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ABSTRACT
In the current control design of safety-critical cyber-physical sys-

tems, formal verification techniques are typically applied after the
controller is designed to evaluate whether the required properties

(e.g., safety) are satisfied. However, due to the increasing system

complexity and the fundamental hardness of designing a controller

with formal guarantees, such an open-loop process of design-then-
verify often results in many iterations and fails to provide the neces-

sary guarantees. In this paper, we propose a correct-by-construction

control learning framework that integrates the verification into the

control design process in a closed-loop manner, i.e., design-while-
verify. Specifically, we leverage the verification results (computed

reachable set of the system state) to construct feedback metrics for

control learning, which measure how likely the current design of

control parameters can meet the required reach-avoid property for

safety and goal-reaching. We formulate an optimization problem

based on such metrics for tuning the controller parameters, and de-

velop an approximated gradient descent algorithm with a difference

method to solve the optimization problem and learn the controller.

The learned controller is formally guaranteed to meet the required

reach-avoid property. By treating verifiability as a first-class objec-

tive and effectively leveraging the verification results during the

control learning process, our approach can significantly improve

the chance of finding a control design with formal property guar-

antees, demonstrated in a set of experiments that use model-based

or neural network based controllers.
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1 INTRODUCTION
Safety-critical cyber-physical systems(CPSs), such as avionics sys-

tems and self-driving vehicles often operate in highly dynamic

environments with significant uncertainties and disturbances. It is

critical yet challenging to formally ensure their safety, especially
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for the control and decision making modules. Thus, while there has

been increasing interest in applying machine learning techniques

(e.g., reinforcement learning (RL) [18]) to control and general deci-

sion making, their adoption in safety-critical systems is hindered

by the challenges in formally ensuring system properties [16].

In this work, we address system safety and goal-reaching ability

in control design with a reach-avoid property [8], which intuitively

represents whether the system can “reach its goal without entering

unsafe states” (defined in Sec 2). It is a fundamentally hard problem

to design a controller with formal guarantees for such property.

Even in linear systems, the similar “hyper-plane hitting problem”

is proved to be NP-hard and it is unclear whether the problem

is decidable or not [3]. The complexity continues to increase for

non-linear and hybrid systems [12]. Moreover, for emerging neural

network-based controllers, synthesizing them with formal guar-

antees is extremely challenging. A few recent works intended to

address it but came with strong limitations, such as only applying

to discrete control input [13], or ReLU activation functions [20].

The common process for controller design and verification fol-

lows an open-loop design-then-verify pattern. The designers first

design a controller using either model-based methods such as linear

quadratic regulator [2], or model-free approaches such as RL with

neural networks [18]. Formal verification tools [4, 14, 15, 17] are

then leveraged to evaluate whether the designed controller satis-

fies the required properties. However, due to the above-mentioned

difficulty in designing a controller with formal guarantees, such

process might result in many iterations between design and verifi-

cation, and may still fail to provide the necessary guarantees. For

neural network-based controllers, this could be even more chal-

lenging, as tuning the design and learning parameters often has an

unpredictable impact on the control property [11].

In this work, to address the above challenges, we propose an

offline (i.e., design-time) correct-by-construction control learning

framework that integrates verification in a closed-loop manner,

i.e., design-while-verify, to formally guarantees that the learned

controller satisfies the required reach-avoid property. In our frame-

work, we leverage the verification results, particularly the computed

reachable set of the system state, to construct two different types of

feedback metrics that reflect the system’s potential ability to meet

the reach-avoid property. We then formulate the control learning

as an optimization problem of the control parameters based on

either metric, and develop an approximated gradient descent algo-

rithm with a difference method for tuning the control parameters

until a feasible solution is obtained or iteration limit is reached.

Our approach can be applied to both model-based controllers and
neural network based ones, and formally guarantees that the learned

controller can meet the required reach-avoid property.

Related work: Our work is related to the safety verification of

controlled dynamical systems [4, 7, 14, 15, 17], which typically

https://doi.org/10.1145/3489517.3530556
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relies on the computation of the system reachable set containing all

possible states that the system may visit within a time horizon. Our

approach leverages these verification tools (also called verifiers),
and develops novel metrics and method to integrate them into the

control design process. Falsification is another technique that can

be leveraged for closed-loop controller design [6]. However, the

falsification-driven process does not provide formal guarantees.

Our work is also related to control synthesis with reach-avoid

guarantees for model-based controllers [5, 8] or neural network-

based controllers [13, 20, 21]. However, most of these recent works

are still limited to either linear systems, specific activation functions

such as ReLU, or discrete control input; while our framework can

address linear and non-linear systems, all types of activation func-

tions and their mixture, and continuous state feedback controllers,

as long as their reachable sets can be computed.

In summary, our work makes the following contributions:

• We propose an offline correct-by-construction control learning

framework that integrates verification in a closed-loop design-
while-verifymanner, which formally ensures that with the learned

controller, the system satisfies the reach-avoid property for

safety and goal-reaching.

• Our framework includes novel formulation of the verification-in-

the-loop control learning problem based on two metrics (using

geometric or Wasserstein distance) and an approximate gradient

descent algorithm with a difference method for solving it.

• Our approach can be applied to both linear and non-linear sys-

tems under traditional model-based or emerging neural network

based controllers. Experiments on a linear adaptive cruise con-

trol system, a non-linear oscillator and another 3D numerical

system demonstrate that our approach significantly outperforms

the baseline methods in convergence rate, safe control rate, goal-

reaching rate, and ability to provide formal guarantees.

The paper is organized as follows. Section 2 presents the system

model. Section 3 introduces our verification-in-the-loop control

learning framework, with analysis on its optimality, soundness,

and incompleteness. Experiments and conclusion are presented in

Sections 4 and 5, respectively.

2 SYSTEM MODEL
SystemDynamics and Controller:We consider a continuous sys-

tem that can be expressed as a tuple (𝑋,𝑈 , 𝑓 , 𝜅𝜃 , 𝑋0, 𝛿). Specifically,
the system dynamics is modeled as

¤𝑥 = 𝑓 (𝑥,𝑢), (1)

where 𝑥 ∈ 𝑋 ⊆ R𝑛 is the system state vector with 𝑋 as the state

space. 𝑢 ∈ 𝑈 ⊆ R𝑚 is the control input variable with 𝑈 as the

control input space. 𝑓 : 𝑋 ×𝑈 → 𝑋 is a locally Lipschitz-continuous

function that can be either linear or non-linear, ensuring there exists

a unique solution to (1). 𝑋0 is a set containing all initial states 𝑥 (0).
Such a system can be controlled by a feedback controller 𝜅𝜃 :

𝑋 → 𝑈 , parameterized by 𝜃 in the following way. Given a sam-

pling period 𝛿 , the controller 𝜅 reads the system state 𝑥 (𝑖𝛿) at
time 𝑡 = 𝑖𝛿 (𝑖 = 1, 2, · · · ), and computes the control input as

𝑢 (𝑖𝛿) = 𝜅𝜃 (𝑥 (𝑖𝛿)). Then, the system state evolves as ¤𝑥 = 𝑓 (𝑥,𝑢 (𝑖𝛿))
within the time slot [𝑖𝛿, (𝑖 + 1)𝛿].

Remark 1. Our approach can deal with a variety of controller
types, such as linear controllers, and fully-connected neural network
controllers where 𝜃 includes the weights and bias parameters.

Flow and Reach-avoid Property: A flow function 𝜑 (𝑥 (0), 𝑡) :
𝑋0 × R+ → 𝑋 maps some initial state 𝑥 (0) to the system state

𝜑 (𝑥 (0), 𝑡) at time 𝑡 . Mathematically, 𝜑 satisfies 1) 𝜑 (𝑥 (0), 0) = 𝑥 (0)
2) 𝜑 is the solution of the ¤𝑥 = 𝑓 (𝑥,𝑢 (𝑖𝛿)) in the time interval

𝑡 ∈ [𝑖𝛿, 𝑖𝛿 + 𝛿] 3) 𝑢 (𝑖𝛿) = 𝜅𝜃 (𝜑 (𝑥 (0), 𝑖𝛿)), ∀𝑖 = 1, 2, · · · Based on

the flow definition, the system reach-avoid property is defined as.

Definition 1. (Reach-avoid property) Starting from 𝑥 (0), the
system is considered to be reach-avoid if and only if its flow 𝜑 (𝑥 (0), 𝑡)
1) never enters into an unsafe set 𝑋𝑢 (safety) and 2) reaches a goal set
𝑋𝑔(goal-reaching) within a finite time horizon 𝑇 .{

∀𝑇 ≥ 𝑡 ≥ 0, 𝜑 (𝑥 (0), 𝑡) ∩ 𝑋𝑢 = ∅(𝑠𝑎𝑓 𝑒𝑡𝑦)
∃ 0 ≤ 𝑡 ′ ≤ 𝑇, 𝜑 (𝑥 (0), 𝑡 ′) ∩ 𝑋𝑔 ≠ ∅(𝑔𝑜𝑎𝑙 − 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔)

Verifier and Control Learning:We consider a verifier as a formal

tool Ψ(𝑓 , 𝑋0, 𝜅𝜃 ) that takes input of system dynamics 𝑓 , initial state

set 𝑋0, and controller 𝜅𝜃 , and outputs the feedback concerning

reach-avoid property (reachable set in this paper). Leveraging such

verifier, we define the closed-loop control learning problem with

reach-avoid guarantee as follows.

Problem 1. (Offline verification-in-the-loop control learn-
ing) Given a continuous control system described as Eq (1), find a
feasible solution of controller parameters 𝜃 and initial region 𝑋𝐼 ⊆ 𝑋0

with the reachable set computed from verifier Ψ(𝑓 , 𝑋0, 𝜅𝜃 ), such that
the reach-avoid property is satisfied ∀𝑥 (0) ∈ 𝑋𝐼 ⊆ 𝑋0 with 𝜅𝜃 .

3 VERIFICATION-IN-THE-LOOP CONTROL
LEARNING

Our verification-in-the-loop approach leverages the feedback from

the verifier to guide the control learning process. It includes the

following major components: the computation of the system state

reachable set from the verifier (Section 3.1); the two different defini-

tions of a distance metric over the reachable set for evaluating the

current control design and the formulation of an optimization prob-

lem for control learning (Section 3.2); and an approximated gradient

descent algorithm for solving the optimization problem, including

the computation of an initial state set for ensuring goal-reaching

(Section 3.3). The optimality, soundness, and incompleteness of our

approach are also analyzed (Section 3.4).

3.1 Verifier Reachable Set Computation
During the verification-in-the-loop control learning process, the

verifier Ψ(𝑓 , 𝑋0, 𝜅𝜃 ) computes a reachable set of the system state

based on the current controller design 𝜅𝜃 , defined as:

Definition 2. A state 𝑥𝑟 of system (𝑋,𝑈 , 𝑓 , 𝜅𝜃 , 𝑋0, 𝛿) is called
reachable at time 𝑡 ≥ 0, if and only if there ∃ 𝑥 (0) ∈ 𝑋0 such that
𝑥𝑟 = 𝜑 (𝑥 (0), 𝑡) under controller 𝜅𝜃 . The reachable set 𝑋𝑇

𝑟 with time
horizon 𝑇 for initial set 𝑋0 is defined as 𝑋𝑇

𝑟 = {𝜑 (𝑥 (0), 𝑡) | ∀ 𝑥 (0) ∈
𝑋0, ∀ 0 ≤ 𝑡 ≤ 𝑇 }

For computing this reachable set, we consider two cases: linear

systems under linear controllers, and non-linear systems under

non-linear controllers such as neural network based ones.
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Linear Systemwith LinearController: For a linear time-invariant

(LTI) system as ¤𝑥 = 𝐴𝑥 + 𝐵𝑢, its reachable set under a linear con-
troller within a finite time interval can be evaluated recursively.

Specifically, we consider its discretized LTI system as 𝑥 [𝑡 + 1] =
𝐴𝑑𝑥 [𝑡] + 𝐵𝑑𝑢 [𝑡] with a linear feedback controller 𝑢 [𝑡] = 𝜃𝑇 𝑥 [𝑡],
where𝐴𝑑 = 𝑒𝐴𝛿 , 𝐵𝑑 =

∫ 𝛿

0
𝑒𝐴𝑡𝐵𝑑𝑡 with sampling period 𝛿 . Note that

for continuous LTI systems, as long as the controller is periodically

updated and zero-order hold is applied in each period, it can always

be discretized. The initial set 𝑋0 is considered as a polyhedron. In

this case, the reachable set of each time step 𝑡 , denoted as 𝑋𝑟 [𝑡],
is also a polyhedron, and can be derived recursively from 𝑋0 by

polyhedron operation𝑋𝑟 [𝑡+1] = (𝐴𝑑 +𝐵𝑑𝜃 )𝑋𝑟 [𝑡] with𝑋𝑟 [0] = 𝑋0.

The overall reachable set can be obtained as 𝑋𝑇
𝑟 =

⋃𝑇
𝑡=0 𝑋𝑟 [𝑡]. It

can also be computed by verification tools, such as Flow* [4].

Non-linear System with Neural Network Controller : Due
to the black-box nature of the neural network, many previous

works apply the overly function approximator(e.g. polynomials)

to the neural network controller and then compute the over ap-

proximation of reachable set for the transformed function. Typ-

ically, to ensure the soundness, the output range of the neural

network controller under some reachable set at time 𝑡 (𝑡 ≥ 0) is
bounded as 𝑢 = 𝜅𝜃 (𝑥) ∈ 𝐺𝜅𝜃 (𝑥) + [−𝜖 (𝑥), 𝜖 (𝑥)],∀ 𝑥 ∈ 𝑋 𝑡

𝑟 , where

𝐺𝜅𝜃 (𝑥) and 𝜖 (𝑥) are the function approximator and remainder of

the neural network controller 𝜅𝜃 within space 𝑋 𝑡
𝑟 , respectively. For-

mal verification tools then iterative compute the reachable set of

𝐺𝜅𝜃 (𝑥) + [−𝜖 (𝑥), 𝜖 (𝑥)], as an over approximation for the reachable

set of the neural network controller.

In the experiment part, we tried with ReachNN [15] and PO-

LAR [14]. ReachNN leverages the Bernstein polynomials as the

function approximator and estimates the remainder by a novel sam-

pling method. POLAR utilizes the Taylor model to approximate the

NN and tighten the approximation by a symbolic remainder.

3.2 Distance Metric Definitions over Reachable
Set and Control Learning Formulation

We define two different types of metrics for evaluating the current

control design based on the computed reachable set from the veri-

fier, one based on the intuitive geometric distance and one on the

Wasserstein distance for its convexity.

Geometric Distance based Metrics:We define a geometric dis-

tance 𝑑𝑢
𝜃
between the reachable set 𝑋𝑇

𝑟 and the unsafe region 𝑋𝑢

𝑑𝑢
𝜃
=

{
−|𝑋𝑇

𝑟 ∩ 𝑋𝑢 |, 𝑖 𝑓 𝑋𝑇
𝑟 ∩ 𝑋𝑢 ≠ ∅

inf ( | |𝑥𝑟 − 𝑥𝑢 | |2),∀𝑥𝑟 ∈ 𝑋𝑇
𝑟 ,∀𝑥𝑢 ∈ 𝑋𝑢 ,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

where | · | measures the size of a set. For instance in Fig. 1 with a

2-dimensional system, |𝑋𝑇
𝑟 ∩ 𝑋𝑢 | is the intersection area between

blue and red regions. Intuitively, the system is safe within time

horizon 𝑇 if and only if 𝑑𝑢
𝜃
is positive. Moreover, the larger the 𝑑𝑢

𝜃
is, the further the system stays away from the unsafe region.

Following the same idea, we define another geometric distance

𝑑
𝑔

𝜃
for the goal-reaching property as

𝑑
𝑔

𝜃
=

{��𝑋𝑇
𝑟 ∩ 𝑋𝑔

�� , 𝑖 𝑓 𝑋𝑇
𝑟 ∩ 𝑋𝑔 ≠ ∅

− inf ( | |𝑥𝑟 − 𝑥𝑔 | |2), ∀𝑥𝑟 ∈ 𝑋𝑇
𝑟 ,∀𝑥𝑔 ∈ 𝑋𝑔,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

𝑑𝜃
𝑔
< 0

𝑑𝜃
𝑢< 0

𝑋𝑔

𝑋𝑢

𝑑𝜃
𝑔

>0

𝑑𝜃
𝑢 > 0

𝑋𝑔

𝑋𝑢

Unsafe and not Goal-Reaching Safe and Goal-Reaching 

𝑋0 𝑋0

𝑋𝑟

𝑋𝑟

Figure 1: Geometric distances 𝑑𝑢
𝜃
, 𝑑𝑔

𝜃
for safe and goal-

reaching properties defined on reachable set (blue) with re-
spect to unsafe region (red) and goal set (green).

𝑑𝜃−𝑝
𝑔

< 0

𝑑𝜃−𝑝
𝑢 < 0

𝑋𝑔

𝑋𝑢𝑋0

𝑑𝜃+𝑝
𝑔

>0

𝑑𝜃+𝑝
𝑢 > 0

Figure 2: Approximate the gradient for tuning controller
parameters by the difference method with perturbation 𝑝.

The system satisfies the goal-reaching property if and only if

𝑑
𝑔

𝜃
is positive. Similarly in Fig. 1, the larger the 𝑑

𝑔

𝜃
is, the better

it is for the goal-reaching property. To have formal guarantee on

goal-reaching, a searching algorithm for the initial set 𝑋𝐼 ⊆ 𝑋0 is

proposed and detailed later.

Based on these two metrics, an optimization problem of con-

troller parameters 𝜃 for the control learning with reach-avoid prop-

erty can be formulated as

{
max𝜃 𝑑𝑢

𝜃
+ 𝑑𝑔

𝜃
,

𝑠 .𝑡 . 𝑑𝑢
𝜃
≥ 0, 𝑑

𝑔

𝜃
≥ 0.

Overall, a feasible

solution 𝜃 should make both 𝑑
𝑔

𝜃
and 𝑑𝑢

𝜃
positive, which indicates

the reach-avoid property is formally assured.

Wasserstein Distance based Metric:Wasserstein distance is de-

fined on two distributions 𝑧 (𝑥) and 𝑣 (𝑦) as

𝑊 (𝑧, 𝑣) = inf

𝛾 ∈Γ (𝑥,𝑦)

∫
𝑑 (𝑥,𝑦)𝑑𝛾 (𝑥,𝑦), (4)

where Γ denotes the collections of all joint distributions with mar-

gins as 𝑧 (𝑥) and 𝑣 (𝑦). 𝑑 (𝑥,𝑦) is a distance measure function over

𝑥,𝑦, such as norms.

We view the last step of the reachable set 𝑋𝑇𝑙
𝑟 as a uniform

distribution 𝑟𝜃 (𝑥), i.e., 𝑟𝜃 (𝑥) =
{

1

|𝑋𝑇𝑙
𝑟 |

, 𝑖 𝑓 𝑥 ∈ 𝑋𝑇𝑙
𝑟 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
The same

applies to the goal set𝑋𝑔 as𝑔(𝑥) and the unsafe set𝑋𝑢 as𝑢 (𝑥). With

this transformation, Wasserstein distance is naturally defined on

𝑟𝜃 (𝑥), 𝑔(𝑥) and 𝑟𝜃 (𝑥), 𝑢 (𝑥). In this case, the system is reach-avoid

if and only if we can determine that 𝑋𝑇
𝑟 ∩ 𝑋𝑔 ≠ ∅ and 𝑋𝑇

𝑟 ∩ 𝑋𝑢 =

∅. Therefore, the optimization problem based on the Wasserstein
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distance over controller parameters 𝜃 is defined as{
min𝜃W(𝑟𝜃 ) =𝑊 (𝑟𝜃 (𝑥), 𝑔(𝑥)) −𝑊 (𝑟𝜃 (𝑥), 𝑢 (𝑥))
𝑠 .𝑡 .𝑋𝑇

𝑟 ∩ 𝑋𝑔 ≠ ∅, 𝑋𝑇
𝑟 ∩ 𝑋𝑢 = ∅

3.3 Approximated Gradient Descent Algorithm
for Control Learning

Based on the computed reachable set and the defined distance

metrics, we develop an approximated gradient descent algorithm

for the control learning, shown in Algorithm 1.

Algorithm 1 Verification-in-the-loop Control Learning.

Require: A verifier Ψ(𝑓 , 𝑋0, 𝜅𝜃 ) that computes the reachable set

𝑋𝑇
𝑟 , system dynamics 𝑓 , initial set 𝑋0, controller 𝜅𝜃 .

1: Randomly initialize 𝜃 ; set the maximum number of updates 𝑁 ,

control horizon 𝑇 , step lengths 𝛼, 𝛽 and 𝑖 = 0.

2: while 𝑖 ≤ 𝑁 and 𝑋𝑇
𝑟 is not reach-avoid do

3: Generate perturbation 𝑝 and compute the reachable sets for

each perturbation as Ψ(𝑓 , 𝑋0, 𝜅𝜃−𝑝 ) and Ψ(𝑓 , 𝑋0, 𝜅𝜃+𝑝 ).
4: Compute geometric distances

[
𝑑𝑢
𝜃−𝑝 , 𝑑

𝑢
𝜃+𝑝 , 𝑑

𝑔

𝜃−𝑝 , 𝑑
𝑔

𝜃+𝑝

]
with Eq (2) and (3) or Wasserstein distances[
𝑊 (𝑟𝜃+𝑝 , 𝑔),𝑊 (𝑟𝜃−𝑝 , 𝑔),𝑊 (𝑟𝜃+𝑝 , 𝑢),𝑊 (𝑟𝜃−𝑝 , 𝑢)

]
with

Eq (4).

5: Approximate the gradients ∇𝑢
𝜃
and ∇𝑔

𝜃
by Equation (5).

6: 𝜃 = 𝜃 − 𝛼∇𝑢
𝜃
+ 𝛽∇𝑔

𝜃
.

7: 𝑖 ← 𝑖 + 1.
8: Search reach-avoid initial set 𝑋𝐼 using Algorithm 2.

9: Return: Learned controller 𝜅𝜃 and 𝑋𝐼 .

Because the verifier is often complex and does not have an ana-

lytical form, we propose a difference method to approximate the

gradients for the metrics, as shown in Fig. 2. For each update iter-

ation, we generate some perturbations 𝑝 to the controller 𝜃 , and

then compute their reachable set and also corresponding metrics.

Thus, for the geometric and Wasserstein metrics, the gradients can

be approximated respectively as∇
𝑢
𝜃
≈

𝑑𝑢
𝜃+𝑝−𝑑

𝑢
𝜃−𝑝

2𝑝 ,∇𝑔
𝜃
≈

𝑑
𝑔

𝜃+𝑝−𝑑
𝑔

𝜃−𝑝
2𝑝 ,

∇𝑢
𝜃
≈ 𝑊 (𝑟𝜃+𝑝 ,𝑢)−𝑊 (𝑟𝜃−𝑝 ,𝑢)

2𝑝 ,∇𝑔
𝜃
≈ 𝑊 (𝑟𝜃+𝑝 ,𝑔)−𝑊 (𝑟𝜃−𝑝 ,𝑔)

2𝑝 ,
(5)

and thus the controller parameters are updated accordingly. Note

that if the reach-avoid property is true for some initial space 𝑋𝐼 ⊆
𝑋0, we can directly break from the iteration and return the learned

controller. Finally, we search for 𝑋𝐼 to complete the algorithm.

Reach-avoid Initial Set Searching: Once Algorithm 1 success-

fully learns a controller, safety can be ensured to the entire initial

set 𝑋0. However, goal-reaching is not guaranteed for 𝑋0 because of

the intersection operator we used in the metrics and also due to the

over-approximation computation of reachable set. Thus, we further

propose the searching Algorithm 2 to obtain the reach-avoid initial

set 𝑋𝐼 ⊆ 𝑋0 such that ∀𝑥 (0) ∈ 𝑋𝐼 , the reach-avoid property is

formally verified to hold. Specially, we partition the initial space

𝑋𝐼 to many 𝑋𝑝 and compute each reachable set Ψ(𝑓 , 𝑋𝑝 , 𝜅𝜃 ). If
there exist some time 𝑡 > 0, such that 𝑋𝑝 ’s reachable set at time 𝑡 ,

Ψ(𝑓 , 𝑋𝑝 , 𝜅𝜃 ) |𝑡 ⊆ 𝑋𝑔 , then goal-reaching is formally satisfied for 𝑋𝑝

under the learned controller 𝜅𝜃 . A collection of 𝑋𝑝 builds up 𝑋𝐼 .

Algorithm 2 𝑋𝐼 Searching.

Require: Verifier Ψ(𝑓 , 𝑋0, 𝜅𝜃 ), system dynamics 𝑓 , initial set 𝑋0,

learned controller 𝜅𝜃 , 𝑋𝐼 = ∅, 𝑃 = 1.

1: while 𝑋𝐼 not converged do
2: Evenly partition 𝑋0 into sub-spaces 𝑋𝑝 (𝑝 = 1, · · · , 𝑃).
3: for 𝑝 ∈ (1, · · · , 𝑃) do
4: if ∃𝑡 > 0,Ψ(𝑓 , 𝑋𝑝 , 𝜅𝜃 ) |𝑡 ⊆ 𝑋𝑔 then
5: 𝑋𝐼 = 𝑋𝐼 ∪ 𝑋𝑝 , 𝑋0 = 𝑋0 − 𝑋𝑝 .

6: Increase 𝑃 .

3.4 Approach Optimality, Soundness, and
Incompleteness

In this section, we introduce the optimality analysis, soundness

theorem, and incompleteness clarification of our approach.

Optimality. The Wasserstein distanceW(𝑟𝜃 ) is believed to be

convex and almost everywhere differentiable in the distribution

𝑟𝜃 [1, 19]. Due to its convexity, it holds that

W(𝑟𝜃1 ) −W(𝑟𝜃2 ) ≤
〈
𝛿W/𝛿𝑟𝜃1 , 𝑟𝜃1 − 𝑟𝜃2

〉
,∀𝑟𝜃1 , 𝑟𝜃2 ∈ R,

where ⟨·, ·⟩ is the inner-product.
Let

ˆ𝜃 be an 𝜖-stationary point of objectiveW(𝑟𝜃 ). In most cases

of the experiments, our approach can reach such stationary points.

It then holds with some constant number𝑀 that

∇𝜃W(𝑟 ˆ𝜃 )
𝑇 𝑣 ≤ 𝜖,∀𝑣 ∈ B =

{
𝜃 ∈ R𝑛, | |𝜃 | |2 ≤ 𝑀

}
We assume that 𝑟𝜃 is a differentiable function of 𝜃 . By the chain

rule, it then holds that

∇𝜃W(𝑟 ˆ𝜃 )
𝑇 𝑣 =

〈
𝛿W/𝛿𝑟

ˆ𝜃
,

(
𝑑𝑟𝜃

𝑑𝜃

����
𝜃= ˆ𝜃

)𝑇
𝑣

〉
≤ 𝜖,∀𝑣 ∈ B

Let 𝑟∗ be a global minimizer ofW(𝑟 ) for 𝑟 ∈ R with correspond-

ing 𝜃∗, we then have

W(𝑟
ˆ𝜃
) −W(𝑟∗) ≤

〈
𝛿W/𝛿𝑟

ˆ𝜃
, 𝑟

ˆ𝜃
− 𝑟∗

〉
Let 𝜑

ˆ𝜃
=

𝑑𝑟𝜃
𝑑𝜃

���
𝜃= ˆ𝜃

represents the tangent function of 𝑟𝜃 at 𝜃 = ˆ𝜃 .

Then, by combining the above two equations, we have

W(𝑟
ˆ𝜃
) −W(𝑟∗) ≤ 𝜖 +

〈
𝛿W/𝛿𝑟

ˆ𝜃
, 𝑟

ˆ𝜃
− 𝑟∗ − 𝜑𝑇

ˆ𝜃
𝑣

〉
,∀𝑣 ∈ B

≤ 𝜖 + ||𝛿W/𝛿𝑟
ˆ𝜃
| | · | |𝑟

ˆ𝜃
− 𝑟∗ − 𝜑𝑇

ˆ𝜃
𝑣 | |,∀𝑣 ∈ B

Theorem 1. (Optimality Analysis) With the designed Wasser-
stein distance metric, the optimality bound between a stationary point
to the global optimum can be obtained as

W(𝑟
ˆ𝜃
) −W(𝑟∗) ≤ 𝜖 + ||𝛿W/𝛿𝑟

ˆ𝜃
| | · inf

𝑣∈B
| |𝑟

ˆ𝜃
− 𝑟∗ − 𝜑𝑇

ˆ𝜃
𝑣 | |

This shows that on the Wasserstein distance metrics, our ap-

proach is highly likely to reach a stationary point that has a bounded

distance to the global optimum.

Soundness. Our approach is sound based on its definitions, i.e.,

the solution found satisfies the reach-avoid property.

Theorem 2. (Soundness) Given a system described as Eq (1), let
𝜅𝜃 and𝑋𝐼 be the controller and the initial space obtained by Algorithm
1 and Algorithm 2, respectively. Then the system with 𝜅𝜃 will reach
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the target set 𝑋𝑔 without entering the unsafe set 𝑋𝑢 from any initial
state within 𝑋𝐼 .

Incompleteness. Our approach is incomplete, i.e., we cannot guar-

antee to find a solution if it exists. The incompleteness comes from

both controller learning and initial set searching procedure. First,

in the learning procedure (Algorithm 1), we use an approximate

gradient in each update, which does not guarantee to find a feasi-

ble controller even if it exists. Second, after obtaining a controller,

we apply Algorithm 2 to find a feasible initial set 𝑋𝐼 leveraging a

reachable set computation tool. Since existing tools for nonlinear

systems are all incomplete, a feasible initial set for the controller is

not guaranteed to be found even if it exists.

4 EXPERIMENTAL RESULTS
Test Systems:We evaluate our approach by learning linear con-

trollers for a linear adaptive cruise control (ACC) system [22] and

neural network controllers for a Van der Pol’s oscillator system [22]

and 3-dimensional system [17]. The Baseline methods for compari-

son include model-based stochastic value gradient (SVG) [10] and

model-free deep deterministic policy gradient (DDPG) method [18].

SVG and DDPG follow the design-then-verify process while our

approach is design-while-verify. The reward functions in DDPG and

SVG are designed to minimize the Euclidean distance to the goal

set center and maximize the distance to the unsafe set center. For

the activation function, the neural network controllers have ReLU

for the hidden layers and Tanh as the output layer.

Figure 3: Four-
wheeled robot
"Pioneer3-AT"
in Webots.

ACC. There are two robotic vehicles

driving on the road, shown in Fig. 3 with

the Webots environment [23]. The front

vehicle drives at a velocity 𝑣 𝑓 while the

ego vehicle manages the relative distance

by accelerating or braking. The dynamics

can be expressed as ¤𝑠 = 𝑣 𝑓 − 𝑣, ¤𝑣 = 𝑘𝑣 + 𝑢,
where 𝑣 𝑓 = 40, 𝑘 = −0.2, 𝛿 = 0.1 is the

sampling period, and (𝑠, 𝑣) is the system
state. 𝑋0 = [122, 124] × [48, 52], 𝑋𝑢 =

{(𝑠, 𝑣) |𝑠 ≤ 120} and 𝑋𝑔 = [145, 155] ×
[39.5, 40.5].

Oscillator. Van der Pol’s oscillator is a 2D non-linear system,

expressed as ¤𝑥1 = 𝑥2, ¤𝑥2 = 𝛾 (1 − 𝑥2
1
)𝑥2 − 𝑥1 + 𝑢, sampling pe-

riod 𝛿 = 0.1, and 𝛾 = 1. 𝑋0 = [−0.51,−0.49] × [0.49, 0.51], 𝑋𝑔 =

[−0.05, 0.05] × [−0.05, 0.05], and 𝑋𝑢 = [−0.3,−0.25] × [0.2, 0.35].

3D numerical example. we also test on a 3D system [15], ex-

pressed as ¤𝑥1 = 𝑥3
1
− 𝑥2, ¤𝑥2 = 𝑥3, ¤𝑥3 = 𝑢, sampling period 𝛿 = 0.2,

𝑋0 = [0.38, 0.4]×[0.45, 0.47]×[0.25, 0.27],𝑋𝑔 = 𝑥1 ∈ [−0.5,−0.28]×
𝑥2 ∈ [0, 0.28], 𝑋𝑢 = 𝑥1 ∈ [−0.1, 0.2] × 𝑥2 ∈ [0.55, 0.6].
VerificationTools:Weuse Flow* [4] for ACC system to learn linear

controllers, and use ReachNN [9, 15] and POLAR [14] for oscillator

and 3D systems to learn neural network controllers. ReachNN may

perform better in low-dimensional systems while POLAR is more

efficient and scalable [14].

Performance Comparison: The comparison between different

approaches on the three examples is shown in Table 1. With veri-

fication in the loop, our approaches with the Wasserstein metric

CI SC GR Verified result

ACC, Linear
SVG 401(±51) 91% 91% Unsafe

DDPG 13.6(±2.1)K 99.8 % 99.8% Unknown

Ours(W, Flow*) 64(±31.6) 100% 100% reach-avoid

Ours(G, Flow*) 62(±6.1) 100% 100 % reach-avoid

Oscillator, NN
SVG 388(±15) 98.2% 98.2% Unsafe

DDPG 13.7(±6.2)K 100 % 79.2 % Unknown

Ours(W, ReachNN) 9(±2) 100% 100% reach-avoid

Ours(G, ReachNN) 11(±1) 100 % 100 % reach-avoid

Ours(W, POLAR) 9(±2) 100% 100% reach-avoid

Ours(G, POLAR) 12(±1) 100 % 100 % reach-avoid

3D systems, NN
SVG 295(±29) 100% 100% reach-avoid

DDPG 9(±1.8)K 96% 3.6% Unsafe

Ours(W, ReachNN) 6(±2) 100% 100% reach-avoid

Ours(G, ReachNN) 7(±2) 100% 100% reach-avoid

Ours(W, POLAR) 42(±12) 100% 100% reach-avoid

Ours(G, POLAR) 18(±8) 100% 100% reach-avoid

Table 1: Comparison of results for all examples on conver-
gence iterations (CI), safe control rate (SC), goal-reaching
rate (GR). The controllers synthesized from our verification-
in-the-loop approach are guaranteed to be reach-avoid while
those fromDDPGor SVGare often unsafe or unknown (due to
over-approximation of the reachable set computation). With
zero-order hold, our controllers achieve 100% safe control
rate and goal-reaching rate with the discretized simulation
while DDPG and SVG do not. The learning process converges
much faster with our approach than DDPG and SVG.

0 10 20 30 40 50 60

80

60

40

20

0

dg

du

Figure 4: Learning with
geometry metric for ACC.
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0.5

1.0

1.5

2.0 W(r, g)
W(r, u)

Figure 5: Learning w/ Wasser-
stein metric for oscillator.

(Ours(W)) and the geometric metric (Ours(G)) take much fewer

convergence iterations (CI) than the DDPG and SVG methods. Con-

sidering experimental safety and goal-reaching properties, we dis-

cretized the system and simulated the system traces with 500 ran-

domly picked initial states 𝑥 (0) from 𝑋0. Our approach achieves

both 100% safe control rate (SC) and goal-reaching (GR) rate, while

DDPG and SVG cannot. As shown in Figs. 6, 7, and 8, controllers

from our approach are formally verified to satisfy the reach-avoid
property, while DDPG and SVG cannot provide such guarantees

in most cases. Learning processes with geometry and Wasserstein

distance metrics are shown in Figs. 4 and 5.

Efficiency Measurement: Table 2 shows the average runtime of

each learning iteration in our framework for the three examples
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Figure 6: Reachable sets of our ap-
proach with two distance metrics and
of Baselines for ACC. Goal region is
within the blue boundary and the un-
safe region is within the red. Our con-
trollers are verified to be reach-avoid
with𝑋𝐼 = 𝑋0 while DDPG, SVG cannot.
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Figure 7: DDPG is verified as un-
known due to the over-approximation
of reachable set and SVG is unsafe.
The learned neural network con-
trollers from our approach are reach-
avoid with 𝑋𝐼 = [−0.502,−0.49] ×
[0.49, 0.51] (𝐺) and 𝑋𝐼 = 𝑋0 (𝑊 ).

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: NAN occurs for the DDPG
controller verification with POLAR af-
ter 3 steps while NN controller from
our framework formally satisfy the
reach-avoid property with 𝑋𝐼 = 𝑋0 for
both metrics. SVG is reach-avoid but
not guaranteed.

ACC(Flow*) Os(ReachNN) Os(POLAR) 3D(ReachNN) 3D(POLAR)

6.05s 516s 72s 195s 23s

Table 2: Average runtime of each iteration for three examples
by three verification tools (Os:Oscillator, 3D:3D system).

with three different verification tools. In total, our approaches takes

from several minutes to around one hour to learn the controllers

for the examples. In terms of different tools, utilizing POLAR is

much more efficient than ReachNN for neural network controllers.

Discussion on Verification Tightness: The tightness of the over-
approximation of the reachable set has a significant impact on

our approach. There are adjustable parameters for changing the

tightness in verifiers [4, 7, 14, 15, 17]. Intuitively, tighter verification

consumes more computation resources and takes more time to

finish for each call but may take fewer iterations in our approach.

Take the ReachNN as an example, for Wasserstein distance on the

oscillator system, the tighter reachable set computation in average

takes around 7 steps with near 780 seconds for each step to learn a

NN controller, compared to the less tight computation that takes

about 9 iterations with 516 seconds for each step.

5 CONCLUSION
In this paper, we propose an offline correct-by-construction control

learning framework with reach-avoid guarantees by integrating the

verification in a closed-loop manner. Our approach first constructs

the control feedback metrics with the reachable sets computed by

the verifier, and then iteratively tunes the controller parameters

with approximated gradients until a feasible solution is found. Ex-

periments on linear and non-linear systems with linear and neural

network controllers demonstrate the effectiveness of our approach

on convergence iterations, safe/goal rate, and verified results.
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