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Abstract

Organismal adaptations are the hallmark of natural selection. Studies of
adaptations in avian systems have been central to key conceptual and empirical
advances in the field of evolutionary biology and, over the past decade, leveraged the
proliferation of a diversity of genomic tools. In this synthesis, we first discuss how the
different genomic architectures of avian traits are relevant to adaptive phenotypes. A
mutation’s chromosomal location (e.g, microchromosomes or sex-chromosomes) or its
specific nature (e.g., nucleotide substitution or structural variant) will determine how it
may evolve and shape adaptive phenotypes, and we review different examples from the
avian literature. We next describe how the source of adaptive variation, weather from de
novo mutations, existing genetic variation, or introgression from another species, can
affect the evolutionary dynamics of a trait. Our third section reviews case studies where
the genetic basis of key avian adaptative phenotypes (e.g., bill morphology or plumage
coloration) have been revealed. We end by providing an outlook and identifying
important challenges to this field, both by focusing on technical aspects, such as the
completeness of genomic assemblies and the ability to validate genetic associations
with new sources of data, as well as discussing the existential threat posed to birds from

habitat alteration and climate change.

Introduction
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In a little over a decade, the study of avian evolutionary genetics transitioned
from the predominant use of Sanger-sequenced mitochondrial genes and a handful of
nuclear markers, to whole genome datasets with high-quality species-specific annotated
reference genomes'2. The field had been limited by the ability to use polymerase chain
reaction to amplify and sequence homologous markers across species that diverged
from those for which the genetic resources had been developed’. Now, the ability to
obtain large genomic data sets from species without existing genomic resources,
together with certain properties of avian genomes (e.g., relatively small and conserved
genome sizes or the low density of transposable elements) has allowed researchers to
leverage the main advantages of studying evolution through avian systems?. These
advantages derive from a long tradition of ornithological research, leading to a deep
knowledge of bird taxonomy and phylogenetic relationships, diverse within-species
phenotypic variation, a precise understanding of range limits, and extensive existing
sampling efforts with genetic materials preserved in natural history collections (though
see?). As a result, avian genomic resources, like the availability of increasingly high
quality annotated reference genomes and re-sequencing datasets, have accumulated at
a fast pace?#, and with these, our knowledge of the genomics of avian adaptations.
Here we review the molecular underpinnings of those adaptations, covering studies
drawing upon different types of genomic data (e.g., transcriptomics, reduced-
representation genomic techniques, or whole-genome resequencing).

There are some broad trends in the papers that we review. For example,
passerines (Passeriformes) have dominated the literature to date, perhaps because
they can be more easily sampled using field methods (e.g., mist-netting), their generally
higher abundance compared to larger-bodied birds, or because they are the most
diverse order (i.e., representing more than 60% of all avian species). Additionally, most
studies uncover statistical linkages between genotypes and phenotypes via association
mapping or genome scans. However, the independent validation of these candidates
through transcriptomics or functional genomics is much less common, possibly because
of the logistical difficulty in bringing wild birds into a laboratory setting. Moreover, the
function of many candidate genes that arise from association studies is limited to our

understanding of gene functions in sometimes distantly related model species or
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domestic lineages. Therefore, there may be a bias towards discovering or reporting
genes with already well-known functions, at the expense of uncovering novel targets of
selection, for which a connection cannot be easily made with the phenotype of interest.
As sequencing power continues to increase, so will the sample size that is feasible
within a given budget, and therefore the statistical power to detect genetic associations.
Smaller sample sizes may be underpowered to detect associations beyond genes of
large effect, and thus may have biased our comprehension of the architectures of some
of the studied traits. Finally, although genome scans are commonly based on summary
statistics, studies are beginning to incorporate powerful model-based methods like
machine learning to infer the processes behind the patterns (e.g., uncover signatures of
selection)®.

Our review is structured into four different sections. First, we discuss the different
genomic architectures of avian traits and their relevance to the evolution of adaptive
phenotypes. Second, we analyze the evolutionary sources of variation which ultimately
lead to adaptation, and then review the genetic bases of key avian traits. We conclude

by providing an outlook and discussing future challenges.

The genomic architectures of adaptive avian traits

There are general characteristics of genomes—some specific to avian
genomes—that predictably facilitate adaptation. Therefore, the underlying genetic basis
of a trait, known as the genomic architecture, can have implications for its evolution. For
example, the specific chromosome where a gene is situated will dictate its inheritance
pattern and its location within the chromosome may influence its neighbors, by
determining the degree of linkage to nearby genes (through variation in recombination
rate)®7”. Non-synonymous mutations, by definition, lead to phenotypic variation.
However, in genes with multiple effects (i.e., pleiotropic), the overall selective advantage
of such changes will likely depend on how the mutation influences the various functions
of that gene. On the contrary, regulatory mutations may not face this constraint, if
changes in the regulatory network within which a gene is expressed are more specific to

both tissue and developmental time8. Although the genetic basis of phenotypic traits are
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generally studied via associations with single-nucleotide polymorphisms (SNPs), the
underlying causal variants may not be the SNPs themselves. For example, the
architecture of the trait may be more complex, and exist within a chromosomal
inversion, or involve insertions/deletions or copy number variants which are not present
in SNP datasets®. Importantly, little is known about some genetic architectures (e.g.,
alternative splicing or copy number variants) that nevertheless may be important for the

generation of traits that are relevant to avian evolution©.

Microchromosomes, Sex chromosomes, Neo-sex chromosomes and Germline

restricted chromosomes

Approximately 22% of birds have 2n = 80 chromosomes, with most species
showing little variation around this chromosome number, and only a few taxa departing
substantially from this chromosomal complement (range 40-142)%'". Notably, the largest
chromosome in the chicken (Gallus gallus) genome (chromosome 1) subsequently
underwent a fission event (i.e., split in two) in songbirds, producing two intermediately
sized chromosomes®'2. There is considerable variation in chromosome size within any
given bird species, with an approximately even split between larger macrochromosomes
and smaller—below an average of 12 Mb—microchromosomes (although the size
distribution is roughly continuous and therefore the distinction in the literature between
“micro” and “macro” is somewhat arbitrary)®'3. Microchromosomes comprise about a
quarter of the genome and show unique properties that distinguish them from
macrochromosomes’'3. Microchromosomes have higher GC-content, mutation rate,
recombination rates, and overall gene density'. They also have a lower density of
transposable elements (except for woodpeckers)'. At least one crossing-over event is
required for normal meiosis, which by definition leads to a higher per Mb recombination
rate in small chromosomes®. This implies that linkage disequilibrium between selected
alleles can be more effectively broken down in microchromosomes, making them good
candidates for housing genes involved in local adaptation'. The asip gene, for

example, a regulator of melanic coloration, is found in very narrow divergence peaks
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among closely related species in multiple taxa'®7:18 and located on a
microchromosome (chromosome 20).

Birds possess a ZW sex chromosome system with heterogametic (ZW) females,
and a W sex chromosome that is mostly non-recombining, with the exception of a small
pseudo-autosomal region’. The Z chromosome evolves faster than the autosomes in
birds (i.e., the “fast-Z effect”) for multiple reasons, including a wider range of conditions
that allow a mutation to increase in frequency (e.g., recessive mutations are exposed to
selection in females), a slightly higher mutation rate, and increased genetic drift (as a
consequence of having one third the effective population size of an autosome)’.
Consequently, the Z chromosome shows higher differentiation than autosomes in
multiple taxa, and may be playing a disproportionate role in speciation and adaptation in
birds’. By contrast, the W sex chromosome is significantly smaller, has the highest
density of transposable elements and potentially active endogenous retroviruses of any
chromosome’ 19, and is “degrading” (over evolutionary time) due its lack of
recombination, retaining few functional genes’.

The maternal inheritance of the W chromosome—directly co-inherited with the
mitochondrial genome—nhas also allowed it to play a role in controlling a key avian trait,
egg coloration, in African cuckoo finches (Anomalospiza imberbis)?. These parasitic
birds exploit a variety of host species (and populations within those species) by laying
their eggs in the host’s nest and, therefore, foregoing the costs associated with parental
care. However, a successful A. imberbis female must mimic the appearance of her
hosts’ eggs to prevent rejection. Matrilines therefore specialize in parasitizing certain
species, closely matching their egg coloration and markings. Moreover, autosomal data
show ongoing gene flow between the males and females raised by different hosts,
implying that the genes for matriline-specific egg coloration patterns cannot be on these
chromosomes. Thus, African cuckoo finch egg coloration is thought to be mediated by
W-linked genes. This chromosomal architecture likely imposes evolutionary constraints
to the parasites through the lack of recombination on the W chromosome. For example,
it may prevent the generation of certain coloration patterns that hosts, with the

recombination afforded by autosomal control of egg coloration, can achieve.
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Neo-sex chromosomes are another genomic architecture which has repeatedly
influenced avian adaptation. These chromosomes are generated by reciprocal
translocations or fusions of autosomes onto existing sex chromosomes, and therefore
affect how these originally autosomal genes are inherited once they become linked to
sex chromosomes. When genes become sex-linked, such as to the W chromosome,
neo-sex chromosomes could provide an evolutionary “escape” from sexual antagonism
(e.g., beneficial genes for females which are detrimental for males), as this
chromosome is only present in females?'. Several instances of the evolution of neo-sex
chromosomes have been documented in birds, but the details of how they were formed
are not fully understood. For example, the Raso lark (Alauda razae) and the Reunion
white-eye (Zosterops borbonicus) both possess neo-sex chromosomes, which may
involve several autosomes??23, Both species belong to the passerine superfamily
Sylvioidea, and a neo-sex chromosome involving the first 10 mb of chromosome 4A
seems to have evolved in this group’s common ancestor?4. This region contains the
androgen receptor (ar), a gene involved in male sexual development, and the neo-sex
chromosome may therefore have provided an opportunity to link this gene to other
male-benefitting Z-linked loci?*.

A portion of chromosome 1A is sex-inked in the Australian eastern yellow robin
(Eopsaltria australis) and is predicted to have co-evolved with the mitochondrial
genome. Together the chromosome 1A region and mitochondrial genome are thought to
mediate adaptation to local climatic conditions in this species?26. Populations are
divergent in their nuclear genomes in a north-to-south direction, while due to the history
of isolation and gene flow, mitochondrial divergence is arranged perpendicularly, in line
with an inland to coastal climatic gradient and has narrow contact zones. Therefore,
each mitochondrial lineage exists on both nuclear genomic backgrounds: the ancestral
background with which it co-evolved and the derived type into which it introgressed.
However, mitochondrial genes are located on both the mitochondrial and nuclear
genomes, and these cannot diverge freely: gene products from both genomes are
required to work together to maintain the cell’'s energetics. Consequently, it is thought
that to preserve mito-nuclear coadaptation, a portion of chromosome 1A, which is

enriched for nuclear genes of mitochondrial function, has co-introgressed with the



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

mitochondria, therefore preserving the original nuclear genomic background (at least at
these key loci) after the introgression took place. Most of chromosome 1A is sex-linked
and thus involving the nuclear-encoded mitochondrial genes in a neo-sex chromosome
is thought to facilitate mitonuclear co-adaptation: these genes are linked with the W
chromosome and in turn, through the shared matrilineal inheritance, to the co-inherited
mitochondria. A similar pattern of co-introgression of the mitochondrial genome with
nuclear-encoded mitochondrial genes has likely occurred in Audubon’s warblers
(Setophaga coronata auduboni)?’, suggesting a possible broader evolutionary solution
to mito-nuclear discordance.

Birds can also show chromosomal differences between the germline and the
soma. All songbirds studied to date have a germline-restricted chromosome (GRC)
which is entirely absent in somatic cells and is also absent in non-songbirds?82°:30
(Figure 1). The GRC is usually heterochomatic, ejected after meiosis, and mostly found
in a single copy in males. In females, however, it is present in two copies, recombines,
and is transmitted to the progeny?'. Depending on the species it can be a
microchromosome or a macrochromosome—it is in fact the largest chromosome in the
zebra finch (Taeniopygia guttata) genome—and has low homology across divergent
species?®3!. Although the songbird GRC has many repetitive sequences and could be a
selfish (i.e., parasitic) chromosome, it is also transcriptionally active and contains
paralogs for ~115 genes that are present on regular chromosomes?3%-32. It is enriched in
genes involved in female gonad development and it is thought that its elimination could
be an evolutionary mechanism to avoid antagonistic pleiotropy and to minimize conflicts
between the germline and the soma®?. Many genes are apparently species-specific and
could have contributed to reproductive isolation among closely related species and may

play an important role in avian adaptation.
Structural variants: Supergenes, indels, and copy number variants.
Although inter-chromosomal rearrangements are relatively rare in birds (at least

in those with the typical karyotype), intra-chromosomal rearrangements are

comparatively more common®. Inversions are a type of chromosomal rearrangement in
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which a portion of DNA is flipped in its orientation. When this occurs, crossing-over
events within the inverted region in heterozygote individuals can lead to unviable
unbalanced gametes (i.e., with missing or extra genes), and therefore inversions have
the consequence of suppressing recombination between the ancestral and inverted
haplotypes?33. This protection from recombination allows the genes involved in the
inversion to co-evolve, leading to the formation of “supergenes”. Supergenes consist of
many co-adapted genes that mediate complex traits in birds. Alternative reproductive
strategies in the white-throated sparrow (Zonotrichia albicolis)** and the ruff (Calidris
pugnax)3°3¢ are controlled by either large (~10% of the genome) or small (~4.5 mb)
supergenes, respectively. Additionally, variation in sperm morphology in the zebra finch
has been shown to be mediated by a large Z-linked supergene3”-3,

Insertion-deletion (i.e., “indel”) mutations are a heterogeneous class of mutation
that includes short insertions, deletions, duplications, transpositions and length-change
in tandem repeats®. Indels are correlated with SNP density in the chicken genome, yet
are less common, representing ~5% of the SNP density in this species and ~2% of the
nucleotide substitution rate between the chicken and the turkey. In the great tit (Parus
major), most indels are short (< 5 bp long) and tend to be deleterious*?, yet in crows
(Corvus), where these mutations were studied using long-read sequencing
technologies, they span several kilobases*'. Although it can be challenging to identify
their ancestral state, indel mutations are likely biased towards deletions, possibly due to
polymerase slippage during replication. One unique way in which indels can promote
phenotypic changes is by disrupting regulatory networks, specifically by altering the
spacing between cis-regulatory elements3°42, Regulatory regions may depend on the
precise spacing (and not necessarily the specific sequence) between transcription factor
binding sites or enhancers in promoter regions. By changing either the number of these
binding sites or the spacing between them, indels may lead to variation in the
expression levels of genes that are important for adaptation. Indels can also result from
transposition events, which we discuss in the following section.

Changes in the number of copies of DNA fragments, or copy number variants,
are an important source of variation in humans and are also observed between many

bird species**44. These rearrangements appear to be more frequent (per megabase) on
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microchromosomes and are predominantly found in association with genes, suggesting
they are likely functionally relevant*3. In rock pigeons (Columba livia), a sex-linked copy
number variant encompassing the melanosome maturation gene mlana mediates a
color polymorphism#°. In the Common Murre (Uria aalge), there are two color morphs
that are differentially adapted to their thermal environment (cold versus warmer) and
this plumage difference is associated with a single ~60 kb region containing three
candidate genes*5. Based on anomalous patterns of read depth in this area, it is likely a
copy number variant, or perhaps a more complex combination of rearrangements, that

underlies these phenotypic differences.

Regulation of gene expression, transposable elements, and alternative splicing

The evolution of coding sequences in pleiotropic genes may be constrained
when mutations are adaptive in certain contexts but deleterious in others, depending on
the tissues or the timing in which genes are expressed?® Variation in how or when genes
are expressed may provide a solution to this constraint and be achieved with relatively
small DNA sequence changes, leading to phenotypic novelty. Cis-regulatory elements
(CREs) are bound by proteins which control gene expression and can be functionally
modular, driving the expression of genes during specific developmental times and only
in certain tissues® Therefore, the evolution of CREs may allow genes to influence
phenotypic changes without the potentially negative pleiotropic effects of mutations in
coding regions. Coloration differences among closely related birds in the genus
Sporophila are associated with mutations in non-coding regions close to otherwise
conserved melanogenesis genes, suggesting that differences in plumage are generated
by changes in the expression patterns of these pigmentation genes'”#’. A presumably
regulatory region near the gene follistatin (fst) mediates an intraspecific head plumage
coloration polymorphism that is maintained by balancing selection in Gouldian finches
(Erythrura gouldiae)*®4%. Egg coloration in several duck and chicken breeds is controlled
by changes in the expression of genes that modify the transport and deposition of
pigments in the eggshell (Figure 2). In mallards (Anas platyrhynchos), for example, a

SNP in a CRE increases the expression of the abcg2 gene in the uterus®. This gene
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functions as a membrane transporter for the green pigment biliverdin, and its increased
expression is thought to lead to the production of green eggs. Regulatory changes can
also mediate evolution at deeper scales, as is the case with the convergent loss of flight
in ratites®’.

Transposable elements (transposons, retrotransposons and the relics of old
viruses known as endogenous viral elements) have played an important role in the
evolution of eukaryotic gene regulation®2. Certain elements may become inactive after
transposition and unable to mobilize, but may still contain intact promoters that affect
the transcriptional regulation of the genes that are nearby'*. In humans and mice
various promoters, binding sites for regulatory proteins or polyadenylation signals are
derived from transposable elements, some of which are highly conserved®?.
Transposable elements can also modify pre-existing regulatory networks by duplicating
or eliminating CREs. Due to difficulties in assembling repetitive regions (especially with
short-read sequencing technology), transposable elements, and perhaps their role in
avian adaptation, tend to be underestimated'*53, In domestic chickens, the insertion of a
4.2 kb retrovirus (EAV-HP) in the &’ flanking region of the gene for the membrane
transporter slco1b3 confers promoter activity, leading to its increased expression in the
shell glands of the uterus®*. This transporter may be responsible for increased biliverdin
deposition and the production of blue eggs. The insertion sites of this retrovirus are
different in different breeds with blue eggs, suggesting that it occurred more than
once—independently in China and Chile—where the different chicken breeds
originated. Finally, high density of DNA methylation in gene promoter regions tends to
decrease gene expression, by interfering with the binding of transcription factors®®.
Methylation of the slco7b3 promoter is negatively correlated with its expression and the
intensity of blue eggshell color, indicating that this phenotype can be further modulated
by epigenetic modifications.

Alternative splicing may evolve faster than the regulation of gene expression and
can therefore lead to structurally variable transcripts from a single gene by various
processes, like including mutually exclusive exons, skipping exons, retaining introns, or
having alternative 3’ or 5’ splice sites’. Transcription level and alternative splicing

appear to be regulated independently, providing different evolutionary avenues for
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adaptation. As is the case for gene expression, cis- and trans-acting factors—as well as
epigenetic modifications—can regulate splicing. Most genes predominantly express a
single dominant isoform and multiple alternative isoforms at much lower levels which, in
an analogous way to gene duplicates, are free to evolve new functions. Mechanisms
like alternative transcription start or polyadenylation sites can also contribute to the
formation of alternative isoforms’°. Alternative splicing may be an evolutionary avenue
to resolving sexual conflict. In the mallard, turkey (Meleagris gallopavo), and helmeted-
guineafowl (Numida meleagris) there are sex-specific splicing differences in gonads that
correlate with phenotypic differences between the sexes, and have evolved rapidly as a
product of sex-specific selection®. However, the proportion of sex-specific spliced
genes is an order of magnitude less than that of those that are differentially expressed,

suggesting the latter process could be more relevant in resolving sexual conflict.

The sources of adaptive variants

The ultimate source of genetic variation has implications for the evolutionary
dynamics of a given adaptive trait, determining aspects like the waiting time until an
adaptive mutation occurs, or the number of mutations involved in generating the
phenotype, which may determine its complexity. While beneficial mutations are rare,
deleterious or neutral mutations occur more commonly®’. Therefore, adaptation from de
novo mutations may take many generations. Existing genetic variation (i.e., “standing”
genetic variation), or introgression of adaptive traits from other species or divergent
populations (i.e., adaptive introgression or gene flow), are two alternative sources of
variation on which selection can act on%8-%980 gllowing adaptation to proceed at a
potentially much faster pace than from de novo mutations. Moreover, adaptive
introgression can provide mutations which have already been “tested” by natural
selection in a different species or population, potentially leading to novel complex traits
involving several mutations. Finally, both gene flow among incipient species and the
mixing of variants from standing genetic variation may allow old genetic variants to
reassemble in novel combinations, and therefore this “combinatorial mechanism” can be

an additional source of adaptive traits®®.
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Identifying the sources of adaptive variation poses additional challenges, beyond
simply associating genotypes with phenotypes. While the latter can be done through
different types of outlier analyses, understanding the evolutionary origin of a variant
requires a broader knowledge of the phylogenetic context or the molecular signatures
around the variants of interest. To detect adaptive introgression among multiple
putatively hybridizing species, phylogenies from a locus of interest can be compared to
the genome-wide topology. This was shown for the complex differences in morphology
and reproductive strategies in the white-throated sparrow, which are determined by a
large supergene. Phylogenetic analyses showed that this supergene is older than the
species itself, and this genomic region is thought to have introgressed from a now
extinct species®t. Additionally, in Setophaga warblers, the topology at the carotenoid
processing gene bco?2 is highly discordant with the species tree inferred from the rest of
the genome, consistent with one or more bouts of historical introgression of this gene
among different species®’.

Adaptations from new mutations, and possibly introgressed variants, are initially
found at low frequency, and therefore should show signatures of hard selective sweeps.
We are not aware of conclusive examples of avian adaptations from de novo mutations,
like is the case in Peromyscus mice®?. By contrast, standing variants may be at higher
frequencies and found in different haplotype backgrounds before the onset of selection,
leaving behind a signal of soft selective sweeps®3. In Sporophila seedeaters, variants
near melanogenesis genes associated with coloration differences among recently
diverged taxa show signatures of soft selective sweeps form standing genetic
variation®. Moreover, phylogenetic trees derived from these loci suggest that novel
plumage phenotypes likely originated through the reassembly of standing genetic
variation in novel combinations®. Finally, there is evidence that some of the genomic
regions associated with changes in beak morphology in Darwin’s finches represent
haplotype blocks which are older than many of the species®®. Different combinations of

variants at these loci are suggested to shape beak morphology across the radiation.

The genomic basis of key avian traits
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Our goal here is not to provide an exhaustive accounting of all the studies that
have linked genes to adaptive phenotypes in birds. Instead, we focus on several key
avian traits and highlight the power of genomic tools to examine their genetic basis
(Figure 3).

Bill morphology

One of the most iconic phenotypic adaptation in birds involves variation in bill
shape and size®6869 As the direct anatomical link to resource acquisition—that also
has implications for song production and mate signaling”®—ecomorphological variation
in bills is exceptionally high in some avian clades, particularly in seed eating species. In
many cases, including in Darwin’s finches, Pyrenestes seedcrackers’’, and Loxia
crossbills’?, studies have explicitly shown this variation to be the result of divergent
natural selection. Bird beaks can also change through anthropogenic causes, like food
supplementation using bird feeders, which could have contributed to shaping longer bills
in the great tit (Parus major)’s.

Several developmental genes have been associated with different aspects of bill
morphology (e.g., length, width, or overall size). Early studies of Darwin’s finches, for
example, identified expression differences among species in calm1’4 and bmp47’® during
early development of the bill, presumably playing a key role in craniofacial development
in these birds. Using a combination of whole-genome sequences and divergence
analyses, variation in alx1 and hmgaZ2, among other genes, was subsequently
implicated in driving size and shape variation 876, with the hmga2 ‘large variant’
explicitly associated with survival during a drought period in the Galapagos Islands’’.
The variation in beak morphology in Darwin’s finches is remarkable, with many species
showing differences across a comparably large number of islands. Many of the studies
on beak morphology focus on subsets of species and specific islands, however one
study sampled four species on over a dozen islands and found hundreds of associated
developmental genes, suggesting that this trait is polygenic, despite the focus on a few

genes of large effect’8.
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Beyond Geospiza finches, variation in igff has been implicated between large or
small-billed Pyrenestes seedcrackers’’. In this case, unlike Geospiza finches where
there is moderate reproductive isolation among taxa, the Pyrenestes bill size
polymorphism is seemingly maintained within randomly-mating populations. High
linkage disequilibrium within the chromosomal region that houses igf1 is suggestive of a
chromosomal inversion, which may help maintain the polymorphism without assortative
mating. Finally, a third Pyrenestes morph, dubbed the “mega-billed” form, appears to
have evolved using a more complex genetic architecture that is semi-independent of the

variants associated with the smaller-billed forms.

Wing growth and flightlessness

Among vertebrates, powered flight has evolved only three times and deep in the
past (in modern birds, bats, and pterosaurs), and thus identifying the genes associated
with the initial adaptive steps in the evolution of flight in birds is challenging (if not
impossible). However, the subsequent /oss of flight has been observed in several avian
lineages, both deep in the avian tree and at its tips; genomic studies have started to
reveal the genetic changes associated with flightlessness in the latter cases’®¢%. For
example, the flightless cormorant of the Galapagos islands (Phalacrocorax harrisi) has
extremely short wings that are not capable of flight, although it is an agile diver. P.
harrisi diverged from its flighted relatives within the past 2 million years, recent enough
for it to be possible to use whole genomes to identify several candidate changes
associated with flightlessness’®. Most notable were amino acid changes in CUX1 and
IFT122, which are both involved with ciliary function and bone growth. In an impressive
application of integrative methods, the cormorant ift122 variant was experimentally
shown to affect the ciliary function of Caenorhabditis elegans in vitro.

South American Tachyeres steamer ducks are known for their conspicuous
swimming behavior of vigorously flapping their wings in the water while propelling
themselves forward with their feet. They are in fact a group of closely related species
and are unusual among birds in that the ability to fly varies both inter and intra-

specifically. One Tachyeres species is predominantly flighted whereas three are mainly
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flightless. Using a cross-species GWAS, two narrow candidate genomic regions were
shown to be associated with the morphological changes leading to flightlessness®. One
of the genes in these regions with the highest association, dyrk7a, is implicated with
human genetic disorders that include bone length abnormalities and knockouts in mice

show altered growth and bone morphogenesis.

Plumage coloration

Birds use a variety of pigment molecules to color their feathers, primarily
melanins (eumelanin and pheomelanin, which give rise to different black, gray, brown or
yellowish tones) and carotenoids (which produce a range of yellow, orange, and red
colors)®!. Unlike in Peromyscus mice or peppered moths, where color variation has
been explicitly linked to survival and fitness, coloration research in birds has also been
viewed through the lens of sexual selection®. In particular, studies of melanic variation
in Sporophila seedeaters'”*’, Monarcha flycatchers®, Lonchura munias®, Motacilla
wagtails'®, and parulid warblers'® have all implicated common targets of selection, most
notably asip and, to a lesser extent, mc7r. Both coding and presumably regulatory
mutations are thought to mediate coloration differences and, in some cases, specific
variants have been linked to changes in the color or pigment concentration of particular
body patches*’-8586_ Moreover, the combined variation of these genes and a few others
from the melanogenesis pathway are responsible for the concerted variation across
multiple body parts, leading to emergent patterning*’-#”. These genes are also involved
in pelage variation in Peromyscus as well as other vertebrates®?, suggesting the shared
melanogenesis pathway is commonly targeted by natural and sexual selection.

Beyond the presence and absence of melanin molecules, birds also vary how
pigment molecules are arranged and packed into the developing feather—producing
structural coloration differences—as well as incorporating a wider range of other
pigment molecules into their feathers, which together produce a broad diversity of
colors®'. Recent discoveries on different pigment molecules have focused on, for
example, the sequence differences which mediate psittacofulvin variation, a pigment

which is specific to parrots®® (responsible for green and blue tones), as well as the gene
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expression patterns associated with iridescence in African starlings®. However,
carotenoid molecules have received the most attention, as they are thought to act as
‘honest signals’ in avian systems. An honest signal refers to when an individual (i.e., the
signaler) deposits a metabolically costly compound in its integument such that a
potential mate (i.e., a receiver) can easily assess the quality and potential to produce
high-fitness offspring of the signaler®. Carotenoids must be acquired through the diet
and later modified, which is metabolically costly, thus having the potential to become an
honest signal of resource acquisition.

Evolution in bco2—a gene involved in the breakdown of full-length carotenoids
into shorter apocarotenoids—has been linked to carotenoid-based coloration in
canaries®!, the nestlings of Darwin’s finches®, and Vermivora warblers®!. Whereas
cyp2j19—involved in ketolation of yellow dietary carotenoids to red ketocarotenoids—
has been linked to red coloration in Pogoniulus tinkerbirds®3, zebra finches®, Colaptes
Flickers®, and red-backed fairywrens®. The fact that both genes (bco2 and cyp2j19)
have also been directly®® or indirectly®” implicated in adaptive color differences among
reptiles is consistent with a single evolutionary origin among non-mammalian tetrapods
for the role of these genes in the deposition of carotenoids in the integument. The
Honduran white-bat, Ectophylla alba, is the only mammal documented to deposit

carotenoids in its skin, but the mechanism is unknown®.

Taste reception

Unlike mammals, which have evolved taste for both savory and sweet diet items,
avian taste receptors were long thought to be primarily restricted to detecting savory
foods, as their genomes lacked a key sweet taste receptor (the t7r2 gene, which
encodes one of two proteins that combine to produce the sweet taste receptor
heterodimer)®. Yet, nectivores, and especially hummingbirds, belied this pattern (Figure
4). Hummingbirds have evolved sweet taste reception, but by co-opting an ancestral
savory (umami) receptor (a heterodimer of T1R1-T1R3)%.

Nectivory and sweet taste have also evolved in songbirds (Passeriformes)

independently of hummingbirds (Apodiformes). Using synthesized proteins of ancestral
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reconstructions and functional experiments, carbohydrate sensitivity in songbirds was
also found to have evolved through co-option of the T1R1-T1R3 umami receptor’®.
However, this occurred independently from hummingbirds, as most of the functionally
important amino acid sites for the songbird sweet taste involve T1R1, instead of T1R3,
as in hummingbirds. That said, the multiple presumably functional and adaptive
changes in both lineages involved the ligand-binding region of the heterodimers,

implying parallel adaptation at the level of tertiary protein structures.

Elevational and altitudinal adaptation

How birds have adapted to living at high elevations and flying at high altitudes
has been of interest for decades, yet logistically challenging to study in the wild.
Research on the molecular and physiological adaptations in this realm has been
exemplified by work on bar-headed geese (Anser indicus), which migrate over the
Himalayas, recorded at altitudes of 6,000 meters, where the partial pressure of oxygen
is significantly reduced'?'. Early research showed that these geese have an inherently
higher haemoglobin Oz affinity’%?, but also their mitochondria are distributed towards the
cell membrane'3, presumably both adaptations to improve oxygen transport efficiency.
More recently, genomic analyses of this species—as compared to other low-altitude
species—showed that a number of genes in the hypoxia inducible factor (HIF) pathway
are under strong positive selection'%. Notably, genes in this pathway are also involved
in the transcriptional response of high-altitude adapted Tibetan human populations and
in different duck species’®.

Adaptations to high elevation in the Qinghai-Tibet Plateau were assessed by
comparing transcriptomic data for three high elevation passerine species paired with
related low elevation species'®. The study showed a large difference in the expression
profiles of putative elevation-adapted genes, with similar genes showing evidence of
positive selection among the pairs, while only sharing a small number of common amino
acid changes, suggesting convergent evolution.

While many studies have looked explicitly at avian adaptations to the most

conspicuous abiotic changes to elevation (i.e., temperature and oxygen pressure), work



525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

in mountain chickadees (Poecile gambeli) has studied variation in cognitive phenotypes.
These species are food-caching, and therefore require impressive spatial cognitive
adaptations to recover their food stores, particularly at higher elevation where snow
precipitation can be very high. Significant associations with several genes, including
those involved in neuron growth and development, were found by comparing the
genomes of wild chickadees that differed in their ability to solve a spatial cognitive task
at both low and high elevations'%’. These genes may have been involved in the

polygenic cognitive adaptation needed to survive in these novel environments.

Water regqulation and climate change

The genomics of adaptation of osmoregulatory pathways have generally been
studied in non-avian vertebrates, such as anadromous salmonids'%. However, research
in the Karoo scrub-robin (Cercotrichas coryphaeus), distributed across an aridity
gradient, as well as work among four sparrow species that independently colonized
coastal habitats, have highlighted these adaptations in birds'%®119, \Whole-genome data
from sparrow saltmarsh and upland groups, revealed strong genetic evidence of
adaptations to these challenging environments''°. While many genomic regions were
independently divergent between the pairs, several others showed evidence of parallel
adaptation across all pairs. One of those regions included the gene sic41a2, which in
teleost fishes has been shown to be a Na*/Mg?* transporter, and thus possibly involved
in osmoregulation in these saltmarsh-adapted sparrows.

Recent advances integrating genomic and environmental data via machine
learning (ML) approaches has opened new avenues for growth in this field. For
example, work on yellow warblers''" (Setophaga petechia) and willow flycatchers’'?
(Empidonax traillii) both combined reduced-representation genome sequencing and
gradient forest ML analysis of remote sensing environmental data. While the
demographic history of a species, the genomic architecture of the trait, or the nature of
the environmental gradient can impose limitations to interpreting results from this
approach'3, both studies were able to identify—and subsequently validate in a broader

sample—adaptive loci. For example, SNPs upstream of the drd4 gene associated with
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high precipitation'"'. This gene had been previously associated with the “boldness”
phenotype across a range of vertebrate taxa, although it is unclear how it is directly
related to climate adaptation in birds. An additional study reported significant
associations with the mean temperature of the warmest annual quarter, however the top
SNP was not linked to any genes with known functions in thermal tolerance'2.
Importantly, both studies used genotype-environment relationships to measure the
mismatch between the current and predicted future genomic variation (or “genomic
offset”) to forecast how much populations needed to adapt to respond to a changing
climate, providing an important predictive framework for future genomic studies of

adaptation in birds.

Outlook and Future Challenges

We end by turning to what we believe are important challenges to this field, both
by focusing on the technical aspects of studying avian genomics, as well as discussing

the existential threat posed to biodiversity from habitat alteration and climate change.

Reference genome assemblies and structural variants

Genome assembly quality remains a limiting factor in the identification of the
genetic basis of adaptation in birds. Whereas the number of assembled avian genomes
using short-read sequencing has dramatically increased in the last few years, there are
still regions of the genome that are not recovered, and these may contain “hidden
genes” involved in shaping different phenotypes. Long-read sequencing technologies
lead to more complete assemblies, which can include repeat or GC rich regions such as
microchromosomes, telomeres, centromeres, multicopy genes, or heterochromatin®3. As
the field progresses towards telomere-to-telomere assemblies, so will our ability to
understand how different regions of the genome contribute to adaptation, as well as
developing more robust and species-specific gene annotation information. Long-read

sequencing technologies will also enable the characterization of different types of
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structural variants, and with this a better understanding of how different types of causal

mutations contribute to phenotypic variation®.

Beyond association studies

Many of the genomic studies of avian adaptation began with a clear phenotype,
segregating either within or between species, that has a demonstrable connection to
fitness, and the genetic basis for those traits are identified by GWAS, Fsrt scans, or
related outlier methods. However, unlike in other taxonomic groups where subsequent
validation of associations would be readily feasible by bringing the organism into the
laboratory, many of the tools of functional genomics remain out of reach for most avian
taxa. For instance, the CRISPR/Cas9 system for gene editing is still only emerging in
birds, with the chicken and quail as the two species showing significant advances''*115,
Recently, however, CRISPR/Cas9 was used on an immortalized cell line from the zebra
finch, which will allow for more comprehensive molecular studies, at least for that
songbird species'®.

Transcriptomics has been, and will likely continue to be in the near future, the
more fruitful avenue for validating the connection between gene associations and
adaptive phenotypes in birds''”. Moreover, many studies of adaptation which only look
at segregating sequence variation have identified non-coding, putatively regulatory
regions, as likely underlying causal phenotypes. This suggests that gene expression
differences may underlie many of the adaptive differences within and among bird
species, as has been documented in other taxonomic groups like Gasterosteus
sticklebacks''®. We also believe that valuable genomic insights of avian adaptation will
come from highly integrative research. For instance, studies that combine natural
history, comparative phylogenomics, and molecular biology, make the most compelling
cases for adaptive evolution with explicit functional connections”®2%1%_ Thus, with new
candidates for other molecular processes that underlie avian adaptation coming from
this first generation of association studies, similar work will likely be feasible for
coloration, migration, morphology, and many other adaptations. We also envision that

the incorporation of machine learning methods will be able to overcome some of the
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challenges for combining large and diverse datasets, allowing for example the
identification of mutations under selection or associations between the genome and the
environment, and will likely be a central tool for future studies of avian

genomi035,64,1 11,112

Conclusion and conservation challenges

The study of wild birds—like many vertebrate taxa—is framed within a broader
context of population declines and conservation concerns''®. We have already observed
genomic evidence of anthropogenic influence on the adaptation of bird populations”3120,
which can obscure our understanding of how evolution takes place in natural
populations. For example, the degree of hybridization may increase as populations are
forced to coexist in patches of remaining habitat, and this may influence their
evolutionary fate'?'. Genomic offset to climate change has also been identified as an
important factor to consider across several systems'1.112.122 Anthropogenic change,
like the introduction of novel parasites'?%124, generates strong and novel selective
pressures which directly threaten the survival of entire species groups, like Darwin’s
finches, which have been foundational in our understanding of the genetic
underpinnings of avian adaptation. Finally, admixture between wild and domesticated
individuals can threaten to modify the evolutionary trajectory of a species'?. It is likely
that other systems, less well known than some of the iconic examples discussed above,
are already facing extinction or extirpation, and will be lost without the ability for us to
gain insights regarding their evolution. While genomic data play a key role in better
understanding population structure and the effects of declines, because of these clear
conservation concerns, we see that the study of genomic adaptation in wild birds is at

both an exciting and precarious crossroads.
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Figure 1. A and B. Chromosomal spreads of two songbird species immunolabeled with
antibodies against SYCP3 (red), highlighting the synaptonemal complex, which is the
protein structure that forms between homologous chromosomes, centromere proteins
(blue) and MLH1, a mismatch repair protein marking recombination sites (green)
(obtained from reference?®). C Macro or micro GRCs have only been identified in
songbirds, the most specious avian lineage, prompting questions about their role in the
diversification process (obtained from reference ; this result remains true when surveying

a larger number of species®).
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Figure 2. Gene expression differences mediate egg coloration in domestic chicken and
mallard duck breeds. Two independent insertion events of a retrovirus (EAV-HP; note the
different insertion sites) with promoter activity increase the expression of the slco1b3
gene. This gene is thought to transport biliverdin pigment to the eggshell, leading to blue
eggs (obtained from reference®). In a mallard breed a mutation in a CRE increases the
expression of abcg2, leading to higher biliverdin transport and green eggs (obtained from
reference®). While these phenotypes likely arose as a byproduct of artificial selection in
domestic chickens and mallards, they illustrate the role of gene regulation and TEs in the

evolution of phenotypes that are adaptive in wild birds.
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Figure 3. Examples of avian adaptations and their genetic basis. We do not cover bird
migration here as a review on the subject is also published in this issue of Current Biology.
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678 Figure 4. A. Responses of hummingbird taste receptors to sucrose and fructose, showing

679 the very strong sensitivity of the T1IR1/T1R3 heterodimer (obtained from reference®). B.
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Other nectarivores, like the New Holland honeyeater, have independently evolved sweet
taste reception using the T1R1/T1R3 heterodimer, while in insectivores, illustrated by the
Rusty-margined flycatcher, this receptor is not sensitive to sugars (and is only activated

by amino acids) (obtained from reference'%).
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