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ABSTRACT

As people spend up to 87% of their time indoors, intelligent Heating,
Ventilation, and Air Conditioning (HVAC) systems in buildings are
essential for maintaining occupant comfort and reducing energy
consumption. These HVAC systems in smart buildings rely ‘on real-
time sensor readings, which in practice often suffer from various
faults and could also be vulnerable to malicious attacks. Such faulty
sensor inputs may lead to the violation of indoor environment re-
quirements (e.g., temperature, humidity, etc.) and the increase of
energy consumption. While many model-based approaches have
been proposed in the literature for building HVAC control, it is
costly to develop accurate physical models for ensuring their per-
formance and even more challenging to address the impact of sensor
faults. In this work, we present a novel learning-based framework
for sensor fault-tolerant HVAC control, which includes three deep
learning based components for 1) generating temperature proposals
with the consideration of possible sensor faults, 2) selecting one
of the proposals based on the assessment of their accuracy, and
3) applying reinforcement learning with the selected temperature
proposal. Moreover, to address the challenge of training data in-
sufficiency in building-related tasks, we propose a model-assisted
learning method leveraging an abstract model of building physical
dynamics. Through extensive experiments, we demonstrate that the
proposed fault-tolerant HVAC control framework can significantly
reduce building temperature violations under a variety of sensor
fault patterns while maintaining energy efficiency.
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1 INTRODUCTION

People spend up to 87% of their time in enclosed buildings nowa-
days [16]. As Heating, Ventilation, and Air-Conditioning (HVAC)
systems control the indoor environment of buildings and have a
significant impact on occupant comfort, productivity, and physi-
cal/mental health, it is important to ensure their performance and
reliability. In these systems, sensors, in particular temperature sen-
sors, play a vital role in collecting real-time environment condition
and facilitating HVAC applications. However, temperature sensors
are not always in normal working condition, due to passive faults
and active cyber-attacks. Passive sensor faults such as sensor bias
and sensor drifting over a long time contribute more than 25% to the
variable air volume (VAV) terminal unit faults [28]. Cyber-attacks
on HVAC control systems (i.e., corruption of temperature sensor
readings to affect critical control programs) are becoming possible
due to increasing connectivity of buildings to external networks for
supporting remote management and cloud-based analytics. For ex-
ample, Building Automation and Control Networks (BACnet) [24],
the most popular communication protocol for buildings, has been
reported to have multiple vulnerabilities that can be used to launch
cyber-attacks on building control systems [11]. Moreover, HVAC
systems still need to provide services when under faults or attacks,
as diagnosing the problems and fixing the sensors often takes a
significant amount of time. This highlights the increasing need
for developing HVAC controls that can tolerate sensor faults and
cyber-attacks and increase system resilience.

There are a number of works in the literature related to sen-
sor fault-tolerant control for building energy systems. Ma and
Wang [20] proposed a fault-tolerant model predictive control strat-
egy to provide resilient operation of a building chiller plant system
under typical faults such as condenser water supply temperature
sensor bias. Yang et. al. [40] presented an online fault-tolerant
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control strategy for fixed bias faults in the supply air temperature
sensor. The sensor faults are detected by using a pre-trained support
vector regression (SVR) model. [9] employed a rule-based method
(e.g., using sensor reading from the nearest zone) to mitigate the
zone air temperature sensor reading spikes. The work in [26] built
a physical model for a multi-zone building and with zone air tem-
perature sensor faults, and assumed that only one thermal zone
would be affected by the sensor fault at a time. Faults in sensors
other than temperature sensors are also studied for tolerant control
design. Wang et. al. [33] applied a neural network model to detect
and compensate outdoor air flow rate sensor faults, and provided a
fault-tolerant control strategy to regain the control of outdoor air
flow rate. However, the above literature has the following limita-
tions: 1) simple assumptions in terms of fault occurrences are used:
for instance, [26] assumed that only one thermal zone would be
affected by the zone air temperature sensor fault at a time, which
is often not the case in practice; 2) studies were mostly designed
for passive faults such as fixed sensor bias [12, 20, 40], and might
not be applied to active attacks that only last for a short duration
but with high intensity; 3) significant efforts are required to obtain
an accurate online state predictor, such as detailed physics-based
models or SVR model, for fault detection in the fault-tolerant con-
trol. Therefore, how to provide resilient control for HVAC systems
under abnormal sensor readings still remains an open challenge.

In this work, we develop a learning-based sensor fault-tolerant
control framework for building HVAC systems with novel deep neu-
ral network-based learning techniques. Specifically, our framework
includes three major components. First, as the raw sensor readings
of the indoor temperature may be faulty, a neural network-based
temperature predictor is designed based on historical sensor data
to provide an alternative estimation of the true temperature. Then,
both proposals of the indoor temperature (raw sensor reading and
the temperature predictor output) are sent to a neural network-
based selector, which assesses the two temperature proposals with
consideration of the historical trend and selects one deemed more
trustworthy. Finally, a deep reinforcement learning (DRL) based
HVAC controller takes the chosen temperature as the current sys-
tem state and applies control actuation. These learning-based tech-
niques together provide a robust HVAC control framework that
can maintain desired temperature and reduce energy consumption
under sensor faults.

While our machine learning based techniques can remove the
need for developing detailed and costly building physical models,
they face their own challenges in training data availability. In par-
ticular, for a new building, we may have to wait for months to
collect enough data for training the learning-based components.
To address this challenge, we propose a model-assisted learning
approach that helps the learning components extract knowledge
from an abstract physical model and only requires a limited amount
of additional labeled data collected from real buildings for training.
There are a number of abstract physical models available in the
literature [21, 32]. They require much less effort to develop than
the accurate physical models (e.g., those used in EnergyPlus [3]).
While they alone are often not accurate enough for building HVAC
control, their capturing of the underlying physical laws can guide
the learning process for the neural network-based components and
significantly improve the learning effectiveness.
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To summarize, our work makes the following contributions:

e We present a novel sensor fault-tolerant learning-based frame-

work to achieve sensor fault resilience on building HVAC

control. The framework includes three neural network-based
components: a temperature predictor that estimates the true
indoor temperature, a selector that assesses the predictor

output and the raw sensor reading and selects one, and a

DRL-based controller that generates the control signal.

We develop a novel learning method called model-assisted

learning, which leverages the knowledge from an abstract

physical model to enable learning with a small amount of
labeled data.

e We conduct a number of experiments on buildings with a
single thermal zone and multiple zones, and demonstrate the
effectiveness of our fault-tolerant framework under various
types of sensor anomalies. We also highlight how model-
assisted learning can improve the learning process and re-
duce the need for training data.

The rest of the paper is as follows. Section 2 discusses further
about the related literature. Section 3 introduces our approach,
including the design of the sensor fault-tolerant framework and
model-assisted learning. Section 4 shows the experiments and re-
lated ablation studies. Section 5 concludes the paper.

2 RELATED WORK
2.1 Building HVAC control

Building HVAC supervisory controllers can be categorized into
two groups, model-based controllers and model-free controllers. Clas-
sic model-based HVAC controllers are often developed based on
fundamental physics laws (e.g., considering heat transfer and air-
flow balance). For example, [21] designed a hierarchical control
algorithm based on modeling building thermal dynamics as an
RC network, which uses resistance and capacitance elements to
model the building envelope heat transfer. [32] also used an RC
network model and designed a model predictive control algorithm
for minimizing the building energy consumption. There are other
works [30, 38] that use similar abstract physical models. However,
while being easy to develop and fast to run, these abstract physical
models often suffer from inaccuracy. In contrast, detailed physical
models such as EnergyPlus consider a variety of complex factors,
including building layout, wall materials, light, shading, occupant
behaviors, etc. They are much more accurate, but are typically hard
to build and slow to run.

Model-free HVAC controllers usually learn control strategies
from historical data. In recent years, DRL-based methods have
been explored in works such as [35, 41], where techniques such as
deep Q-learning (DQN) and asynchronous advantage actor-critic
algorithms (A3C) are applied. Methods have also been proposed to
learn DRL parameters by leveraging building simulation tools [8,
17, 23, 39]. In this paper, we combine the strength of both model-
free and model-based methods, by developing a learning-based
framework with neural network-based components and leveraging
abstract physical models to improve the learning process.
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2.2 Addressing sensor faults in buildings

There has been a number of works in the literature addressing
sensor faults in buildings. In [5], a fault detection method based
on correlation analysis was proposed for detecting sensor bias or
complete failure. [6] proposed a neural network-based strategy
with clustering analysis to detect sensor faults in the HVAC system
and diagnose the sources. [34] presented an online strategy based
on the principal component analysis (PCA) to detect, diagnose and
validate sensor faults in centrifugal chillers. More investigations
can be found in [4, 7, 13, 19, 22, 29]. However, these works focus
on fault detection and diagnosis, not fault-tolerant control.

There are some existing works for sensor fault-tolerant control in
building energy systems, such as [9, 12, 20, 26, 33, 40]. For instance,
Gunes et. al. [9] followed the model-based design paradigm and
used rule-based methods to mitigate the negative effect of specific
sensor faults. Papadopoulos et. al. [26] built a complex physical
model for building, and designed a fault model based on the as-
sumption that sensor faults occur in a single zone at each time. Jin
and Du [12] used principal component analysis, joint angle method
and compensatory reconstruction to detect, isolate and reconstruct
the fixed bias fault in supply air temperature sensors. However, as
we outlined in the introduction, the above studies have significant
limitations in the usage of simple or restricted assumptions, the
focus on only passive faults with fixed sensor bias, and the need of
significant efforts for obtaining an accurate online state predictor
(e.g., with detailed physics-based models or SVR model). In contrast,
our learning-based approach provides resilient control in broader
and more practical cases.

2.3 Learning with limited data and abstract
physical model

When dealing with a limited amount of labeled data in training,
techniques such as weakly supervised learning [31, 42] and semi-
supervised learning [1, 27, 43] are often considered. However, in our
case, even obtaining unlabeled data from real building operations
could be a long process. Thus, we leverage the information from
abstract physical models such as those in [21, 32] to reduce the data
needed for training. This approach is in principle related to model
distillation techniques [10, 14] that distill the physical model into
a neural network and then fine-tune the network with available
labeled data. However, unlike in the case for those approaches
(which focus on domains such as computer vision), there is not
enough unlabeled data in the realistic data distribution that can be
fed into the model for distillation in our problem. Thus, we propose
model-assisted learning to overcome this difficulty, by leveraging
abstract physical models to generate better initial points for model
fine-tuning.

3 METHODOLOGY
3.1 System model

We adopted a multi-zone building model with the fan-coil system
from [35, 39], where there is a building with n thermal zones, and
a fan-coil system is equipped to provide the conditioned air at
a given supply air temperature T%" for each thermal zone. The
airflow rate in each zone is chosen from multiple discrete levels
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{fi, f2,- -+, fm}, and corresponding to m control actions a; for each
zone i. With all n thermal zones, the control action set is denoted as
A ={ay,a,---,an}. In this paper, we denote the current physical
time as t, the ambient temperature, indoor temperature for zone

i, and the control action at time ¢ as Tt"“t R Tti n(i), Ay, respectively,

and we set Tti” = {Ttm(l) |i € 1---n}. The system sends current
states (indoor and ambient temperatures) to the HVAC system
with a period of Ats (which is the simulation period on building
simulation platform), and the building HVAC controller provides
the control signal (supply airflow rates) with a period of At (i.e.,
the control period).

3.2 Sensor fault-tolerant DRL framework

Fig. 1 depicts the overview of our sensor fault-tolerant DRL frame-
work. It includes three parts: the first part on the left is a neural
network-based temperature predictor for providing an alternative
estimation (rather than the raw sensor reading) of the indoor tem-
perature, the second part in the middle is a proposal selector that
assesses the temperature proposals from the raw sensor reading
Tti" and the temperature prediction Tf " and selects one, and the
third part on the right is a DRL-based HVAC controller. With the
design of the predictor and the selector, the DRL controller receives
a refined indoor temperature reading as part of its inputs and can
maintain a stable performance against sensor faults or attacks. The
details of each module are introduced in the following sections.
Compared with using a single neural network to generate an esti-
mated temperature for controller input, our predictor and selector
design enables us to leverage the raw sensor readings when they
are not faulty, which is especially useful when the temperature
predictor does not provide accurate estimations because of training
data availability (and as we will introduce in the later sections, the
selector has more augmented training data than the predictor to
ensure its accuracy). Moreover, note that all the modules are trained
individually and assembled into the framework after training.

3.2.1 Temperature predictor. The temperature predictor aims to
provide an indoor temperature prediction for the current step based
on the historical sensor readings with possible faults and other
system states. Note that we mark the current system state as Sy,
where S; = (¢, Tin, Tt"”t).

Firstly, the temperature predictor is a neural network that con-
sists of five fully-connected layers. Except for the last layer, all layers
are filtered by a ReLU activation function, and all fully-connected
layers are sequentially connected (detailed neuron number settings
can be found later in Table 1 of Section 4). In the test stage of
the temperature predictor, the network takes the historical states
aligned with the historical control actions (airflow rate) as the data
inputs at time ¢ , and then outputs a current indoor temperature
prediction value Tf e

The training data for the predictor network is collected by run-
ning a straightforward ON-OFF controller on the building HVAC
system for several days (in experiments we use 8 days). For new
buildings, this could be done during the first several days of their
operation, in which case we may assume that the data collected over
this short time period has not been polluted by sensors faults or at-
tacks. We get a (state, action) sequence from (S1, A1) to (Sp, Ar). For
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Figure 1: Overview of our sensor fault-tolerant framework for building HAVC system. There are three main components:
two modules providing indoor temperature proposals on the left, a selector in the middle, a DQN-based HVAC controller on
the right. The temperature proposals consist of the raw sensor reading Tti” and the current temperature prediction Ttp " that
comes from the learned temperature predictor, which leverages the historical sensor data. The proposal selector provides a
classification result to choose between the predictor output and the raw sensor value. Then, the DRL controller takes the
selected indoor temperature proposal and calculates the corresponding control action.

the convenience of supervised training, we select data sequences

{((St—k’At—k)> (St—k+1’At—k+1)’ ) (Sl‘—bAl‘—l))}

with length k and ¢t € [k + 1,L] from the historical data. These
sequences are chosen with an interval v, which means that ¢t €
[k+1,L] is selected in the format k + 1,k +v+1,k+20+1,---. The
collected data set is used as the training data inputs of the neural
network, with the corresponding label S; for each data sequence.
Then, we train the neural network based on the loss function

Lpre =l (TP + TS — )™ |, 1)

ofs
where Ttp "¢ is the temperature prediction at time ¢ from the net-
work’s output, Tf;: is an estimated offset for bringing the absolute

mean value of the neural network’s output close to zero, which
lowers the difficulty for the neural network learning through the
given data sequences (it is a fixed hyper-parameter; setting can be
found in Table 1 later). Tti" is the actual indoor temperature, which
is the ground truth label. After finishing training, the predictor can
take the historical system states containing the raw sensor reading
to generate the temperature prediction. We should mention that
these historical system states in the test stage may contain faulty
sensor readings, so we also include some faulty sensor reading
in the training data for temperature prediction. The designing of
this training strategy using historical data with slight faults is in-
spired by our preliminary experiments, which indicated that adding
slightly faulty sensor reading to the training data could increase
the performance on temperature predictions, compared to training
with non-faulty data or data with high frequency faulty data. In
other words, to enhance the robustness of the temperature predic-
tion, in the historical system states, we utilize the historical indoor
temperature under independent and identically distributed (IID)
faults with occurring probability Ppye. Using IID faults here means
that a fault can happen at each individual simulation step with the

probability Ppye. If a fault occurs, a random number is uniformly
selected from [Tl"”t , T94], which is the upper and lower boundary
of the ambient temperature, to replace the original indoor sensor
temperature reading. The training of the temperature predictor
benefits from such randomized faults, which results in more robust
output of the trained predictor. Note that we set Ppye to a small
value during training because the neural network’s ability in tol-
erating the input noise is limited. While some small noises in the
training data may enhance the network robustness, larger noises
may negatively impact the training, making it harder to converge
and reducing the overall performance.

3.2.2  Temperature proposal selector. The temperature proposal
selector aims to choose the best candidate from the indoor tem-
perature proposals and send it to the DRL controller for further
control steps. We train this module in a self-supervised way, where
all the training labels are generated automatically and the objective
is to distinguish between the normal data and the faulty data. Apart
from the comparison between the normal and faulty, we also make
the comparison among the faulty data and indicate which one is
closer to the actual temperature value. This extra comparison fur-
ther boosts the proposal selector and helps it address the scenarios
with inaccurate temperature proposals.

The temperature proposal selector module is made of a neural
network that consists of eight layers. The selector firstly takes
the historical system state and the historical control actions (
(St—ks Ar—k)s (St—g+1, Ar—k+1), * + *» (St=1, A¢-1) ) as the part of the
network input. Then this historical information will be sent to the
first network layer. Including the first layer, there are four sequen-
tially connected one-dimensional convolutional layers with the
ReLU activation function on the bottom of the network. The output
feature of these layers is two-dimensional in each data sample, and
we convert it to a one-dimension feature vector Fy. Then the rest of
the network inputs are two selected indoor temperature proposals,
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the raw sensor reading pl; and the temperature prediction value
pl,, and they will be concatenated with the feature vector F;. One
major motivation for such network design is that the historical
states are sequential data with temporal locality. We thus choose
one-dimensional convolutional layers to extract their feature. The
temperature proposals are different type of data, and we concate-
nate the previous feature with these temperature proposals and
fuse them using fully-connected layers. As shown in Fig. 1, four
fully-connected layers receive features vector F; and with those
two selected temperature proposals pl;, pl, (note that the first three
of them have RuLU activation function). The last fully-connected
layer has two neurons, which will be sent to a softmax layer and
output a binary classification result by selecting the index with the
maximum output value.

Furthermore, the construction of the training data used for the
temperature proposal selector differs from the previous module.
The historical system state Sy_;(i € [1, k]) and the historical con-
trol actions A;—;(i € [1,k]) are selected from the simulation data
which is the same as in Section 3.2.1. The data in the two indoor
temperature proposals contain both normal and faulty data. So the
training data consists of three types:

e Training data: ( historical system states S;—;, control actions
As—i, (i € [1,k]), normal temperature, faulty temperature ).
Label: (1, 0).

e Training data: ( historical system states S;—;, control actions
As—i, (i € [1,k]), faulty temperature, normal temperature ).
Label: (0, 1).

e Training data: ( historical system states S;—;, control actions
As—i, (i € [1,k]), faulty temperature, faulty temperature ).
Label: 1 is assigned to the value that is closer to the normal
temperature. The other is assigned with 0.

Similar to the data construction strategy in the temperature
predictor module, the historical system states we utilize include the
faulty sensor readings. Specifically, for enhancing the robustness
of the temperature proposal selector, we use the historical system
states under the independent and identically distributed (IID) faults
with occurring probability Py,;. Besides, during constructing these
data-label pairs, we sample the faulty temperature three times for
each normal temperature value in the first and second kind of data-
label pair. For the last kind of data-label pair, we sample the faulty
temperature data four times for each historical sequence. All faulty
temperature readings come from the IID faults. Finally, we learn the
temperature proposal selector network through the cross-entropy
loss function. The learning rate Irg,; and training epochs I, are
set as in Table 1 later.

3.2.3  DRL-based controller for building HVAC system. Because the
thermal zone temperature in the next time step only relies on the
current system state, the building HVAC control can be treated as
a Markov decision process. We use a DQN-based DRL method that
takes the current state StDRL as inputs, which contain

Current physical time ¢,

Current indoor air temperature T;",

Current ambient air temperature T*/,

Current solar irradiance intensity Suny,
e Weather forecast in the next three time steps.
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The weather forecast includes ambient temperature and solar irradi-
ance intensity Tt‘l“lt, e ,Tt"+“3t, Sunygyq, - -+, Sungys, which helps the
network capture the trend of the environment. The deep Q-network
Q provides the Q-value estimation of current control actions. The
algorithm takes the control action with the maximum Q-value and
sends it to the HVAC system.

Furthermore, the goal of this DRL controller is to minimize total
energy cost while maintaining indoor temperature within a comfort
temperature bound [T}, Ty, |. The reward function R; collected from
the control steps is designed accordingly as

Ri=a-Rc+p-Ry (2)
Re = —cost(t —1,As—1) (3)

n
Ry = — Z max(T; — T;n(l), 0) + maX(Ttm(l) - Ty, 0) 4)
i=1

where a and f are the scaling factors. R, is the reward of energy cost,
Ry is the reward of temperature violation with respect to comfort
temperature bound [T}, Ty, |. cost (¢t — 1, A;—1) is a price function that
gives the money cost of the HVAC system from control time ¢ — 1
to t under control action A;_j. It is designed based on the local
electricity price. Following the definition of the reward function,
the update of deep Q-network is defined as

Qr1(SPRE, Ay) = Qi (SPRE, Ay) + o (Resn

5
+ymax Qu(SPEL Ay Q5P Ay @
+1

where 19 is the learning rate for the deep Q-network, and y is the
decay factor of the accumulative reward.

3.3 Model-assisted learning

Our sensor fault-tolerant framework has three modules that require
neural network training. The performance of a learning model is
typically strongly correlated with the amount of available labeled
data. However, collecting labeled data from real building operations
takes significant amount of time, which often leads to the problem
of training data insufficiency. With the techniques in [2, 18], the
training time and the required data of the DRL control module can
be substantially reduced. With the special training data construction
strategy introduced in Section 3.2.2, the selector also has sufficient
data for training. Thus, we focus our effort on the possible data
insufficiency issue for the temperature predictor. We develop a
novel model-assisted learning method to combine a limited number
of accurately-labeled data DY with the knowledge we can gain from
an abstract physical model M for the training, as shown in Fig. 2.

Abstract physical model: Here we introduce the abstract physical
model that is used for model-assisted learning. The mass and energy
conservation law for a building zone is presented in Equation (6),
where the left of the equation represents energy changes in the zone,
the first term at the right represents the introduced HVAC energy to
the zone, and the second term at the right is the thermal load in the
zone. The thermal load ¢; is related to many building system and
control parameters such as envelope constructions, internal heat
gains, zone air temperature setpoints, etc., which eventually leads
to a nonlinear differential equation to solve. For simplification, an
abstract model for the zone air temperature dynamics is derived as
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Figure 2: Overview of our model-assisted learning for training with a limited amount of labeled data and an abstract physical
model, where the algorithm consists of two stages — model-assisted self-supervised learning (model-assisted SSL) and model-
assisted redirected updating (model-assisted RU). The former stage creates auxiliary learning tasks from the abstract model,
and the latter stage extracts knowledge leveraging the random batch from the physical model and explores a better updating
direction. Then we get the final model through fine-tuning based on the pre-trained model from the previous two stages.

in Equation (7). This model explicitly relates zone air temperature
to system thermal inertia (e.g., historical zone air temperatures),
zonal supply air mass flowrate i1, outdoor air temperature T°%!
and estimated modeling error term e. T and T are the predicted and
measured temperature, respectively. m is the zone air thermal mass.
mh is the zonal supply air mass flowrate. Cy is the zone air specific
heat. e represents an error term. Superscripts sa, and out are the
supply air, and outdoor air, respectively. «, f, and y are identified
coeflicients observed from the given short-term historical data.

ar .
mCp—- = mCp(T** = T) + g (6)
TH.] =al; + ﬁﬁlHl + YT;:_uf + er+1 (7)
L-1 +
Ti—j—Ty—j
ere1 = JZ:(:) — I ®)

Model-assisted learning algorithm: Our model-assisted learning
consists of two stages: model-assisted self-supervised learning
(called model-assisted SSL) and model-assisted redirected updat-
ing (called model-assisted RU). To begin with, we realize that the
biggest challenge in this learning scenario is that we do not have
enough training data (even unlabeled data), which makes the typ-
ical semi-supervised or weakly supervised learning methods not
applicable. However, one available resource that we can leverage is
the human-designed abstract physical models for buildings. While
they may not accurately describe the building dynamics, they do
reflect some of the fundamental physical laws for the system. By
‘extracting’ these physical laws, we can significantly improve the
learning process and reduce the need for training data. The main
idea is to utilize the abstract physical model for generating sam-
pled states sequences in both the model-assisted SSL stage and the
model-assisted RU stage. We will explain this in details below.

For each element u in the neural network input s, we can define
its range based on its physical meaning. Then considering the range
for all the elements in s, we can define a space H that contains all s
in its range combinations and s € H. Note that H is a space that is
much larger than the actual data distribution for network inputs,
which means that many unrealistic cases that will never happen in
the real world might still occur when sampling from H.

In model-assisted learning process, a required step is to collect
enough samples from data space H. However, we notice that the
input size of the neural network (temperature predictor), (2 + 2n)k,
is large. Taking n = 4,k = 20 for example, the sampling is on a
200-dimensional continuous data space, which is too expensive for
simple uniform sampling. Thus, we only sample the first historical
state uniformly among that sub-space of size 2 + 2n, and then feed
that historical state to the physical model M to predict the next
historical state. Then we generate the latter historical states by
repetitively applying the previous historical states to the physical
model. In this way, we can collect the sample sequences of length k
and form an input data set D. We then divide D into mini-batches
and call them random batches {x|x C D}, and we denote the batch
size of x as b. With the random batch, we can design the steps in
model-assisted SSL and model-assisted RU.

In the first stage of model-assisted SSL, we aim to construct
auxiliary learning tasks from the abstract model M to decide an pre-
trained weights for the neural network. The sampled datad € x € D
is a simulated states sequence based on the abstract physical model
M, and the time length of the sequence is k. And we create k auxil-
iary learning tasks based on the input sequence d. Specifically, for
auxiliary task i, it is a regression task. The corresponding training
data is {(d;, y;)|d; equals to d except that the indoor temperature
in d at time step i is set to —1, y; is the value of indoor temperature
in d at time step i, d € x C D}. In other word, we try to predict the
missing state generated by the abstract model. The training step
last for Iy1s, epochs with batch size as bys and learning rate as
no. In auxiliary task i, we also need to edit the original neural net-
work with some changes. We keep the first three fully-connected
layers but add two extra fully-connected layers (individually for
each task i) following the third layer. The newly added layers will
provide the output for task i. This means that we share the feature
extraction layers among all the auxiliary learning tasks, and those
tasks will help the neural network leverage the relation of variables
in the states sequence for constructing pre-trained weights. The
model-assisted SSL will be conducted for Iy;s epochs, and we start
from the randomly initialized neural network weights ®;,;;. The
auxiliary learning tasks are run in order from tasks 1 to k in each
epoch, and then we get a pre-trained weight ® for our next stage.
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In the second stage of model-assisted RU, we target on redirecting
the updating direction when extracting the knowledge from the
abstract model. In each update step i, we start from the current
network weights ®; (the initial weights in this stage is &y = ),
and select a random batch x and apply the abstract model M on
them to get the corresponding labels y. Next, we are able to get a
new model ©; by updating the parameters on ®; using the random
batch x and its corresponding labels y, which follows the equation

0; = ®; — n2Ve, Lrse (i), ©)

where LssE is the mean square error loss and 73 is the learning
rate. The training lasts for njs, iterations, and uses a new sampling
data batch for each iteration.

Next, we employ accurately labeled data D to further fine-tune
the model ©; from the last step by Ir, epochs, and update to the

model weights @;, as described in the following equation

@);. =0; — r]gV@iLtarget(@i)’ (10)

where L;grger is the loss function for the target task and 53 is the
learning rate for this step.

Looking back to what we have done in this stage, we first use
the random batch x to distill the physical model M as a further
pre-trained model for the current step, and then we fine-tune the
model using the accurately labeled data. The final performance of
model ®;. should reflect the quality of the initial update from ®; to
©;, which depends on the corresponding random batch x and the
abstract model M’s output knowledge y. L;arger shows a reference
value considering the improvement brought by the Equation (9),
while @; — @; provides a better updating direction for the current
knowledge extraction step compared to the Equation (9). Thus, we
determine the true updating step for the initial model ®; as

Q; = ; - ’71(@); - ®;) (11)

Following this updating steps for njse, iterations, we then use all
the accurately labeled data D to fine-tune the extracted model
®; to achieve our target model ®;,. The fine-tuning step has the
learning rate n3 by I, epochs.

4 EXPERIMENTAL RESULTS

4.1 Fault patterns and metrics

Fault patterns: We consider two types of fault patterns for the
indoor sensors in every thermal zone in our experiments. Both
patterns could be caused by passive faults or cyber attacks.

o In the first type of faulty sensor readings, we postulate that the
fault happens at each time step with a probability p;. Note that
the fault can happen in each simulation step, not only on the
control steps. If the fault occurs, it uniformly selects a random
number from [Tl"“t , T94!] (which is the upper and lower bound-
ary of the ambient temperature in our experiments) to replace
the original sensor temperature reading. We call this type of
faults the IID faults because they have the same probability,
same distribution, and independent at each time step.

e For the second type of faulty sensor reading, the fault happens
at each time step with a probability ps. The difference between
it and the former one is that the second fault will last for @
simulation steps and not always happens individually among
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Parameter Value Parameter Value
Temperature- [2+2n,512,256, DON layers | [9+n,50,100,
proposal- 256, 128,256, 200,400,16]
selector layers 256,256,2n] T 20 °C
Predictor- [(2+2n)k,512,256, T, 24.4 °C
layers 256,256,256,n] Ppre 0.1
Tf;: 22 Pger 0.3
lpy 3 a le-3
B 6.25e-4 bats 40
o le-3 /Rt le-4
n2 le-6 n3 le-3
L 5760 k 20
At 1 min At. 15 min
Tlﬂut 10 °C Ta)ut 40 °C
v 2 Irger le-4
Lsel 50 T4 10 C
m 2 Mo 0.003
% 0.99 b 32
Ims; 3 Ims 2

Table 1: Hyper-parameters used in our experiments.

the time period. Thus this type of fault can cause larger damage
to the system than the first one. And we call it continuous faults.

Metrics for evaluation: We evaluate the sensor fault-tolerant tem-
perature control results based on the average indoor temperature
violation rate 8; for each thermal zone i and the total energy cost
for running the HVAC system. We evaluate the performance of
model-assisted learning on the temperature prediction task with a
four-zone building. The measurement for the predictor is based on
the normalized root mean square error (Normalized RMSE) between
the prediction and the actual temperature value.

4.2 Experiment settings

The experiments are run on an Ubuntu OS server equipped with
NVIDIA TITAN RTX GPU cards. The learning algorithm imple-
mentations are based on the Pytorch framework. The Adam op-
timizer [15] is utilized for all neural networks’ training. We use
the EnergyPlus [3] simulation tool to simulate the behavior of
real buildings. Note that this is only for experimentation purpose.
In practice, our tool will be deployed directly on real buildings
with the modules trained on the data collected from those build-
ings. Moreover, the interaction between the building simulations
in EnergyPlus and the Pytorch learning algorithms is implemented
through the Building Controls Virtual Test Bed (BCVTB) [36]. We
use a single-zone building and a 4-zone building as the target build-
ings for conducting our experiments, and the building simulation
utilizes the summer weather data in August at Riverside, California,
USA, which is obtained from the Typical Meteorological Year 3 data-
base [37]. The comfort temperature bound is set to [20 °C, 24.4 °C]
based on the United States Occupational Safety and Health Ad-
ministration (OSHA) recommendation [25]. The hyper-parameter
settings mentioned in the previous sections are shown in Table 1.

4.3 Evaluation of sensor fault-tolerant
framework on IID and continuous faults

This section shows the performance of our sensor fault-tolerant
framework and its comparison with a standard DQN controller.



BuildSys "21, November 17-18, 2021, Coimbra, Portugal

The experiments are conducted on a single-zone building and a
four-zone building under different sensor fault patterns.

4.3.1 Against IID faults. We first study how much the sensor fault-
tolerant framework can protect the control performance from the
IID faults. The IID faults happen individually at each simulation
step with the probability p;, and we test the case where p; is cho-
sen from [0, 0.1,0.2, 0.4, 0.6,0.8]. The model is first tested on a sin-
gle zone building. Table 2 shows the results comparison between
the standard DQN controller (DQN) and our sensor fault-tolerant
framework (FTF). We can see that the typical DON controller’s per-
formance significantly deteriorates when facing the IID faults, as
the heavily faulty sensor data nearly paralyzed the normal function
of the neural network. The problem gets worse with the fault oc-
curring probability p; becomes larger. For our sensor fault-tolerant
framework, the average temperature violation rate remains very
low under varying degree of IID faults (72.8% to 86.2% reduction in
violation rate when compared with the standard DQN under fault
probability from 0.1 to 0.8). Moreover, even with our approach’s
much more robust control, the energy cost does not increase much
compared to the non-faulty case, which shows the cost-effectiveness
of our sensor fault-tolerant approach.

We also tested our framework on a 4-zone building against the
IID faults, and Table 3 shows its comparison with the standard
DON. 0; to 04 are the temperature violation rate for each of the
4 thermal zones. Again, we can clearly see that our approach can
maintain the violation rate at a low level under varying level of
sensor faults, and can significantly outperform the standard DQN
(73.0% to 92.2% reduction in violation rate under fault probability
from 0.1 to 0.8). It is also worth mentioning that when there is no
fault, our framework will not introduce additional overhead. Finally,
Fig. 3 also provides a visualization of the temperature change on
the 4-zone building under IID faults with p; = 0.4 with/without
the sensor fault-tolerant framework, and we can clearly see the
effectiveness of our framework in keeping the temperature within
comfort bound under faults.

4.3.2  Against continuous faults. We then evaluate our approach
against continuous faults. Similar to what we have shown in the
previous section, the model is tested on a single-zone building and
a four-zone building, with the probability p2 set to 0.2(single-zone),
0.1(four-zone) and @ selected from 0 to 5. The comparison between
our approach and the standard DQN is presented in Table 4 and
Table 5. The temperature violation rates in the tables are all higher
than the previous section under the same fault probability, which
indicates that the continuous faults can cause more damage than
the IID faults. As shown in the table, the standard DQN controller
drastically increases the violation rate for 4x to 26x for single
zone and 9x to 115X for four-zone under continuous faults. In
comparison, our approach can effectively maintain the violation
rate at a low level (12.5% to 89.1% reduction for single zone and 73.0%
to 86.6% reduction for four-zone in violation rate when compared
with the standard DQN under fault time ® from 1 to 5).

4.4 Evaluation of model-assisted learning

In this section, we conduct experiments on the model-assisted learn-
ing algorithm and demonstrate its improvement in the performance
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Figure 3: 4-zone building temperature under IID faults with
p1 = 0.4 without FTF (above) and with FTF control (below).

P 0 0.1 0.2 0.4 0.6 0.8

0 0.38 1.03 1.32 4.99 9.88 17.86
Cost  235.19 241.20 237.64 22850 226.40 223.81

0 0.39 0.28 0.18 0.39 1.29 2.46
Cost  247.60 247.30 248.17 250.74 254.81 265.52
Table 2: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a single-zone
building under IID faults. p; is the fault occurring probabil-
ity. 0 is the average indoor temperature violation rate (%).

DON

FTF

P1 0 0.1 0.2 0.4 0.6 0.8

6, 0.0 0.04 3.32 9.47 22.03 21.66
0 0.12 1.32 5.79 20.58 35.50 40.79
DON | 65 0.11 0.40 4.46 11.55 19.94 24.66
04 0.43 4.27 15.62 34.90 47.84 50.42
Cost  257.79 246.17 228.01 205.60 192.24 184.84
6, 0.0 0.0 0.0 0.35 7.12 8.91
0 0.17 0.31 0.17 0.0 0.96 1.87
FIF | 65 0.03 0.34 0.15 1.18 5.65 6.35
04 0.39 0.98 0.74 2.46 5.67 6.58
Cost  257.82 257.48 265.23 298.18 314.52 316.53

Table 3: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a four-zone
building under IID faults. p; is the fault probability. 6; is the
avg. indoor temperature violation rate (%) in thermal zone i.

of the temperature predictor module. Note that the data only con-
tains non-faulty data in this section for avoiding other factors that
may affect the evaluation, which means that there is no sensor fault
in both training and testing.

We employ an abstract physical model introduced in Section 3.3
for a four-zone building. The abstract model itself has the tempera-
ture prediction value with Normalized RMSE at 3.7e-2. Then if we
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@ 0 1 2 3 4 5

0 0.38 1.32 2.74 3.83 6.66 9.73
DON

Cost  235.19 237.64 23248 232.16 229.21 225.79
FTF (% 0.39 0.28 0.30 0.95 2.86 4.82

Cost  247.60 247.30 248.14 24593 244.10 242.88

Table 4: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a single-zone
building under continuous faults. The fault lasts for @ steps.
0 is the avg. indoor temperature violation rate (%).

o] 0 1 2 3 4 5

6, 0.0 0.04 3.02 5.27 8.07 10.96
0, 0.12 1.32 4.71 11.51 15.32 20.58
DON | 63 0.11 0.40 3.57 5.89 10.00 12.63
04 0.43 4.27 13.24 24.48 26.98 31.52
Cost  257.80 246.17 229.04 219.30 212.56 207.90
(2} 0.0 0.0 0.0 0.0 0.0 0.23
0, 0.17 0.31 0.88 1.77 2.94 5.32
FIF | 65 0.03 0.34 0.17 0.82 0.82 1.95
04 0.39 0.98 1.18 2.92 4.31 7.54
Cost  257.82 257.48 267.24 267.21 265.26  257.55

Table 5: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a four-zone
building under continuous faults. The fault lasts for o steps.
0; is the avg. indoor temperature violation rate (%) in ther-
mal zone i.

Amount of data 360 720 1440 2880 5760

Labeled data only 2.86e-2 1.97e-2 1.17e-2 8.71e-3  6.02e-3
Distillation+Fine-tuning  2.85e-2  1.8le-2 1.13e-2  9.76e-3  6.55e-3
Model-assisted SSL 1.56e-2 1.03e-2 7.83e-3 5.0le-3 4.13e-3
Model-assisted RU 1.54e-2  1.19e-2  8.7%e-3  6.42e-3  3.56e-3
Model-assisted learning ~ 1.15e-2  9.94e-3  5.72e-3  2.29e-3  1.98e-3

Table 6: Comparison of different learning strategies on tem-
perature predictor performance. The first line shows train-
ing with labeled data only. The second line shows the distil-
lation approach as in [10]. The third line shows using only
the first stage (model-assisted SSL) of our model-assisted
learning approach, and the fourth line shows only using the
second stage (model-assisted RU). The last line shows using
both stages, i.e., our model-assisted learning approach.

only use the accurately labeled data collected from the building to
train the network in the temperature predictor module, which is
shown in the first line in Table 6 (Labeled data only), the Normal-
ized RMSE remains at a relatively high level, e.g., 2.0e-2 for 1440
data samples, and 1.8e-2 for 2880 data samples. More labeled data
leads to more accurate model prediction. The maximum amount of
available data is 5760 samples for the simulation of eight days.

In addition to model-assisted learning, we also test another idea
for leveraging the abstract physical model M to gain better perfor-
mance, i.e., using the abstract physical model to set initial weights
for a neural network, so the network may cost less training data
for reaching higher accuracy as it searches from a better initial
point. The related technique for obtaining this initial value is model
distillation [10]. However, as mentioned earlier, choosing the data
to feed the neural network is challenging for distillation. Here we
use the same sampling approach as proposed in Section 3.3, i.e.,
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Figure 4: Comparison of different learning strategies on
temperature prediction performance, including Labeled
data only (blue line), Distillation+Fine-tuning (orange line),
Model-assisted SSL&RU (green&yellow line), Model-assisted
learning (purple line). We can observe from the figure that
Model-assisted learning only requires around 1400 data sam-
ples to reach the performance of using Labeled data only
with 5760 samples, i.e., only needs 1/4 of the labeled data
by leveraging the abstract physical model via our approach.

sampling from data space H and feeding the samples x to the ab-
stract physical model M. Then we get the corresponding data pair
(x,y), and train the network using (x,y) with learning rate n for
Niter iterations (a new sampling data batch for each iteration). Next,
we fine-tune this newly trained model with learning rate n3 in lf;
epochs on the accurately labeled data. The model obtained in this
way is named as Distillation + Fine-tuning (which is shown in the
second line of the Table 6).

Finally, we apply our proposed model-assisted learning to lever-
age the abstract physical model. To understand how much each
stage contributes to the final performance, we add the results of
only applying one of the two stages, which are the third line (Model-
assisted SSL) and fourth line (Model-assisted RU) of Table 6, respec-
tively. And when combining both, the result is our Model-assisted
learning, as in the last line.

We can observe from the table that, when the available sample is
limited (360, 720, 1440), the building dynamics directly extracted by
Distillation + Fine-tuning method can help reduce the Normalized
RMSE. However, those extracted knowledge is only an inaccurate
estimation, and the bias it brings prevents the model from achiev-
ing better result when there is more available labeled data (2880,
5760). On the other side, both stages in our Model-assisted learning
approach can make good use of the abstract model and reduce the
Normalized RMSE among all cases. When combing the two together,
with the same amount of labeled data, our Model-assisted learning
can achieve significantly better results than using only labeled data
or distillation method. Such effectiveness is also visualized in Fig-
ure 4 — it plots the same results as Table 6, but we can clearly see
that for the same level of performance, our Model-assisted learning
approach only requires about 1/4 of the labeled data.
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5 CONCLUSION AND FUTURE WORKS

In this paper, we present a novel learning-based sensor fault-tolerant
control framework for building HVAC systems against faulty sensor
readings, which includes neural network-based components for
temperature prediction, temperature proposal selection, and DRL-
based HVAC control. We also introduce a model-assisted learning
approach that leverages the abstract physical model to overcome the
difficulty in training data insufficiency. Experimental results demon-
strate the effectiveness of our framework and the model-assisted
learning method. In future, we plan to explore integrating other
controllers into our framework to improve their fault-resilience
under our predictor and selector design. We also plan to explore
monitoring the zone occupancy and considering it in evaluating
the discomfort cost of the reward function, for better performance
and more energy saving.
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