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ABSTRACT

In the current control design of safety-critical cyber-physical sys-
tems, formal verification techniques are typically applied after the
controller is designed to evaluate whether the required properties
(e.g., safety) are satisfied. However, due to the increasing system
complexity and the fundamental hardness of designing a controller
with formal guarantees, such an open-loop process of design-then-
verify often results in many iterations and fails to provide the neces-
sary guarantees. In this paper, we propose a correct-by-construction
control learning framework that integrates the verification into the
control design process in a closed-loop manner, i.e., design-while-
verify. Specifically, we leverage the verification results (computed
reachable set of the system state) to construct feedback metrics for
control learning, which measure how likely the current design of
control parameters can meet the required reach-avoid property for
safety and goal-reaching. We formulate an optimization problem
based on such metrics for tuning the controller parameters, and de-
velop an approximated gradient descent algorithm with a difference
method to solve the optimization problem and learn the controller.
The learned controller is formally guaranteed to meet the required
reach-avoid property. By treating verifiability as a first-class objec-
tive and effectively leveraging the verification results during the
control learning process, our approach can significantly improve
the chance of finding a control design with formal property guar-
antees, demonstrated in a set of experiments that use model-based
or neural network based controllers.
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1 INTRODUCTION

Safety-critical cyber-physical systems(CPSs), such as avionics sys-
tems and self-driving vehicles often operate in highly dynamic
environments with significant uncertainties and disturbances. It is
critical yet challenging to formally ensure their safety, especially
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for the control and decision making modules. Thus, while there has
been increasing interest in applying machine learning techniques
(e.g., reinforcement learning (RL) [18]) to control and general deci-
sion making, their adoption in safety-critical systems is hindered
by the challenges in formally ensuring system properties [16].

In this work, we address system safety and goal-reaching ability
in control design with a reach-avoid property [8], which intuitively
represents whether the system can “reach its goal without entering
unsafe states” (defined in Sec 2). It is a fundamentally hard problem
to design a controller with formal guarantees for such property.
Even in linear systems, the similar “hyper-plane hitting problem”
is proved to be NP-hard and it is unclear whether the problem
is decidable or not [3]. The complexity continues to increase for
non-linear and hybrid systems [12]. Moreover, for emerging neural
network-based controllers, synthesizing them with formal guar-
antees is extremely challenging. A few recent works intended to
address it but came with strong limitations, such as only applying
to discrete control input [13], or ReLU activation functions [20].

The common process for controller design and verification fol-
lows an open-loop design-then-verify pattern. The designers first
design a controller using either model-based methods such as linear
quadratic regulator [2], or model-free approaches such as RL with
neural networks [18]. Formal verification tools [4, 14, 15, 17] are
then leveraged to evaluate whether the designed controller satis-
fies the required properties. However, due to the above-mentioned
difficulty in designing a controller with formal guarantees, such
process might result in many iterations between design and verifi-
cation, and may still fail to provide the necessary guarantees. For
neural network-based controllers, this could be even more chal-
lenging, as tuning the design and learning parameters often has an
unpredictable impact on the control property [11].

In this work, to address the above challenges, we propose an
offline (i.e., design-time) correct-by-construction control learning
framework that integrates verification in a closed-loop manner,
i.e., design-while-verify, to formally guarantees that the learned
controller satisfies the required reach-avoid property. In our frame-
work, we leverage the verification results, particularly the computed
reachable set of the system state, to construct two different types of
feedback metrics that reflect the system’s potential ability to meet
the reach-avoid property. We then formulate the control learning
as an optimization problem of the control parameters based on
either metric, and develop an approximated gradient descent algo-
rithm with a difference method for tuning the control parameters
until a feasible solution is obtained or iteration limit is reached.
Our approach can be applied to both model-based controllers and
neural network based ones, and formally guarantees that the learned
controller can meet the required reach-avoid property.

Related work: Our work is related to the safety verification of
controlled dynamical systems [4, 7, 14, 15, 17], which typically
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relies on the computation of the system reachable set containing all
possible states that the system may visit within a time horizon. Our
approach leverages these verification tools (also called verifiers),
and develops novel metrics and method to integrate them into the
control design process. Falsification is another technique that can
be leveraged for closed-loop controller design [6]. However, the
falsification-driven process does not provide formal guarantees.

Our work is also related to control synthesis with reach-avoid
guarantees for model-based controllers [5, 8] or neural network-
based controllers [13, 20, 21]. However, most of these recent works
are still limited to either linear systems, specific activation functions
such as ReLU, or discrete control input; while our framework can
address linear and non-linear systems, all types of activation func-
tions and their mixture, and continuous state feedback controllers,
as long as their reachable sets can be computed.

In summary, our work makes the following contributions:

e We propose an offline correct-by-construction control learning

framework that integrates verification in a closed-loop design-

while-verify manner, which formally ensures that with the learned
controller, the system satisfies the reach-avoid property for

safety and goal-reaching.

Our framework includes novel formulation of the verification-in-
the-loop control learning problem based on two metrics (using

geometric or Wasserstein distance) and an approximate gradient

descent algorithm with a difference method for solving it.

e Our approach can be applied to both linear and non-linear sys-
tems under traditional model-based or emerging neural network
based controllers. Experiments on a linear adaptive cruise con-
trol system, a non-linear oscillator and another 3D numerical
system demonstrate that our approach significantly outperforms
the baseline methods in convergence rate, safe control rate, goal-
reaching rate, and ability to provide formal guarantees.

The paper is organized as follows. Section 2 presents the system
model. Section 3 introduces our verification-in-the-loop control
learning framework, with analysis on its optimality, soundness,
and incompleteness. Experiments and conclusion are presented in
Sections 4 and 5, respectively.

2 SYSTEM MODEL

System Dynamics and Controller: We consider a continuous sys-
tem that can be expressed as a tuple (X, U, f, kg, Xo, §). Specifically,
the system dynamics is modeled as

* = f(x,u), ¢Y)

where x € X C R” is the system state vector with X as the state
space. u € U C R™ is the control input variable with U as the
control input space. f : XxXU — X is a locally Lipschitz-continuous
function that can be either linear or non-linear, ensuring there exists
a unique solution to (1). Xp is a set containing all initial states x(0).

Such a system can be controlled by a feedback controller kg :
X — U, parameterized by 6 in the following way. Given a sam-
pling period &, the controller x reads the system state x(id) at
time t = i6(i = 1,2,---), and computes the control input as
u(id) = xg(x(id)). Then, the system state evolves as x = f(x, u(id))
within the time slot [id, (i + 1)8].
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REMARK 1. Our approach can deal with a variety of controller
types, such as linear controllers, and fully-connected neural network
controllers where 0 includes the weights and bias parameters.

Flow and Reach-avoid Property: A flow function ¢(x(0),¢) :
Xo X Ry — X maps some initial state x(0) to the system state
@(x(0), t) at time t. Mathematically, ¢ satisfies 1) ¢(x(0), 0) = x(0)
2) ¢ is the solution of the x = f(x,u(id)) in the time interval
t € [id,id + 8] 3) u(id) = kg(¢(x(0),id)), Vi = 1,2,--- Based on
the flow definition, the system reach-avoid property is defined as.

DEFINITION 1. (Reach-avoid property) Starting from x(0), the
system is considered to be reach-avoid if and only if its flow ¢ (x(0), t)
1) never enters into an unsafe set Xy, (safety) and 2) reaches a goal set
Xy(goal-reaching) within a finite time horizon T.

VT >2t>0, ¢(x(0),t) N Xy = O(safety)
30<t' <T, ¢(x(0),t") N Xy # O(goal — reaching)

Verifier and Control Learning: We consider a verifier as a formal
tool ¥(f, Xo, kg) that takes input of system dynamics f, initial state
set X, and controller kg, and outputs the feedback concerning
reach-avoid property (reachable set in this paper). Leveraging such
verifier, we define the closed-loop control learning problem with
reach-avoid guarantee as follows.

ProBLEM 1. (Offline verification-in-the-loop control learn-
ing) Given a continuous control system described as Eq (1), find a
feasible solution of controller parameters 6 and initial region X C Xp
with the reachable set computed from verifier ¥ (f, Xo, kg), such that
the reach-avoid property is satisfied Vx(0) € X; € Xo with kg.

3  VERIFICATION-IN-THE-LOOP CONTROL
LEARNING

Our verification-in-the-loop approach leverages the feedback from
the verifier to guide the control learning process. It includes the
following major components: the computation of the system state
reachable set from the verifier (Section 3.1); the two different defini-
tions of a distance metric over the reachable set for evaluating the
current control design and the formulation of an optimization prob-
lem for control learning (Section 3.2); and an approximated gradient
descent algorithm for solving the optimization problem, including
the computation of an initial state set for ensuring goal-reaching
(Section 3.3). The optimality, soundness, and incompleteness of our
approach are also analyzed (Section 3.4).

3.1 Verifier Reachable Set Computation

During the verification-in-the-loop control learning process, the
verifier ¥(f, Xo, kg) computes a reachable set of the system state
based on the current controller design kg, defined as:

DEFINITION 2. A state x, of system (X, U, f, kg, Xo, ) is called
reachable at time t > 0, if and only if there 3 x(0) € Xo such that
xr = ¢(x(0), t) under controller kg. The reachable set XrT with time
horizon T for initial set Xy is defined aerT ={p(x(0),t) | Y x(0) €
Xo, VO<t<T}

For computing this reachable set, we consider two cases: linear

systems under linear controllers, and non-linear systems under
non-linear controllers such as neural network based ones.
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Linear System with Linear Controller: For a linear time-invariant
(LTI) system as x = Ax + Bu, its reachable set under a linear con-
troller within a finite time interval can be evaluated recursively.
Specifically, we consider its discretized LTI system as x[t + 1] =
Agx[t] + Bgu[t] with a linear feedback controller u[t] = 6T x[¢],

where Ay = 49 B, = /05 ¢4 Bdt with sampling period 8. Note that
for continuous LTI systems, as long as the controller is periodically
updated and zero-order hold is applied in each period, it can always
be discretized. The initial set Xy is considered as a polyhedron. In
this case, the reachable set of each time step ¢, denoted as X, [¢],
is also a polyhedron, and can be derived recursively from Xy by
polyhedron operation X, [t+1] = (Ag+Bg0) X, [¢] with X;-[0] = Xp.
The overall reachable set can be obtained as X,T = Utho Xr[t]. It
can also be computed by verification tools, such as Flow™ [4].
Non-linear System with Neural Network Controller : Due
to the black-box nature of the neural network, many previous
works apply the overly function approximator(e.g. polynomials)
to the neural network controller and then compute the over ap-
proximation of reachable set for the transformed function. Typ-
ically, to ensure the soundness, the output range of the neural
network controller under some reachable set at time ¢(t > 0) is
bounded as u = kg(x) € Gy, (x) + [-e(x), e(x)],V x € X}, where
Gy, (x) and e(x) are the function approximator and remainder of
the neural network controller kg within space X?, respectively. For-
mal verification tools then iterative compute the reachable set of
Giy (x) + [—€(x), €(x)], as an over approximation for the reachable
set of the neural network controller.

In the experiment part, we tried with ReachNN [15] and PO-
LAR [14]. ReachNN leverages the Bernstein polynomials as the
function approximator and estimates the remainder by a novel sam-
pling method. POLAR utilizes the Taylor model to approximate the
NN and tighten the approximation by a symbolic remainder.

3.2 Distance Metric Definitions over Reachable
Set and Control Learning Formulation

We define two different types of metrics for evaluating the current
control design based on the computed reachable set from the veri-
fier, one based on the intuitive geometric distance and one on the
Wasserstein distance for its convexity.

Geometric Distance based Metrics: We define a geometric dis-
tance dj between the reachable set XT and the unsafe region X,
v -IXI nXulif XEFnX, #0 @)
0" inf(||x, — xu|[%), Vx, € XrT,qu € Xy, Otherwise

where | - | measures the size of a set. For instance in Fig. 1 with a
2-dimensional system, |XrT N Xy| is the intersection area between
blue and red regions. Intuitively, the system is safe within time
horizon T if and only if dg is positive. Moreover, the larger the dg
is, the further the system stays away from the unsafe region.

Following the same idea, we define another geometric distance

9 .
d,, for the goal-reaching property as
e IXI nxg|.if XFnXy#0 3
O | =inf(|lx — xgl|?), Vxr € X[, Vx4 € Xy, Otherwise
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)

Unsafe and not Goal-Reaching Safe and Goal-Reaching

Figure 1: Geometric distances d%, d’ for safe and goal-
reaching properties defined on reachable set (blue) with re-
spect to unsafe region (red) and goal set (green).

Figure 2: Approximate the gradient for tuning controller
parameters by the difference method with perturbation p.

The system satisfies the goal-reaching property if and only if
dg is positive. Similarly in Fig. 1, the larger the dg is, the better
it is for the goal-reaching property. To have formal guarantee on
goal-reaching, a searching algorithm for the initial set X; C X is
proposed and detailed later.

Based on these two metrics, an optimization problem of con-
troller parameters 6 for the control learning with reach-avoid prop-
maxg dg + dg,
st.df >0,d)>0.
solution @ should make both dg and dg positive, which indicates
the reach-avoid property is formally assured.

Wasserstein Distance based Metric: Wasserstein distance is de-
fined on two distributions z(x) and v(y) as

erty can be formulated as { Overall, a feasible

Wzo= nf / d(x, y)dy (x, 1), @)

el'(x,y

where T denotes the collections of all joint distributions with mar-
gins as z(x) and v(y). d(x, y) is a distance measure function over
X, Y, such as norms.
We view the last step of the reachable set X! as a uniform
1 ; Tl
IXrTll’lfx e X,

distribution rg(x), i.e., rg(x) = { The same

0, otherwise

applies to the goal set X as g(x) and the unsafe set Xy, as u(x). With
this transformation, Wasserstein distance is naturally defined on
rg(x), g(x) and rg(x), u(x). In this case, the system is reach-avoid
if and only if we can determine that X! N Xg # 0 and xXI'nx, =
0. Therefore, the optimization problem based on the Wasserstein
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distance over controller parameters 6 is defined as

ming W (rg) = W(rg(x), g(x)) = W(rg(x),u(x))
stXINnXy#0.XI NX, =0

3.3 Approximated Gradient Descent Algorithm
for Control Learning

Based on the computed reachable set and the defined distance
metrics, we develop an approximated gradient descent algorithm
for the control learning, shown in Algorithm 1.

Algorithm 1 Verification-in-the-loop Control Learning.

Require: A verifier ¥(f, Xo, kg) that computes the reachable set
XTI, system dynamics f, initial set X, controller kg.
1: Randomly initialize 0; set the maximum number of updates N,
control horizon T, step lengths @, f and i = 0.
2 while i < N and X is not reach-avoid do
3. Generate perturbation p and compute the reachable sets for
each perturbation as ¥(f, Xo, K@_p) and Y (f, Xo, K9+p)~

4 Compute geometric distances [dg_p, dg i dZ—p’ dgﬂ)]
with Eq (2) and (3) or Wasserstein distances
(W (ro4p> 9), W (ro—p, 9)s W (rgap, 1), W (rg_p, ) | with
Eq (4).

5. Approximate the gradients Vg and VZ by Equation (5).

& 0=0-avVi+pvo.

7. P i+ 1

8: Search reach-avoid initial set X} using Algorithm 2.

9: Return: Learned controller xy and Xj.

Because the verifier is often complex and does not have an ana-
lytical form, we propose a difference method to approximate the
gradients for the metrics, as shown in Fig. 2. For each update iter-
ation, we generate some perturbations p to the controller 6, and
then compute their reachable set and also corresponding metrics.
Thus, for the geometric and Wasserstein metrics, the gradients can
be approximated respectively as

— 9 _q9
Vg ~ dg+p dgfp,vg ~ d9+p dgfp’

&

®)

vt ~ W(refp,u)—W(refp,u) zég ~ W (rg+p.9) =W (ro-p.g)
0 2p >0 2p >
and thus the controller parameters are updated accordingly. Note
that if the reach-avoid property is true for some initial space Xj C
Xo, we can directly break from the iteration and return the learned
controller. Finally, we search for Xj to complete the algorithm.

Reach-avoid Initial Set Searching: Once Algorithm 1 success-
fully learns a controller, safety can be ensured to the entire initial
set Xo. However, goal-reaching is not guaranteed for Xy because of
the intersection operator we used in the metrics and also due to the
over-approximation computation of reachable set. Thus, we further
propose the searching Algorithm 2 to obtain the reach-avoid initial
set X; C Xp such that Vx(0) € X, the reach-avoid property is
formally verified to hold. Specially, we partition the initial space
Xj to many X, and compute each reachable set ¥(f, Xp,xg). If
there exist some time ¢ > 0, such that Xp’s reachable set at time t,
¥(f, Xp, k)|t C Xy, then goal-reaching is formally satisfied for X},
under the learned controller k. A collection of X;, builds up Xj.
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Algorithm 2 Xj Searching.

Require: Verifier ¥(f, Xo, kg), system dynamics f, initial set Xp,
learned controller kg, X; =0, P = 1.

1: while X not converged do

2 Evenly partition Xj into sub-spaces X,(p =1, , P).
3 forpe(1,---,P)do

4 if 3t > 0, ¥(f, Xp. kg)|: € Xy then

5 XI:X[UXP,X()ZX()—XP.

6 Increase P.

3.4 Approach Optimality, Soundness, and
Incompleteness

In this section, we introduce the optimality analysis, soundness
theorem, and incompleteness clarification of our approach.

Optimality. The Wasserstein distance ‘W (rg) is believed to be
convex and almost everywhere differentiable in the distribution
rg [1, 19]. Due to its convexity, it holds that

(W(rgl) —(W(rgz) < <5(W/51‘91,1‘01 — r92>,Vr91,r92 eR,

where (-, -) is the inner-product.

Let 6 be an e-stationary point of objective ‘W (ry). In most cases
of the experiments, our approach can reach such stationary points.
It then holds with some constant number M that

VoW (ry)To < eVoeB={0eR"[0]]> < M}
We assume that rg is a differentiable function of 6. By the chain

rule, it then holds that

VeW(ry)To = <5(W/5r0~, ( %

T
) v)<eVoeB
0=0

Let r* be a global minimizer of ‘W (r) for r € R with correspond-
ing 0%, we then have

Wi(rg) —W(r") < <5W/5ré, re = r*>

Let g5 = %‘9 P represents the tangent function of ry at 6 = 6.
Then, by combining the above two equations, we have

(W(ré) - WE*) <e+ <5‘W/5r9~, rg— r— (pgu> ,YoeB

* T
<e+ ||5W/5r0~|| . ||ré -r' - (péuH,Vv eB

THEOREM 1. (Optimality Analysis) With the designed Wasser-
stein distance metric, the optimality bound between a stationary point
to the global optimum can be obtained as

* . * T
W(rg) - W) < e+||5‘W/5ré||-;22fg||ré—r —(pév||

This shows that on the Wasserstein distance metrics, our ap-
proach is highly likely to reach a stationary point that has a bounded
distance to the global optimum.

Soundness. Our approach is sound based on its definitions, i.e.,
the solution found satisfies the reach-avoid property.

THEOREM 2. (Soundness) Given a system described as Eq (1), let
kg and Xy be the controller and the initial space obtained by Algorithm
1 and Algorithm 2, respectively. Then the system with kg will reach



Design-while-Verify: Correct-by-Construction Control Learning with Verification in the Loop

the target set Xy without entering the unsafe set X, from any initial
state within X.

Incompleteness. Our approach is incomplete, i.e., we cannot guar-
antee to find a solution if it exists. The incompleteness comes from
both controller learning and initial set searching procedure. First,
in the learning procedure (Algorithm 1), we use an approximate
gradient in each update, which does not guarantee to find a feasi-
ble controller even if it exists. Second, after obtaining a controller,
we apply Algorithm 2 to find a feasible initial set X leveraging a
reachable set computation tool. Since existing tools for nonlinear
systems are all incomplete, a feasible initial set for the controller is
not guaranteed to be found even if it exists.

4 EXPERIMENTAL RESULTS

Test Systems: We evaluate our approach by learning linear con-
trollers for a linear adaptive cruise control (ACC) system [22] and
neural network controllers for a Van der Pol’s oscillator system [22]
and 3-dimensional system [17]. The Baseline methods for compari-
son include model-based stochastic value gradient (SVG) [10] and
model-free deep deterministic policy gradient (DDPG) method [18].
SVG and DDPG follow the design-then-verify process while our
approach is design-while-verify. The reward functions in DDPG and
SVG are designed to minimize the Euclidean distance to the goal
set center and maximize the distance to the unsafe set center. For
the activation function, the neural network controllers have ReLU
for the hidden layers and Tanh as the output layer.

ACC. There are two robotic vehicles
driving on the road, shown in Fig. 3 with
the Webots environment [23]. The front
vehicle drives at a velocity vy while the
ego vehicle manages the relative distance
by accelerating or braking. The dynamics
can be expressed as § = vf =, o=kvo+u,
where vp = 40, k = -0.2,5 = 0.1 is the
sampling period, and (s,v) is the system
state. Xo = [122,124] x [48,52], X, =
{(s,0)|s < 120} and X, = [145,155] x
[39.5,40.5].

Figure 3: Four-
wheeled robot
"Pioneer3-AT"
in Webots.

Oscillator. Van der Pol’s oscillator is a 2D non-linear system,
expressed as X1 = x2,x2 = y(1 — x%)xz — x1 + u, sampling pe-
riod 6 = 0.1, and y = 1. X = [-0.51,-0.49] X [0.49,0.51], X =
[—0.05,0.05] x [—0.05,0.05], and Xy, = [—0.3, —0.25] X [0.2,0.35].

3D numerical example. we also test on a 3D system [15], ex-
pressed as X1 = xf — X2, X2 = x3,X3 = u, sampling period § = 0.2,
Xo = [0.38,0.4]x[0.45,0.47]x[0.25,0.27], X, = x1 € [~0.5,0.28] x
xp € [0,0.28], Xy = x1 € [<0.1,0.2] X x7 € [0.55,0.6].
Verification Tools: We use Flow™ [4] for ACC system to learn linear
controllers, and use ReachNN [9, 15] and POLAR [14] for oscillator
and 3D systems to learn neural network controllers. ReachNN may
perform better in low-dimensional systems while POLAR is more
efficient and scalable [14].
Performance Comparison: The comparison between different

approaches on the three examples is shown in Table 1. With veri-
fication in the loop, our approaches with the Wasserstein metric
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CI SC GR  Verified result
ACC, Linear
SVG 401(%£51) 91% 91%  Unsafe
DDPG 13.6(+2.1)K  99.8% 99.8% Unknown

reach-avoid
reach-avoid

Ours(W, Flow™)
Ours(G, Flow™)

64(£31.6)  100%  100%
62(£6.1)  100% 100 %

Oscillator, NN

SVG 388(+15)  98.2% 98.2% Unsafe
DDPG 13.7(x6.2)K  100% 79.2% Unknown

Ours(W, ReachNN) 9(%2) 100%  100% reach-avoid
Ours(G, ReachNN) 11(%1) 100 % 100 % reach-avoid
Ours(W, POLAR) 9(£2) 100%  100% reach-avoid

Ours(G, POLAR) 12(%1) 100 % 100 % reach-avoid

3D systems, NN

SVG 295(£29) 100%  100% reach-avoid
DDPG 9(x1.8)K 96% 3.6%  Unsafe
Ours(W, ReachNN) 6(£2) 100%  100% reach-avoid

Ours(G, ReachNN) 7(£2) 100%  100% reach-avoid
Ours(W, POLAR) 42(%12) 100%  100% reach-avoid
Ours(G, POLAR) 18(+8) 100%  100% reach-avoid

Table 1: Comparison of results for all examples on conver-
gence iterations (CI), safe control rate (SC), goal-reaching
rate (GR). The controllers synthesized from our verification-
in-the-loop approach are guaranteed to be reach-avoid while
those from DDPG or SVG are often unsafe or unknown (due to
over-approximation of the reachable set computation). With
zero-order hold, our controllers achieve 100% safe control
rate and goal-reaching rate with the discretized simulation
while DDPG and SVG do not. The learning process converges
much faster with our approach than DDPG and SVG.

w(r,g)
W(r, u)

Figure 5: Learning w/ Wasser-
stein metric for oscillator.

Figure 4: Learning with
geometry metric for ACC.

(Ours(W)) and the geometric metric (Ours(G)) take much fewer
convergence iterations (CI) than the DDPG and SVG methods. Con-
sidering experimental safety and goal-reaching properties, we dis-
cretized the system and simulated the system traces with 500 ran-
domly picked initial states x(0) from Xy. Our approach achieves
both 100% safe control rate (SC) and goal-reaching (GR) rate, while
DDPG and SVG cannot. As shown in Figs. 6, 7, and 8, controllers
from our approach are formally verified to satisfy the reach-avoid
property, while DDPG and SVG cannot provide such guarantees
in most cases. Learning processes with geometry and Wasserstein
distance metrics are shown in Figs. 4 and 5.

Efficiency Measurement: Table 2 shows the average runtime of
each learning iteration in our framework for the three examples
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Figure 6: Reachable sets of our ap-
proach with two distance metrics and
of Baselines for ACC. Goal region is
within the blue boundary and the un-
safe region is within the red. Our con-
trollers are verified to be reach-avoid
with X7 = Xy while DDPG, SVG cannot.
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Figure 7: DDPG is verified as un-
known due to the over-approximation
of reachable set and SVG is unsafe.
The learned neural network con-
trollers from our approach are reach-
avoid with X; = [-0.502,-0.49] X
[0.49,0.51](G) and X1 = Xo(W).
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Figure 8: NAN occurs for the DDPG
controller verification with POLAR af-
ter 3 steps while NN controller from
our framework formally satisfy the
reach-avoid property with X; = X, for
both metrics. SVG is reach-avoid but
not guaranteed.

ACC(Flow®) Os(ReachNN) Os(POLAR) 3D(ReachNN) 3D(POLAR)
6.055 5165 72s 1955 23s

Table 2: Average runtime of each iteration for three examples
by three verification tools (Os:Oscillator, 3D:3D system).

with three different verification tools. In total, our approaches takes
from several minutes to around one hour to learn the controllers
for the examples. In terms of different tools, utilizing POLAR is
much more efficient than ReachNN for neural network controllers.
Discussion on Verification Tightness: The tightness of the over-
approximation of the reachable set has a significant impact on
our approach. There are adjustable parameters for changing the
tightness in verifiers [4, 7, 14, 15, 17]. Intuitively, tighter verification
consumes more computation resources and takes more time to
finish for each call but may take fewer iterations in our approach.
Take the ReachNN as an example, for Wasserstein distance on the
oscillator system, the tighter reachable set computation in average
takes around 7 steps with near 780 seconds for each step to learn a
NN controller, compared to the less tight computation that takes
about 9 iterations with 516 seconds for each step.

5 CONCLUSION

In this paper, we propose an offline correct-by-construction control
learning framework with reach-avoid guarantees by integrating the
verification in a closed-loop manner. Our approach first constructs
the control feedback metrics with the reachable sets computed by
the verifier, and then iteratively tunes the controller parameters
with approximated gradients until a feasible solution is found. Ex-
periments on linear and non-linear systems with linear and neural
network controllers demonstrate the effectiveness of our approach
on convergence iterations, safe/goal rate, and verified results.
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