Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation

Tiancheng Pu, Adhika Setiawan, Bar Mosevitzky Lis, Minghui Zhu, Michael E. Ford, Srinivas Rangarajan, and Israel E. Wachs

ABSTRACT: The nature of surface oxygen species on/in a silver powder catalyst and their reactivity with ethylene were systematically investigated with multiple spectroscopies and DFT calculations. Unique quasi in situ HS-LEIS, in situ NAP-XPS, and in situ Raman spectroscopy demonstrated that the silver surface is covered by a thin oxide layer (1–3 nm) after an oxidation treatment and during ethylene oxidation. Periodic DFT models allowed assignments of oxygen species detected by in situ Raman spectroscopy with detailed structures on p(4 × 4)–O–Ag(111) surfaces. In situ NAP-XPS and Raman spectroscopy suggest that Ag–O2 on oxidized Ag is the active oxygen species for ethylene epoxidation. The experimental and theoretical methodologies developed in the present work serve as an efficient toolbox for the scientific investigation of the silver–oxygen system for selective oxidation reactions and rational guidance of computational calculations coupled with experimental findings.

KEYWORDS: ethylene, oxidation, ethylene oxide, silver, NAP-XPS, in situ Raman, TPSR, DFT

Silver catalysts find wide industrial application for ethylene epoxidation to ethylene oxide (EO) because of their unique high EO selectivity for this important chemical reaction. Despite decades of research effort, the nature of the active oxygen species on/in silver catalysts is still extensively debated because of the scarcity of characterization studies under reaction conditions and computational studies. Elucidation of the oxygen species on/in model Ag powder catalysts and their reactivity and selectivity with ethylene would allow for a guided rational design of highly selective catalysts for ethylene epoxidation.

Over the years, the oxygen species on/in Ag have been probed with various techniques. X-ray photoelectron spectroscopy (XPS) of oxygen on Ag single crystals detected two types of oxygen species assigned to nucleophilic oxygen (O_{nuc}(528–528.5 eV) and electrophilic oxygen (O_{elec}(530–531 eV). Both oxygen species were observed to participate in the ethylene epoxidation reaction. Of the two, O_{elec} was assumed to attack the π electrons of ethylene and proposed as the EO selective oxygen species. The oxygen species on/in Ag were also detected with in situ Raman spectroscopy. Their assignments have been speculated to be Ag$_2$O (300 cm$^{-1}$), Ag–O$_{bulk}$ (630 cm$^{-1}$), Ag–O$_2$ (697 cm$^{-1}$), subsurface Ag–O (802 cm$^{-1}$), Ag=O (956 cm$^{-1}$), and molecular Ag–O$_2$ (1053, 1078, 1286 cm$^{-1}$). In addition to surface oxygen species, subsurface oxygen is also believed to strongly influence the catalytic properties of Ag. A consensus on the oxidation state of silver and the nature of the oxygen species and their reactivity, however, has not been reached to date. In this context, density functional theory (DFT) calculations can potentially map Raman spectroscopy bands for the O–Ag system with plausible surface and adsorbate structures. Recent studies showed examples of such an approach, in which hybrid surface–subsurface O$_2$ species on fully (Ag$_2$O(001)) or partially oxidized Ag surfaces (the p(4 × 4) oxidic reconstruction of Ag(111)) were found to exhibit vibrational frequencies between 600 and 840 cm$^{-1}$.

The present investigation examines the nature of the oxygen species on/in silver (high-purity electrolytic polycrystalline powder) and their reactivity by the application of scanning electron microscopy (SEM), quasi in situ high-sensitivity–low-energy ion scattering (HS-LEIS) spectroscopy, in situ Raman spectroscopy, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), temperature-programmed surface reaction (TPSR) spectroscopy, and steady-state catalytic studies. Combined density functional theory (DFT) calculations and experimental results suggest that Ag$_2$–O$_2$ on a partially oxidized Ag surface is associated with EO formation.

The SEM images of the oxidized model Ag catalyst (40% O$_2$, 250 °C) are presented in Figure 1a,b. The Ag particles possess a...
uniform polyhedral morphology with size ranging from tens to hundreds of micrometers (surface area \(\sim 0.01 \text{ m}^2/\text{g} \). The atomic composition of the outermost Ag layers was probed by HS-LEIS. The HS-LEIS spectra for the Ag catalyst after dehydration (Ar, 450 °C, 1 h) and mild oxidation (175 °C, 5% O2, 30 min) and strong oxidation (250 °C, 40% O2, 30 min) annealing (see schematic in Figure S1) are presented in Figure 1c/d,e/f,g/h, respectively. Despite the extremely high bulk purity, the outermost surface layer of the Ag catalyst contains Cu and Au that are believed to be left over from the Ag purification process, as well as the common impurities of Na, K, and As that may also be related to the manufacturing process. The Au, Cu, Na, and K species are surface-enriched since their HS-LEIS signals decrease with sputtering depth. Upon sputtering, the Ag signal continuously increases while the O signal continuously decreases, reflecting the surface enrichment of O, indicating that the surface of the Ag catalyst is covered by a thin oxide layer. Upon annealing in Ar at 450 °C for 1 h, the surface of the Ag catalyst becomes dehydrated and bulk oxygen is desorbed. The integrated areas of the HS-LEIS signals versus sputtering depth are plotted in Figure 1d,f,h for the Ag surface after dehydration, mild oxidation, and strong oxidation treatments, respectively. Some O species remain in the outermost three layers after dehydration. Examining the relative sensitivity factor (RSF) normalized analysis of O/metal signals (Figure S2), reveals that (i) the surface O concentration is related to the treatment temperature with more surface O segregation as the temperature increases and (ii) the oxide layer increases with the strength of the oxidative pretreatment (\(\sim 1 \text{ nm after dehydration}, \sim 2 \text{ nm after mild oxidation, and } \sim 2-3 \text{ nm after strong oxidation} \). The surface of the Ag particles was also found to be nonuniform and is discussed in detail at the beginning of the Supporting Information.

Plane wave periodic DFT calculations were employed to compute the adsorption structures, binding energies, and vibrational frequencies of surface atomic (O*) and surface molecular (O\textsubscript{2}*) species on the various Ag silver facets (Figure S3) (111), (110), (100), and (211) and the oxygen-reconstructed surfaces, viz. the p(4 \times 4) oxidic reconstruction of the Ag(111) surface (Figure 2).18,19 The adsorption modes and vibrational frequencies are reported in Table 1 and, where possible, compared with those in the literature. The list of DFT-simulated adsorbed oxygen structures can be generally divided into three regions on the basis of their vibrational frequencies: (i) surface O* species exhibiting Ag–O vibrations in the 300–500 cm\(^{-1}\) range with Ag–O\textsubscript{bulk} species also vibrating in the same range (Figure S19 and Table 1), (ii) surface O\textsubscript{2}* dioxygen species on Ag exhibiting O–O vibrations in the 600–800 cm\(^{-1}\) range (Ag\textsubscript{2}O\textsubscript{2}O\textsubscript{2}), and (iii) surface molecular O\textsubscript{2}* species on Ag exhibiting O=O vibrations in the 1000–1200 cm\(^{-1}\) range (Ag\textsubscript{2}O=O). The relations between binding energies and
calculated vibrations of all calculated \(\text{Ag}_x\−\text{O}\) species are shown in Figure S4 and Table S1.

The structure and reactivity of various oxygen species toward ethylene oxidation were examined with \emph{in situ} Raman spectroscopy. The local surface roughness of the electrolytic Ag powder gives rise to the surface-enhanced Raman scattering (SERS) effect that enhances the Raman signal intensity by orders of magnitude, thus overcoming the extremely weak surface signals typically associated with very-low-surface-area materials. The \emph{in situ} Raman spectra of the model Ag catalyst after oxidation treatments at 250 °C with \(\text{O}_2\) and \(\text{N}_2\text{O}\), as well as under ethylene oxidation, are exhibited in Figures 3a−c, respectively. A total of six different Raman bands at ca. 304, 559, 639, 721, 839, and 1060−1078 cm\(^{-1}\) were detected (Table 2). The 1060−1078 cm\(^{-1}\) region is particularly interesting because it corresponds to the deformation vibrations of the Ag−O bond, which are highly sensitive to the local environment of the oxygen atom. The other Raman bands at 304, 559, 639, 721, and 839 cm\(^{-1}\) are assigned to the \(\text{Ag}_x\−\text{O}\) species on various Ag facets, as shown in Table 1. The Raman bands at 304 cm\(^{-1}\) are assigned to the \(\text{Ag}_x\−\text{O}\) species on the Ag(111) facet, which is the most active for ethylene oxidation, while the bands at 559, 639, and 721 cm\(^{-1}\) are assigned to the \(\text{Ag}_x\−\text{O}\) species on the Ag(110) and Ag(100) facets. The band at 839 cm\(^{-1}\) is assigned to the \(\text{Ag}_x\−\text{O}\) species on the oxidized Ag(111) facet. The Raman bands at 1060−1078 cm\(^{-1}\) are assigned to the \(\text{Ag}_x\−\text{O}\) species on the oxidized Ag(111) facet.

Table 1. Simulated Vibrational Frequencies of Oxygen Species on Various Ag Facets in This Study and the Literature

<table>
<thead>
<tr>
<th>species</th>
<th>facet</th>
<th>site</th>
<th>vibrational frequency (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>this study</td>
</tr>
<tr>
<td>(\text{Ag}_3\−\text{O})</td>
<td>Ag(111)</td>
<td>FCC 3-fold</td>
<td>351</td>
</tr>
<tr>
<td>(\text{Ag}_3\−\text{O})</td>
<td>Ag(110)</td>
<td>4-fold</td>
<td>301</td>
</tr>
<tr>
<td>(\text{Ag}_3\−\text{O})</td>
<td>Ag(100)</td>
<td>4-fold</td>
<td>293</td>
</tr>
<tr>
<td>(\text{Ag}_3\−\text{O})</td>
<td>oxidized Ag(111)</td>
<td>FCC 3-fold</td>
<td>336</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}_2)</td>
<td>oxidized Ag(111)</td>
<td>trough</td>
<td>362</td>
</tr>
<tr>
<td>(\text{O}−\text{Ag}_x)</td>
<td>Ag(O(001))</td>
<td>bulk</td>
<td>449</td>
</tr>
<tr>
<td>added-row O</td>
<td>p(2 × 1)−O−Ag(110)</td>
<td>added-row</td>
<td>531</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}_2)</td>
<td>Ag(110)</td>
<td>4-fold</td>
<td>751</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}_2)</td>
<td>Ag(100)</td>
<td>4-fold</td>
<td>788</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}_2)</td>
<td>oxidized Ag(111)</td>
<td>trough</td>
<td>693, 760</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}=\text{O})</td>
<td>Ag(111)</td>
<td>bridge</td>
<td>1122</td>
</tr>
<tr>
<td>(\text{Ag}_x\−\text{O}=\text{O})</td>
<td>oxidized Ag(111)</td>
<td>FCC 3-fold</td>
<td>1276</td>
</tr>
</tbody>
</table>

Figure 3. \emph{In situ} Raman spectra of the model Ag catalyst during (a) 5% \(\text{C}_2\=\text{TPSR}\) after oxidation with 40% \(\text{O}_2\) (250 °C), (b) 5% \(\text{C}_2\=\text{TPSR}\) after oxidation with 10% \(\text{N}_2\text{O}\) (250 °C), and (c) 5% \(\text{C}_2\−\text{TPSR}\) after dehydration treatment with \(\text{Ar}\) (450 °C). Comparison of \emph{in situ} Raman spectra of model Ag catalyst (d) after 5% \(\text{C}_2\=\text{TPSR}\) and 40% \(\text{O}_2\) oxidized Ag under flowing \(\text{Ar}\) at room temperature, (e) after 5% \(\text{C}_2\=\text{TPSR}\) and 10% \(\text{N}_2\text{O}\) oxidized Ag in \(\text{Ar}\) at room temperature, and (f) after 5% \(\text{C}_2\=\text{TPSR}\) and 5% \(\text{O}_2\) from 25−300 °C and dehydration with \(\text{Ar}\) at room temperature.
Table 2. Assignments and Reactivity of Oxygen Species Observed during In Situ Raman Spectroscopy Studies

<table>
<thead>
<tr>
<th>Raman shift (cm$^{-1}$)</th>
<th>oxygen species</th>
<th>reactivity with ethylene</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>304, 314, 318</td>
<td>Ag$_{3}$=O</td>
<td>react at 150–300 °C, partially remained after C$_2$H$_4$-TPSR at 300 °C</td>
<td>Figure S19, 10</td>
</tr>
<tr>
<td>559</td>
<td>added-row O</td>
<td>unclear due to spatial heterogeneity</td>
<td>34, 36</td>
</tr>
<tr>
<td>639</td>
<td>added-row O</td>
<td>react at 50–150 °C, fully consumed upon reaction with C$_2$H$_4$</td>
<td>34</td>
</tr>
<tr>
<td>691, 721</td>
<td>Ag$_{3}$=O$_2$</td>
<td>react at 150–300 °C, fully consumed upon reaction with C$_2$H$_4$</td>
<td>11</td>
</tr>
<tr>
<td>839, 840</td>
<td>Ag$_{4}$=O$_2$</td>
<td>unclear due to spatial heterogeneity</td>
<td>11</td>
</tr>
<tr>
<td>1060–1078</td>
<td>Na$_2$CO$_3$</td>
<td>stable upon exposure to C$_2$H$_4$ up to 300 °C</td>
<td>Figure S5</td>
</tr>
</tbody>
</table>

Italicized Raman shifts exhibit the best agreements with those of italicized shifts from DFT calculations in Table 1.

The ~800 cm$^{-1}$ vibration is attributed to a nonstandard dioxygen species, although with a different focus on an Ag$_2$O(O01) surface instead of the (p(4 × 4)) reconstruction in this study. On the basis of the free energy of reaction, the dioxygen species on an Ag$_2$O(O01) surface is more stable than the dioxygen species adsorbed onto an oxygen vacancy on a p(4 × 4) reconstructed surface, although previous phase diagram studies of the Ag(111) surface suggest that the Ag$_2$O surface is unstable under ethylene epoxidation reaction conditions. Nevertheless, the study by Paolucci et al. and this study both suggest that the 800 cm$^{-1}$ species may be a result of a dioxygen species occupying a surface vacancy site created from the removal of a surface atomic oxygen of an oxidized surface. Additionally, the atomic vacancy need not involve direct desorption (e.g., as molecular oxygen): for example, the oxidation of ethylene by a surface O* (resulting in a vacancy and ethylene oxide or acetaldehyde) is thermodynamically favorable, an observation that is in concurrence with the literature.

The in situ Raman spectra during C$_2$H$_4$-TPSR are presented in Figure 3a,b. Upon oxidation with molecular O$_2$, the Ag surface exhibits Raman bands at 691, 721, and 839 cm$^{-1}$ from Ag$_{3}$=O$_2$ dioxygen species. The surface dioxygen species react with ethylene in the 150–250 °C temperature range. Decreasing intensities of the bands at 304 and 559 cm$^{-1}$ also show that surface monatomic Ag$_{3}$=O species react with ethylene in the 150–300 °C temperature range. Upon oxidation of the Ag catalyst with N$_2$O, which decomposes to N$_2$ gas and only deposits atomic surface O* species, only Raman bands at 304, 559, and 639 cm$^{-1}$ are present that primarily correspond to atomic surface O* species. The reactivities of the atomic Ag$_{3}$=O species from the oxidation pretreatments by N$_2$O and O$_2$ with ethylene during C$_2$H$_4$-TPSR are similar to those on increasing the temperature from 150 to 300 °C. The model Ag catalyst was also probed with in situ Raman during the ethylene oxidation reaction (5% C$_2$H$_4$ + 5% O$_2$), as shown in Figure 3c. During ethylene oxidation, the Raman bands at 691 and 721 cm$^{-1}$ gradually reached a maximum between 100 and 150 °C. From 200 to 300 °C, the intensity of the 691 and 721 cm$^{-1}$ bands decreased, suggesting that surface Ag$_{3}$=O$_2$ dioxygen species were being consumed. Meanwhile, the Na$_2$CO$_3$ nanoparticles (1060–1078 cm$^{-1}$) remained relatively stable even at high temperatures. It should be noted that the signal to noise ratio of the Raman spectra dramatically decreased at T > 200 °C, possibly from some loss of surface roughness that decreases the SERS effect. The relative stability of the Na$_2$CO$_3$ nanoparticles allowed using the carbonate bonds at 1060–1078 cm$^{-1}$ as an internal standard for normalization of the in situ Raman spectra. The evolution of the integrated areas of the various oxygen species during in situ Raman measurements are presented in Figure S13. To avoid coincidence from surface inhomogeneity and confirm the trend of the observations, Raman spectra were also collected at a second spot and plotted in Figure S14 for reproducibility. After the in situ Raman-TPSR experiments, the catalysts were also flushed with Ar and cooled to room temperature and the resulting Raman spectra compared with the spectra of the corresponding oxidized/dehydrated catalysts shown in Figures 3d–f. The surface of the initial dehydrated model Ag catalyst (Figure S15) is found to become oxidized upon exposure to the ethylene oxidation reaction environment (Figure 3f). Raman vibrations from oxidized Cu, Au, and As surface impurities are absent from the Raman spectra (Table S2 and Figure S16) because of the much stronger SERS signal from Ag than from Cu, Au, and As.
The reaction of ethylene with the oxygen species on/in the model Ag catalyst during the ethylene oxidation reaction (5% \(\text{C}_2\text{H}_4\) + 5% \(\text{O}_2\)) was also monitored with NAP-XPS, and the spectra are presented in Figure 4a. The XPS O 1s peak at a binding energy (BE) of 538.3 eV is from gas-phase molecular \(\text{O}_2\). The O 1s peak at a BE of 538.3 eV is only present at 25 °C and is absent at higher temperatures, indicating that it is completely consumed at higher reaction temperatures. The O 1s peaks at BEs of \(\sim 530.0\) and \(\sim 532.0\) eV have been assigned in the literature to atomic O bulk species\(^{8,27}\) and surface Ag\(^{+}\)–O\(_2\) dioxygen species.\(^{28-30}\) The relative population of the O 1s peaks at 530 eV (O\(_{\text{bulk}}\)) and 532 eV (surface Ag\(^{+}\)–O\(_2\)) as a function of environmental conditions is indicated in Figure 4b. The O\(_{\text{bulk}}\) peak (530 eV) is the dominant oxygen species after the initial dehydration/O\(_2\) desorption treatment, and its intensity initially decreases and then increases above 100 °C with the reaction temperature. The surface Ag\(^{+}\)–O\(_2\) dioxygen species (532 eV) exhibits an inverse trend, with its intensity initially increasing up to 100 °C and then decreasing with increasing reaction temperature (Figure 4b). The trend of Ag\(^{+}\)–O\(_2\) agrees with the evolution of Raman bands corresponding to Ag\(^{4+}\)–O\(_2\) that vibrate at 691–721 cm\(^{-1}\) (Figure 3c). The corresponding Ag 3d NAP-XPS spectra presented in Figure 4c indicate that Ag is predominately metallic during ethylene oxidation.\(^{31}\) The Ag 3d difference spectra (Figure 4d) at various temperatures, however, reveal that the model silver catalyst gradually becomes mildly oxidized during ethylene oxidation, forming Ag\(^{2+}\) (Ag 3d peaks at 367.3 and 373.2 eV). The increase in the Ag\(^{2+}\) signal at elevated reaction temperatures further suggests that the surface region (1–3 nm) probed by XPS is.

Figure 4. (a) In situ NAP-XPS spectra of the O 1s region of model Ag catalysts during ethylene oxidation. (b) Percentage of oxygen species with binding energies of 532 and 530 eV measured under different reaction conditions. (c) In situ NAP-XPS spectra of the Ag 3d region of model Ag catalysts during ethylene oxidation. (d) Difference Ag 3d spectra during ethylene oxidation by model Ag catalysts at different temperatures relative to the corresponding spectra of dehydration treatments.

Figure 5. (a) TPSR profile during ethylene oxidation (5% \(\text{C}_2\text{H}_4\) + 5% \(\text{O}_2\)) by the model Ag catalyst from 30 to 500 °C. (b) Steady-state reaction performance for ethylene oxidation (5% \(\text{C}_2\text{H}_4\) + 5% \(\text{O}_2\)) by the model Ag catalyst.
partially oxidized in the ethylene oxidation reaction. In addition, NAP-XPS of the oxidized Ag powder during C\textsubscript{2}−temperature-programmed surface reaction (TPSR) is shown in Figure S17 and reveals that the surface Ag\textsubscript{5}−O\textsubscript{x} species are preferentially consumed during C\textsubscript{2}−TPSR from 50 to 200 °C. The peak deconvolution shown in Figure S18 confirms that the Ag surface is partially oxidized and constitutes 10.98% and 8.76% of Ag0 in the oxidative treatment and ethylene oxidation, respectively. The concentration of Ag\textsubscript{5}−O\textsubscript{x} species on the oxidized Ag surface is also found to undergo a slight increase (Figure S17b) when the environment is switched from Ar to 5% 18O\textsubscript{2}− (absence of molecular O\textsubscript{2}), suggesting that surface Ag\textsubscript{5}−O\textsubscript{x} is being formed from the Ag−O\textsubscript{bulk} species.

Correlation of the \textit{in situ} Raman spectra and steady-state performance of the model Ag catalyst suggests that surface Ag\textsubscript{5}−O\textsubscript{2} is the more selective species for EO formation, as indicated in Figure S a. The C\textsubscript{2}+−O\textsubscript{2}−TPSR spectrum shows that the production of EO is initiated at 225 °C and reaches a maximum at ca. 300 °C in conjunction with the formation of CO\textsubscript{2} and water as side products. The MS signal intensities of the CO\textsubscript{2} and water products continue to increase beyond 300 °C while the EO signal no longer increases, which corresponds to the almost complete consumption of the surface Ag\textsubscript{5}−O\textsubscript{2} species while Ag\textsubscript{3}−O species are still present (Figure 3c,f). A steady-state catalytic evaluation (Figure S b) also exhibited that the EO selectivity gradually decreases with increasing reaction temperature. Thus, it is suggested that the surface Ag\textsubscript{5}−O\textsubscript{2} species are more selective than Ag\textsubscript{3}−O for EO formation.

In conclusion, the nature of the surface oxygen species formed on oxidized Ag was determined with the application of quasi \textit{in situ} HS-LEIS spectroscopy, \textit{in situ} Raman spectroscopy, \textit{in situ} NAP-XPS spectroscopy, and DFT calculations. The surface of the Ag powder catalyst is partially oxidized with ∼9% Ag0 in the ethylene oxidation reaction environment. The detailed structures of Ag\textsubscript{5}−O species observed in the Raman spectra were assigned by DFT calculations on the p(4×4)−O−Ag(111) surface. The simultaneous preferential consumption of surface Ag\textsubscript{5}−O\textsubscript{2} species on partially oxidized Ag and formation of EO during the C\textsubscript{2}H\textsubscript{4} + O\textsubscript{2} reaction suggests that the surface Ag\textsubscript{5}−O\textsubscript{2} species is the more selective oxygen species for EO formation. The present study provides new fundamental insights into the selective oxidation of ethylene by Ag catalysts.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.1c05939.

Experimental materials and methods, supplementary figures and tables for characterization and DFT calculations, including a schematic illustration of the surface treatment of Ag powder, a depth profile of the RSF plot, \textit{in situ} NAP-XPS spectra, \textit{in situ} Raman spectra, ambient Raman spectra of reference compounds, and DFT models of oxygen, carbonate, and nitrate species on Ag surface, and tables of detailed structure information (PDF)

AUTHOR INFORMATION

Corresponding Authors
Israel E. Wachs — Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States; Email: iew0@lehigh.edu

Srinas Rangarajan — Computational Catalysis and Materials Design Group, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States; Email: srr516@lehigh.edu

Authors
Tiancheng Pu — Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States; Email: tpu@lehigh.edu

Minghui Zhu — State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China; Email: merve@ecust.edu.cn

Michael E. Ford — Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States; Email: mford@lehigh.edu

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.1c05939

Author Contributions

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
Financial support from an NSF GOALI grant (#1804104) and assistance from Dr. Ryan Thorpe with the HS-LEIS measurements are gratefully acknowledged.

REFERENCES

(9) Bao, X.; Pettinger, B.; Ertl, G.; Schlögl, R. In-Situ Raman Studies of Ethylene Oxidation at Ag(111) and Ag(110) under Catalytic Reaction Conditions. Berichte der Bunsgesellschaft/Physical Chem. Phys. Chem. 1993, 97, 322−325.

(16) Huš, M.; Hellman, A. Ethylene Epoxidation on Ag(100), Ag(110), and Ag(111): A Joint Ab Initio and Kinetic Monte Carlo Study and Comparison with Experiments. ACS Catal. 2019, 9, 1183−1196.

