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ABSTRACT

Stuttering affects almost 1% of the world’s population. It has a deep
sociological impact and hinders the people who stutter from taking
advantage of voice-assisted services. Automatic stutter detection
based on deep learning can help voice assistants to adapt them-
selves to atypical speech. However, disfluency data is very limited
and expensive to generate. In this work, we propose a set of pre-
processing techniques: (1) using data with high inter-annotator
agreement, (2) balancing different classes, and (3) using contextual
embeddings from a pretrained network. We then design a disflu-
ency classification network (DisfluencyNet) for automated speech
disfluency detection that takes these contextual embeddings as an
input. We empirically demonstrate high performance using only
a quarter of the data for training. We conduct experiments with
different training data size, evaluate the model trained on the lowest
amount of training data with SEP-28k baseline results, and evaluate
the same model on the FluencyBank dataset baseline results. We
observe that, even by using a quarter of the original size of the
dataset, our F1 score is greater than 0.7 for all types of disfluencies
except one, blocks. Previous works also reported lower performance
with blocks type of disfluency owing to its large diversity amongst
speakers and events. Overall, with our approach using only a few
minutes of data, we can train a robust network that outperforms
the baseline results for all disfluencies by at least 5%. Such a result
is important to stress the fact that we can now reduce the required
amount of training data and are able to improve the quality of the
dataset by appointing more than two annotators for labeling speech
disfluency within a constrained labeling budget.
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1 INTRODUCTION

Voice-assisted devices (e.g., Amazon Echo, Google Home, Apple’s
Siri) make it easier to interact with technology hands-free. There is
a projection of 8 billion intelligent personal assistants with voice
interfaces by 2023 [30]. Such a technology boasts conversational
interaction with devices and improves their day-to-day utility. It
also benefits many minority user groups, for example, people who
are blind or have challenged limbs and cannot use the text mode of
communication. However, such technology remains unreachable
to another demographic, the people who have atypical speech pat-
terns like stuttering [33]. Stuttering or stammering affects about
70 million people worldwide [8]. It has a deep interference with
the social and work life normalcy of people who stutter (PWS).
As voice interfaces become more commonplace, it is important to
pivot research in the direction of inclusivity of PWS. To make the
current voice assistants more inclusive, the first step is to build the
capability of automatic speech disfluency identification [7]. This
is a stepping stone for voice assistants to then adapt to the speech
of PWS. In some literature [31] the terms stuttering and disfluency
are used interchangeably, however, in a pathological sense, they are
distinguished in some other works [1]. In this work, we use them
interchangeably to denote different types of speech disfluencies.
Traditionally, a speech pathologist labels the disfluency of an
individual under assessment. As a pathologist cannot be available
at all times, we need to develop an automatic speech disfluency
detector. In the past, researchers have dominantly used spectral
audio features like Mel-frequency cepstral coefficients (MFCC),
linear prediction cepstral coefficients, Fourier Transforms, energy
peaks, and temporal features like amplitude, zero crossing, etc.
to recognize stuttering events. Elmar et. al [21]. have shown that
using Hidden Markov Models as a screening tool for patients in a
speech therapy session has proven as an effective tool for stuttering
identification. Other statistical classifiers like Linear Discriminant
Analysis, k-nearest neighbors [5], Gaussian Mixture Models [18],
and Support Vector machines [26] are other popular choices for
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classifiers. All of these works have focused on very specific kinds
of speech disfluencies like prolongation and repetition using data
collected under a very controlled setting (in therapy sessions or
protocol induced). These models may not translate well if the data
is collected using a different microphone or with background noise.

With the rising popularity of deep-learning methods which have
the capability to model very complex non-linearities in decision
boundaries, it is a promising direction to explore using them for
automatic stutter detection. Shakeel et. al [27] have used a sequence
modeling approach using audio features like MFCCs to classify five
different types of speech disfluencies. Another common approach is
to use speech-to-text encoding for disfluency detection [29]. How-
ever, in spite of deep learning tools showing a lot of promise, they
need a significant amount of data for training, which is often diffi-
cult and expensive to collect.

One of the popular speech disfluency datasets is from the Uni-
versity College London Archive of Stuttered Speech (UCLASS) [12],
collected mostly from school children by asking them to read out
monologue samples. However, they are not labeled and previous
work [15] on stutter-identification using this dataset has not pub-
licly released their annotations. FluencyBank [24] is another pop-
ular corpus of disfluency data that has been used to study stutter-
ing [25] in earlier works, but it too does not have publicly avail-
able labels. Libristutter [16] is a synthetically generated disfluency
dataset from LibriSpeech[22], which is used for some disfluency
studies due to lack of labeled data. Recently, Lea et.al [17] have
released a labeled dataset, SEP-28k, for speech disfluencies along
with an effort to label and release FluencyBank annotations. SEP-
28k is one of the first datasets collected from eight openly available
online podcasts by PWS which are not recorded by prescription
or adhering to any clinical protocol. This is the closest to an in-
the-wild dataset. Speech disfluency dataset are expensive to create
since in a real-world setting a speech pathologist relies on visual
cues apart from auditory signatures. This makes labeling of the
already collected speech data prone to subjective annotations if
multiple trained annotators are not consulted. So far, SEP-28k is the
most reliable publicly available speech disfluency dataset which is
collected systematically using three annotators for data.

In this work, we focus on addressing speech disfluency detec-
tion with limited data. One of the very few works in this direc-
tion [29] uses 16.8 hours of data while reporting over 70% accuracy.
They have used a custom dataset to demonstrate their results. We
use the SEP-28k dataset (which is currently a standard dataset for
speech disfluencies) to explore the use of limited data for train-
ing and evaluating the performance with respect to the baseline
results [3, 17] reported in recent works. Although the research lit-
erature on speech disfluency is rich, one of the main drawbacks
so far has been the unavailability of a reliable public dataset using
which previously proposed techniques can be reproduced and jux-
taposed. To address this, we use a public dataset and also release
our implementation details for easy reproducibility of our results,
!, Our main contributions are as follows:

e We demonstrate that by using contextual representations
and data distillation techniques at the preprocessing stage,

!https://github.com/payalmohapatra/Speech-Disfluency-Detection-with-Contextual-
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our approach can reduce the need for training data and
outperform state-of-the-art baselines.

e We demonstrate the efficacy of our method empirically on
various dataset sizes. To the best of our knowledge, this is
the first study that has used data in the order of minutes
for training a disfluency classifier with robust performance
across multiple dataset evaluations.

e We develop a DisfluencyNet model that is trained on the
SEP-28k dataset and evaluated on the FluencyBank dataset
and a portion of SEP-28k that was held out prior to training.

2 DATA DESCRIPTION

SEP-28k (Stuttering Events Podcasts) [17] is an open-source dataset
collected from eight online podcasts hosted by PWS, resulting in
twenty-eight thousand data points. The data is systematically la-
beled by three trained annotators. There are five types of disflu-
encies in this dataset whose definitions are given in Table 1. Lea
et. al [17] have also labeled and released a dataset from Fluency-
Bank [24] with corresponding disfluency labels resulting in about
four thousand data points. Previous works have shown that using
an audio segment of length less than 5 seconds is ideal for stut-
tering identification [11, 27]. All the audio segments are 3 secs in
length and sampled at 16kHz, which make an ideal design choice
for disfluency detection. For our study, we have sampled data from
the SEP-28k distribution only for training the model and used the
data held-out from SEP-28k and data from FluencyBank to evaluate
the model. More details about the training and evaluation using
different slicing of data are given in Section 4.

3 METHODOLOGY

Table 1: Definition of different speech disfluencies.

Disfluency Type Definition
Sound Repetition (Snd) Intra-word phoneme repetition
Word Repetition (WP) Repetition of any word

Extended sounds within a word
Filler words or non-words
Long unnatural pauses

Prolongation (Pro)
Interjection (Intrj)
Blocks (Bl)

3.1 Preprocessing

Disfluency rating is a subjective score. The Fleiss Kappa [20] inter-
rater agreement reported by Lea et. al [17] ranges from 0.11 to
0.62 per disfluency. This motivated us to use a filtering step to only
sample the data points where there is no ambiguity of class between
the annotators. We use the segments where all annotators agree
on the chosen task. This helps us maintain higher quality data for
training and evaluation. We had also conducted a pilot study on data
where two or more annotators agree on the assigned class for Snd
type of disfluency. We achieved an F1 score (refer to Equation (2)) of
0.63, which we will later show in Table 3 is about 25% sub-par than
our current predictions with the full dataset. Since the results were
not encouraging, we proceed to use only the data points where
there is no disagreement between annotators. Table 2 summarises
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Figure 1: Overall architecture of our approach with 1) a data preprocessing stage with inter-annotator agreement based filtering
and down sampling, and 2) an in-processing stage that extracts embeddings from the wav2vec2.0 pretrained network to be used
as inputs to DisfluencyNet. Representative specifications of DisfluencyNet for the convolution and fully connected (FC) layers
are shown for a model trained on a dataset of quarter size for WP disfluency.

the dataset sizes when 2 or more annotators agree versus dataset
size where all three annotators agree. We can observe that in all the
classes at least 50% of the data is rejected when three annotators’
labels are taken into account. In many classes (Pro, Bl, Intrj), only
30% of the data remains where there is no ambiguity of labels. This
distillation significantly improves the quality of the data we use for
training. Contrary to the results shown by Lea et.al [17] in their
figure titled Impact of Data Quantity on Dysfluency Detection, we in
fact demonstrate in this study that quality of data has a stronger
positive impact than mere quantity. Certainly, higher quality data
in greater quantity is naturally beneficial, but data augmentation
without quality control is detrimental.

In this study, we conduct single task learning (STL) for every
disfluency type against the fluent class. For every task, we down-
sample the dominant class (which is the fluent class in all the cases)
to address the class imbalance. In our pilot studies, we found that
ensuring class balance showed superior performance over using a
weighted loss function for optimization.

In this work, we explore the use of representation learning to
provide a more structured prior knowledge to the classification
network. We take inspiration from the Automatic Speech Recog-
nition (ASR) methods used in Natural Language Processing (NLP)
for speech representations. In particular, the wav2vec 2.0 frame-
work [2] is trained in a task-independent style using self-supervised
learning on normal speech data. It consists of temporal convolu-
tion layers to generate a latent embedding followed by transformer
layers to generate a contextual encoding. wav2vec2.0 is optimized

using a contrastive loss function. The positive and negative in-
puts to the contrastive loss are given by masking the latent em-
beddings of the raw audio waveform. It is trained on 960 hours
of LibriSpeech [22] data. There are two models presented in the
wav2vec 2.0 framework. They have the same structure for feature
encoder but one, BASE, uses 12 transformers to generate features
with 768 dimensions and the other, LARGE, has 24 transformers
with features of 1024 dimensions. We choose the BASE model to
extract embeddings from our input audio waveform since we want
to optimise the downstream task (DisfluencyNet) with limited data.
The preprocessing steps are shown in Fig. 1. In our preprocessing
stage we work on transforming the dataset to a balanced distribu-
tion and convert the time series audio input (of size (1,48000)) to a
2-dimensional(of size (1, 149,768)) feature embedding.

Since the training of wav2vec 2.0 network is done in independent
of any task, it is an ideal candidate for many ASR downstream tasks
like speech-to-text conversion which can be fine-tuned with limited
training data. We identify the efficacy of using such an embedding
for speech disfluency representation as well.

3.2 Disfluency Classifier : DisfluencyNet

The inputs to DisfluencyNet is the contextual embedding from the
preprocessing stage of dimension (1,149,768). The primary build-
ing blocks of DisfluencyNet are 2D convolution layers with max-
pooling and fully connected layers as shown in Fig. 1. The convolu-
tion layers use a rectified linear unit(ReLU) to model the system’s
non-linearities and a dropout with a probability 0.5. The outputs
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Table 2: Number of samples based on the number of annota-
tors agreement.

Disfluency 2 or more annota- 3 annotators agree-
tors agreement ment(% column 2)
Snd 2342 863 (36.8 %)
WP 27170 1610 (58.1%)
Pro 2812 790 (28.1%)
Intrj 5973 3378 (56.5%)
Bl 3370 528 (15.7%)

of all the layers are batch normalised [13]. The output of the last
convolution layer is flattened and fed to fully connected layers
which use a leaky ReLU activation function. We use two layers of
the 2D convolution with a kernel size of (3,3). The fully connected
layers after flattening the output of the second convolution layer’s
output intuitively follow an encoder like structure to decrease the
number of outputs at every subsequent layer. For experiments with
different dataset sizes, the fully connected layers’ dimensions may
vary slightly for better optimization. The output layer uses a soft-
max function to compute the probability of the input belonging
to a given class. For this classification task, cross-entropy loss as
shown in Equation (1), where p and q are probability distributions
of the target and predicted labels given an input random variable x,
is used to optimise the model. We use the Adam optimizer [14] for
minimising Equation (1).

H(p,q) == ) p(x)log(q(x)) (1)

xeX

We conduct these experiments on an Ubuntu 20.04 OS server
equipped with NVIDIA RTX A5000 GPU cards, Python 3.9.7, and
Pytorch 1.11.0 [23]. From the total available data, 20% of data from
every class is held out for testing. From the remaining data, 80% is
used for training and the rest for validation. We use early stopping
based on validation performance on the trained model to avoid
overfitting and a learning rate between le-4 to le-2.

4 EXPERIMENTAL STUDY
4.1 Experimental Setup

To systematically evaluate the various settings, we have randomly
shuffled and segregated 20% of data from every disfluency class.
This is our testing dataset which is used to compute the performance
metrics in all the settings. The split between training and testing
data can be a major variance in model evaluations. We have released
the testing dataset used for our performance analysis, so that future
studies can reproduce our observations as a baseline. We have
chosen the performance metrics of precision, recall, F1 score, and
accuracy given as:

TP
TP+FN
2 )
(1/Precision) + (1/Recall)
Accuracy = (TP + TN)/(TP + TN + FN + FP)

Precision = Recall =

TP
TP + FP’

F1 score =

Payal et al.

where TP, TN, FN, FP are True Positive, True Negative, False Neg-
ative and False Positive, respectively. Since we have downsampled
the dominant class in the preprocessing step, we now have balanced
classes. For test as well the data is sampled from this distribution,
hence accuracy and balanced accuracy in fact give similar results
as there is no skewed target class.

Comparison of F-1 score of [17] and DisfluencyNet

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

L]

Snd wp Pro Intrj Bl

M Lea et. al[17] m DisfluencyNet

Figure 2: Comparison of F1 scores for our DisfluencyNet
trained on a quarter of the data vs. the results reported in [17]
on SEP-28k dataset.

4.2 Evaluation on Limited Disfluency Data

As stated, we are interested in evaluating the performance of our
approach with smaller dataset sizes. So far only one study [29] has
addressed the problem of limited dataset size in speech disfluency
domain and reported about 70% accuracy with 16.8 hours of training
data. We show that we can achieve high performance using dataset
size in the order of minutes with our approach. Since the evaluation
of [29] is on a custom dataset and the implementation is unavailable,
we are not able to juxtapose our approach against theirs.

We consider three divisions of the dataset: sampling all the data,
half of the data and, a quarter of the data. This sampling is done
after shuffling the data so that data from all podcasts are present
in a given distribution. Resultant models from different folds of
sampled data are saved and evaluated on the same test dataset. The
performance metrics for each disfluency type on models trained
with different sizes of data are reported in Table 3. We can observe
that even with a few minutes of data (in the results from the quarter
dataset), we can achieve accuracies greater than 70% for all the dis-
fluencies except Blocks. Blocks-type of disfluency tend to last longer
in a speech segment and more speculation needs to be exercised
while working with this label [17]. This might be the underlying
reason for the lower performance score of Blocks compared to other
disfluencies.

4.3 Evaluation on SEP-28k Data

We compare the performance of our model trained on 25% of the
data against the baseline results reported by Lea et. al [17] on
the entire SEP-28k dataset as shown in Fig. 2. We observe that
the DisfluencyNet trained on a quarter of the dataset consistently
outperforms [17] baseline results for all types of disfluency by at
least 5%. Lea et al. have not reported their test-train split but their
details suggest that testing is not cherry-picked (e.g., leaving one
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Table 3: Results for all disfluency on the SEP-28K dataset.

Disfluency Dataset Data size in minutes F1 score Precision Recall Test Accuracy(%)
Snd Full Dataset 75 0.87 0.78 0.99 86.00
Snd Half Dataset 37 0.79 0.78 0.80 80.00
Snd Quarter Dataset 19 0.72 0.67 0.79 70.00
WP Full Dataset 148 0.87 0.78 0.98 88.90
WP Half Dataset 74 0.75 0.76 0.74 78.00
WP Quarter Dataset 37 0.71 0.75 0.66 71.00
Pro Full Dataset 75 0.95 0.91 0.99 94.90
Pro Half Dataset 37 0.85 0.85 0.85 85.90
Pro Quarter Dataset 19 0.73 0.8 0.76 75.70
Intrj Full Dataset 248 0.88 0.83 0.93 82.70
Intrj Half Dataset 124 0.81 0.9 0.75 75.60
Intrj Quarter Dataset 62 0.79 0.79 0.79 74.50

Bl Full Dataset 45 0.75 0.76 0.73 75.00
Bl Half Dataset 22 0.68 0.66 0.71 67.30
Bl Quarter Dataset 11 0.58 0.54 0.61 55.00

Comparison of Training Time with Full and Quarter dataset
1000
900
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700
600
500

617
492
400 354
252 332
300 2m
166
200 114 99
100 l
0

blocks intrj pro snd wp
Disfluency Types

883

Seconds (s)

® Full Dataset Quarter Dataset

Figure 3: Comparison of training times with full dataset and
quarter of the dataset.

speaker out and so). Since the dataset generalizes well, we have
assumed that with different splits of test data the performance
variation should not be very drastic. We want to revisit Table 2 and
draw attention to the fact that data distillation reduces the training
set size but does not remove dependency on a larger dataset (for
eg. in Snd you need 2000 labelled data by 3 annotators to have
an absolute agreement about 36%). We want to emphasize on the
fact that by demonstrating successful training using only 25% of
the distilled data we reduce the overall dependency on a larger
dataset (for eg. for Snd we now only need 600 labeled data). It is an
obvious outcome that with a reduced dataset the training time for
the respective models decreases as shown in Fig. 3.

4.4 Evaluation on FluencyBank Data

Very recent works by Bayerl et. al [3] and Sheikh et. al [28] have also
explored the use of contextual embeddings from the wav2vec2.0
pretrained model. The former [3] focuses on evaluating the impor-
tance of internal embeddings of wav2vec2.0 over the embeddings
obtained from the final transformer layer for this task. The lat-
ter [28] explores the use of embeddings with statistical classifiers

and shallow neural networks to conduct a multiclass classification.
Our objective is to evaluate the impact of dataset sizes for STL clas-
sification of speech disfluencies. However, we compare our results
with [3] on STL per disfluency.

To verify the robustness of the trained model, we evaluate it on
the data sampled from FluencyBank. We compare the F1 scores of
our DisfluencyNet with those from approaches in [3] and [17] in
Fig. 4. Only for the disfluency type Interjection, does the model
in [3] outperforms the DisfluencyNet trained on the quarter dataset.
However, when we compare the F1 score of DisfluencyNet when
trained on the full dataset (0.82) against [3] (0.83), the scores are
almost equal. For all other disfluencies, the DisfluencyNet trained
on only a quarter of the dataset from SEP-28k outperforms the
other approaches.

We would like to remark that SEP-28k being collected from open
source podcasts brings a domain generalization (recorded on dif-
ferent devices, myriad post-processing, background music, etc.) in
the dataset as opposed to other data (UCLASS, FluencyBank, KSoF
custom dataset, etc.) being collected in a controlled setting. This
helps the model to perform well on data sampled from a different
distribution as well (such as the Fluencybank).

5 CONCLUSION AND FUTURE DIRECTIONS

Stuttering is a pathological condition that can affect the overall
social and professional well-being of an individual. It hinders their
participation in voice-assisted technology services. We need to de-
velop techniques to accommodate for users with speech disfluencies.
But data corresponding to speech disfluencies are very expensive
and hence, limited. We propose an approach with contextual em-
beddings and data distillation followed by a DisfluencyNet to use
only a few minutes of data for disfluency classification. We further
show that our approach outperforms the state-of-the-art reported
results in most of the cases by using only a quarter of the data for
training compared to the rest. To verify the robustness of our model,
we also evaluate our trained network on data sampled from a dif-
ferent dataset. Training on a few minutes of preprocessed data that
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Comparison of F-1 score for Fluency Bank with results
presented in [3], [17] and DisfluencyNet

Intrj Blocks
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Figure 4: Comparison of F1 score for Fluency Bank with
results presented in [3], [17] and our DisfluencyNet trained
on a quarter of the data.

contains prior structured information results in a robust model that
performs well for classifying different types of disfluency against
the fluent class.

Since we have sizeable unlabeled data for speech disfluencies,
we are motivated to explore semi-supervised learning under a strict
labeling budget with active learning [19], self-supervised learn-
ing [4], and weak adaptation [34] techniques to further speech
disfluency detection. We are also interested in studying the detec-
tion of speech disfluencies under a federated learning [9, 10, 32]
setting given the ubiquity of voice assistants in most households
and aim at personalizing [6] it for a user.
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