1	Modifying surface charges of a thermophilic laccase toward improving activity and
2	stability in ionic liquid
3	
4	Joseph C. Stevens ¹ and Jian Shi ¹
5	¹ Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY
6	
7	*Corresponding Authors: Joseph C. Stevens, jcst249@g.uky.edu; Jian Shi, j.shi@uky.edu
8	

9 Abstract

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL, [C₂C₁Im][EtSO₄], making it a desirable biocatalyst to be used for lignin valorization. In contrast to $[C_2C_1Im][EtSO_4]$, the biocompatibility of $[C_2C_1Im][OAC]$ with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C₂C₁Im][OAc]. In this study, the enzyme surface charges were modified *via* acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement on laccase activity or stability in [C₂C₁Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc] are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C₂C₁Im][OAc] toward *M. thermophila* laccase is not dependent upon the IL interacting with the enzyme surface.

27

Introduction

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Lignin is among the most abundant terrestrial biopolymers that makes up ~25% of the weight of plant biomass [1; 2]. It is primarily made of 3 phenylpropanoid subunits: phydroxyphenyl (H), guaiacyl (G), and syringyl (S) that can be linked together via several condensed (C-C) or ether (C-O) bonds, with the phenylcoumaran (β – 5), β – aryl ether (β – O – 4), and pinoresinol $(\beta - \beta)$ being the most common [3; 4; 5; 6]. Additionally, the ratio of subunits present in the lignin network is dependent upon the source of the biomass [7]. As a result of lignin's structural and monomeric heterogeneity, thermochemical and biological methods achieve poor selectivity and yield of breakdown products. Lignin is currently generated in high volumes as a waste product by the paper and pulping industry and during production of cellulosic biofuels [8; 9]. Converting lignin from a waste product to value added chemicals via new technologies will not only reduce waste lignin accumulation but also add value to the paper & pulping and future cellulosic biorefineries [10; 11]. While the applications of polymeric lignin are limited, the phenolic products obtained from lignin deconstruction can be used as fuels or precursors for chemicals in the food, pharmaceutical, or plastic industries; many of these fuels and chemicals are currently derived from petroleum [12; 13].

Current methods for lignin deconstruction can be divided into thermochemical (e.g. high temperature pyrolysis, catalytic oxidation, and hydrogenolysis) and biological (e.g. lignin degrading enzymes [LDEs] or microbes) [14; 15; 16; 17]. Much of the research into the thermochemical methods has focused on improving the catalyst performance at high temperatures and improving the selectivity of lignin-derived products [18; 19; 20]. The use of LDEs in biological lignin deconstruction strategies could enable lignin deconstruction at lower temperatures and improve product selectivity due to the inherent selectivity and efficiency of

biocatalysts [16]. Many LDEs such as the peroxidases (lignin, manganese, and versatile) and laccases have been discovered in bacteria, plant, and fungi [21; 22; 23]. Additionally, catabolic lignin pathways in soil bacteria, such as *Sphingobium* sp. SYK-6 that catabolizes lignin using NAD or glutathione dependent enzymes have recently been identified [24]. The application of LDEs for lignin deconstruction has been limited by a number of factors, chief among these being the high cost of enzyme production and the low yield of products due to the poor solubility of lignin in solvents biocompatible with LDE activity [25; 26].

Many of the known lignin solvents (*e.g.* dimethyl sulfoxide [DMSO] and alkaline solutions) reduce or altogether eliminate enzyme activity [27; 28]. Additionally, these solvents require high temperatures to facilitate the complete dissolution of plant derived lignin, leading to a further loss in enzyme activity [29]. Therefore, a solvent system that is capable of solubilizing lignin at low temperatures and mild pH is desirable. Ionic liquids (ILs) are molten, organic salts liquid at temperatures <100°C, the properties of which can be tuned by selecting the appropriate cation and anion [30; 31; 32; 33]. The alkylimidazolium ILs, such as 1-ethyl-3-methylimidazolium acetate ([C₂C₁Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C₄C₁Im][C1]), have been the focus of numerous studies on biomass pretreatment at relatively low temperatures [34; 35; 36]. Due to the high cost associated with using these ILs, recent efforts have focused on developing low cost ILs from bioderived cations (*e.g.* choline and ammonium) and anions (*e.g.* carboxylic acids and amino acids) that can be used in low concentrations during pretreatment [37; 38; 39]. One example is cholinium lysinate ([Ch][Lys]) which, at only 10% (w/v) in water, was shown to remove 80% of lignin from genetically engineered switchgrass during pretreatment [40].

Laccases are a member of the multicopper oxidase superfamily of enzymes (E.C. 1.10.3.2). They were first discovered in extract from the Japanese lacquer tree (*Toxicodendron vernicifluum*)

in 1883 [41]. Laccases differ from the other group of lignolytic enzymes, the heme peroxidases, in that they are copper-containing enzymes that do not require the presence of a strong oxidant, such as hydrogen peroxide, for the reaction mechanism [42; 43]. The substrate is oxidized at the T1 catalytic copper *via* 4-electron removal, after which the electrons are shuttled 13Å to the trinuclear copper cluster where molecular oxygen is reduced to water [44]. The T1 catalytic copper and the trinuclear coppers (a T2 and 2 T3) are coordinated by 4 conserved HXH motifs; X = cysteine in the case of the T1 copper [42]. The T1 copper is also coordinated by a methionine or leucine/phenylalanine in bacterial/plant and fungal laccases, respectively [45].

Laccases are also capable of oxidizing nonphenolic lignin compounds when used alongside a small molecule mediator, such as 1-hydroxybenzotriazole (HBT) or 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) [46; 47; 48]. The relatively mild reaction conditions required for laccase activity along with the oxidation of mediator compounds make laccases a desirable biocatalyst for use in many biotechnological applications, including biological lignin deconstruction strategies [49; 50]. Many ILs have been shown to be biocompatible with the activity of laccases at low concentrations in water. When Galai *et al.* investigated the effect of 56 ILs on the activity of *T. versicolor* laccase for dye decoloring applications, they found that 13 of the ILs increased the activity of the laccase; 10 mM choline dihydrogen phosphate ([Ch][H₂PO₄]) increased activity by 451% [51]. The initial activity of laccase from the white rot fungus *Trametes versicolor* was only reduced by 20% in a reaction mixture containing 50% (v/v) 1-ethyl-3-methylimidazolium ethylsulfate ([C₂C₁Im][EtSO₄]) [52]. However, other alkylimidazolium ILs have been found to be less biocompatible with laccase activity. The initial activity of *T. versicolor* laccase was reduced by 50% in reaction mixtures containing just 3, 20, 40, and 5% (v/v) of

[C₂C₁Im][OAc], [C₄C₁Im][Cl], 1-hexyl-3-methylimidazolium bromide ([C₆C₁Im][Br]), and 1-decyl-3-methylimidazolium chloride ([C₁₀C₁Im][Cl]), respectively [52; 53].

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Recent studies have shown that ILs are more biocompatible with thermophilic enzymes compared to mesophilic enzymes. Hydrolysis of carboxymethylcellulose (CMC) by hyperthermophilic ($T_{opt} > 95^{\circ}$ C) and thermophilic ($T_{opt} = 80^{\circ}$ C) cellulases was minimally impacted in 0 - 20% (v/v) [C₂C₁Im][OAc] while a mesophilic cellulase (T_{opt} = 37°C) was unable to hydrolyze CMC in only 10% (v/v) [C₂C₁Im][OAc] [54]. Cellulases and xylanase secreted by Galactomyces sp. showed improved tolerance to IL [Mmim][DMP] and effective hydrolysis of chestnut shell [55]. Previous work also demonstrated integration of biocatalyst, e.g., ωtransaminase and L-alanine dehydrogenase into a chemoenzymatic process to convert biomass to valuable products such as furfurylamine [56; 57]. The activity of laccase from the thermophilic fungi Myceliophthora thermophila (MtL) is increased 3-fold in 25% (v/v) [C₂C₁Im][EtSO₄] [58]. The bacteria Bacillus subtilis produces a laccase-like spore coat protein (CotA) that can oxidize canonical laccase substrates ABTS and syringaldazine (SGZ) in the presence of several alkylimidazolium chloride ([C_nC₁Im][Cl]) ILs; [C_nC₁Im][Cl] ILs have been shown to severely inhibit the activity of a mesophilic laccase at low concentrations [22; 59]. However, we showed in a previous study that the most thermophilic laccase identified to date, produced by the hyperthermophilic bacterium *Thermus thermophilus*, is highly sensitive to low concentrations (<10% v/v) of [C₂C₁Im][OAc], suggesting that enzyme thermophilicity alone does not guarantee high activity in ILs [21].

In this study we sought to determine the biocompatibility of aqueous $[C_2C_1Im][OAc]$ with MtL. To do this we first screened the activity of MtL in different concentrations of $[C_2C_1Im][OAc]$ up to 50% in water. We also measured the effect of low concentrations of $[C_2C_1Im][OAc]$ on the

thermostability of MtL. Following the initial biocompatibility and stability screenings, we made several surface charge modifications with the aim of improving MtL activity and stability in $[C_2C_1Im][OAc]$. We also used molecular docking simulations to understand how $[C_2C_1Im][OAc]$ docks to the surface of MtL and the 4 charge variants we produced. The results of this study expand our understanding of laccase-IL interactions and the difficulties faced when trying to improve enzyme activity in ILs.

2. Methods and Materials

2.1. Materials

Laccase from *M. thermophila* expressed in *Aspergillus oryzae* (Batch # OMN07029) was kindly provided by Novozymes (Bagsværd, Denmark). The 1-Step[™] ABTS Substrate Solution was purchased from ThermoFisher Scientific (Waltham, MA). All other reagents, including the IL [C₂C₁Im][OAc], were purchased from MilliporeSigma (St. Louis, MO).

2.2 Surface Charge Modifications

MtL was purified by sequentially spin filtering with 100 kDa and 30 kDa MWCO filters at 8°C prior to surface charge modifications. Surface charges were modified according to previously reported protocols [60; 61] and the induced surface charge modifications were summarized in Table 1. Cationized MtL was produced by modification with 0.5 M ethylenediamine hydrochloride in 200 mM MES buffer (pH 4.5) containing a 20:1 molar ratio of the crosslinking reagent N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC)-to-acid sites for 2.5 h at room temperature; neutralized MtL was similarly produced using diethylamine in place of ethylenediamine hydrochloride. Succinylated MtL was produced by addition of 4 aliquots of succinic anhydride to the enzyme in 1 M sodium carbonate buffer (pH 8.5) over 3 h at room temperature. Acetylated

MtL was produced by addition of 3 aliquots of acetic anhydride to the enzyme in 100 mM sodium phosphate buffer (pH 7.0) over 1.5 h at room temperature. The final molar ratio of acetic or succinic anhydride to enzyme containing primary amines was approximately 30:1. Excess reagent was removed with 30 kDa MWCO spin filters at 4°C and the enzymes were stored in 100 mM sodium phosphate buffer (pH 7.0) prior to experiments. Protein content was measured using the Bradford assay.

2.3. Biocompatibility Screening

The biocompatibility of [C₂C₁Im][OAc] in aqueous solution (approximately 1-50% w/v), was screened with all *MtL* variants. To reduce the effect of pH, the IL solution was adjusted to pH 4.5 using 1 M hydrochloric acid prior to testing. Activity was screened with 50 mM citrate/100 mM phosphate buffer (pH 4.5), IL (0, 1, 2, 3, 4, or 10% w/v) and 50 μL ABTS solution in clear, flat bottom, 96-well Costar assay plates (Corning Inc., Kennebunk, ME). Absorbance readings were taken every 15 seconds for 10 min at 40 °C in a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, CA). Plates were shaken for 3 seconds prior to each reading to ensure a homogeneous well solution. Oxidation of ABTS in buffer and AIL without laccase were measured as blanks. The activity of *MtL* in ILs relative to buffer was calculated using equation 1.

Relative activity =
$$\frac{Initial\ Velocity\ in\ IL}{Initial\ Velocity\ in\ buffer}$$
 (1)

2.4. MtL Thermostability

To measure the thermostability of *MtL*, all charge variants were incubated at 40°C in 0, 2.5, or 5% [C₂C₁Im][OAc] and 50 mM citrate/100 mM phosphate buffer, pH 4.5. At each time interval (0, 30, 60, 120, 180, and 240 min) aliquots were removed and placed on ice prior to measuring residual enzyme activity. Activity was screened using the same method in *4.3.3*.

Biocompatibility Screening. The residual activity of MtL and the charge variants after incubation
 was calculated using equation 2.

167
$$Residual\ activity = \frac{Initial\ Velocity\ after\ incubation}{Initial\ Velocity\ after\ 0\ min\ incubation} \tag{2}$$

2.5. Docking Simulations

The 3D structures and PDB files of the ligands were prepared in YASARA Structure (YASARA Biosciences GmbH, Vienna, Austria) using the SMILES strings obtained from PubChem. The PDBQT files of the ligands and *MtL* (PDBID: 6F5K) were prepared with AutoDock (version 4.2.6, MGLTools, La Jolla, CA). Charges for the coppers were added by manually editing the *MtL* PDBQT file. AutoGrid parameters were as follows: space value of 0.375Å, (x, y, z) grid centered at (4.840, 28.290, -18.567), and grid size of 126 in all directions. AutoDock parameters were as follows: Lamarckian GA, 100 genetic algorithm runs, and 25,000,000 max eval size. Docking results were visualized using PyMol (Schrodinger LLC, New York, NY). To simulate the surface charge modifications, target surface residues were mutated in PyMol. These mutations are shown in Table 1.

3. Results

3.1. Biocompatibility Screening

To understand the biocompatibility of MtL with $[C_2C_1Im][OAc]$, we measured the activity of MtL and all of the charged variants in aqueous solutions (0 - 50% w/v) of $[C_2C_1Im][OAc]$ in water. None of the surface charge modifications significantly improved the activity of MtL in aqueous $[C_2C_1Im][OAc]$ relative to the unmodified MtL (Figure 1a). Minimal inhibition of MtL activity is observed in 1 - 10% $[C_2C_1Im][OAc]$, however severe inhibition of MtL activity is observed in 15 - 50% $[C_2C_1Im][OAc]$. Since the coppers are not coordinated by any modifiable

residues, it is unlikely that the inhibition is due to the loss of the coppers. The range of [C₂C₁Im][OAc] concentrations tested in this study are based on recent reports that reduced lignin removal, lower fermentable sugar yields, and lower cellulose solubilization are observed when less than 50% IL is present in aqueous solutions of [C₂C₁Im][OAc] and water [62].

The cation and anion of the IL play a role in determining the biocompatibility of the IL with enzyme activity. Previous studies have shown that as the alkyl chain length of the cation increases, alkylimidazolium ILs become more inhibitory [52; 59]. The inhibitory effect of the anion has been shown to follow the Hofmeister series [63; 64]. ILs with chaotropic anions (e.g. NTf₂⁻ and Br⁻) more strongly destabilize proteins when compared to kosmotropic anions (e.g. SO₄²and PO_4^{3-}). For example, the activity of T. versicolor laccase is increased 451% in 10 mM choline dihydrogen phosphate ([Ch][H₂PO₄]), an IL with a kosmotropic anion, but is not affected by the same concentration of choline bis([trifluoromethyl]sulfonyl)imide ([Ch][NTf₂]), an IL with a chaotropic anion [51]. Nordwald et al. previously showed that acetylation and succinylation improves enzyme activity and stability in 1-butyl-3-methylimidazolium chloride ([C₄C₁Im][Cl]) by reducing the interaction of the chaotropic Cl⁻ anion with the enzyme surface. Additionally, low enzyme activity in higher concentrations of [C₂C₁Im][OAc] can be attributed to the buffering capacity of [C₂C₁Im][OAc]. Optimal ABTS oxidation occurs at pH < 5 for most fungal and baterial laccases, but [C₂C₁Im][OAc] buffers at a pH well above this range thereby lowering MtL activity in high concentrations of [C₂C₁Im][OAc] [65].

3.2. Stability in $[C_2C_1Im][OAc]$

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Although the surface charge modifications did not improve the activity of MtL, we sought to understand if the modifications improved the stability of MtL in [C₂C₁Im][OAc]. All charge variants of MtL were incubated in 50 mM citrate/100 mM phosphate buffer (pH 4.5) with 0%,

2.5%, and 5% [C₂C₁Im][OAc] at 40°C and the activity was measured at different time intervals up to 4 hours. The surface charge modifications, by following the established protocols successfully tested on enzymes like cellulase and lipase, did not improve the stability of *MtL* in low concentrations of [C₂C₁Im][OAc] (Figure 1b). Minimal activity loss was observed after 4 h in buffer for all charge variants. When incubated in 2.5% [C₂C₁Im][OAc] >50% initial activity is lost after 2 h, while >50% initial activity is lost after only 1 h in 5% [C₂C₁Im][OAc]. The IL concentrations tested are based on the results of the biocompatibility screening: 2.5 and 5% [C₂C₁Im][OAc] represent ranges of IL concentrations in which no or minimal activity loss is observed, respectively.

Previously, enzymes with surface charge modifications in ILs were shown to have a higher or lower half-life relative to the wild type in the IL. We have summarized some of the previous studies using various methods to improve enzyme activity in ILs (Table 2). Among those, surface modification method has been applied to lipase and cellulase, however few reported surface modifications on laccases. Both succinylation and acetylation improved the half-life of lipase and α - chymotrypsin in 40% [C₄C₁Im][Cl] and 55% [C₂C₁Im][EtSO₄], respectively, while acetylation improved the half-life of papain in 30% [C₄C₁Im][Cl]; however, neutralization and cationization reduced the half-life of lipase and α - chymotrypsin in IL, respectively [61]. Succinylated and acetylated enzymes are thought to be more stable in ILs due to 2 factors: their similarity to halophilic enzymes and the formation of salt bridges. Halophilic enzymes have a large number of acidic surface residues which attract water molecules, increasing protein hydration and preventing the enzyme from aggregating, while the salt bridges further increase enzyme stability in saline environments [66; 67; 68].

3.3. Docking Simulations

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Due to the unknown concentration of ABTS in the 1-Step solution used in the biocompatibility screening, we were unable to use enzyme kinetics analyses to understand the inhibition of MtL in [C₂C₁Im][OAc]. Therefore, docking simulations were used to better understand the effect of the surface charge modifications on the major binding locations of [C₂C₁Im][OAc] to the enzyme surface. The results of the docking simulations show that the modification chemistry affects the major docking locations of the IL to the surface of MtL (Figure 2). The major docking location of the IL to the surface of the unmodified MtL was limited to a region close to the T1 copper (Figure 2a). When MtL was acetylated or succinvlated the IL docked close to the T1 copper in addition to a new [OAc] binding location away from the T1 copper (Figure 2b). When MtL was cationized or neutralized [C₂C₁Im]⁺ docked close to the T1 copper while [OAc] docked further from the T1 copper but still close to the active site entrance (cationized) or away from the active site (cationized and neutralized) (Figure 2c). In order to check whether the grid box size affects the docking simulation results, we have run additional simulations focusing the grid on the T1 copper + active site, a much smaller volume compared to our original simulation (supplemental Figure S1). We found all of the main binding locations were close to the T1 copper or in the active site. This confirms the results obtained on a grid box covering the entire protein.

A closer inspection of the $[C_2C_1Im]^+$ docking location reveals the presence of several aromatic residues that would not be affected by any of the surface charge modifications. These aromatic residues would be able to stabilize $[C_2C_1Im]^+$ via $\pi - \pi$ or π – cation interactions in all charge variants. While these results are consistent with a previous report that $[C_2C_1Im]^+$ docks to MtL in the presence of aromatic residues, we did not observe $[C_2C_1Im]^+$ entering the active site

[69]. This study did not restrict the possible [C₂C₁Im]⁺ binding locations, whereas the previous study focused the docking around the *MtL* active site which could affect the degree to which the cation entered into the active site. Arg456 and His457 stabilize [OAc]⁻ close to the active site of unmodified, succinylated, and acetylated *MtL*. When docking to succinylated and acetylated *MtL*, [OAc]⁻ is stabilized by Arg226 and Arg228 at the 2nd [OAc]⁻ binding site. The major [OAc]⁻ docking location close to the active site of cationized *MtL* contains 2 modified residues (Asp360 and Glu420), in addition to several lysines. The 2nd [OAc]- binding site to cationized and neutralized *MtL* contains several arginines, lysines, and modified residues.

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

The shift in [OAc] binding is determined by the modification chemistry. Acetylation and succinylation reduce the positive surface charges that stabilize [OAc], driving the anion to the arginine-rich binding pocket. Neutralization and cationization further increase the favorability of anion binding to an arginine-rich pocket containing modified glutamate and aspartate. The previous work on modifying surface charges suggest that acetylation and succinylation discourage the chaotropic anion (e.g. Cl⁻ or [OAc]⁻) from interacting with the enzyme surface, thereby improving enzyme activity and stability in IL [60; 61]. Our docking results show that all surface charge modifications encourage [OAc] binding away from the active site, however neither MtL activity nor stability in [C₂C₁Im][OAc] are affected by the modifications. Laccase activity is dependent upon the presence of a T1 copper in the active site, a trinuclear copper cluster, and a Cys-His pathway between the T1 copper and the trinuclear cluster. It is speculated that the loss of MtL activity and stability in [C₂C₁Im][OAc] is likely due to destabilization of the coppers and the Cys-His pathway by the IL via a mechanism that cannot be influenced by modifying the enzyme surface charges. Further investigation on the surface properties of modified enzyme and enzyme kinetics will help to validate the proposed mechanism.

4. Discussion

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

In this study we examined the biocompatibility of dilute [C₂C₁Im][OAc] with the activity of the thermophilic fungal laccase from Myceliophthora thermophila. Results show severe inhibition of MtL activity in only 15% (w/v) [C₂C₁Im][OAc], far below the IL concentration necessary for effective biomass pretreatment. In an effort to reduce this inhibition of MtL activity, we made several surface charge modifications to increase the acid or amine surface residues. Although previous studies have shown that surface charge modifications can increase enzyme activity and stability in aqueous ILs, the stability and activity of all MtL charge variants in [C₂C₁Im][OAc] were unchanged compared to the unmodified enzyme. Docking simulations show that the IL docks close to the T1 copper on all charge variants, with some additional [OAc] docking locations on the surface of modified enzymes. Further work might seek to 1) optimize surface charge modification method on laccase and investigate the surface properties of the modified enzyme, 2) better understand the mechanism by which the IL inhibits MtL activity through the use of enzyme kinetics and molecular dynamics (MD) simulations and 3) employ additional techniques (e.g. rational design or immobilization) to improve MtL activity in $[C_2C_1Im][OAc].$

Methods used to assess the effects of ILs on enzymes can be divided into *in vitro* (*e.g.* activity assays, stability assays, and enzyme kinetics) and *in silico* (*e.g.* docking simulations and molecular dynamics [MD] simulations) techniques. *In vitro* techniques can be used to provide a broad overview of how the ILs are affecting the enzyme activity, stability, and substrate affinity. By measuring the activity of *TvL* in ILs, past studies have shown that [C₂C₁Im][EtSO₄] is the most biocompatible alkylimidazolium IL, suggesting that this laccase-IL combination would be best suited for lignin deconstruction applications [52; 58]. However, these activity assays are done on

a short time scale which does not provide any information about the stability of the laccase in the IL. Although the initial activity of MtL immobilized on glyoxyl-agarose beads is lower in 25% [C₂C₁Im][EtSO₄] than the free laccase initial activity, the immobilized laccase is far more stable in 75% IL than the free laccase over a 7 day period [58]. Enzyme kinetics studies, performed by measuring the initial velocity of enzymes in different substrate concentrations, can further indicate if the loss in activity is due to the IL affecting the enzyme activity or substrate binding. Kinetic studies of MtL in [C₂C₁Im][C1] showed that the IL is a competitive inhibitor that competes with the substrate for binding in the active site [69]. [C₂C₁Im][EtSO₄] was found to interact with MtL as an uncompetitive inhibitor that does not affect substrate binding, but rather affects substrate oxidation once it has bound [58]. Some ILs are also able to affect both substrate binding and oxidation, for example [C₂C₁Im][OAc] and [Ch][Lys], which were found to be mixed inhibitors that decreased substrate affinity and activity of TvL [53]. In contrast, several studies had demonstrated synergy between IL and biocatalyst and promotion of enzyme activity in IL. For example, Galai et al. found that 13 ILs increased the activity of the T. versicolor laccase with the most significant improvement (451%) seen in 10 mM choline dihydrogen phosphate ([Ch][H₂PO₄]) [51]. The authors attribute a shift to the α -helix structure induced by [Ch][H₂PO₄] could be responsible for the enhancement of the enzyme activity. Synergetic effect was also observed between 1-butyl-2,3-dimethylimidazolium cetyl-PEG sulfate and lipase catalyzed transesterification of secondary alcohols [70].

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

To further understand the laccase-IL interactions seen with kinetic studies, recent studies have used docking simulations with ILs and static protein models. Docking simulations showed that the diffusion of $[C_nC_1Im]^+$ cations (n = 2, 4, 6, 8, 10) into the active site of MtL is determined by the alkyl chain length [69]. Similarly, $[C_2C_1Im][OAc]$ and [Ch][Lys] were found to dock close

to the T1 copper of TvL [53]. In both of these cases the docking simulations supported the previous kinetics results showing the ILs can affect substrate binding and oxidation. MD simulations can also be used to better capture the dynamic nature of enzyme-IL interactions. After in vitro experiments showed [C₂C₁Im][OAc] is more biocompatible with thermophilic cellulases than a mesophilic cellulase, MD simulations revealed the IL effect is limited to local disturbances of thermophilic cellulases or secondary structure unfolding of a mesophilic cellulase [54; 71]. MD simulations also provided further insight into enzyme-IL interactions that increase the thermostability of a Fusarium solani serine protease cutinase in 1-butyl-3-methylimidazolium hexafluorophosphate ([C₄C₁Im][PF₆]) [72]. Further insight into the effect of the IL on enzymes can be gained by applying different methods to understand the binding free energy of the IL or substrate to the enzyme surface or active site [73].

In this study we applied a single enzyme engineering approach to try and improve *MtL* activity and stability in [C₂C₁Im][OAc]. The enzyme used in this study was not produced recombinantly, therefore we were unable to apply and biotechnological (*e.g.* directed evolution or rational design) methods to improve *MtL* activity and stability. Future studies with *MtL* in [C₂C₁Im][OAc] might apply immobilization techniques similar to those previously used to improve stability in [C₂C₁Im][EtSO4] [58]. Additionally, recombinant expression of *MtL* would enable future researchers to apply other enzyme engineering techniques. The L1 loop can be targeted for mutations with a directed evolution or computationally assisted strategy, similar to previous studies with *TvL* [74; 75]. Additionally, novel targets for mutations can be identified using a computationally assisted approach like that used to identify the Glu170 target in *B. subtilis* CotA [59]. The application of more robust methods for analyzing laccase-IL interactions

alongside targeted enzyme engineering strategies will facilitate the identification of laccase-IL combinations suited for use in future lignin valorization systems.

Author Contributions

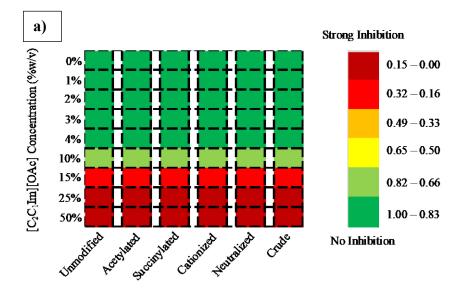
JCS and JS conceptualized the work, designed the experiments, and analyzed the data. JCS conducted the experiments and drafted the manuscript. JS acquired funding, supervised research, and revised the manuscript.

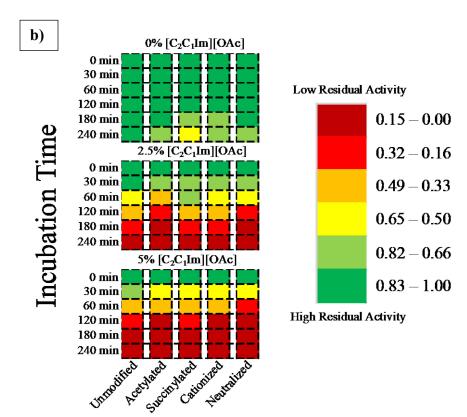
Acknowledgements

The authors acknowledge the support from the National Science Foundation under Cooperative Agreement No. 1929122 and 1632854 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch-Multistate project under accession number 1018315. We thank Novozymes for providing laccase samples and Dr. David Rodgers for useful suggestions.

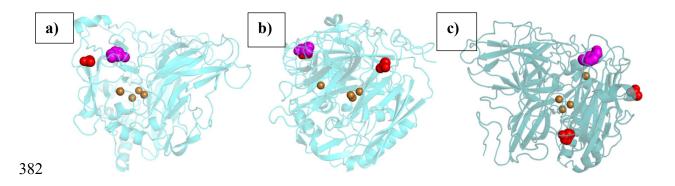
359 **List of Tables and Figures** Table 1. Summary of mutations to used mimic surface charge modifications in PyMol. 360 361 **Table 2.** Previous studies using various methods to improve enzyme activity in ILs. 362 Figure 1. Heatmap showing a) the activity of MtL and the charge variants in $[C_2C_1Im][OAc]$ 363 relative to MtL activity in buffer, and b) the residual activity of MtL charge variants after 364 incubation in 50 mM citrate/100 mM phosphate buffer and 2.5 or 5% [C₂C₁Im][OAc] at pH 4.5 and 40 °C. 365 366 Figure 2. Major docking locations of [C₂C₁Im][OAc] to the surface of unmodified (a), 367 succinylated/acetylated (b), and cationized/neutralized $MtL(\mathbf{c})$. $[C_2C_1Im]^+$ is shown as magenta

spheres, [OAc] is shown as red spheres, and coppers are shown as brown spheres.


368


Table 1. Summary of mutations to used mimic surface charge modifications in PyMol

Charge Variant	Modification Chemistry	Target Residues	PyMol Mutations
Unmodified	N/A	N/A	N/A
Acetylated	E NH3+ + 0 0 0 E NH3+	Primary Amines (Lys)	Lys → Ala
Neutralized	P NH ₂ P NH ₂	Carboxylic Acid (Asp or Glu)	Asp → Ala Glu → Ala
Succinylated	E NH3+ + 0	Primary Amines (Lys)	Lys → Asp
Cationized	O- + H ₂ N NH ₂	Carboxylic Acid (Asp or Glu)	Asp → Lys Glu → Lys


Table 2. Previous studies using various methods to improve enzyme activity in ILs.

Method	Enzyme	Outcome	Citation
Computationally assisted	T. versicolor laccase	Triple and quadruple mutants with	[75]
protein engineering		increased activity in [C ₂ C ₁ Im][EtSO ₄]	
Directed evolution	T. versicolor laccase	Double mutant with increased activity	[74]
		in [C ₂ C ₁ Im][EtSO ₄]	
Computationally assisted	B. subtilis laccase	Single mutants with increased catalytic	[59]
protein engineering		efficiency (k _{cat} /K _m) in 3 [C _n C ₁ Im][Cl]	
		ILs	
Surface charge	Bovine pancreas α-	Succinylation and acetylation	[61]
modification	chymotrypsin, Carica	improved activity and stability in	
	papaya papain, Candida	[C ₄ C ₁ Im][Cl] and [C ₂ C ₁ Im][EtSO ₄]	
	rugosa lipase		
Surface charge	Trichoderma reesei	Succinylation improved cellulose	[60]
modification	cellulase	hydrolysis in [C ₄ C ₁ Im][Cl]	
Immobilization	M. thermophila laccase	Immobilization on glyoxyl-agarose	[58]
		beads improved stability in	
		[C ₂ C ₁ Im][EtSO ₄]	

Figure 1. Heatmaps showing **a)** the activity of *MtL* and the charge variants in [C₂C₁Im][OAc] relative to *MtL* activity in buffer; and **b)** the residual activity of *MtL* charge variants after incubation in 50 mM citrate/100 mM phosphate buffer and 2.5 or 5% [C₂C₁Im][OAc] at pH 4.5 and 40°C.

Figure 2. Major docking locations of $[C_2C_1Im][OAc]$ to the surface of unmodified **(a)**, succinylated/acetylated **(b)**, and cationized/neutralized MtL **(c)**. $[C_2C_1Im]^+$ is shown as magenta spheres, $[OAc]^-$ is shown as red spheres, and coppers are shown as brown spheres.

- 388 [1] J.-K. Weng, and C. Chapple, The origin and evolution of lignin biosynthesis. New Phytologist 187 (2010) 273-285.
- 390 [2] W.O.S. Doherty, P. Mousavioun, and C.M. Fellows, Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products 33 (2011) 259-276.
- 392 [3] R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, Lignin Biosynthesis and Structure. Plant Physiology 153 (2010) 895-905.
- [4] M. Sette, R. Wechselberger, and C. Crestini, Elucidation of Lignin Structure by Quantitative
 2D NMR. Chemistry A European Journal 17 (2011) 9529-9535.
- [5] W. Boerjan, J. Ralph, and M. Baucher, Lignin biosynthesis. Annual Review of Plant Biology
 54 (2003) 33.
- [6] J. Zeng, G.L. Helms, X. Gao, and S. Chen, Quantification of Wheat Straw Lignin Structure by
 Comprehensive NMR Analysis. Journal of Agricultural and Food Chemistry 61 (2013)
 10848-10857.
- 401 [7] Suhas, P.J.M. Carrott, and M.M.L. Ribeiro Carrott, Lignin from natural adsorbent to activated 402 carbon: A review. Bioresource Technology 98 (2007) 2301-2312.
- [8] N.A.o. Sciences, N.A.o. Engineering, and N.R. Council, Liquid Transportation Fuels from Coal and Biomass, 2009.
- 405 [9] D. Tilman, R. Socolow, J.A. Foley, J. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. Searchinger, C. Somerville, and R. Williams, Beneficial Biofuels—The Food, Energy, and Environment Trilemma. Science 325 (2009) 270-271.
- [10] A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison,
 R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski,
 G.A. Tuskan, and C.E. Wyman, Lignin Valorization: Improving Lignin Processing in the
 Biorefinery. Science 344 (2014).
- 412 [11] Y. Mottiar, R. Vanholme, W. Boerjan, J. Ralph, and S.D. Mansfield, Designer lignins: 413 harnessing the plasticity of lignification. Current Opinion in Biotechnology 37 (2016) 190-414 200.
- 415 [12] M. Kleinert, and T. Barth, Towards a Lignincellulosic Biorefinery: Direct One-Step 416 Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy & Fuels 22 (2008) 1371-1379.
- 417 [13] L.M. Cotoruelo, M.D. Marqués, A. Leiva, J. Rodríguez-Mirasol, and T. Cordero, Adsorption 418 of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries 419 by means of lignin based active carbons. Adsorption 17 (2011) 539-550.
- 420 [14] D.D. Laskar, B. Yang, H. Wang, and J. Lee, Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioproducts and Biorefining 7 (2013) 602-626.
- 422 [15] P.J. De Wild, W.J.J. Huijgen, and R.J.A. Gosselink, Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining 8 (2014) 645-657.
- 424 [16] G.T. Beckham, C.W. Johnson, E.M. Karp, D. Salvachúa, and D.R. Vardon, Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology 42 (2016) 426 40-53.
- [17] Y. He, X. Li, H. Ben, X. Xue, and B. Yang, Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering 5 (2017) 2302-2311.
- 430 [18] L. Das, S. Xu, and J. Shi, Catalytic Oxidation and Depolymerization of Lignin in Aqueous 431 Ionic Liquid. Frontiers in Energy Research 5 (2017).

- 432 [19] L. Das, M. Li, J. Stevens, W. Li, Y. Pu, A.J. Ragauskas, and J. Shi, Characterization and Catalytic Transfer Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds. ACS Sustainable Chemistry & Engineering 6 (2018) 10408-10420.
- 435 [20] W. Li, S. Zhou, Y. Xue, Y.-J. Lee, R. Smith, and X. Bai, Understanding Low-Pressure
 436 Hydropyrolysis of Lignin Using Deuterated Sodium Formate. ACS Sustainable Chemistry
 437 & Engineering 5 (2017) 8939-8950.
- 438 [21] K. Miyazaki, A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9 (2005) 415-425.
- 440 [22] M.-F. Hullo, I. Moszer, A. Danchin, and I. Martin-Verstraete, CotA of Bacillus subtilis Is a 441 Copper-Dependent Laccase. Journal of Bacteriology 183 (2001) 5426-5430.
- 442 [23] H. An, T. Xiao, H. Fan, and D. Wei, Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R. Electronic Journal of Biotechnology 18 (2015) 451-458.

446

447

448

451

452

453

454

455

- [24] A.M. Varmana, L. Heb, R. Follenfanta, W. Wua, S. Wemmera, S.A. Wrobela, Y.J. Tang, and S. Singh, Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Science (2016) 10.
- [25] T.D.H. Bugg, M. Ahmad, E.M. Hardiman, and R. Rahmanpour, Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28 (2011) 1883-1896.
 - [26] M.E. Brown, and M.C.Y. Chang, Exploring bacterial lignin degradation. Current Opinion in Chemical Biology 19 (2014) 1-7.
 - [27] V.V. MOZHAEV, Y.L. KHMELNITSKY, M.V. SERGEEVA, A.B. BELOVA, N.L. KLYACHKO, A.V. LEVASHOV, and K. MARTINEK, Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. European Journal of Biochemistry 184 (1989) 597-602.
- 457 [28] A.M. Klibanov, Improving enzymes by using them in organic solvents. Nature 409 (2001) 458 241-246.
- 459 [29] S. Park, and R.J. Kazlauskas, Biocatalysis in ionic liquids advantages beyond green technology. Current Opinion in Biotechnology 14 (2003) 432-437.
- 461 [30] J.F. Brennecke, and E.J. Maginn, Ionic liquids: Innovative fluids for chemical processing.
 462 AIChE Journal 47 (2001) 2384-2389.
- [31] K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey,
 and R.D. Rogers, Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic
 Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle,
 Metathesis, and Separations. Journal of the American Chemical Society 125 (2003) 6632 6633.
- 468 [32] R.D. Rogers, and K.R. Seddon, Ionic Liquids--Solvents of the Future? Science 302 (2003) 792-793.
- 470 [33] M. Hajime, Y. Masahiro, T. Kazumi, N. Masakatsu, K. Yukiko, and M. Yoshinori, Highly
 471 Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium
 472 Cations and Bis(trifluoromethylsulfonyl)imide. Chemistry Letters 29 (2000) 922-923.
- [34] D.A. Fort, R.C. Remsing, R.P. Swatloski, P. Moyna, G. Moyna, and R.D. Rogers, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9 (2007) 63-69.
- 476 [35] I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, and D.S. Argyropoulos, 477 Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry 55 (2007)

478 9142-9148.

486

487

488 489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

- [36] P. Verdia, A. Brandt, J.P. Hallett, M.J. Ray, and T. Welton, Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chemistry 16 (2014) 1617-1627.
- [37] A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran,
 V. Stavila, S. Venkatachalam, M.G. Hahn, B.A. Simmons, and S. Singh, Efficient biomass
 pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the
 National Academy of Sciences 111 (2014) E3587-E3595.
 - [38] A. George, A. Brandt, K. Tran, S.M.N.S. Zahari, D. Klein-Marcuschamer, N. Sun, N. Sathitsuksanoh, J. Shi, V. Stavila, and R. Parthasarathi, Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry 17 (2015) 1728-1734.
 - [39] F.J.V. Gschwend, F. Malaret, S. Shinde, A. Brandt-Talbot, and J.P. Hallett, Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry 20 (2018) 3486-3498.
 - [40] E. Liu, L. Das, B. Zhao, M. Crocker, and J. Shi, Impact of Dilute Sulfuric Acid, Ammonium Hydroxide, and Ionic Liquid Pretreatments on the Fractionation and Characterization of Engineered Switchgrass. BioEnergy Research (2017).
 - [41] H. Yoshida, LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions 43 (1883) 472-486.
 - [42] K. Piontek, M. Antorini, and T. Choinowski, Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers. Journal of Biological Chemistry 277 (2002) 37663-37669.
 - [43] J.K. Glenn, M.A. Morgan, M.B. Mayfield, M. Kuwahara, and M.H. Gold, An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 114 (1983) 1077-1083.
 - [44] S.M. Jones, and E.I. Solomon, Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences 72 (2015) 869-883.
 - [45] H. Claus, Laccases: structure, reactions, distribution. Micron 35 (2004) 93-96.
 - [46] J.A.F. Gamelas, A.P.M. Tavares, D.V. Evtuguin, and A.M.B. Xavier, Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process. Journal of Molecular Catalysis B: Enzymatic 33 (2005) 57-64.
 - [47] F. d'Acunzo, C. Galli, P. Gentili, and F. Sergi, Mechanistic and steric issues in the oxidation of phenolic and non-phenolic compounds by laccase or laccase-mediator systems. The case of bifunctional substrates. New Journal of Chemistry 30 (2006) 583-591.
- 513 [48] A. Rico, J. Rencoret, J.C. del Río, A.T. Martínez, and A. Gutiérrez, Pretreatment with laccase 514 and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus 515 feedstock. Biotechnology for Biofuels 7 (2014) 6.
- 516 [49] D.M. Mate, and M. Alcalde, Laccase engineering: From rational design to directed evolution.
 517 Biotechnology Advances 33 (2015) 25-40.
- 518 [50] D. Singh Arora, and R. Kumar Sharma, Ligninolytic Fungal Laccases and Their 519 Biotechnological Applications. Applied Biochemistry and Biotechnology 160 (2010) 520 1760-1788.
- 521 [51] S. Galai, A. P. de los Rios, F.J. Hernandez-Fernandez, S. Haj Kacem, and F. Tomas-Alonso, 522 Over-activity and stability of laccase using ionic liquids: screening and application in dye 523 decolorization. RSC Advances 5 (2015) 16173-16189.

- [52] A. Domínguez, O. Rodríguez, A.P.M. Tavares, E.A. Macedo, M. Asunción Longo, and M.
 Ángeles Sanromán, Studies of laccase from Trametes versicolor in aqueous solutions of several methylimidazolium ionic liquids. Bioresource Technology 102 (2011) 7494-7499.
- [53] J.C. Stevens, L. Das, J.K. Mobley, S.O. Asare, B.C. Lynn, D.W. Rodgers, and J. Shi,
 Understanding Laccase–Ionic Liquid Interactions toward Biocatalytic Lignin Conversion
 in Aqueous Ionic Liquids. ACS Sustainable Chemistry & Engineering 7 (2019) 15928 15938.
- [54] S. Datta, B. Holmes, J.I. Park, Z. Chen, D.C. Dibble, M. Hadi, H.W. Blanch, B.A. Simmons,
 and R. Sapra, Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment
 and hydrolysis. Green Chemistry 12 (2010) 338-345.

- [55] Y.-C. He, F. Liu, L. Gong, J.-H. Di, Y. Ding, C.-L. Ma, D.-P. Zhang, Z.-C. Tao, C. Wang, and B. Yang, Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresource technology 201 (2016) 133-139.
 - [56] Q. Li, J. Di, X. Liao, J. Ni, Q. Li, Y.-C. He, and C. Ma, Exploration of benign deep eutectic solvent—water systems for the highly efficient production of furfurylamine from sugarcane bagasse via chemoenzymatic cascade catalysis. Green Chemistry 23 (2021) 8154-8168.
 - [57] J. Ni, Q. Li, L. Gong, X.-L. Liao, Z.-J. Zhang, C. Ma, and Y. He, Highly Efficient Chemoenzymatic Cascade Catalysis of Biomass into Furfurylamine by a Heterogeneous Shrimp Shell-Based Chemocatalyst and an ω-Transaminase Biocatalyst in Deep Eutectic Solvent–Water. ACS Sustainable Chemistry & Engineering 9 (2021) 13084-13095.
 - [58] M. Fernández-Fernández, D. Moldes, A. Domínguez, M.Á. Sanromán, A.P.M. Tavares, O. Rodríguez, and E.A. Macedo, Stability and kinetic behavior of immobilized laccase from Myceliophthora thermophila in the presence of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Biotechnology Progress 30 (2014) 790-796.
 - [59] B. Dabirmanesh, K. Khajeh, F. Ghazi, B. Ranjbar, and S.-M. Etezad, A semi-rational approach to obtain an ionic liquid tolerant bacterial laccase through π-type interactions. International Journal of Biological Macromolecules 79 (2015) 822-829.
 - [60] E.M. Nordwald, R. Brunecky, M.E. Himmel, G.T. Beckham, and J.L. Kaar, Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition. Biotechnology and Bioengineering 111 (2014) 1541-1549.
 - [61] J.L.K. Erik M. Nordwald, Stabilization of Enzymes in Ionic Liquids Via Modification of Enzyme Charge. Biotechnology and Bioengineering 110 (2013) 9.
 - [62] J. Shi, K. Balamurugan, R. Parthasarathi, N. Sathitsuksanoh, S. Zhang, V. Stavila, V. Subramanian, B.A. Simmons, and S. Singh, Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chemistry 16 (2014) 3830-3840.
 - [63] R. Patel, M. Kumari, and A.B. Khan, Recent Advances in the Applications of Ionic Liquids in Protein Stability and Activity: A Review. Applied Biochemistry and Biotechnology 172 (2014) 3701-3720.
- 564 [64] H. Weingärtner, C. Cabrele, and C. Herrmann, How ionic liquids can help to stabilize native 565 proteins. Physical Chemistry Chemical Physics 14 (2012) 415-426.
 - [65] V.M.a.S.S. Lele, Laccase: Properties and Applications. BioResources 4 (2009) 24.
- 567 [66] S. Uthandi, B. Saad, M.A. Humbard, and J.A. Maupin-Furlow, LccA, an Archaeal Laccase 568 Secreted as a Highly Stable Glycoprotein into the Extracellular Medium by Haloferax 569 volcanii. Applied and Environmental Microbiology 76 (2010) 733-743.

- 570 [67] A.H. Elcock, and J.A. McCammon, Electrostatic contributions to the stability of halophilic 571 proteins11Edited by B. Honig. Journal of Molecular Biology 280 (1998) 731-748.
- 572 [68] O. Dym, M. Mevarech, and J.L. Sussman, Structural Features That Stabilize Halophilic 573 Malate Dehydrogenase from an Archaebacterium. Science 267 (1995) 1344-1346.
- 574 [69] J. Sun, H. Liu, W. Yang, S. Chen, and S. Fu, Molecular Mechanisms Underlying Inhibitory 575 Binding of Alkylimidazolium Ionic Liquids to Laccase. Molecules 22 (2017) 1353.

577

578

579

580

581

582

583

584

585

586

587

588

589

- [70] K. Yoshiyama, Y. Abe, S. Hayase, T. Nokami, and T. Itoh, Synergetic Activation of Lipase by an Amino Acid with Alkyl–PEG Sulfate Ionic Liquid. Chemistry letters 42 (2013) 663-665.
- [71] V. Jaeger, P. Burney, and J. Pfaendtner, Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics. Biophysical Journal 108 (2015) 880-892.
- [72] N.M. Micaêlo, and C.M. Soares, Protein Structure and Dynamics in Ionic Liquids. Insights from Molecular Dynamics Simulation Studies. The Journal of Physical Chemistry B 112 (2008) 2566-2572.
- [73] V. Limongelli, Ligand binding free energy and kinetics calculation in 2020. WIREs Computational Molecular Science 10 (2020) e1455.
- [74] H. Liu, L. Zhu, M. Bocola, N. Chen, A.C. Spiess, and U. Schwaneberg, Directed laccase evolution for improved ionic liquid resistance. Green Chemistry 15 (2013) 1348-1355.
- [75] A.-M. Wallraf, H. Liu, L. Zhu, G. Khalfallah, C. Simons, H. Alibiglou, M.D. Davari, and U. Schwaneberg, A loop engineering strategy improves laccase lcc2 activity in ionic liquid and aqueous solution. Green Chemistry 20 (2018) 2801-2812.