BER of joint ML Doppler compensation with the BPSK in a LOS plus SDP in Rician fading channel with the following
parameter setting: (a) K = 0 dB,0 dB and K = 0 dB, 10 dB; (b) K = 10 dB, 20 dB and K = 0 dB, 20 dB; and (c) K = 10 dB, 10 dB and
K =20dB, 20 dB; as D = 0.01 comparing the performance of the intended tap T, and neighbor taps T;,—1 and Tp4;.
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Figure 4: Root-Mean-Square Error (RMSE) of joint ML Doppler compensation in a LOS plus SDP in Rician fading channel
comparing with the conventional DFE with the following parameter setting: (a) Ty;; (b) Ty2;(c) Ty35(d) Tz4. RMSE: T;; means the
root-mean-square error between 7, and neighbor taps Ty in Figure 3 and so on, i.e., the cost for ML to choose the neighbor tap

in the feedback loop.

ML-based Doppler Tracking In the underwater com-
munication simulation, the software we use are Matlab and
Simulink on a desktop equipped with AMD Ryzen 9 5950X
16-core CPU (overclocked to 4.0 GHz), Patriot DDR4 128 GB
RAM (overclocked to 3333 MHz), Samsung 970 EVO Plus
2 TB SSD (read speed up to 3500 mb/s) and Nvidia Quadro
RTX 8000 GPU. The simulated signals are modulated and de-
modulated with BPSK. The channel we use are the Rayleigh
channel, which is Rice with shape parameter K = 0, i.e.,
heavy multipath/saturation conditions and Rician with low,
medium, and high K, i.e., different energy fractions on the
LOS. We first confirm that the result of using the Rayleigh
channel is dovetailed nicely to the Rician K = 0 setting.
Rician fading is a stochastic model for signal propagation
anomaly caused by partial interference of a radio signal by
itself - the signal arrives at the receiver by several differ-
ent paths, which is called the multipath effect, and at least
one of the paths is changing, including getting longer or
shorter in length. Rician fading channel is the channel that

considers when one of the paths, typically a LOS signal or
some strong reflection signals, is much stronger than the
others. In Rician fading, the amplitude gain is characterized
by a Rician distribution. Rayleigh fading is considered a spe-
cial case of Rician fading for when there is no LOS. In such
a case, the Rician distribution, which describes the ampli-
tude gain distribution in Rician fading, reduces to a Rayleigh
distribution mathematically as K = 0. It is notable that Ri-
cian fading itself is a special case of Two-Wave with Diffuse
Power (TWDP) fading, the characteristic can be described by
two main parameters. The first one, K, is the ratio between
the power in the direct path and the power in the other scat-
tered paths. The second one, Q, is the total power from both

2
27>
Q = 0% + 202, By tuning K, we can evaluate our proposed
solution under different multipath conditions of the LOS. As
the Signal-to-Noise Ratio (SNR) increases, the performance

of the higher K signal in the Rician channel can be very good.

paths and acts as a scaling factor to the distribution, K =
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Table 2: Performance of ML-based joint Doppler track-
ing and compensation under different K in Rician chan-
nel in LOS+SDP.

Fine | Linear | Quadratic | Cubic

tree | SVM | SVM SVM
Accuracy 96.7% | 86.7% | 100% 93.3%
Total cost 1 4 0 2
Predict speed (obs/sec) | 150 140 140 140
Training time (sec) 1.79 | 1.64 1.68 1.67

It is notable that the Doppler effect has a certain level influ-
ence among low SNR to high SNR. In the low SNR condition,
parameter D has a greater influence on the performance of
the communication. On the other hand, in the high SNR con-
dition, the power ratio K affects the performance more. The
ML-based Doppler tracker is trained and validated with cross-
validation in 5 folds (k=5). Different models, including fine
tree, linear discriminant, Gaussian naive Bayes, kernel naive
Bayes, linear SVM, quadratic SVM and cubic SVM are trained
with a number of 30 data having Doppler shift D=0.01, 0.05,
0.1 separately applying random SNR (E; /Ny) between 10 dB
to 19 dB. To do the supervised machine learning training and
validation, 1000 samples in the time domain serve as 1000
features and are labeled with corresponding configurations,
which means a 30 x 1000 dataset. The result shows linear
discriminant, linear SVM, quadratic SVM and cubic SVM
have better performance. Naive Bayes methods have com-
promised performance since in the assumption the features
are independent to each other. However, the features in the
Doppler shifted signal is not totally independent. With the
platform spec shown previously, the prediction speed can
achieve 140 to 160 obs per second except for the inefficient
kernel naive Bayes.

Joint ML-based Doppler Compensation In the Doppler
compensation, we compare two configurations in machine
learning. One is the DFE tap chooser without aid from the
ML-based Doppler tracking output, and the other one is with
the aid of the tracking output. Before the Doppler compen-
sation, we firstly investigate the influence on the Bit Error
Rate (BER) on different K and D. The increase of K reduces
the non-LOS paths interference to result in a better per-
formance on BER. The more serious Doppler shift, which
means higher D, is leading to a compromised performance
on BER. The compensation is designed to solve the one LOS
plus one strong reflection problem. The ML-based Doppler
compensator is shown in Figure 2(c). It is modified from
Figure 2(b), which is the higher level design for solving the
harsh multipath Doppler interference based on Figure 2(a).
By making taps in the feedback loop in some fixed param-
eters, then we design a machine learning tap chooser to
decide which tap to be used in the Doppler compensation
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feedback loop. In order to demonstrate our proposed solu-
tion, we generate the number of 30 data that having Doppler
shift D = 0.01, 0.05;0.05,0.05;0.01,0.1 when K = 0 dB and
K = 0dB, 10 dB; 10 dB, 10 dB;0 dB, 20 dB when D = 0.01
separately applying random SNR E;, /N, between 10 dB to
19 dB. The complexity of the interference from two major
paths is higher than only one path, making the dataset more
difficult to be classified through machine learning methods.
The highest accuracy is still less than 85%, which indicates
using the sampled data solely as the dataset for the machine
learning is not enough. To overcome the issue, we create
a joint method, in which we do tracking first to get the in-
formation of the Doppler shift. Next, we feed the tracking
result as new features into the tracking-aid tap chooser, i.e.,
joint Doppler tracking and compensation tap chooser. The
new dataset is 30 data samples with the increment of 10
features sweep. With 1050 features the performance of the
joint tap chooser is shown in Table 2. We choose the top
four classification methods including fine tree, linear SVM,
quadratic SVM and cubic SVM, which to be considered in
the joint Doppler compensation. The joint Doppler track-
ing and compensation tap chooser sacrifice about 10 obs/sec
in the prediction speed but get better accuracy in the val-
idation. Other methods in LOS+SDP with different K can
achieve accuracy above 85%. Figure 3 shows the performance
of the Doppler compensation after adopting the chosen tap
in the DFE in different combinations of K. Beside the chosen
tap, we also show the performance of two neighbor taps
which indicate the performance when the tap is not chosen
to the best one, compromised performance of the second or
third tap in the sequence and the root-mean-square errors is
shown in Figure 4. This shows the difference between the
conventional DFE and our proposed ML-based method. In
the conventional method, massive computation guarantees
the most suitable tap is generated. However, the ML-based
method is choosing the tap in the feedback loop instead of
generating. It leads to the possibility to choose the neighbor
tap, getting compromised Doppler compensation, which is
the cost for the simpler data driven method compared with
the conventional DFE. Moreover, it is notable that Figure 3
showing the performance of the two main paths are not
entirely following the trend we acquire previously, which
lower K is getting fair performance because of the influence
of the DFE and the interference caused by two strong paths.

5 CONCLUSION

In this research, we propose a machine learning Doppler
compensation method with the joint of smart tracking and
tap choosing. The proposed solution adopt the concept of the
DFE model as well as join the machine learning to accelerate
computation and to save power without sacrificing much
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performance. We demonstrate the feasibility of the ML-based
Doppler tracking. As encountering the harsh Doppler multi-
path influenced environment, although the ML-based DFE
tap chooser has compromised performance, the tracking-aid
joint solution help to increase the accuracy by sacrificing
only 10 obs/sec out of 150 obs/sec to 170 obs/sec. In the one
direct path plus a strong reflection condition. The joint so-
lution has been validated with different power ratios of the
LOS and other paths, the ratio of the Doppler frequency shift
and the carrier wave frequency. The result shows the great
potential that the machine learning aided model is an ideal
candidate for the next generation in real-time Doppler com-
pensation. Other new types of classification methods with
even neuron networks will be discovered and applied to the
underwater Doppler tracking and compensation. In the near
future, similar concepts can be applied to any other field,
which has similar background conditions. The data driven
methods can be investigated and become a good catalyst to
the model-based solution.
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