
Accelerate Online Reinforcement Learning for Building HVAC
Control with Heterogeneous Expert Guidances

Shichao Xu
Northwestern University

Evanston, USA
shichaoxu2023@u.northwestern.edu

Yangyang Fu
Texas A&M University
College Station, USA

yangyang.fu@tamu.edu

Yixuan Wang
Northwestern University

Evanston, USA
yixuanwang2024@u.northwestern.edu

Zhuoran Yang
Yale University
Evanston, USA

zhuoranyang.work@gmail.com

Zheng O’Neill
Texas A&M University
College Station, USA
zoneill@tamu.edu

Zhaoran Wang
Northwestern University

Evanston, USA
zhaoran.wang@northwestern.edu

Qi Zhu
Northwestern University

Evanston, USA
qzhu@northwestern.edu

ABSTRACT
Building heating, ventilation, and air conditioning (HVAC) systems
account for nearly half of building energy consumption and 20% of
total energy consumption in the US. Their operation is also crucial
for ensuring the physical and mental health of building occupants.
Compared with traditional model-based HVAC control methods,
the recent model-free deep reinforcement learning (DRL) based
methods have shown good performance while do not require the
development of detailed and costly physical models. However, these
model-free DRL approaches often suffer from long training time to
reach a good performance, which is a major obstacle for their prac-
tical deployment. In this work, we present a systematic approach
to accelerate online reinforcement learning for HVAC control by
taking full advantage of the knowledge from domain experts in vari-
ous forms. Specifically, the algorithm stages include learning expert
functions from existing abstract physical models and from histori-
cal data via offline reinforcement learning, integrating the expert
functions with rule-based guidelines, conducting training guided by
the integrated expert function and performing policy initialization
from distilled expert function. Experimental results demonstrate
up to 8.8𝑋 speedup over previous DRL-based methods.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Computer systems organization → Embedded and cyber -
physical systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BuildSys ’22, November 9–10, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9890-9/22/11. . . $15.00
https://doi.org/10.1145/3563357.3564064

KEYWORDS
HVAC control, Reinforcement learning, Deep learning

1 INTRODUCTION
Buildings account for around 40% of the energy consumption in the
United States, of which nearly half is by the heating, ventilation, and
air conditioning (HVAC) systems [32]. In addition, the operation of
HVAC systems significant affects the physical and mental health
of building occupants, as people spend around 87% of their time
indoors [20, 46], and even higher during the COVID-19 pandemic
in recent years [16]. It is thus a critical task to develop effective
HVAC control strategies that can maintain a comfortable indoor
environment while reducing energy cost [31, 42, 45].

In the literature, there are extensive works of developing model-
based approaches for HVAC control. For instance, [26] uses RC-
networks to model the building thermal dynamics and applies the
linear quadratic regulator (LQR) method for controlling the HVAC
system. [37] designs a model predictive control (MPC) method to
minimize the energy consumption and cost of the building HVAC
system combined with a solar power unit. Some other works on
model-based approaches can be found in [25, 27, 35, 44]. However,
to achieve good performance, these model-based approaches re-
quire the development of detailed and accurate physical models,
which are often difficult and costly in practice. Thus, there has
been significant interest in developing learning-based, model-free
approaches for HVAC control, in particular those based on deep
reinforcement learning (DRL). For example, [41] utilizes the deep
Q-learning method for controlling the indoor air flow rate and
leverages the EnergyPlus platform [6] for simulation-based train-
ing. And various other techniques have also been applied for DRL-
based building HVAC control, including Deep Deterministic Policy
Gradient (DDPG) [11], Proximal Policy Optimization (PPO) [1],
Asynchronous Advantage Actor-Critic (A3C) [51], etc.

However, a major difficulty in adopting DRL-based methods for
building HVAC control is that it could take a long time to train the
RL agent in practice during building operation. For instance, it may

https://doi.org/10.1145/3563357.3564064

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Xu, et al.

take more than 100 months of training to reach convergence for
the Q-learning based methods in [7, 41], and around 500 months of
training for the DDPG algorithm in [12] to converge on a laboratory
building model. In [48], DDPG is used for temperature control and
energy management, and it takes around 2.4× 104 months to reach
the best performance. In [47], the training time is almost 4 × 104
months in their multi-zone building environment. Clearly, such long
training time would make it impossible to adopt DRL in practice
for building control. While developing a detailed simulation model
(e.g., in EnergyPlus) and conducting the training via simulation
may help avoid this issue, the development of the simulation model
itself is difficult and costly (in terms of both time and expertise),
just as in the model-based methods.

Thus, recently researchers have been trying to improve the train-
ing efficiency for DRL-based building HVAC control. In [46], a
transfer learning approach is proposed to extract and transfer the
building-agnostic knowledge from an existing DRL controller of a
source building to a new DRL controller of a target building, and
only re-train the building-specific components for the new DRL
controller. The work in [23] also leverages transfer learning, but for
heat pump control in microgrid. However, the effectiveness of the
transfer learning-based methods strongly relies on the similarity
between the existing building target building and the transferred
building, and may not be feasible when they are not similar [46].
There are also a few studies on the application of offline reinforce-
ment learning for building HVAC control, where historical data on
existing controllers are leveraged to train new RL-based controllers.
For instance, [36] conducts conservative Q-learning (CQL) to train
controllers for maintaining the room temperature setpoint. The
problem of such offline RL methods, however, is that the learned
agents’ performance strong depends on the quality of the historical
data. They tend to perform poorly due to the distributional shift
between the historical data and the learned policy, and may have
limited improvement even with fine tuning via online training [30].

In this work, to address the above challenge in DRL training
efficiency, we propose a unified framework that leverages the
knowledge from domain experts in various forms to accel-
erate online RL for building HVAC control. This is motivated by
the observation that in established domains such as building con-
trol, there is extensive domain expertise, represented in various
forms such as 1) abstract physical models (e.g., RC-networks [24]
or ARX models [49]) of building thermal dynamics – they are not
accurate enough for enabling training DRL or designing model-
based methods with good performance, but nevertheless contain
valuable information of building dynamics, 2) historical data col-
lected from existing controllers – they may not be able to train
DRL controllers with good performance due to distribution shift,
but also contain useful information on building behavior, and 3)
expert rules that reflect basic policies. We believe that leveraging
these domain expertise can help accelerate the online RL process. In
particular, our framework first learns expert functions from existing
abstract physical models and from historical data via offline RL, and
then combines those with expert rules to generate an integrated
expert function, which will then be used to drive online RL with
prior-guided learning and policy initialization from expert function
distillation. In experiments, our framework is able to significantly
reduce the convergence time for DRL training by up to 8.8𝑋 , while

maintaining similar performance (in terms temperature violation
rate and energy cost).

To summarize, our work makes the following contributions:
• We propose a novel framework to accelerate online RL for build-
ing HVAC control with heterogeneous expert guidances, includ-
ing abstract physical models, historical data, and expert rules.
These various guidances are unified in our framework via the
expert functions.
• We conducted a series of experiments for evaluating the effec-
tiveness of our framework. The results demonstrate that our
approach can effectively reduce the DRL training time while
maintaining good performance.
The rest of the paper is organized as follows. Section 2 introduces

the related literature. Section 3 presents our approach, and Section 4
presents the experimental results. Section 5 concludes the paper.

2 RELATEDWORKS
Reinforcement Learning for HVAC Control: Building HVAC
control is a critical and challenging problem as it significantly af-
fects both building energy efficiency and occupants’ physical and
mental health. In traditional model-based approaches, detailed and
accurate physical models are needed for control optimization, but
are often difficult and costly to develop and slow to run. Such limi-
tations have motivated the exploration of model-free approaches in
recent years, particularly those based on deep reinforcement learn-
ing [41, 46, 51, 52]. These DRL-based HVAC control approaches
leverage a variety of RL algorithms including DQN [41], A3C [51],
DDPG [11], PPO [1], etc. For instance, Wei et al. [41] convert the
building HVAC control into a Markov decision process (MDP) prob-
lem and leverage the DQN method to intelligently learn the opera-
tion strategy based on offline simulations. Gao et al. [11] adopt the
neural network to predict occupants’ thermal comfort for part of
their reward function design, and then apply the standard DDPG
algorithm to learn from their building simulation environment.
Abrazeh et al. [1] develop a real-time digital twin with a PPO-
based backstepping controller to maintain the relative humidity
and temperature in buildings. However, a major obstacle in ap-
plying these DRL-based control algorithms is that they often re-
quire dozens of months or more for training to reach the desired
performance [7, 11, 12]. Such long time is clearly not feasible for
direct training during real building operation (i.e., sensing the real
building environment and sending the actuation signals to HVAC
equipment). It may be possible to avoid this by developing accurate
and detailed building models and conducting training via simula-
tions on tools such as EnergyPlus and Modelica [28]-based tools [7],
however, this again requires the development of those detailed and
costly physical models and somewhat defeats the original purpose
of using model-free approaches. Thus, it is critical to improve the
efficiency of online RL for HVAC control without the development
of detailed physical models.

Transfer Learning for HVAC Control: One way to speed up RL
is to transfer the learned policy between different buildings. For in-
stance, [46] reduces the DRL training time by re-designing the learn-
ing objective and decomposing the neural network to a building-
agnostic sub-network and a building-specific sub-network. The

Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances BuildSys ’22, November 9–10, 2022, Boston, MA, USA

building-agnostic sub-network can be directly transferred from an
existing DRL controller of a source building, and only the building-
specific sub-network needs to be (re)-trained on the target building.
This can reduce the DRL training time from months/years to weeks.
[23] utilizes the direct policy transfer between different houses with
the same state/action space for heat pump control in microgrids.
[50] applies the transfer learning to a PPO-based controller for
smart home to reduce the training cost. The main limitations of
these approaches is that the effectiveness of the transfer strongly
relies on the similarity between the source and the target build-
ings. When the buildings are not similar or not operating in similar
environment, the transfer may have poor performance [46].

Offline Reinforcement Learning: Another way to accelerate on-
line RL is through offline RL, by leveraging historical data collected
under existing control policies. Recent offline RL works focus on
two aspects: offline policy optimization, and offline policy evalua-
tion. The former aims to learn an optimal policy for maximizing a
notion of cumulative reward, while the latter is intended to evaluate
the accumulated reward (or the value function) of a given policy.

For offline policy optimization in particular, a major challenge is
that the agent cannot directly explore the environment. And the
error (called extrapolation error [10]) that is caused by selected
actions not contained in the historical dataset could occur and
propagate during the training. This is one of the reasons that limits
the effectiveness of existing offline RL approaches for building
HVAC control [36]. The approaches that address this challenge
mainly utilize regularization or constraint-based methods to help
the policy stay near to the existing actions in the historical dataset.
For instance, the batch-constrained Q-learning (BCQ) approach [10]
restricts its action space to make the learned behavior similar to the
actions in the historical dataset. [17] penalizes divergence between
the prior learned from the historical dataset and the Q-network
policy using KL-control. [40] learns the policy by filtered behavioral
cloning, which utilizes critic-regularized regression to filter out
low-quality actions. And other related investigations can be found
in [2, 4, 8, 9, 13, 22]. And from the prior experiments, we notice that
not all offline RL algorithms can be chosen for building the expert
function. The method like TD3+BC [9] may not always provide a
good value estimation for the given states, as it only aims to make
the learned policy closer to the behavior in the offline dataset and
tend to overestimate the Q-value. So in this work, we use historical
data as one of the expert guidance and conduct offline RL to build
an expert function. We leverage the idea from [21] to estimate the
value function from historical dataset because of its effectiveness, by
directly setting regularization on the Q-function and generating the
Q-value estimation in a conservative way to reduce overestimation.

3 OUR PROPOSED FRAMEWORK
3.1 System Model
We use the building model with the fan-coil system from [7], which
is extended from a single-zone commercial building with manip-
ulable internal thermal mass. The internal air is conditioned by
an idealized fan coil unit (FCU) system, and the fan airflow rate is
chosen from multiple discrete levels {𝑓1, 𝑓2, · · · , 𝑓𝑚} (which can be
viewed as𝑚 control actions; 𝑓1 is to turn off the cooling system,

and 𝑓𝑚 is to run it at full speed.). There are two different work-
ing modes in this system: the occupied time (daily from 7 am to 7
pm), and the unoccupied time (rest of the day). The HVAC system
will run in a low-power mode during the unoccupied time for the
energy-saving purpose (with the cooling system almost turned off).
And the setting of comfortable temperature bound is different in
these two modes. The system conducts control with a period of
Δ𝑡 . Each training episode contains 2 days data, so there are 2880

Δ𝑡
control steps in each episode. Other experiment-related settings
can be found in Section 4.1. The system state contains the following
elements:
• Current physical time 𝑡 ,
• Indoor air temperature 𝑇 𝑖𝑛

𝑡 ,
• Outdoor air temperature 𝑇 𝑒𝑛𝑣

𝑡 ,
• Solar irradiance intensity 𝑞𝑠𝑢𝑛𝑡 ,
• Power consumption during the current control interval 𝑃𝑡 ,
• Outdoor air temperature forecast in the next three control steps
{𝑇 𝑒𝑛𝑣

𝑡+1 ,𝑇
𝑒𝑛𝑣
𝑡+2 ,𝑇

𝑒𝑛𝑣
𝑡+3 }, and

• Solar irradiance intensity forecast in the next three control steps
{𝑞𝑠𝑢𝑛

𝑡+1 , 𝑞
𝑠𝑢𝑛
𝑡+2 , 𝑞

𝑠𝑢𝑛
𝑡+3 }.

One thing to note is that we add one additional variable in the
implementation to the system state design, which is the remainder
after dividing the current physical time 𝑡 by 24 ∗ 60 ∗ 60. This
is to help the RL agent figure out the time position within one
day (morning, noon, afternoon, etc.), and may help it reach better
performance as observed in our preliminary experiments.

3.2 Our Online DRL Framework with
Heterogeneous Expert Guidances

As stated in Section 1, to accelerate online DRL for HVAC control,
we propose a unified framework that leverages heterogeneous ex-
pert guidances including abstract physical models, historical data,
and expert rules. Figure 1 shows the overview of our framework
design. Specifically, the framework includes the following major
components:
• An expert function ℎ𝑢 learned from an expert model. The expert
model could be an abstract physical model developed by domain
experts (commonly exists in building domain), or in case such
physical model is not available, a neural network with its param-
eters determined from historical data (but different from offline
RL; more details later).
• Another expert function ℎ𝑜 learned via offline RL on historical
data that was collected using existing controllers.
• An integrated expert function ℎ by combining ℎ𝑢 and ℎ𝑜 as well
as expert rules.
• Application of prior-guided learning and policy initialization
from expert function distillation based on ℎ.
The detailed flow of our approach is shown in Algorithm 1. Next,

we will first explain the underlying DRL algorithm we use, and
then introduce the details of each component in our approach to
improve the DRL efficiency with heterogeneous expert guidances.
Underlying DRL algorithm: Similarly as in recent works [7,
41, 46], we utilize double Deep Q-learning (DDQN) [39] as the
underlying DRL algorithm for our framework and also the baseline

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Xu, et al.

Historical data 𝐷ℎ

Expert
function ℎ𝑜

(s, a, r, s’)

Expert
function ℎ𝑢

Integrated expert
function ℎ

ℒ𝑠𝑢𝑟

Environment

෩ℳ = 𝒮,𝒜, 𝒫, ǁ𝑟, ෤γ

max
𝑎

𝑄 𝑠, 𝑎

𝑈𝑠 = 𝑎 𝑎 ∈ 𝑓𝑟𝑢𝑙𝑒 𝑠 , 𝑎 ∈ 𝒜

Expert rules

Combining
expert functions

and rules

Expert
guidance

from h

Deep Q-network

Transfer dataset for
policy initialization

Prior-guided DRL

s, r, s’

a

RL agent from
expert model

෡ℳ = 𝒮,𝒜,𝒫𝑢, 𝑟, γ

Expert model

Offline RL

+min
𝑄

ξ𝐸𝑠𝑡∼𝐷
log෍

𝑎
exp 𝑄 𝑠𝑡, 𝑎𝑡

−𝐸𝑎𝑡∼π 𝑎𝑡 𝑠𝑡 𝑄 𝑠𝑡, 𝑎𝑡

Agent for offline RL

Neural Network
Abstract

physical model

Figure 1: Overview of our online DRL framework with heterogeneous expert guidances. The framework includes the following
major components: (1) An expert function ℎ𝑢 learned from an expert model, which can be an abstract physical model or a
neural network with its parameters determined from historical data. (2) Another expert function ℎ𝑜 learned from offline
RL based on historical data. (3) An integrated expert function ℎ generated by combining ℎ𝑢 and ℎ𝑜 as well as expert rules. (4)
Application of prior-guided learning and policy initialization from expert function distillation based on ℎ.

Algorithm 1 Our Online DRL Framework with Heterogeneous
Expert Guidances
1: 𝑛𝑒𝑝1, 𝑛𝑒𝑝2: number of training epochs
2: 𝑛𝑚𝑎𝑥 : maximum training time of an epoch
3: 𝑛𝑡𝑎𝑟 : time interval to update target network
4: Randomly initialize Q-network𝑄
5: Learn expert function ℎ𝑢 from expert model using Algorithm 2
6: Learn expert function ℎ𝑜 from offline RL using Algorithm 3
7: Generate integrated expert function ℎ from ℎ𝑢 , ℎ𝑜 and expert rules,

following Equation (10)
8: Calculate initialization dataset 𝐷𝑦

𝑖𝑛𝑖𝑡
by ℎ𝑢 , ℎ𝑜

9: Train Q-network𝑄 by loss function L𝑖𝑛𝑖𝑡
10: for 𝐸𝑝𝑜𝑐ℎ = 1 to 𝑛𝑒𝑝2 do
11: Reset building environment 𝐸𝑛𝑣
12: for 𝑡 = 0 to 𝑛𝑚𝑎𝑥 do
13: Select action 𝑎𝑡 using epsilon-greedy
14: 𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑡 ← 𝐸𝑛𝑣.𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑎𝑡)
15: Update 𝜆 ← 𝜆0 + (1 − 𝜆0) tanh(𝛼𝜆 ((𝐸𝑝𝑜𝑐ℎ − 1) ∗𝑛𝑚𝑎𝑥 + 𝑡))
16: 𝑟𝑡 = 𝑟𝑡 + (1 − 𝜆)𝛾E

𝑠
′∼𝑃 (· |𝑠,𝑎) [ℎ (𝑠

′)], 𝛾 = 𝜆𝛾

17: Add transition (𝑠𝑡 , 𝑠𝑡+1, 𝑎𝑡 , 𝑟𝑡) to replay buffer
18: Randomly sample a batch 𝐵 = (𝒮, 𝒮′ , 𝒜, ℛ) from replay buffer
19: Update Q-network𝑄 with 𝐵 and 𝛾
20: Update target network𝑄 ′ with interval 𝑛𝑡𝑎𝑟
21: end for
22: end for

method for comparison in our experiments. We choose DDQN
mainly for its convenience in leveraging the value function and the
good performance it has shown for HVAC control in those recent
works, but our expert-guidance approach can also be applied to
improve the efficiency for many other DRL algorithms.

We assume that the next state of the building HVAC system only
relies on the current system state, and thus HVAC control can be
treated as a Markov decision process (MDP). As stated in Section 3.1,
the state 𝑠 = (𝑡,𝑇 𝑖𝑛

𝑡 ,𝑇 𝑒𝑛𝑣
𝑡 , 𝑞𝑠𝑢𝑛𝑡 , 𝑃𝑡 ,𝑇

𝑒𝑛𝑣
𝑡+1 ,𝑇

𝑒𝑛𝑣
𝑡+2 ,𝑇

𝑒𝑛𝑣
𝑡+3 , 𝑞

𝑠𝑢𝑛
𝑡+1 , 𝑞

𝑠𝑢𝑛
𝑡+2 , 𝑞

𝑠𝑢𝑛
𝑡+3).

The discrete action space A contains the normalized air flow rate
(0 to 1) with𝑚 − 1 intervals. The reward is designed with consider-
ation of indoor temperature violation and energy cost, as shown
below:

𝑟𝑡 = 𝛼 · 𝜖𝑡 + 𝛽 · 𝑐𝑡 , (1)
where 𝜖𝑡 represents the temperature violation for the current time
step, 𝑐𝑡 is the energy cost for the current time step, and 𝛼, 𝛽 are the
scaling factors. More specifically, 𝜖𝑡 is defined as:

𝜖𝑡 = max (𝑇 𝑖𝑛
𝑖 −𝑇𝑢𝑝𝑝𝑒𝑟 , 0) +max (𝑇𝑙𝑜𝑤𝑒𝑟 −𝑇 𝑖𝑛

𝑖 , 0), (2)
where𝑇𝑢𝑝𝑝𝑒𝑟 is the upper bound of a given comfortable temperature
range (which could be based on standards such as ASHRAE [34] or
OSHA [33]) and 𝑇𝑙𝑜𝑤𝑒𝑟 is the lower bound. Moreover:

𝑐𝑡 = 𝑝𝑡𝑃𝑡 , (3)
where 𝑝𝑡 is the energy price at time 𝑡 , and 𝑃𝑡 is the power consump-
tion during the current control interval at time 𝑡 .

The goal of the DRL is to minimize total energy cost while main-
taining indoor temperature within the comfortable temperature
range. The loss function LQ for updating the Q-network is:

L𝑄 = E(𝑠𝑡 ,𝑎𝑡 ,𝑠
′
𝑡)∼𝐷

[
(𝑟𝑡 + 𝛾 max

𝑎𝑡+1
𝑄
′
(𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠, 𝑎))2

]
, (4)

where 𝑠𝑡 , 𝑠𝑡+1 ∈ S, 𝑎𝑡 ∈ A, 𝑄 is the Q network and 𝑄 ′ is the target
Q network. Then, the components introduced in the rest of this
section will generate expert functions to provide prior guidance
and policy initialization for this underlying DRL algorithm.

Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances BuildSys ’22, November 9–10, 2022, Boston, MA, USA

Algorithm 2 Learning Expert Function from Expert Model
1: 𝑛𝑒𝑝1: number of training epochs
2: 𝑛𝑚𝑎𝑥 : maximum training time of an epoch
3: 𝑛𝑡𝑎𝑟 : time interval to update target network
4: Randomly initialize Q-network𝑄𝑢

5: Prepare input samples and corresponding labels {𝑥∗, 𝑦∗} from historical
dataset 𝐷ℎ for training an expert model

6: Train expert model 𝐸𝑛𝑣𝑢 using dataset {𝑥∗, 𝑦∗} and loss function L𝑢
7: for 𝐸𝑝𝑜𝑐ℎ = 1 to 𝑛𝑒𝑝1 do
8: Reset building environment 𝐸𝑛𝑣
9: for 𝑡 = 0 to 𝑛𝑚𝑎𝑥 do
10: Select action 𝑎𝑡 using epsilon-greedy
11: 𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑡 ← 𝐸𝑛𝑣𝑢 .𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑎𝑡)
12: Add transition (𝑠𝑡 , 𝑠𝑡+1, 𝑎𝑡 , 𝑟𝑡) to replay buffer 𝑅𝐵ℎ

13: Randomly sample a batch 𝐵 = (𝒮, 𝒮′ , 𝒜, ℛ) from 𝑅𝐵ℎ

14: Update Q-network𝑄𝑢 with 𝐵 and 𝛾
15: Update target network𝑄 ′𝑢 with interval 𝑛𝑡𝑎𝑟
16: end for
17: end for
18: Set expert function ℎ𝑢 using𝑄𝑢

Learning Expert Function ℎ𝑢 from Expert Model: An expert
function ℎ𝑢 can be learned through an expert model. In many
cases, such expert model already exists in the form of an abstract
physical model for the building thermal dynamics, e.g., an ARX or
RC-networks model. While these abstract models are typically not
accurate enough to enable good performance for DRL or model-
based methods, they can be effectively leveraged to generate an
expert function.

If an abstract physical model is not available, we can build a neu-
ral network as the expert model, with its parameters decided from
historical data collected under existing control policy, as shown in
Algorithm 2 (Line 5 in Algorithm 1) and described in the following.

We denote the historical dataset as 𝐷ℎ , with 𝑛 data samples. For
each data sample (𝑥,𝑦) ∈ 𝐷ℎ , let input 𝑥 = {𝑡,𝑇 𝑖𝑛

𝑡 ,𝑇 𝑒𝑛𝑣
𝑡 , 𝑞𝑠𝑢𝑛𝑡 , 𝑃𝑡 ,

𝑇 𝑒𝑛𝑣
𝑡+1 ,𝑇

𝑒𝑛𝑣
𝑡+2 , 𝑇

𝑒𝑛𝑣
𝑡+3 , 𝑞

𝑠𝑢𝑛
𝑡+1 , 𝑞

𝑠𝑢𝑛
𝑡+2 , 𝑞

𝑠𝑢𝑛
𝑡+3 , 𝑎} as defined in Section 3.1 and

𝑎 ∈ A, and let output label 𝑦 = {𝑇 𝑖𝑛
𝑡+1}. The neural network-based

expert model consists of 𝑚𝑢 fully-connected layers. All hidden
layers are followed by a GELU activation function [14], and are
sequentially connected (the detailed layer setting will be specified
later in Table 1 of Section 4). As different variables may not be in the
same order of magnitude (e.g., 𝑡 can be 1000 times larger than 𝑇 𝑖𝑛

𝑡),
we normalize the input 𝑥 and the output label 𝑦. The preprocessed
input and output can be written as 𝑥∗ = 𝑥−𝑥𝑙

𝑥ℎ−𝑥𝑙 , 𝑦
∗ = 𝑦−𝑦𝑙

𝑦ℎ−𝑦𝑙 , where
𝑥ℎ and 𝑥𝑙 are the upper bound and lower bound of the variable 𝑥 ,
and 𝑦ℎ and 𝑦𝑙 are the upper and lower bound of the variable y. We
then train the expert model with a mean square error loss function

L𝑢 =∥ 𝑦∗ − 𝑦∗
𝑝𝑟𝑒𝑑

∥2, (5)

where 𝑦∗
𝑝𝑟𝑒𝑑

is the network prediction for the normalized 𝑦. When
we apply this expert model after model training, we obtain the
prediction of 𝑦 by reversing the operation of previous-mentioned
normalization step. Note that it may not be necessary to predict the
entire system state. For example, the environment temperature𝑇𝑜𝑢𝑡

𝑡

and solar irradiance 𝑞𝑠𝑢𝑛𝑡 may be obtained from weather forecast.
Once we have the expert model, either in the form of an abstract

physical model or a neural network, the expert function ℎ𝑢 can be

viewed as a prior guess of the optimal value function in the building
HVAC control task and can be learned via DRL.More specifically, we
define an MDP problem M̂ = (S,A,P𝑢 , 𝑟 , 𝛾) where the definitions
of state S, action space A and reward function 𝑟 are the same as
defined at the beginning of Section 3.2. P𝑢 is from the expert model.
We then apply DDQN on M̂ and obtain a trained Q-network 𝑄 .
And the expert function ℎ𝑢 can be set up as:

ℎ𝑢 (𝑠) = max
𝑎

𝑄 (𝑠, 𝑎), (6)

where 𝑠 is the state and 𝑎 is the control action.

Learning Expert Function ℎ𝑜 from Offline RL: Another type of
expert function ℎ𝑜 can be learned from the historical data via offline
RL, as shown in Algorithm 3 (Line 6 in Algorithm 1). We leverage
some of the techniques from conservative Q-learning (CQL) [21]
because of its effectiveness in reducing a large number of hyper-
parameters.

Algorithm 3 Learning Expert Function from Offline RL
1: 𝑛𝑒𝑝1: number of training epochs
2: 𝑛𝑚𝑎𝑥 : maximum training time of an epoch
3: 𝑛𝑡𝑎𝑟 : time interval to update target network
4: Randomly initialize Q-network𝑄𝑜

5: for 𝐸𝑝𝑜𝑐ℎ = 1 to 𝑛𝑒𝑝1 do
6: for 𝑡 = 0 to 𝑛𝑚𝑎𝑥 do
7: Randomly sample a batch 𝐵 = (𝒮, 𝒮′ , 𝒜, ℛ) from 𝐷ℎ

8: Update Q-network𝑄𝑜 with 𝐵 and 𝛾 following Equation 8
9: Update target network𝑄 ′𝑜 with interval 𝑛𝑡𝑎𝑟
10: end for
11: end for
12: Set expert function ℎ𝑜 using the learned Q-networks𝑄𝑜

First, we build an offline RL model based on DDQN, but with
different Q-network updating rules as the DRL presented in the
beginning of Section 3.2. In particular, compared with Equation (4),
we add an extra regularization term:

L𝑟𝑒𝑔 = min
𝑄
E𝑠𝑡∼𝐷

[
log

∑︁
𝑎𝑡

exp(𝑄 (𝑠𝑡 , 𝑎𝑡)) − E𝑎𝑡∼𝜋 (𝑎𝑡 |𝑠𝑡) [𝑄 (𝑠𝑡 , 𝑎𝑡)]
]
,

(7)
where 𝑠𝑡 ∈ S and 𝑎𝑡 ∈ A. 𝑄 is the Q-network, and 𝐷 is the dataset
produced by the behaviour policy 𝜋 . In the equation, the first part
log

∑
𝑎𝑡 exp(𝑄 (𝑠𝑡 , 𝑎𝑡)) describes a penalty term for minimizing the

Q-value of the action produced by current policy on the states in the
historical dataset. It helps learn a smaller and more conservative Q-
value estimator. The second term −E𝑎𝑡∼𝜋 (𝑎𝑡 |𝑠𝑡) [𝑄 (𝑠𝑡 , 𝑎𝑡)] counts
average Q-value in the state-action pairs in the historical dataset
and maximizes it to push the current learned policy closer to the
behavior policy in the historical dataset.

Then the policy updating is changed as follows:

L𝑜 𝑓 𝑓 =
1
2E(𝑠𝑡 ,𝑎𝑡 ,𝑠

′
𝑡)∼𝐷

[
(𝑟𝑡 + 𝛾 max

𝑎𝑡+1
𝑄
′
(𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡))2

]
+ 𝜉L𝑟𝑒𝑔,

(8)
where 𝑠𝑡 , 𝑠𝑡+1 ∈ S, 𝜉 is a mixing coefficient, and 𝑄 ′ is the target Q-
network. With enough training iterations, the offline RL agent can

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Xu, et al.

provide a good expert function ℎ𝑜 following the same procedure as
in Equation (6).

Note that we observe that not all offline RL algorithms can be a
suitable choice for our framework. For example, approaches like
TD3+BC [9] may not always provide a good value estimation for
the given states. We suspect that this may be due to two factors.
One is related to the reward design, as the value function esti-
mation in some offline RL algorithms is sensitive to the scale of
the accumulated reward. The other is that because algorithms like
TD3+BC only add regularization on the actor updating and do not
set constraints on the Q function, which could enlarge the error
in estimating the (Q-)value function when combined with possible
numerical issues.

Generating Integrated Expert Function ℎ from ℎ𝑢 , ℎ𝑜 and Ex-
pert Rules: The expert function ℎ𝑢 learned from the expert model
and the expert function ℎ𝑜 learned via offline RL tend to perform
differently because of the complexity of the system dynamic and
the sufficiency of the data. Moreover, the accuracy of their Q-value
estimation can vary at different states depending on the data distri-
bution within the historical dataset. Thus, it is a natural thought
to form an ensemble of the two. And the ensemble of multiple
expert functions calculated in different ways can further reduce the
overestimation of Q-values through a conservative way, which we
will introduce in this section later.

To begin with, after havingℎ𝑢 andℎ𝑜 , we can combine themwith
expert rules to generate an integrated expert function ℎ. The expert
rules are often set by domain experts or building operators based
on past experience and domain expertise. They do not provide
an optimized control action for a given state, but instead offer
suggestions that could be viewed as guidance or soft constraints –
e.g., not turning on the cooling systemwhen the indoor temperature
is below the lower bound of the comfortable temperature range by
certain threshold. Formally, we define that the expert rules 𝑓𝑟𝑢𝑙𝑒
can generate an action candidate set U𝑠 for each state:

U𝑠 = {𝑎 |𝑎 ∈ 𝑓𝑟𝑢𝑙𝑒 (𝑠), 𝑎 ∈ A)}. (9)

We can then generated an integrated expert function ℎ based
on U𝑠 , ℎ𝑢 and ℎ𝑜 (Line 7 in Algorithm 1). Specifically, we apply
a pessimistic ensemble strategy for selecting the value function
estimation among different expert functions, and only choose cor-
responding actions from the expert rules’ action candidate set U𝑠 .
Thus, the integrated expert function ℎ can be formulated as:

ℎ(𝑠) = min
𝑖
(max
𝑎∈U𝑠

𝑄𝑖 (𝑠, 𝑎)), (10)

where 𝑄𝑖 is the Q-value estimation from expert functions 𝑖 . Note
that this is a general formulation that can unify multiple expert
functions – e.g., we may have more than one abstract physical
models that provide multiple ℎ𝑢 expert functions.

Prior-guided Learning: Once we have the integrated expert func-
tion ℎ, we can use it to guide the underlying DRL with prior-guided
learning. There are several algorithms that could guide online RL
with a single prior policy, such as HuRL [5] and JSRL [38]. Our
framework is flexible in choosing those and we select HuRL [5] in
our implementation. In the original HuRL, the Q-value estimation in
the RL agent is guided by a simple heuristic function that is learned
from the Monte-Carlo regression. In our work, we instead leverage

the integrated expert function ℎ from above. By dynamically chang-
ing a mixing coefficient 𝜆 that controls the trade-off between the
bias from the expert function ℎ and the complexity of a reshaped
MDP, we are able to accelerate the DRL training with a shortened
MDP horizon. Specifically, given the state space S, action space A,
reward function 𝑟 that are mentioned at the beginning of Section 3.2,
as well as the transition dynamics of the building HVAC system P
and a discount factor 𝛾 , we consider an MDPM = (S,A,P, 𝑟 , 𝛾).
We use the learned integrated expert function ℎ as a prior guess
for the optimal value function ofM. Thus our online DRL can be
described as a reshaped MDP M̃ = (S,A,P, 𝑟 , 𝛾), where 𝜆 is a
mixing coefficient,

𝑟 = 𝑟 + (1 − 𝜆)𝛾E𝑠′∼P(· |𝑠,𝑎) [ℎ(𝑠
′
)] (11)

and
𝛾 = 𝜆𝛾, (12)

which is shown at Line 16 in Algorithm 1.
Policy Initialization from Expert Function Distillation: In the
above section, we use the integrated expert function ℎ to reshape
the reward function and shorten the MDP horizon. In addition, we
can also speed up the DRL training through better initialization, by
leveraging the expert functions for determining the initial policy
(Lines 8 and 9 in Algorithm 1).

Specifically, we initialize the deepQ-network through knowledge
distillation [15] on the expert functions. The first step is to extract
the knowledge from multiple expert functions (ℎ𝑢 and ℎ𝑜 in our
case) to a dataset 𝐷𝑖𝑛𝑖𝑡 . We set the input dataset as 𝐷𝑥

𝑖𝑛𝑖𝑡
and the

corresponding label set as 𝐷𝑦

𝑖𝑛𝑖𝑡
. In setting 𝐷𝑥

𝑖𝑛𝑖𝑡
, we utilize all the

unlabeled historical data, which only contain the system state. And
the corresponding labels are calculated in a way that is similar
to the strategy introduced earlier for integrating expert functions.
That is, suppose we have 𝑛ℎ expert functions, then

𝐷
𝑦

𝑖𝑛𝑖𝑡
= {𝑦 |𝑦 = (𝑞1, 𝑞2, · · · , 𝑞𝑚)}, (13)
𝑞 𝑗 = min

𝑖
(𝑄𝑖 (𝑠, 𝑓𝑗)), (14)

where 𝑠 ∈ 𝐷𝑥
𝑖𝑛𝑖𝑡

, 𝑗 ∈ [1 · · ·𝑚], 𝑖 ∈ [1 · · ·𝑛ℎ]. As the expert functions
we utilize are not as accurate as of the optimal (Q-) value function,
we further add two mixing coefficients 𝜆𝛼

𝑖𝑛𝑖𝑡
, 𝜆𝛽

𝑖𝑛𝑖𝑡
for balancing

the relative size of the Q value from different actions. So the new
definition of 𝐷𝑦

𝑖𝑛𝑖𝑡
is

𝐷
𝑦

𝑖𝑛𝑖𝑡
= {𝑦 |𝑦 = (

𝑞1 + (𝜆𝛼𝑖𝑛𝑖𝑡 − 1)𝜇𝑞
𝜆𝛼
𝑖𝑛𝑖𝑡

𝜆
𝛽

𝑖𝑛𝑖𝑡

,
𝑞2 + (𝜆𝛼𝑖𝑛𝑖𝑡 − 1)𝜇𝑞

𝜆𝛼
𝑖𝑛𝑖𝑡

𝜆
𝛽

𝑖𝑛𝑖𝑡

,

· · · ,
𝑞𝑚 + (𝜆𝛼𝑖𝑛𝑖𝑡 − 1)𝜇𝑞

𝜆𝛼
𝑖𝑛𝑖𝑡

𝜆
𝛽

𝑖𝑛𝑖𝑡

)}, 𝜇𝑞 =

∑𝑚
𝑗=1 𝑞 𝑗

𝑚
,

(15)

where the definition of 𝑞 𝑗 (𝑗 ∈ [1 · · ·𝑚]) remains the same. Then
the next step is to train the deep Q-network of our DRL agent by
using the obtained dataset 𝐷𝑖𝑛𝑖𝑡 . As we consider a regression task,
we apply the mean square error as the loss function

L𝑖𝑛𝑖𝑡 = ∥ 𝑦 − 𝑦𝑝𝑟𝑒𝑑 ∥2, 𝑦 ∈ 𝐷
𝑦

𝑖𝑛𝑖𝑡
, (16)

where 𝑦𝑝𝑟𝑒𝑑 is the deep Q-network prediction. We obtain the net-
work weight initialization by training for 𝑛𝑖𝑛𝑖𝑡 epochs. Moreover,
with such policy initialization, we can use a smaller learning rate
to tune the deep Q-network in the later DRL stages.

Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances BuildSys ’22, November 9–10, 2022, Boston, MA, USA

Parameter Value Parameter Value

Expert-
model

[𝑙𝑒𝑛(𝑠 ∈ S),
256,256,256,
256,256,256,2]

Deep Q-
network

[𝑙𝑒𝑛(𝑠 ∈ S),
256, 256, 256,

256, 51]
𝑚 51 Δ𝑡 15 mins
𝛾 0.99 𝛼 1.0

𝑇𝑙𝑜𝑤𝑒𝑟

(occupied) 22 ℃ 𝑇𝑢𝑝𝑝𝑒𝑟
(occupied) 26 ℃

𝑇𝑙𝑜𝑤𝑒𝑟

(unoccupied) 12 ℃ 𝑇𝑢𝑝𝑝𝑒𝑟
(unoccupied) 30 ℃

𝛽 100.0 𝑚𝑢 7
𝜉 1.0 n 5760

Table 1: Hyper-parameters used in our experiments.

4 EXPERIMENTAL RESULTS
4.1 Experiment Settings
We conduct our experiments on a Ubuntu 20.04 OS server equipped
with NVIDIA RTX A5000 GPU cards. Docker [29] is utilized for the
environment configuration, with Python 3.7.9 and learning frame-
work Pytorch 1.9.0. All neural networks are optimized through the
Adam optimizer [19].

We use the building simulation tool in [7] to simulate the behav-
ior of single-zone commercial buildings, with an OpenAI-Gym [3]
interface. We model two buildings as defined in the Building En-
ergy Simulation Test validation suite [18]: one is with a lightweight
construction (known as Case600FF) and the other is with a heavy-
weight construction (known as case900FF). Both buildings have
the same model settings except that the wall and floor construc-
tion have either light or heavy materials. The floor dimensions are
6𝑚-by-8𝑚 and the floor-to-ceiling height is 2.7𝑚. There are four ex-
terior walls facing the cardinal directions and a flat roof. The walls
facing east-west have the short dimension. The south wall contains
two windows, each 3𝑚 wide and 2𝑚 tall. The use of the building
is assumed to be a two-person office with a light load density. The
lightweight building is assumed to be located at Riverside, Califor-
nia, USA, and the heavyweight building is assumed to be located at
Chicago, Illinois, USA. The weather data for different locations are
obtained from the Typical Meteorological Year 3 database [43]. In
addition, the various parameters and hyper-parameters mentioned
in the previous sections are listed in Table 1.

4.2 Evaluation of Our Framework and
Comparison with Standard DDQN

We apply our proposed framework to building HVAC control and
demonstrate its effectiveness in accelerating the DRL training, in
particular the standard DDQN algorithm. We repeat each experi-
ment 4 times and show the average results.

Comparison with Standard DDQN on Training Efficiency:
Figure 2 demonstrates the temperature violation rate of the trained
controller under different approaches for the lightweight building
with weather data from Riverside. Temperature violation rate is
one of the main objectives for DRL. It is defined as the percentage
of the time the indoor temperature is outside of the comfortable
temperature zone, similarly as used in [7, 41, 45, 46].

Method Number of Episodes
DDQN 212
DDQN+Expert Model 68
DDQN+Offline RL 78
DDQN+Expert Model+Offline RL 40
DDQN+Expert Model+Offline RL 36+Expert Rules
DDQN+Expert Model+Offline RL 24+Expert Rules+Init

Table 2: Number of episodes required to reach the violation
rate of 0.2 for the standard DDQN baseline and our approach
with various techniques included (the last line being our
approach with all techniques in Algorithm 1).

Figure 2a shows the training process of the standard DDQN,
and the model needs about 212 episodes to reach a violation
rate at around 20% for this building from [7] (20% may seem high,
but it is due to the limitation of this particular building and its
cooling-only HVAC system; more explanation on this later with
Figure 4). Figure 2b shows the training process when we add a
neural network-based expert model that generates the expert func-
tion ℎ𝑢 . About 68 episodes are needed to reach the same violation
rate. Figure 2c shows the training process when we add offline
RL that generates the expert function ℎ𝑜 , and about 78 episodes
are needed to reach the violation rate of 20%. Figure 2d shows
the results when we apply both expert functions ℎ𝑢 and ℎ𝑜 , but
without the expert rules. We can see that about 40 episodes are
needed. Figure 2e shows the results when we integrate the two
expert functions ℎ𝑢 and ℎ𝑜 , as well as an expert rule 𝑓 using the
method introduced in Section 3.2. 𝑓 is defined as follows: when the
indoor temperature is below 22℃, the control action is suggested to
be set within the set of {𝑓0, 𝑓1, 𝑓2, 𝑓3}; if the indoor temperature is
above 27℃, the control action is suggested to be set within the set
of {𝑓𝑚−3, 𝑓𝑚−2, 𝑓𝑚−1, 𝑓𝑚}. We can see that the number of episodes
needed is about 36. Finally, Figure 2f shows the training process
when we apply all of our proposed techniques, including integrat-
ing the expert functions from expert model and offline RL as well
as the expert rules, using the integrated expert function to guide
DRL training, and conducting policy initialization with the expert
functions. We can see that now only 24 episodes are needed
to reach the same violation rate as the standard DDQN, an
8.8X reduction in training time. Table 2 summarizes the above
number of episodes required to reach the violation rate of 0.2 for the
standard DDQN baseline and our approach with various techniques
included.

For further evaluation, we also conduct experiments on the
heavyweight building with weather data from Chicago. In this
set of experiments, the major change of the parameters is that the
scaling factor 𝛽 is set to 1.0 in Equation (1). This is because that the
average energy consumption of this HVAC system is much higher
than that of the previous building, and we need to re-balance the
energy cost and the temperature violation in the reward design.
Figure 2g and Figure 2h shows the comparison between our ap-
proach and the standard DDQN. And the experiments show that
the number of episodes needed to reach a violation rate of 5% is
reduced from 160 to 80. The improvement, while still significant, is

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Xu, et al.

Training Episodes
0 50 100 150 200 250

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(a) DDQN

0.10

0.25

0.20

0.15

0.45

0.40

0.30

0.35

0.50

V
io

la
ti

o
n

 R
at

e
0 20 40 60 80 100 120

Training Episodes

(b) DDQN+Expert Model
Training Episodes

0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

120

0.45

(c) DDQN+Offline RL
Training Episodes

0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.45

120

0.40

0.50

(d) DDQN+Expert Model+Offline
RL

Training Episodes
0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

120

0.45

(e) DDQN+Expert Model+Offline
RL+Expert Rules

Training Episodes
0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

120
0.10

0.45

(f) DDQN+Expert Model+Offline
RL+Expert Rules+Init

Training Episodes
0 50 75 125 150 175

V
io

la
ti

o
n

 R
at

e
0.0

0.1

0.2

0.3

0.4

25 100 200

(g) DDQN
Training Episodes

0 50 75 125 150 175

0.025

0.050

0.100

0.150

0.200

V
io

la
ti

o
n

 R
at

e

25 100 200

0.075

0.125

0.175

0.225

(h) DDQN+Expert Model+Offline
RL+Expert Rules+Init

Figure 2: Figure 2a to Figure 2f show the comparison between our approach (in different settings with various techniques
included) and the standard DDQN method on the lightweight building. The weather data is from Riverside, CA, USA. The
x-axis shows the training episodes. The y-axis shows the temperature violation rate. Figure 2a shows the training process under
the standard DDQN method. About 212 episodes are needed to reach a violation rate of 0.2. Figure 2b, Figure 2c, Figure 2d, and
Figure 2e show the results when we gradually add an expert model that generates expert function ℎ𝑢 , offline RL that generates
expert function ℎ𝑜 , an expert rule, and policy initialization based on expert functions, respectively. And we can observe the
improvement on the required episodes step by step. Figure 2f shows the training process when we apply all of our techniques.
In this case, only 24 episodes are needed to reach the violation rate of 0.2, an 8.8𝑋 improvement over standard DDQN. Then
Figure 2g and Figure 2h show the comparison between our approach with all techniques included (right) and the standard
DDQN baseline (left) on the heavyweight building with larger thermal capacity under the weather data from Chicago, IL, USA.

much less than the lightweight building. We suspect that this may
be due to the quality of the historical data and plan to investigate it
further in future work.

Energy Cost and Other Details: Besides temperature violation
rate and the number of episodes for reaching the goal of violation
rate below 0.2 (i.e., training efficiency), we also assess the energy
cost of the learned controllers during our experiments. We observed
that different methods, including the standard DDQN baseline and
our approachwith various techniques included, achieve very similar
energy cost for the learned controllers – in fact within 1% for both
the lightweight building and the heavyweight building we tested.

Figure 3 shows the normalized energy cost of our approach with
all techniques included for the lightweight building with weather
data from Riverside. We can observe that the energy cost quickly de-
creases to a lower value within 5 to 10 epochs and slightly fluctuates
in the later training epochs.

Figure 4 illustrates the building temperature over 2 days, un-
der the controller learned with our approach with all techniques

Training Episodes

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

C
o

st

Figure 3: Normalized energy cost during training for our
approach with all techniques included for the lightweight
building with weather data from Riverside.

included, for the lightweight building with weather data from River-
side. We can see that the temperature violation rate is around 20%.
It is relatively high because some violations are very hard to avoid
for this particular building. Specifically, the HVAC system is set
to only work during the occupied hours (from 7am to 7pm) and

Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances BuildSys ’22, November 9–10, 2022, Boston, MA, USA

the comfortable temperature range is much more strict during that
time (22℃ to 26℃) compared to during the unoccupied time (12℃ to
30℃) [7]. This makes it almost impossible to meet the comfortable
temperature range early in the morning since the HVAC system
only provides cooling. We can see that after the early morning
hours, the temperature is controlled well within the comfortable
range by our controller.

Simulation Step (15 minutes per step)

Te
m

p
er

at
u

re
 (
°C

)

0 25 50 75 100 125 150 175
10

15

20

25

30

35

40

Figure 4: An illustration of the building temperature over 2
days under the controller learned from our approach with
all techniques included. The red lines bound the comfortable
temperature range. The blue line is the outdoor temperature
in Riverside, CA. The green line is the indoor temperature
under the learned controller.

4.3 Ablation Studies
Impact of the Historical Data Quantity: We are interested
in knowing how the quantity of the historical data may affect
the performance of our approach. We conduct a series of exper-
iments that have the quantity of the historical data chosen from
{5760, 2880, 1440, 720} (i.e., from 2 months of data to 7.5 days of
data). The results are shown in Table 3. We can observe that the
training becomes faster as the quantity of the historical data be-
comes larger, as what we would expect.

#Samples 720 1440 2880 5760
#Episodes 116 78 62 24

Table 3: The number of epochs needed by our approach (with
all techniques included) for reaching the violation rate of
20% for the lightweight building, under different quantity of
the historical data.

Impact of the Historical Data Quality:We also study the per-
formance of our approach under different level of quality for the
historical data. Previously we use the historical data collected from
an existing controller on the target building. To study different
historical data quality, we choose to take random actions with a
probability of 𝑝 . Table 4 shows the results. Our approach performs
better with a smaller 𝑝 , i.e., when our approach learns from histori-
cal data based on more reasonable control actions.

𝑝 1.0 0.8 0.4 0.2 0.0
#Episodes 110 104 88 60 24

Table 4: The number of epochs needed by our approach (with
all techniques included) for reaching the violation rate of
20% for the lightweight building, under different quality of
the historical data.

The Usage of Abstract Phyiscal Model: In addition, we also try
to utilize an abstract physical model, i.e., the ARX model from [45],
as the expert model to generate ℎ𝑢 , instead of learning a neural net-
work. The training process is shown in Figure 5. About 64 episodes
are needed to reach the same violation rate, more than the case
where the expert model is a neural network learned from historical
data. We think that this is due to the simplicity of the ARX model,
and plan to investigate the performance of other abstract physi-
cal models in future. Nevertheless, it still provides considerable
improvement over the standard DDQN.

Training Episodes
0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

120

Figure 5: Training result for the lightweight building when
the expert model in our approach (with all techniques in-
cluded) is constructed from an abstract physical model.

5 CONCLUSIONS
In this paper, we present a systematic, unified framework to acceler-
ate online RL for building HVAC control with heterogeneous expert
guidances, including abstract physical models, historical data, and
expert rules. These guidances are unified through the learning of
expert functions, which are then used to accelerate DRL with prior-
guided learning and policy initialization. A series of experiments
demonstrate that our approach can significantly reduce the training
time over previous DRL methods. We believe that our approach
not only addresses a critical challenge in applying DRL to building
domain, but also has the potential in other domains where existing
expertise could be leveraged in improving learning efficiency and
performance. We plan to investigate this further in future work.

ACKNOWLEDGMENTS
We gratefully acknowledge the support from Department of Energy
(DOE) award DE-EE0009150 and National Science Foundation (NSF)
awards 1834701 and 2038853.

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Xu, et al.

REFERENCES
[1] Saber Abrazeh, Saeid-Reza Mohseni, Meisam Jahanshahi Zeitouni, Ahmad

Parvaresh, Arman Fathollahi, Meysam Gheisarnejad, and Mohammad-Hassan
Khooban. 2022. Virtual Hardware-in-the-Loop FMU Co-Simulation Based Digital
Twins for Heating, Ventilation, and Air-Conditioning (HVAC) Systems. IEEE
Transactions on Emerging Topics in Computational Intelligence (2022).

[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An opti-
mistic perspective on offline reinforcement learning. In ICML. PMLR.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross.
2020. BAIL: Best-action imitation learning for batch deep reinforcement learning.
Advances in Neural Information Processing Systems 33 (2020), 18353–18363.

[5] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. 2021. Heuristic-
guided reinforcement learning. NeurIPS (2021).

[6] Drury B Crawley, Linda K Lawrie, Curtis O Pedersen, and Frederick C Winkel-
mann. 2000. Energy plus: energy simulation program. ASHRAE journal 42, 4
(2000), 49–56.

[7] Yangyang Fu, Shichao Xu, Qi Zhu, and Zheng O’Neill. 2021. Containerized
framework for building control performance comparisons: model predictive
control vs deep reinforcement learning control. In Proceedings of the 8th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. 276–280.

[8] Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau.
2019. Benchmarking batch deep reinforcement learning algorithms. arXiv
preprint arXiv:1910.01708 (2019).

[9] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline
reinforcement learning. NeurIPS (2021).

[10] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep rein-
forcement learning without exploration. In International Conference on Machine
Learning. PMLR, 2052–2062.

[11] Guanyu Gao, Jie Li, and Yonggang Wen. 2019. Energy-efficient thermal com-
fort control in smart buildings via deep reinforcement learning. arXiv preprint
arXiv:1901.04693 (2019).

[12] Guanyu Gao, Jie Li, and Yonggang Wen. 2020. DeepComfort: Energy-efficient
thermal comfort control in buildings via reinforcement learning. IEEE Internet of
Things Journal 7, 9 (2020), 8472–8484.

[13] Yijie Guo, Shengyu Feng, Nicolas Le Roux, Ed Chi, Honglak Lee, and Minmin
Chen. 2020. Batch reinforcement learning through continuation method. In
International Conference on Learning Representations.

[14] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[16] Bo Huang, Yimin Zhu, Yongbin Gao, Guohui Zeng, Juan Zhang, Jin Liu, and Li
Liu. 2021. The analysis of isolation measures for epidemic control of COVID-19.
Applied Intelligence 51, 5 (2021), 3074–3085.

[17] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson,
Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. 2019. Way
off-policy batch deep reinforcement learning of implicit human preferences in
dialog. arXiv preprint arXiv:1907.00456 (2019).

[18] R Judkoff and J Neymark. 1995. International Energy Agency building energy
simulation test (BESTEST) and diagnostic method. (2 1995). https://doi.org/10.
2172/90674

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Neil E Klepeis, William C Nelson, Wayne R Ott, John P Robinson, Andy M
Tsang, Paul Switzer, Joseph V Behar, Stephen C Hern, and William H Engelmann.
2001. The National Human Activity Pattern Survey (NHAPS): a resource for
assessing exposure to environmental pollutants. Journal of Exposure Science &
Environmental Epidemiology 11, 3 (2001), 231–252.

[21] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[22] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

[23] Paulo Lissa, Michael Schukat, Marcus Keane, and Enda Barrett. 2021. Transfer
learning applied to DRL-Based heat pump control to leverage microgrid energy
efficiency. Smart Energy 3 (2021), 100044.

[24] C Lombard and EH Mathews. 1992. Efficient, steady state solution of a time
variable RC network, for building thermal analysis. Building and Environment
27, 3 (1992), 279–287.

[25] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves. 2012. Model Pre-
dictive Control for the Operation of Building Cooling Systems. IEEE Transactions
on Control Systems Technology 20, 3 (2012), 796–803.

[26] Mehdi Maasoumy, Alessandro Pinto, and Alberto Sangiovanni-Vincentelli. 2011.
Model-based hierarchical optimal control design for HVAC systems. In Dynamic
Systems and Control Conference, Vol. 54754. 271–278.

[27] Mehdi Maasoumy, M Razmara, M Shahbakhti, and A Sangiovanni Vincentelli.
2014. Handling model uncertainty in model predictive control for energy efficient
buildings. Energy and Buildings 77 (2014), 377–392.

[28] Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. 1998. Physical system
modeling with Modelica. Control Engineering Practice 6, 4 (1998), 501–510.

[29] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

[30] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. 2020. Ac-
celerating online reinforcement learning with offline datasets. arXiv preprint
arXiv:2006.09359 (2020).

[31] Aviek Naug, Ibrahim Ahmed, and Gautam Biswas. 2019. Online energy manage-
ment in commercial buildings using deep reinforcement learning. In 2019 IEEE
SMARTCOMP. IEEE, 249–257.

[32] U.S. Department of Energy. 2011. Buildings energy data book.
[33] United States Department of Labor. 2021. OSHA Technical Manual (OTM) Section

III: Chapter 2.
[34] Bjarne W Olesen and Gail S Brager. 2004. A better way to predict comfort: The

new ASHRAE standard 55-2004. (2004).
[35] Saran Salakij, Na Yu, Samuel Paolucci, and Panos Antsaklis. 2016. Model-Based

Predictive Control for building energy management. I: Energy modeling and
optimal control. Energy and Buildings 133 (2016), 345–358.

[36] Jorren Schepers, Reinout Eyckerman, Furkan Elmaz, Wim Casteels, Steven Latré,
and Peter Hellinckx. 2021. Autonomous Building Control Using Offline Rein-
forcement Learning. In International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing. Springer, 246–255.

[37] Mohamed Toub, Chethan R Reddy, Meysam Razmara, Mahdi Shahbakhti, Rush D
Robinett III, and Ghassane Aniba. 2019. Model-based predictive control for
optimal MicroCSP operation integrated with building HVAC systems. Energy
Conversion and Management 199 (2019), 111924.

[38] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine
Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. 2022. Jump-
Start Reinforcement Learning. arXiv preprint arXiv:2204.02372 (2022).

[39] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In AAAI 2016.

[40] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Sprin-
genberg, Scott E Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas
Heess, et al. 2020. Critic regularized regression. Advances in Neural Information
Processing Systems 33 (2020), 7768–7778.

[41] Tianshu Wei, Yanzhi Wang, and Qi Zhu. 2017. Deep reinforcement learning for
building HVAC control. In 54th Annual Design Automation Conference.

[42] Tianshu Wei, Qi Zhu, and Nanpeng Yu. 2015. Proactive demand participation of
smart buildings in smart grid. IEEE Trans. Comput. 65, 5 (2015), 1392–1406.

[43] Stephen Wilcox and William Marion. 2008. Users manual for TMY3 data sets.
(2008).

[44] Qingqing Xu and Stevan Dubljevic. 2017. Model predictive control of solar ther-
mal system with borehole seasonal storage. Computers & Chemical Engineering
101 (2017), 59–72.

[45] Shichao Xu, Yangyang Fu, Yixuan Wang, Zheng O’Neill, and Qi Zhu. 2021.
Learning-based framework for sensor fault-tolerant building HVAC control with
model-assisted learning. In Proceedings of the 8th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation. 1–10.

[46] Shichao Xu, Yixuan Wang, Yanzhi Wang, Zheng O’Neill, and Qi Zhu. 2020. One
for many: Transfer learning for building hvac control. In Proceedings of the 7th
ACM international conference on systems for energy-efficient buildings, cities, and
transportation. 230–239.

[47] Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and Xiaohong
Guan. 2020. Multi-agent deep reinforcement learning for HVAC control in
commercial buildings. IEEE Transactions on Smart Grid 12, 1 (2020), 407–419.

[48] Liang Yu, Weiwei Xie, Di Xie, Yulong Zou, Dengyin Zhang, Zhixin Sun, Linghua
Zhang, Yue Zhang, and Tao Jiang. 2019. Deep reinforcement learning for smart
home energy management. IEEE Internet of Things Journal 7, 4 (2019), 2751–2762.

[49] Kyungtae Yun, Rogelio Luck, Pedro J Mago, and Heejin Cho. 2012. Building
hourly thermal load prediction using an indexed ARX model. In Energy and
Buildings.

[50] Xiangyu Zhang, Xin Jin, Charles Tripp, David J Biagioni, Peter Graf, and
Huaiguang Jiang. 2020. Transferable reinforcement learning for smart homes.
In Proceedings of the 1st International Workshop on Reinforcement Learning for
Energy Management in Buildings & Cities. 43–47.

[51] Zhiang Zhang, Adrian Chong, Yuqi Pan, Chenlu Zhang, and Khee Poh Lam. 2019.
Whole building energy model for HVAC optimal control: A practical framework
based on deep reinforcement learning. Energy and Buildings 199 (2019), 472–490.

[52] Zhiang Zhang, Adrian Chong, Yuqi Pan, Chenlu Zhang, Siliang Lu, and Khee Poh
Lam. 2018. A deep reinforcement learning approach to using whole building
energy model for hvac optimal control. In 2018 Building Performance Analysis
Conference and SimBuild, Vol. 3. 22–23.

https://doi.org/10.2172/90674
https://doi.org/10.2172/90674

	Abstract
	1 Introduction
	2 Related Works
	3 Our Proposed Framework
	3.1 System Model
	3.2 Our Online DRL Framework with Heterogeneous Expert Guidances

	4 Experimental Results
	4.1 Experiment Settings
	4.2 Evaluation of Our Framework and Comparison with Standard DDQN
	4.3 Ablation Studies

	5 Conclusions
	Acknowledgments
	References

