Macromolecules

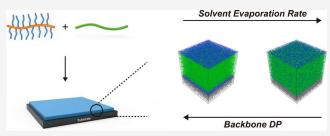
pubs.acs.org/Macromolecules Article

Impact of Processing Effects on Surface Segregation of Bottlebrush Polymer Additives

3 Dongjoo Lee, Nilesh Charpota, Hao Mei, Tanguy Terlier, Danica Pietrzak, Gila E. Stein,*

4 and Rafael Verduzco*

Cite This: https://doi.org/10.1021/acs.macromol.2c01418


ACCESS |

III Metrics & More

Article Recommendations

s Supporting Information

5 **ABSTRACT:** The surface properties of polymeric materials 6 govern interactions with the surroundings and are responsible for 7 various application-relevant properties. Recent studies have shown 8 that bottlebrush polymers can be used to modify the surface 9 chemistry of the polymers because they spontaneously segregate to 10 the interfaces when they are blended with the linear polymers, 11 driven in large part by entropic effects that arise from the unique 12 architecture of bottlebrush polymers. However, while prior work 13 has largely focused on equilibrium segregation profiles, kinetic and

processing effects can also drive bottlebrush additives to surfaces and interfaces. In solution-cast blends of polymers and colloids, vertical stratification is controlled by the relative Péclet (Pe) numbers of the constituents, i.e., the relative rates of solvent evaporation and solute diffusion. Herein, we studied processing effects that drive bottlebrush additives to interfaces when blended with linear polymers. We prepared blends of bottlebrush polystyrene (BBPS) and linear perdeuterated polystyrene (dPS), where the BBPS side-tain length was fixed at $N_{\rm sc} = 48$, the BBPS backbone length ranged from $N_{\rm b} = 30-260$, and the dPS chain length ranged from $N_{\rm m} = 40-548$. The relative Pe numbers of BBPS and dPS were varied by changing the solvent and sizes of BBPS and dPS. In contrast to other binary blends where the constituents have disparate sizes (e.g., colloid/colloid, polymer/colloid, and polymer/polymer), we found that the relative Pe number cannot account for the degree of segregation observed in these bottlebrush and linear polymer blends. For a fixed BBPS side-chain length, we observe stronger surface segregation of bottlebrush additives when the blend is cast using lower boiling point solvents and/or for blends with longer bottlebrush polymers. We further show that solvent annealing of the film can increase the enrichment of bottlebrush additives near surfaces. This study provides insight into the interplay of processing effects and blend thermodynamics that govern surface segregation of bottlebrush polymer additives.

26 INTRODUCTION

The surface properties of polymeric materials govern literactions with the surroundings and are responsible for various application-relevant properties such as adhesion, wettability, and fouling resistance. As a result, a variety of methods have been developed for modifying surfaces and interfaces. However, many of these methods involve additional processing or treatment steps. For example, polymers can be tethered to a surface through surface-initiated polymerization reactions, and other approaches include plasma treatment, yet vapor-initiated growth, and chemical modifications, such as through polydopamine polymerization on a surface.

The use of surface-active additives provides an alternative and potentially simpler approach to modifying surface properties, as the additives spontaneously migrate to surfaces without additional processing steps. For example, Asatekin et al. used polyacrylonitrile-*graft*-poly(ethylene oxide) (PAN-g-44 PEO), an amphiphilic comb copolymer, to modify the surface of ultrafiltration membranes. They showed that the amphi-46 philic comb copolymer additives segregated to the surface of

the membranes and increased hydrophilicity. ¹³ In another ⁴⁷ study, Maguire and co-workers studied the surface segregation ⁴⁸ of poly(methyl methacrylate) (PMMA)-grafted silica nano- ⁴⁹ particles from a poly(styrene-*ran*-acrylonitrile) matrix. They ⁵⁰ showed that PMMA-grafted silica nanoparticles, which have a ⁵¹ lower surface energy compared to poly(styrene-*ran*-acryloni- ⁵² trile), rapidly wet the free surface during thermal annealing. ¹⁴ ⁵³ Other examples of surface-active additives include polymer- ⁵⁴ grafted gold nanoparticles ¹⁵ and surfactants, ^{16–18} and general ⁵⁵ strategies for tailoring the attraction of polymers to interfaces ⁵⁶ and modifying polymeric surfaces are described in recent ⁵⁷ reviews. ^{1,2}

Several studies have examined the thin film structure in 59 blends of bottlebrush and linear homopolymers. A variety of 60

Received: July 8, 2022

Revised: September 10, 2022

61 systems were considered, including blends where enthalpic 62 interactions between the bottlebrush and linear polymer were 63 approximately athermal, 19,20 attractive, 21 or repulsive. 22 The 64 surface energies of the bottlebrush and linear polymer were 65 always similar. In these cases, the bottlebrush polymers could 66 spontaneously segregate to the interfaces when $N_{\rm m}/N_{\rm sc}>2$, 67 consistent with an entropic preference for chain ends near the 68 surface. 19,20 The extent of the segregation was controlled by 69 architectural parameters $(N_{\rm b},\,N_{\rm sc},\,N_{\rm m})$ as well as the strength 70 of enthalpic interactions in the bulk and at the surfarces. $^{1,19,20,22-24}$ Bottlebrush additives could therefore be used 72 to tune the hydrophilicity of a surface 22,25 or introduce novel 73 chemistries at a polymer surface, even when side chains have 74 higher cohesive energy densities than the matrix. 21

The role of entropic effects in driving surface segregation is 76 not unique to blends of bottlebrush and linear polymers, and 77 foundational studies have detailed the importance of entropic 78 effects in a wide variety of polymer blends. For example, 79 Yethiraj investigated athermal and thermal blends of branched 80 and linear polymers using Monte Carlo simulations and 81 showed that the branched polymers preferentially segregate to 82 interfaces, if polymer-polymer enthalpic interactions were 83 comparable to those between polymers and the interface. 26 84 These predictions were consistent with subsequent experi-85 ments, which demonstrated that branched polymer additives 86 could be used to modify surface chemistry. 18,21 Other examples 87 include the observation of polymer chain ends near interfaces 88 and the preferential surface segregation of star or cyclic 89 polymers, as described in recent reviews. 27,28 Bottlebrush polymers have unique advantages, which may be beneficial for 91 the development of surface-active additives. Both the length of 92 the side chains and the number of side chains per bottlebrush 93 polymer can be controlled, and this is useful for performing 94 fundamental studies focused on understanding the impact of 95 architectural effects on surface segregation. Additionally, 96 bottlebrush copolymers with mixtures of different side-chain 97 chemistries are readily accessible. This attribute enables one to 98 combine "functional" side chains and "compatibilizer" side 99 chains in a single platform, as demonstrated in the use of 100 bottlebrush polymers with poly(dimethylsiloxane) (PDMS) 101 side chains to tailor the surface of poly(lactic acid) (PLA) 102 films.²⁵

Processing effects also play an important role in the segregation of bottlebrush additives to interfaces, but these remain poorly understood. Our prior work has shown that the segregation of bottlebrush polymers to the surface was strongest in as-cast films, i.e., immediately after solution the surface was suppose the surface enrichment remained after thermal not annealing, but the degree of surface enrichment decreased significantly relative to the as-cast films. This was observed for a variety of bottlebrush additives blended with linear polymers. We speculated that the presence of solvent in the environment could play a role, but a detailed study of processing effects was not performed.

Processing effects are well studied for other types of binary systems where the constituents have disparate sizes, such as 118 colloid/colloid, polymer/colloid, and linear polymer/polymer systems. Péclet numbers of the constituents plays an important role in dictating surface enrichment in these blends. The *Pe* number describes the relative rates of solvent evaporation and solute diffusion:

$$Pe = \frac{6\pi \eta R_{\rm h} HE}{kT}$$

where η is the solvent viscosity, $R_{\rm h}$ is the hydrodynamic radius 124 of the particle, H is the initial film thickness, E is the rate of 125 evaporation, k is the Boltzmann's constant, and T is the 126 temperature. Solvent evaporation is faster than solute diffusion 127 when Pe is greater than 1, and diffusion is faster than 128 evaporation for Pe number less than 1. In general, studies of 129 polymer and colloid blends have reported that the smaller 130 solute is enriched at the surface when Pe numbers of both 131 solutes are greater than 1 and that the degree of enrichment 132 increases with increasing Pe number of the larger solute. For 133 example, Fortini and co-workers studied colloid-colloid 134 mixtures and found that the smaller solute enriched the 135 surface ("small-on-top" stratification) when the Pe number for $_{136}$ both particles was greater than 1.32 In another study, Howard 137 and co-workers studied polymer-polymer and colloid- 138 polymer mixtures using Langevin dynamics.³⁵ For polymer- 139 polymer mixtures, they found that shorter polymers were 140 enriched near the surface and longer polymers were depleted 141 from the surface, and this effect was more pronounced as the 142 size of the shorter polymer decreased with that of the longer 143 polymer held constant. Colloid-polymer mixtures also 144 displayed similar trends. Smaller particles (either polymer or 145 colloid) were enriched near the drying interfaces, and the 146 solute with the larger Pe number was enriched in the bulk 147 polymer film. However, these trends have not been studied for 148 blends of bottlebrush polymers and linear polymers. Blends of 149 bottlebrush polymers and linear polymers may show 150 qualitatively different effects compared with polymer/polymer 151 or polymer/colloid blends due to strong entropic effects arising 152 from the unique bottlebrush architecture. These effects in 153 general drive the bottlebrush toward surfaces and interfaces 154 and may be relevant to processing-related effects that produce 155 enrichment of bottlebrushes during casting. Architectural 156 parameters such as $N_{\rm b}$, $N_{\rm m}$, and $N_{\rm sc}$ that govern the strength 157 of entropic effects are expected to play a role along with other 158 processing-specific variables, such as the rate of solvent 159 evaporation and the film casting and annealing history.

Herein, we investigated the effects of processing on surface 161 segregation of bottlebrush polymer additives by studying 162 blends of BBPS with linear perdeuterated polystyrene (dPS), 163 as shown in Figure 1. We varied the relative sizes of 164 f1 bottlebrush and linear polymer by systematically varying $N_{\rm b}$ 165 and $N_{\rm m}$ while maintaining a constant $N_{\rm sc}$. We found that nonequilibrium effects do play an important role in the surface 167 enrichment of bottlebrush additives, and surface enrichment 168 was in general stronger in blend films prior to thermal 169 annealing. In contrast to prior studies of polymer and colloidal 170 blends, where smaller solutes typically segregated at the surface 171 when Pe numbers of both solutes are greater than 1, we found 172 that the bottlebrush polymer additives with larger Pe number 173 than the linear polymer host will segregate at the surface, 174 provided that $N_{\rm m}/N_{\rm sc}$ > 2, and segregation was stronger in ascast films compared with thermally annealed films. We studied 176 a series of blends and found variations in the segregation 177 behavior even when controlling for the relative Pe number, 178 indicating that the ratio of Pe numbers cannot account for the 179 segregation behavior when bottlebrush polymers are present. 180 Rather, entropic effects, dependent in part on the length of the 181 bottlebrush backbone, dominated segregation behavior. We 182 also found that vertical stratification increased with the 183

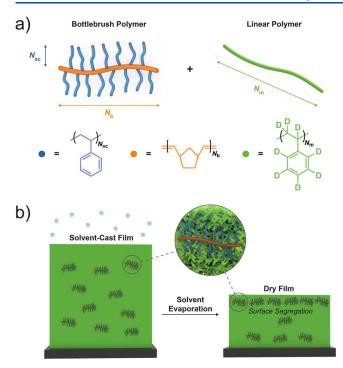


Figure 1. Schematic illustrations of the (a) bottlebrush polymer and linear polymer studied. The bottlebrush polymer contained polystyrene side chains, and these were blended with the linear polymer composed of perdeuterated polystyrene. The architectures of each are determined by the side-chain degree of polymerization $N_{\rm sc}$, the backbone degree of polymerization $N_{\rm b}$, and the linear polymer degree of polymerization $N_{\rm m}$. (b) Vertical stratification of the bottlebrush/linear polymer blend during casting.

184 evaporation rate of the casting solvent. Similarly, we found that 185 solvent annealing of blend films could increase segregation 186 indicating that the presence of solvent during casting does play 187 an important role in driving the segregation of bottlebrushes 188 toward surfaces. This study provides new insights into factors 189 that affect stratification when casting thin film blends and 190 potentially provides a general route to tailor thin film surface 191 properties using bottlebrush polymer additives.

192 **EXPERIMENTAL SECTION**

Materials. All chemical reagents were purchased from commercial sources and used as received unless noted otherwise. Silicon wafers were washed with Hellmanex III, deionized water, acetone, and isopropyl alcohol with sonication for 15 min for each solvent. Then, the wafers were treated with UV/ozone for 30 min to remove contaminants. 2,2'-Azobis(2-methylpropionitrile) (AIBN) was purified by recrystallization in methanol. Styrene and styrene-d₈ (Sigma-200 Aldrich Co., LLC) were passed through an alumina column to remove the inhibitor. *exo-*5-Norbornenecarboxylic acid (*exo-*NBCOOH) and third-generation Grubbs catalyst, ichloro[1,3-bis(2,4,6-trimethylphen-203 yl)-2-imidazolidinylidene](benzylidene)bis(3-bromopyridine)-truthenium(III), were purchased from Sigma-Aldrich Co., LLC. *exo-*5-205 Norbornene-2-methanol (*exo-*NBOH)³⁷ and ((1S,2R,4S)-bicyclo-206 [2.2.1]hept-5-en-2-yl)methyl-4-cyano-4-(((dodecylsulfanyl)-carbonothioyl)-thio)-pentanoate (NBCTA)²² were synthesized as previously reported. Linear dPS polymers were purchased from 209 Polymer Source, Inc. (Table 1).

Norbornene-Functionalized Polystyrene Macromonomer (NBPS). NBPS was synthesized by reversible addition—fragmentation chain transfer (RAFT) polymerization as previously described, with modifications. NBCTA (150.2 mg, 0.295 mmol), styrene (3.37 mL, 214 29.5 mmol), and AIBN (0.95 mg, 0.0059 mmol) were dissolved in 4

Table 1. Characteristics of Linear Perdeuterated Polystyrene (dPS), Macromonomer Polystyrene (NBPS), Bottlebrush Polystyrene (BBPS), and Bottlebrush Polystyrene-co-perdeuterated Polystyrene (BB(PS-co-dPS))

polymer	$\frac{M_{\rm n}}{({ m kg/mol})^a}$	D^{b}	DP	$N_{\rm sc}^{c}$	N_{b}^{d}	$_{(\%)^e}^{ ho}$			
Linear Polymers									
dPS40	4.50	1.48	40.1						
dPS205	23.0	1.07	205						
dPS548	61.5	1.02	548						
NBPS1	5.49	1.08	47.9						
NBPS2	4.60	1.04	39.3						
NBdPS	4.15	1.03	32.5						
Bottlebrush Polymers									
BBPS30	167	1.19		47.9	30.4	86.3			
BBPS70	382	1.07		47.9	69.5	88.3			
BBPS180	989	1.24		47.9	180.2	85.5			
BBPS260	1425	1.18		47.9	259.6	90.2			
BB(PS-co-dPS) 45	201	1.05		36.6 ^f	45.4	93.8			
BB(PS-co-dPS) 80	354	1.21		36.6 ^f	80.1	97.1			
BBPS146	645	1.04		39.3	146.0	93.3			
BBPS350	1547	1.14		39.3	349.6	94.0			

 $^aM_{\rm n}$ is the number-averaged molecular weight. Determined by $^1{\rm H}$ NMR. bD is the molecular-weight dispersity. Determined by GPC-RI analysis. $^cN_{\rm sc}$ is the side-chain degree of polymerization. Determined by $^1{\rm H}$ NMR. $^dN_{\rm b}$ is the backbone degree of polymerization. Determined by the ratio of $M_{\rm n}$ of the BBPS to the $M_{\rm n}$ of the NBPS. $^e\rho$ indicates the conversion of the macromonomer. Conversion determined by GPC-RI analysis. $^f{\rm For}$ bottlebrush polymers with PS and dPS side chains, $N_{\rm sc}$ represents the average side-chain degree of polymerization.

mL of anhydrous tetrahydrofuran (THF) in a Schlenk tube equipped 215 with a stir bar. The Schlenk tube was degassed by three freeze—216 pump—thaw cycles. After the degasification step, the tube was heated 217 to 80 °C to start the reaction. As the reaction progresses, aliquots 218 were taken and tested by gel permeation chromatography (GPC) to 219 monitor the molecular weight. After reaching the target molecular 220 weight, the reaction was stopped by exposing the solution to the 221 atmosphere. Then, the polymer was precipitated in cold methanol and 222 collected by filtration. The polymer was dissolved in THF and 223 reprecipitated in cold methanol two more times to further purify the 224 macromonomer. 1H nuclear magnetic resonance (1H NMR) and 225 GPC analyses are presented in the Supporting Information, Figures 226 S1 and S2, respectively.

Norbornene-Functionalized Perdeuterated Polystyrene Macro- 228 monomer (NBdPS). NBCTA (148.7 mg, 0.292 mmol), deuterated 229 styrene (3.34 mL, 29.2 mmol), and AIBN (0.94 mg, 0.0058 mmol) 230 were dissolved in 4 mL of anhydrous THF in a Schlenk tube equipped 231 with a stir bar. The Schlenk tube was degassed by three freeze— 232 pump—thaw cycles. After the degasification step, the tube was heated 233 to 80 °C to start the reaction. As the reaction progresses, aliquots 234 were taken and tested by GPC to monitor the molecular weight. After 235 reaching the target molecular weight, the reaction was stopped by 236 exposing the solution to the atmosphere. Then, the polymer was 237 precipitated in cold methanol and collected by filtration. The polymer 238 was dissolved in THF and reprecipitated in cold methanol two more 239 times to further purify the macromonomer. GPC analysis is presented 240 in the Supporting Information, Figure S3.

Bottlebrush Polystyrene (BBPS). BBPS was synthesized in a 242 nitrogen-filled glove box. The predetermined amount of NBPS was 243 added into a vial equipped with a stir bar. Anhydrous DCM was 244 added to the vial targeting a total macromonomer concentration of 245 0.02 M. The pre-measured amount of third-generation Grubbs 246 catalyst was dissolved in anhydrous DCM and was added into the vial 247

248 (feed ratios of macromonomer to catalyst are shown in Table). After 249 overnight reaction, the product was precipitated in cold methanol and 250 collected by filtration. GPC analyses are presented in the Supporting 251 Information, Figures S2 and S3.

Bottlebrush Polystyrene-co-perdeuterated Polystyrene (BB(PS-253 co-dPS)). BB(PS-co-dPS) was synthesized in a nitrogen-filled glove 254 box. The predetermined amount of NBPS and NBdPS 255 (NBPS:NBdPS = 6:4) was added into a vial equipped with a stir 256 bar. Anhydrous DCM was added to the vial targeting a total 257 macromonomer concentration of 0.02 M. The pre-measured amount 258 of third-generation Grubbs catalyst was dissolved in anhydrous DCM 259 and was added into the vial. After overnight reaction, the product was 260 precipitated in cold methanol and collected by filtration. GPC analysis 261 is presented in the Supporting Information, Figure S3.

Film Preparation. The bottlebrush polymer and linear polymer 263 were dissolved in different casting solvents (chlorobenzene, toluene, 264 50/50 THF + toluene, and THF) at a total composition of 5 wt % 265 solids. The mass ratio of bottlebrush polymer to linear polymer was 266 1:9 in all cases, and the mass ratio in binary bottlebrush blends was 267 always 1:1. Films were cast by flow coating polymer blend solutions 268 (15 μ L) onto pre-cleaned silicon wafers. The gap height was set as 269 200 μ m for all films. Most film thicknesses ranged from 140 to 200 270 nm (Supporting Information, Tables S1–S5). Thermal annealing was 271 performed inside a nitrogen-filled glovebox at 150 °C for 2 days.

Instrumentation. *GPC*. GPC was performed using an Agilent Technologies 1200 series module, with THF at 1 mL/min. The module was equipped with three PSS SDV columns in series (100, 275 1000, and 1000 Å pore sizes), an Agilent variable-wavelength UV/vis detector, a Wyatt Technology HELEOS II multiangle laser light rescattering (MALLS) detector ($\lambda = 658$ nm), and a Wyatt Technology Phase THF was 1 mL/min at 40 °C. The mass conversion of the bottlebrush polymer was calculated by comparing integrated RI peak areas for the bottlebrush polymer and macromonomer. The absolute molecular weight of the bottlebrush polymer was determined by static light scattering, and dn/dc was determined by RI analysis assuming 100% mass recovery of the bottlebrush polymer.

NMR Spectroscopy. ¹H NMR spectra were measured on Bruker 600 MHz spectrometers. ¹H NMR chemical shifts were reported in parts per million relative to internal solvent resonances.

288 Optical Microscopy (OM). Optical micrographs were captured by a 289 Zeiss Axioplan 2 polarizing optical microscope operating in the 290 reflectance mode. 291 Atomic Force Microscopy (AFM). AFM was performed using an

292 NX20 atomic force microscope. The topography and phase contrast

293 were measured by the tapping mode. The probes were silicon, with a 294 spring constant of approximately 9 N/m and a resonant frequency of 295 115 kHz. The parameters used for image acquisition were 1.0 Hz scan 296 frequency, 5 μ m \times 5 μ m scan size, and 256 \times 256 image resolution. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). 298 Positive high mass resolution depth profiling was performed using a 299 ToF-SIMS NCS instrument, which combines a ToF.SIMS5 instru-300 ment (ION-TOF GmbH, Münster, Germany) and an in situ scanning 301 probe microscope (NanoScan, Switzerland) and is maintained by the 302 Shared Equipment Authority from Rice University. Bunched 30 keV 303 Bi³⁺ ions (with a measured current of 0.2 pA) were used as primary 304 probe for analysis (scanned area $100 \times 100 \ \mu \text{m}^2$), and sputtering was performed using Ar1500+ ions at 10 keV with a typical current 306 around 0.7 nA, rastered area 500 \times 500 μ m². The beams were 307 operated in non-interlaced mode, alternating one analysis cycle and 308 one sputtering cycle (corresponding 1.63 s) followed by a pause of 5 s 309 for charge compensation with an electron flood gun. An adjustment of 310 the charge effects has been operated using a surface potential of 0 V 311 and an extraction bias of 20 V. During the depth profiling, the cycle 312 time was fixed to 200 μ s (corresponding to m/z = 0-3649 amu mass 313 range). All depth profiles have been point-to-point normalized by the 314 total ion intensity, and the data have been plotted using a three-point 315 adjacent averaging. Both normalization and smoothing have permitted 316 a better comparison of the data from the different samples. The depth 317 calibrations have been established based on the measured thicknesses

using the surface profiler to obtain a line scan of the craters with the in 318 situ scanning probe microscopy (SPM) by contact scanning. 319

Determination of Depth-Dependent Bottlebrush Polymer 320 Compositions in Blend Films. The distribution of PS in blend films 321 was determined through ToF-SIMS measurements. We used C₇H₇⁺, 322 C₇D₇⁺, and Si⁺ ion signals to track PS, dPS, and silicon, respectively. 323 The distribution of BBPS in the linear dPS matrix was determined 324 through calibration and measurement of the C₇H₇⁺/C₇D₇⁺ ion 325 intensity ratio (Supporting Information). To calibrate ion intensity 326 ratios, we measured the $C_7H_7^+/C_7D_7^+$ ion intensity ratio for a series of 327 PS ($M_n = 4.6 \text{ kg/mol}$) and dPS40 ($M_n = 4.5 \text{ kg/mol}$) blends at known 328 mass ratios. For each blend, we determined the average $C_7H_7^+/C_7D_7^+$ 329 ion intensity ratio through ToF-SIMS. Then, we produced a linear fit 330 of secondary ion intensity ratio as a function of PS mass composition 331 and used this relation to determine the PS mass concentration based 332 on measured secondary ion intensity ratios from the blend films. The 333 resulting mass compositional distributions were integrated and 334 normalized with respect to the known PS content in each film. The 335 measured ion intensity ratios along with a linear fit to each dataset are 336 presented in the Supporting Information, Table S6 and Figure S4.

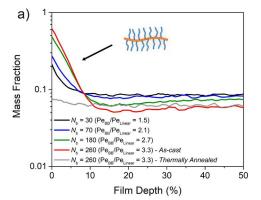
Determination of Interfacial Excesses. The surface, substrate, and 338 total excesses were determined through integration of the depth- 339 dependent compositions of the bottlebrush polymers: 340

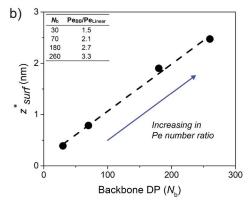
$$z_{\text{surf}}^* = \int_0^{h/2} [\varphi(z) - \varphi^0] dz$$

where surface excess is denoted as $z_{\text{sur}p}^* h$ is the thickness of the film, z 341 = 0 corresponds to the film—air interface, and z = h corresponds to 342 the film—substrate interfaces. $\varphi(z)$ is the weight fraction of the 343 bottlebrush in the film as a function of depth z.

345

■ RESULTS AND DISCUSSION


The main goal of the study was to understand how processing 346 conditions affect the surface segregation of the bottlebrush 347 polymers in bottlebrush/linear polymer blends. We primarily 348 studied blends of bottlebrush polymers with polystyrene side 349 chains (BBPS) blended with linear dPS (Figure 1a). This 350 blend system was chosen because these polymers have small 351 differences in polymer cohesive energies, similar solubilities, 352 and approximately neutral interactions. ^{19,20} We additionally 353 studied some all-bottlebrush polymer blends, and to 354 distinguish the bottlebrushes in the blends, one bottlebrush 355 polymer was labeled with dPS side chains. The characteristics 356 of these materials are provided in Table 1 and Supporting 357 Information, Table S7. Across this series of samples, we varied 358 $N_{
m m}$, $N_{
m b}$, the casting solvent used, and the post-deposition 359 annealing conditions. We focus primarily on blends with $N_{\rm m}/$ 360 $N_{\rm sc}$ > 2, except where indicated. Bottlebrush polymers with PS 361 side chains or PS and dPS side chains were synthesized 362 through a "grafting-through" ring-opening metathesis polymer- 363 ization as shown in Supporting Information, Scheme S1. PS or 364 dPS side chains were first synthesized by RAFT using an exo- 365 norbornene-functionalized chain transfer agent (CTA). After 366 synthesizing the macromonomers, bottlebrush polymers with 367 varying backbone degree-of-polymerization N_b (30–350) were 368 synthesized by ring-opening metathesis polymerization 369 (ROMP). GPC analysis was used to confirm the high 370 macromonomer conversion to bottlebrush polymer (Support- 371 ing Information, Figures S2 and S3).


First, we were interested in understanding whether the 373 relative *Pe* numbers of bottlebrush polymer additive and linear 374 polymer could predict enrichment or depletion at the surface, 375 as has been observed in polymer/polymer, polymer/colloid, 376 and colloid/colloid blends. We prepared a series of 377 bottlebrush/linear polymer blends with systematically varying 378

379 ratios of Pe numbers. Here, we define the Pe number ratio as 380 that of the larger constituent to the smaller one, e.g., Pe_{BB} 381 Pe_{Linear} , where Pe_{BB} and Pe_{Linear} are the Pe numbers for the 382 bottlebrush and linear polymers, respectively. We varied this 383 ratio by varying the backbone length of the bottlebrush 384 polymers ($N_b = 30-260$) (Table 1) while keeping the lengths 385 of the linear polymer and bottlebrush side chains constant 386 (dPS205, DP = 205, $N_{\rm m}/N_{\rm sc}$ = 4.3). The *Pe* values for each 387 polymer were determined by using viscometry to estimate the 388 hydrodynamic radius of the linear polymer ($R_h = 4.9 \text{ nm}$) and 389 bottlebrush polymers ($R_h = 7.1-16.1$ nm). We assumed that 390 the solvent evaporation rate was the same for these blends, as 391 each solution contained the same linear polymer (dPS205), 392 which comprised 90 wt % of solids in each solution. For the 393 blends, the weight fraction of the BBPS was 10 wt %, and we analyzed both as-cast and thermally annealed (2 days at 150 °C) films. We used both OM (Supporting Information, Figures 396 S5 and S6) and AFM (Supporting Information, Figures S7 and 397 S8) to verify the uniformity of the films after casting. ToF-398 SIMS was used to determine the distribution of the BBPS 399 throughout the films. Uncalibrated depth profiles for all blend 400 film samples (uncalibrated intensity versus sputter time) are 401 presented in the Supporting Information, Figures S9 and S10. 402 In the main manuscript, we focus exclusively on segregation of 403 the bottlebrush polymers toward the film-air interface, at film 404 depth = 0%. Bottlebrush polymers also segregated toward the 405 film-substrate interface. Full-depth profiles for all blend films 406 and film thicknesses are provided in the Supporting 407 Information.

In contrast to prior studies of solution-processed binary 409 blends, which have reported stronger surface enrichment for 410 the solute with smaller Pe, we observed enrichment of the 411 bottlebrush polymer in all cases. To quantify the segregation of 412 the bottlebrush polymers with varying N_b , we calculated the 413 surface excess of the BBPS for each case (Figure 2b), and this 414 shows that the surface excess of the BBPS increased with the 415 number of backbone repeat units $N_{\rm b}$, or equivalently, with 416 increasing Pe ratio (Pe_{BB}/Pe_{Linear}) . In contrast, after thermal 417 annealing of the films for 2 days, we observed a measurable but 418 much weaker surface enrichment of the bottlebrush. A 419 representative depth profile after thermal annealing ($N_{\rm b}$ = 420 260) is shown in Figure 2a, and depth profiles for all blend 421 films after annealing are provided in the Supporting 422 Information, Figure S11. This observation is consistent with 423 prior studies 1,19,20,22-24 and indicates that the strong surface 424 enrichment observed in as-cast films is due in large part to 425 processing effects during casting. 19,22,23

To understand the role of the ratio of the Péclet numbers on 427 surface enrichment in blend films, we prepared blends of either 428 bottlebrush and linear polymer (blends 1 and 2) or two 429 different bottlebrush polymers (blends 3 and 4). Across all of 430 these blends, the ratio of the Pe numbers (Pe_{large}/Pe_{small}) was 431 approximately 2.1 (Table 2). This ratio is arbitrary and chosen 432 out of convenience, and we note that prior studies of 433 stratification in colloidal or polymer-colloid blends have 434 generally focused on larger Pe ratios (>4). 32,39,40 We cast each 435 of these blends using either a high boiling point solvent 436 (chlorobenzene), a moderate boiling point solvent (toluene), 437 or a low boiling point solvent (THF) and analyzed the depth-438 dependent film concentration using ToF-SIMS to quantify the 439 surface excess of the larger constituent. The surface excess of 440 the larger constituent in the blend is shown in Figure 3, and 441 uncalibrated depth profiles are presented in the Supporting

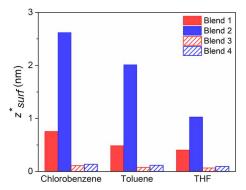

Figure 2. Depth profile analysis and quantification of surface enrichment in blends of BBPS with dPS205 in as-cast films. (a) Mass composition of BBPS with varying $N_{\rm b}$ as a function of film depth in blend films with dPS205 $(N_{\rm m}/N_{\rm sc}=4.3)$. Chlorobenzene was used as a casting solvent $(Pe_{\rm Linear}=1.9)$. The polymer—air interface and middle of the film are at 0 and 50% film depths, respectively. (b) Surface excess of bottlebrush in the same blend films, calculated from depth profiles shown in (a).

Table 2. Hydrodynamic Radius (R_h) of the Bottlebrush and Linear Polymers

blend	polymer	$R_{\rm h}^{a}$ (nm)	Pe ratio ^b
1 ^c	BBPS70	10.4	2.12
	dPS205	4.9	
2 ^d	BBPS260	16.1	2.15
	dPS548	7.5	
3	BB(PS-co-dPS)45	6.1	2.11
	BBPS146	12.9	
4	BB(PS-co-dPS)80	8.2	2.17
	BBPS350	17.8	

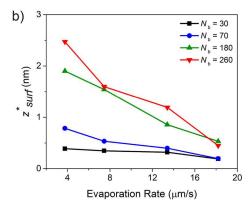
^aMeasured by GPC viscometry. ^bPéclet number ratio for larger to smaller solutes in each blend. ^c $N_{\rm m}/N_{\rm sc}=4.3$. ^d $N_{\rm m}/N_{\rm sc}=11.4$; the *Pe* number of the smaller particles was greater than 1.9 for all blends and solvents studied.

Information, Figure S12. Both OM and AFM were used to 442 verify the uniformity of the films, and these data are provided 443 in the Supporting Information, Figures S13 and S14. In 444 contrast to other binary blend systems (e.g., colloid/colloid, 445 polymer/colloid, and polymer/polymer), the blends of the 446 bottlebrush and linear polymers clearly showed segregation of 447 the larger constituent (bottlebrush polymer) toward the film— 448 air surface. Of the four blends shown in Table 2, the surface 449 excess of the bottlebrush polymer was highest for blend 2, 450 which contained the highest $N_{\rm m}/N_{\rm sc}$ and the largest $N_{\rm b}$. The 451

Figure 3. Surface excess of the BBPS when blended with linear dPS (cases 1 and 2) and with BB(PS-co-dPS) (cases 3 and 4). Three different casting solvents with different evaporation rates were used to cast the film.

452 surface excess of the bottlebrush polymer decreased as the 453 backbone length of the bottlebrush polymer and the length of 454 the linear polymer were reduced (blend 1 compared with 455 blend 2). Blends of two bottlebrush polymers having the same 456 $N_{\rm sc}$ and different $N_{\rm b}$ (blends 3 and 4) showed no preferential 457 enrichment of either component, which we attribute to both 458 polymers having the same chain-end density (set by $N_{\rm sc}$), 459 which highlights the importance of entropic effects on surface 460 segregation. We also observed an impact of the casting solvent, 461 with the highest surface enrichment observed in films cast from 462 the highest boiling point solvent (chlorobenzene). Since the Pe 463 number ratio is approximately the same across all of these samples, it cannot account for variations observed. These 465 measurements indicate that polymer architecture and the 466 solvent evaporation rate all have a significant impact on surface 467 excess in as-cast films, while the Pe ratio is not informative.

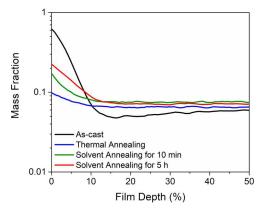

To further investigate the effect of the solvent evaporation 469 rate, we analyzed thin film blends of BBPS ($N_b = 260$, $N_{\rm sc} = 470$ 48) with linear dPS205 (DP = 205, $N_{\rm m}/N_{\rm sc} = 4.3$) prepared 471 using four different casting solvents with different evaporation 472 rates (Table 3). In all cases, the weight fraction of the BBPS 473 was 10 wt %, and we analyzed both as-cast and thermally 474 annealed (2 days at 150 °C) blend films. The solvents chosen 475 were all good solvents for polystyrene and had similar 476 solubility parameters (18.2, 19.4, and 19.6 MPa^{1/2} for toluene, 477 THF, and chlorobenzene, respectively⁴¹). We also found that


Table 3. Evaporation Rates for Different Casting Solvents Used in This Study

solvent	saturated vapor pressure at 25 °C (MPa)	evaporation rate $(\mu m/s)^a$	C _{surf, as_rcast}	C _{surf, annealed} (%)
chlorobenzene	0.0016	3.76	62	7.6
toluene	0.0038	7.46	48	7.8
50/50 THF + toluene	0.0137	13.4	38	8.0
THF	0.0235	18.2	26	8.0

^aThe solvent evaporation rate was measured as described in the Supporting Information. ${}^bC_{\text{surf, as-cast}}$ is the concentration of the BBPS $(N_b=260)$ at the surface immediately after casting. Determined by first data point on the ToF-SIMS depth profile (average of three data points). ${}^cC_{\text{surf, annealed}}$ is the concentration of the BBPS $(N_b=260)$ at the surface after annealing at 150 ${}^\circ$ C for 2 days. Determined by first data point on the ToF-SIMS depth profile (average of three data points).

surface excess of the bottlebrush polymer scaled with solvent 478 volatility and not solubility, which suggests that differences in 479 solvent volatility are more important. In all cases, the BBPS 480 segregated to the film-air interface, but the degree of 481 segregation of the bottlebrush additives to the film surface 482 depended strongly on the evaporation rate of the casting 483 solvent, which might also influence the vitrification of the films. 484 Blend films cast with chlorobenzene exhibited the highest 485 surface concentration (film surface concentration of 62 wt %) 486 while those cast with THF exhibited the lowest surface 487 concentration (26 wt %). Blend films cast with toluene or a 488 50/50 (mole-to-mole) blend of THF and toluene exhibited 489 surface concentrations between these two limits. Similar trends 490 were observed for the blends with varying N_b ($N_b = 30-180$), 491 and depth profiles are presented in the Supporting 492 Information, Figure S16. Segregation toward the film-air 493 interface was strongest for higher backbone lengths $N_{\rm b}$. We 494 also verified that the differences in segregation behaviors 495 observed for these films were due to solvent evaporation rates 496 by thermally annealing the films at 150 °C for 2 days. As 497 shown in Figure 4b and Supporting Information Figure S17, 498 f4 only very weak segregation toward the film-air interface was 499 observed for thermally annealed films, and the surface excess 500 was independent of the casting solvent in thermally annealed 501 films. This is also reflected in the concentration of the 502


Figure 4. Depth profile analysis and quantification of surface enrichment in blends of bottlebrush polymers with linear polymers. (a) Mass composition of BBPS ($N_{\rm b}=260$) with varying casting solvents as a function of film depth in blend films with linear dPS205 ($N_{\rm m}/N_{\rm sc}=4.3$). The polymer—air interface and middle of the film are at 0 and 50% film depths, respectively. (b) Surface excess as a function of evaporation rate of the casting solvent (as-cast). Four different types of casting solvent were used to prepare the films.

503 bottlebrush at the film surface (Table 3) that decreases 504 significantly after annealing and is independent of the casting 505 solvent. This demonstrates that thermally annealed films have 506 reached the equilibrium state, which is distinct from that after 507 casting.

In prior work, we found that vertical stratification generally 509 does not occur when the length of the linear polymer $N_{\rm m}$ is less 510 than twice that of the bottlebrush side-chain length. This 511 reflects an entropic preference for short polymers and polymer 512 chain ends near interfaces, but these prior studies did not 513 investigate potential effects of the solvent evaporation rate. To 514 test for segregation of bottlebrush polymers in blends with $N_{\rm m}/$ 515 $N_{\rm sc} \sim 2$, we prepared blends of BBPS $(N_{\rm b} = 260, N_{\rm sc} = 48)$ and s16 linear dPS40 cast from different solvents ($N_m/N_{sc} = 0.8$). Both 517 OM and AFM were used to verify the uniformity of the films, 518 and these data are provided in the Supporting Information, 519 Figures S18 and S19. Depth profiles are presented in the 520 Supporting Information Figure S20. We observed that the casting solvent did not have a significant impact on bottlebrush stratification, with the bottlebrush polymer depleting near the 523 film-air interface. Some stratification was observed toward the substrate interface as the evaporation rate of the casting solvent 525 decreased (Supporting Information Figure S21), but the 526 bottlebrush polymer was depleted near the film-air surface s27 rather than enriched. For blends with $N_{\rm m}/N_{\rm sc}$ < 2, the casting solvent did not have a significant impact on the distribution of the bottlebrush polymer throughout the film, as the bottlebrush was always depleted near the surface. Together with our results for blend films with varying bottlebrush 532 backbone lengths with $N_{\rm m}/N_{\rm sc}$ > 4 (Figures 2 and 4), these 533 results demonstrate that entropic effects contribute for driving 534 bottlebrush additives to the interface during film processing.

Finally, we studied the effect of solvent annealing on the 536 segregation of the bottlebrush polymer. This was motivated by 537 a prior study in which it was hypothesized that segregation of 538 the bottlebrush polymers to interfaces during casting was due 539 in part to the presence of solvent vapors, which can reduce the 540 importance of the polymer-polymer interactions. To test this, 541 we first thermally annealed blend films, resulting in films with 542 BBPS only weakly segregated toward the film-air interface, 543 and then solvent annealed the films. Both OM and AFM were 544 used to verify the uniformity of the films, and these data are 545 provided in the Supporting Information, Figures S22 and S23. 546 As shown in Figure 5 and the Supporting Information Figure 547 S24, in blends of BBPS ($N_b = 180$) and dPS548 (DP = 548, 548 $N_{\rm m}/N_{\rm sc}$ = 11.4) with chlorobenzene as an annealing solvent, 549 solvent annealing significantly increased the concentration of 550 BBPS near the film-air interface. The concentration of BBPS near the film-air interface increased after just 10 min of solvent annealing, and the concentration increased further with 5 h of solvent annealing. Interestingly, solvent annealing was 554 not sufficient to fully recover the enrichment observed in ascast films, suggesting that other processing effects (e.g., solvent 556 evaporation, solute diffusion) are also important in driving 557 bottlebrush additives toward the film-air interface during film casting. These results demonstrate that solvent annealing can drive bottlebrush additives to the film-air interface.

We hypothesize that segregation of the bottlebrush polymer occurs due to entropic effects that are relevant during solvent evaporation. In solvent-swollen films, polymer—polymer interactions are relatively unimportant due to the presence of solvent, and the bottlebrush polymers segregate to the film ses surface due to more favorable entropic effects. Stronger surface

Figure 5. Mass composition of BBPS ($N_{\rm b}=180$) as a function of film depth in blend films with linear dPS548 ($N_{\rm m}/N_{\rm sc}=11.4$). The polymer—air interface and middle of the film are at 0 and 50% film depths, respectively.

segregation is observed for higher boiling point solvents, as 566 there is more time for the bottlebrush to diffuse to the interface 567 and vitrification of the film is delayed due to slower 568 evaporation. Film drying, which starts at the top and progresses 569 through the film, effectively arrests polymer diffusion, resulting 570 in bottlebrush polymers enriched at the top surface of the film. 571 In dry films, polymer—polymer interactions become more 572 important, and it is favorable for the bottlebrush additives to 573 migrate to the bulk film and increase the entropy of mixing. 574

CONCLUSIONS

We studied the blend system of BBPS and linear dPS to 576 understand processing effects on surface segregation of 577 bottlebrush polymers. In our studies, the Pe number was 578 systematically varied through changes in bottlebrush backbone 579 length (N_h) and solvent evaporation rate. In contrast to other 580 binary blend systems, such as colloid/colloid, polymer/colloid, 581 and polymer/polymer, variations in the Pe number by itself 582 were not predictive of vertical stratification of the blends. 583 Instead, we found that the degree of surface excess increases 584 with length of the bottlebrush backbone (N_b) . Enrichment of 585 the bottlebrush near the film-air interface was only observed 586 for $N_{\rm m}/N_{\rm sc}$ > 2, pointing to an entropically mediated 587 segregation during processing. We also tested four different 588 casting solvents with varying evaporation rates, and stronger 589 surface excess was observed as the evaporation rate of the 590 casting solvent decreased. Finally, to explain the excessive 591 surface segregation of bottlebrush polymers during casting 592 state, we studied the effect of the solvent annealing on the 593 segregation of the bottlebrush polymer. We also found that we 594 could reversely control the vertical stratification behavior by 595 solvent annealing the film and the surface enrichment of the 596 bottlebrush depended on the solvent annealing times. These 597 results demonstrate that bottlebrush additives migrate where 598 there is a favorable entropic attraction, and processing can 599 enhance the degree of surface enrichment. This work can also 600 lead to new approaches for tailoring surface properties of 601 polymeric materials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 60s https://pubs.acs.org/doi/10.1021/acs.macromol.2c01418.

603

604

¹H NMR and GPC characterization, polymer film 607 thickness, details on methods for ToF-SIMS calibration, 608 hydrodynamic radius (R_h) of bottlebrush and linear 609 polymers, schematic of the BBPS and BB(PS-co-dPS) 610 synthesis method, OM images of the polymer film, AFM 611 analysis of the polymer film, calibrated and uncalibrated 612 full-depth profiles of the polymer blends, detailed 613 description of calculating the evaporation rate of the 614 solvent, and surface excess of the BBPS/dPS blends after 615 thermal annealing (PDF) 616

AUTHOR INFORMATION

18 Corresponding Authors

Gila E. Stein — Department of Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee
37996, United States; orcid.org/0000-0002-3973-4496;
Email: gstein4@utk.edu

Email: gstein4@utk.edu

Rafael Verduzco — Department of Chemical and Biomolecular
Engineering and Department of Materials Science and
NanoEngineering, Rice University, Houston, Texas 77005,
United States; orcid.org/0000-0002-3649-3455;
Email: rafaelv@rice.edu

628 Authors

Dongjoo Lee – Department of Chemical and Biomolecular
 Engineering, Rice University, Houston, Texas 77005, United
 States

Nilesh Charpota – Department of Chemical and Biomolecular
 Engineering, University of Tennessee, Knoxville, Tennessee
 37996, United States

Hao Mei – Department of Chemical and Biomolecular
 Engineering, Rice University, Houston, Texas 77005, United
 States

638 Tanguy Terlier – SIMS Lab, Shared Equipment Authority, 639 Rice University, Houston, Texas 77005, United States

Danica Pietrzak – Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States

643 Complete contact information is available at:

644 https://pubs.acs.org/10.1021/acs.macromol.2c01418

645 Notes

646 The authors declare no competing financial interest.

647 **ACKNOWLEDGMENTS**

648 D.L., H.M., and R.V. acknowledge support from the National 649 Science Foundation under Grant No. CMMI-1934045. N.C. 650 and G.E.S. acknowledge support from the National Science 651 Foundation under Grant No. CMMI-1934061. ToF-SIMS 652 analyses were carried out with support provided by the 653 National Science Foundation under Grant No. CBET-654 1626418. This work was conducted in part using resources 655 of the Shared Equipment Authority at Rice University.

656 REFERENCES

- 657 (1) Stein, G. E.; Laws, T. S.; Verduzco, R. Tailoring the Attraction of 658 Polymers toward Surfaces. *Macromolecules* **2019**, 52, 4787–4802.
- 659 (2) Nemani, S. K.; Annavarapu, R. K.; Mohammadian, B.; Raiyan, 660 A.; Heil, J.; Haque, M. A.; Abdelaal, A.; Sojoudi, H. Surface 661 Modification of Polymers: Methods and Applications. *Adv. Mater.* 662 *Interfaces* **2018**, *5*, 1801247.
- 663 (3) Ma, S.; Zhang, X.; Yu, B.; Zhou, F. Brushing up Functional 664 Materials. NPG Asia Mater. 2019, 11, 24.

- (4) Mozetič, M. Surface Modification to Improve Properties of 665 Materials. *Materials* **2019**, *12*, 441.
- (5) Penn, L. S.; Wang, H. Chemical Modification of Polymer 667 Surfaces: A Review. *Polym. Adv. Technol.* **1994**, *5*, 809–817.
- (6) Discekici, E. H.; Pester, C. W.; Treat, N. J.; Lawrence, J.; 669 Mattson, K. M.; Narupai, B.; Toumayan, E. P.; Luo, Y.; McGrath, A. 670 J.; Clark, P. G.; Read de Alaniz, J.; Hawker, C. J. Simple Benchtop 671 Approach to Polymer Brush Nanostructures Using Visible-Light-672 Mediated Metal-Free Atom Transfer Radical Polymerization. ACS 673 Macro Lett. 2016, 5, 258–262.
- (7) Fromel, M.; Sweeder, D. M.; Jang, S.; Williams, T. A.; Kim, S. 675 H.; Pester, C. W. Superhydrophilic Polymer Brushes with High 676 Durability and Anti-Fogging Activity. *ACS Appl. Polym. Mater.* **2021**, 677 3, 5291–5301.
- (8) Kim, H. T.; Jeong, O. C. PDMS Surface Modification Using 679 Atmospheric Pressure Plasma. *Microelectron. Eng.* **2011**, 88, 2281–680 2285.
- (9) Sharma, V.; Dhayal, M.; Govind; Shivaprasad, S. M.; Jain, S. C. 682 Surface Characterization of Plasma-Treated and PEG-Grafted PDMS 683 for Micro Fluidic Applications. *Vacuum* **2007**, *81*, 1094–1100.
- (10) Asatekin, A.; Barr, M. C.; Baxamusa, S. H.; Lau, K. K. S.; 685 Tenhaeff, W.; Xu, J.; Gleason, K. K. Designing Polymer Surfaces via 686 Vapor Deposition. *Mater. Today* **2010**, *13*, 26–33.
- (11) Cho, Y.; Lee, M.; Park, S.; Kim, Y.; Lee, E.; Im, S. G. A 688 Versatile Surface Modification Method via Vapor-Phase Deposited 689 Functional Polymer Films for Biomedical Device Applications. 690 Biotechnol. Bioprocess Eng. 2021, 26, 165–178.
- (12) Ding, Y. H.; Floren, M.; Tan, W. Mussel-Inspired Polydop- 692 amine for Bio-Surface Functionalization. *Biosurface Biotribol.* **2016**, 2, 693 121–136
- (13) Asatekin, A.; Kang, S.; Elimelech, M.; Mayes, A. M. Anti- 695 Fouling Ultrafiltration Membranes Containing Polyacrylonitrile- 696 Graft-Poly(Ethylene Oxide) Comb Copolymer Additives. *J. Membr.* 697 *Sci.* 2007, 298, 136–146.
- (14) Maguire, S. M.; Boyle, M. J.; Bilchak, C. R.; Demaree, J. D.; 699 Keller, A. W.; Krook, N. M.; Ohno, K.; Kagan, C. R.; Murray, C. B.; 700 Rannou, P.; Composto, R. J. Grafted Nanoparticle Surface Wetting 701 during Phase Separation in Polymer Nanocomposite Films. ACS Appl. 702 Mater. Interfaces 2021, 13, 37628–37637.
- (15) Zhang, R.; Lee, B.; Stafford, C. M.; Douglas, J. F.; Dobrynin, A. 704 V.; Bockstaller, M. R.; Karim, A. Entropy-Driven Segregation of 705 Polymer-Grafted Nanoparticles under Confinement. *Proc. Natl. Acad.* 706 Sci. U. S. A. **2017**, 114, 2462–2467.
- (16) Gibson, C. P.; Litwinowicz, M. A.; Tellam, J. P.; Welbourn, R. J. 708 L.; Skoda, M. W. A.; Claussen, J.; Thompson, R. L. Water-Resistant 709 Surface Modification of Hydrophobic Polymers with Water-Soluble 710 Surfactant Additives. *Polymer* **2021**, *13*, 3407.
- (17) Gökaltun, A.; Kang, Y. B.; Yarmush, M. L.; Usta, O. B.; 712 Asatekin, A. Simple Surface Modification of Poly(Dimethylsiloxane) 713 via Surface Segregating Smart Polymers for Biomicrofluidics. *Sci. Rep.* 714 **2019**, *9*, 7377.
- (18) Hester, J. F.; Banerjee, P.; Mayes, A. M. Preparation of Protein-716 Resistant Surfaces on Poly(Vinylidene Fluoride) Membranes via 717 Surface Segregation. *Macromolecules* **1999**, *32*, 1643.
- (19) Mah, A. H.; Laws, T.; Li, W.; Mei, H.; Brown, C. C.; Ievlev, A.; 719 Kumar, R.; Verduzco, R.; Stein, G. E. Entropic and Enthalpic Effects 720 in Thin Film Blends of Homopolymers and Bottlebrush Polymers. 721 *Macromolecules* **2019**, *52*, 1526–1535.
- (20) Mitra, I.; Li, X.; Pesek, S. L.; Makarenko, B.; Lokitz, B. S.; 723 Uhrig, D.; Ankner, J. F.; Verduzco, R.; Stein, G. E. Thin Film Phase 724 Behavior of Bottlebrush/Linear Polymer Blends. *Macromolecules* 725 **2014**, 47, 5269–5276.
- (21) Walton, D. G.; Soo, P. P.; Mayes, A. M.; Allgor, S. J. S.; Fujii, J. 727 T.; Griffith, L. G.; Ankner, J. F.; Kaiser, H.; Johansson, J.; Smith, G. 728 D.; Barker, J. G.; Satija, S. K. Creation of Stable Poly(Ethylene Oxide) 729 Surfaces on Poly(Methyl Methacrylate) Using Blends of Branched 730 and Linear Polymers. *Macromolecules* 1997, 30, 6947–6956.
- (22) Mei, H.; Laws, T. S.; Mahalik, J. P.; Li, J.; Mah, A. H.; Terlier, 732 T.; Bonnesen, P.; Uhrig, D.; Kumar, R.; Stein, G. E.; Verduzco, R. 733

Macromolecules Article pubs.acs.org/Macromolecules

- 734 Entropy and Enthalpy Mediated Segregation of Bottlebrush
- 735 Copolymers to Interfaces. Macromolecules 2019, 52, 8910-8922.
- (23) Miyagi, K.; Mei, H.; Terlier, T.; Stein, G. E.; Verduzco, R.
- 737 Analysis of Surface Segregation of Bottlebrush Polymer Additives in
- 738 Thin Film Blends with Attractive Intermolecular Interactions.
- 739 Macromolecules 2020, 53, 6720.
- (24) Mei, H.; Mahalik, J. P.; Lee, D.; Laws, T. S.; Terlier, T.; Stein,
- 741 G. E.; Kumar, R.; Verduzco, R. Understanding Interfacial Segregation
- 742 in Polymer Blend Films with Random and Mixed Side Chain
- 743 Bottlebrush Copolymer Additives. Soft Matter 2021, 17, 9028-9039.
- (25) Pesek, S. L.; Lin, Y.-H.; Mah, H. Z.; Kasper, W.; Chen, B.; 745 Rohde, B. J.; Robertson, M. L.; Stein, G. E.; Verduzco, R. Synthesis of
- 746 Bottlebrush Copolymers Based on Poly(Dimethylsiloxane) for
- 747 Surface Active Additives. Polymer 2016, 98, 495-504.
- (26) Yethiraj, A. Entropic and Enthalpic Surface Segregation from
- 749 Blends of Branched and Linear Polymers. Phys. Rev. Lett. 1995, 74,
- 750 2018-2021.
- (27) Lee, J. S.; Lee, N.-H.; Peri, S.; Foster, M. D.; Majkrzak, C. F.; 751
- 752 Hu, R.; Wu, D. T. Surface Segregation Driven by Molecular
- 753 Architecture Asymmetry in Polymer Blends. Phys. Rev. Lett. 2014, 754 113, No. 225702.
- (28) He, Q.; Wang, S.-F.; Hu, R.; Akgun, B.; Tormey, C.; Peri, S.;
- 756 Wu, D. T.; Foster, M. D. Evidence and Limits of Universal
- 757 Topological Surface Segregation of Cyclic Polymers. Phys. Rev. Lett.
- 758 **2017**, 118, No. 167801.
- 759 (29) Zhou, J.; Man, X.; Jiang, Y.; Doi, M. Structure Formation in 760 Soft-Matter Solutions Induced by Solvent Evaporation. Adv. Mater.
- 761 **2017**, 29, 1703769.
- 762 (30) Schulz, M.; Keddie, J. L. A Critical and Quantitative Review of
- 763 the Stratification of Particles during the Drying of Colloidal Films.
- 764 Soft Matter 2018, 14, 6181-6197.
- (31) Cheng, S.; Grest, G. S. Dispersing Nanoparticles in a Polymer 766 Film via Solvent Evaporation. ACS Macro Lett. 2016, 5, 694-698.
- (32) Fortini, A.; Martín-Fabiani, I.; De La Haye, J. L.; Dugas, P.-Y.;
- 768 Lansalot, M.; D'Agosto, F.; Bourgeat-Lami, E.; Keddie, J. L.; Sear, R.
- 769 P. Dynamic Stratification in Drying Films of Colloidal Mixtures. Phys.
- 770 Rev. Lett. 2016, 116, No. 118301.
- (33) Fortini, A.; Sear, R. P. Stratification and Size Segregation of 772 Ternary and Polydisperse Colloidal Suspensions during Drying.
- 773 Langmuir 2017, 33, 4796-4805.
- (34) Howard, M. P.; Nikoubashman, A.; Panagiotopoulos, A. Z.
- 775 Stratification Dynamics in Drying Colloidal Mixtures. Langmuir 2017,
- 776 33, 3685-3693.
- (35) Howard, M. P.; Nikoubashman, A.; Panagiotopoulos, A. Z.
- 778 Stratification in Drying Polymer-Polymer and Colloid-Polymer
- 779 Mixtures. Langmuir 2017, 33, 11390-11398.
- (36) Lee, K.; Choi, S. Q. Stratification of Polymer-Colloid Mixtures
- via Fast Nonequilibrium Evaporation. Soft Matter 2020, 16, 10326-781 782 10333
- (37) Radzinski, S. C.; Foster, J. C.; Matson, J. B. Preparation of 783
- Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization 784
- 785 (ROP) and Ring-Opening Metathesis Polymerization (ROMP)
- Grafting-Through Strategy. Macromol. Rapid Commun. 2016, 37, 787 616-621.
- (38) Stafford, C. M.; Roskov, K. E.; Epps, T. H.; Fasolka, M. J. 788
- Generating Thickness Gradients of Thin Polymer Films via Flow
- 790 Coating. Rev. Sci. Instrum. 2006, 77, No. 023908.
- (39) Trueman, R. E.; Lago Domingues, E.; Emmett, S. N.; Murray,
- 792 M. W.; Keddie, J. L.; Routh, A. F. Autostratification in Drying
- 793 Colloidal Dispersions: Experimental Investigations. Langmuir 2012, 794 28, 3420-3428.
- (40) Makepeace, D. K.; Fortini, A.; Markov, A.; Locatelli, P.;
- 796 Lindsay, C.; Moorhouse, S.; Lind, R.; Sear, R. P.; Keddie, J. L.
- 797 Stratification in Binary Colloidal Polymer Films: Experiment and
- Simulations. Soft Matter 2017, 13, 6969-6980.
- (41) Fried, J. R. Polymer Science and Technology; 3rd ed.; Prentice 800 Hall: Upper Saddle River, NJ, 2014.