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Abstract— Trajectory generation and prediction are two in-
terwoven tasks that play important roles in planner evaluation
and decision making for intelligent vehicles. Most existing
methods focus on one of the two and are optimized to directly
output the final generated/predicted trajectories, which only
contain limited information for critical scenario augmentation
and safe planning. In this work, we propose a novel behavior-
aware Trajectory Autoencoder (TAE) that explicitly models
drivers’ behavior such as aggressiveness and intention in the
latent space, using semi-supervised adversarial autoencoder
and domain knowledge in transportation. Our model addresses
trajectory generation and prediction in a unified architecture
and benefits both tasks: the model can generate diverse,
controllable and realistic trajectories to enhance planner op-
timization in safety-critical and long-tailed scenarios, and it
can provide prediction of critical behavior in addition to the
final trajectories for decision making. Experimental results
demonstrate that our method achieves promising performance
on both trajectory generation and prediction.

I. INTRODUCTION

Tremendous progress has been made for enabling au-
tonomous driving in recent years. The autonomous driving
pipeline typically consists of several modules such as sens-
ing, perception, prediction [1], [2], planning [3], [4], [5],
and control, which can be roughly divided as two parts
– environment perception and decision making. Between
these two parts, the prediction and generation of surrounding
vehicles’ trajectories can be viewed as a two-way bridge.
In the forward direction, the prediction module encodes the
environment information and translates it into potential future
trajectories of surrounding vehicles to facilitate the planning
module. Reversely, to train and evaluate the planning module,
we will need to discover critical traffic scenarios and vehicle
behaviors, and generate more realistic and diverse trajectories
of surrounding vehicles – this is particularly important for
evaluating the safety of vehicle planning as some of the
“long-tail” scenarios could be quite challenging and lead to
the violation of safety requirements [6], [7], [8].

Most existing works of trajectory generation or augmen-
tation indeed try to identify risky scenarios and then extract
corresponding features or styles in order to generate more
safety-critical scenarios. For instance, in [9] and [10], the
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authors extract features and variables that lead to safety-
critical scenarios and then feed them into generative models.
However, the definition of the critical styles is vague, and
the controllability and interpretability of the models are
limited. [10] also points out that most existing works focus
on generating the entire scenarios but lack control over
individual agents (vehicles) and their detailed behaviors.

On the prediction side, recent works on motion forecast-
ing [1], [11], [12], [13], [2], [14] have been focusing on
the displacement error between the predicted trajectories
and the ground truth, with great performance achieved.
However, as mentioned in [15], the performance on current
datasets has begun to plateau. Moreover, other than the
trajectories themselves, those works pay little attention to
other information that could also be very important for
understanding surrounding vehicle’s behaviors and making
safe decisions. For instance, behavior prediction such as
whether other vehicles may change lanes or whether they
may yield to the ego vehicle, is critical information for
safe planning [16]. In fact, human drivers make decisions
generally relying on high-level predictions instead of exact
future trajectories of surrounding vehicles. Thus, in our work,
we consider intention and aggressiveness as such high-level
behaviors of surrounding vehicles – their detailed definitions
are explained in Section III but Fig. 1 shows a simple
illustration – and leverage them in both predicting trajectories
and in generating more diverse trajectories and behaviors. To
the best of our knowledge, this is the first work that explicitly
models and utilizes aggressiveness in trajectory prediction
and generation.

Ego vehicle

Surrounding vehicle

Fig. 1. Trajectories with different intentions and aggressiveness levels. Blue
dashed lines demonstrate different potential intentions in changing lanes and
the orange one shows a more aggressive trajectory in the current lane.

Unlike previous methods that are designed solely for either



trajectory prediction or generation, we propose a unified
framework for both tasks using behavior-aware adversarial
autoencoder architecture combined with domain knowledge
in the transportation. Our goal is to design a hierarchical and
behavior-aware predictor and a generator that can augment
realistic, diverse, explainable, and controllable trajectories.
We believe that this will facilitate both prediction and plan-
ning modules to address the critical (and potentially unsafe)
tail events on the road. More specifically, our contribution
can be summarized as follows:
• We propose Trajectory Autoencoder (TAE), a novel and

unified architecture based on adversarial autoencoder for
trajectory generation and prediction. It facilitates both
tasks with behavior-level awareness and control.

• Ours is the first work to explicitly consider aggressive-
ness in trajectory generation/prediction. We utilize semi-
supervised training along with adversarial generation and
domain knowledge to model the behaviors with limited
data. The method is extensible for other driving behaviors.

• We conduct experiments in a commonly-used dataset for
trajectory generation and prediction. We evaluate five
metrics to demonstrate the advantages of our methods
in generating diverse and controllable vehicle trajectories
and safety-critical scenarios, and in predicting surrounding
vehicles’ behaviors.
The rest of the paper is organized as follows. Section II

reviews the related works. Section III presents the methodol-
ogy and major components of our proposed semi-supervised
behavior-aware TAE. Section IV presents the experimental
results and discussions. Section V concludes the paper.

II. BACKGROUND

A. Trajectory Generation and Prediction

1) Trajectory Generation: Trajectory generation or aug-
mentation is of great significance to optimize and evalu-
ate decision making module in autonomous driving. [17]
proposes a flow-based generative model using the objec-
tive function of weighted likelihood to generate multimodal
safety-critical scenarios. Their following work [9] demon-
strates a generative model conditioned on road maps to
bridge safe and collision driving data. The model combines
conditional variational autoencoder and style transferring
techniques to generate the whole risky scenario, but it cannot
control agent-level trajectories. [10] proposes a RouteGAN
to generate diverse trajectories for every single agent and
the trajectory is influenced by a style variable. However, the
latent spaces of these generative methods are not well ex-
plained with driving or transportation knowledge, especially
at the behavior level. And because of the nature of GAN and
style transferring techniques, the models only have rough and
limited control over the generation process, which may lead
to unrealistic and uncontrolled trajectories.

2) Trajectory Prediction: Recent works have applied dif-
ferent methods to represent the past trajectory and contexts.
CNN with rasterized images [18], graph neural networks
(GNN) [11], [12], transformers [19], [1], and even 3D point

cloud [2] are used to encode the map and interaction infor-
mation. These works achieve good performance in terms of
the displacement error between ground truth and prediction.
In our work, we choose to use GNN-based method for
extracting features, but with the additional consideration of
behavior-level prediction for safety-critical scenarios.

B. Driving Behavior Modeling
The work in [20] proposes an intention predictor based on

mixture density network (MDN) [21], which considers the
semantic information on the road and predicts the insertion
area (region proposals) using the MDN architecture. How-
ever, the approach has to select useful features and define the
insertion area manually in different scenarios. [22] designs
an online two-level framework that anticipates the high-level
driving policy such as forward, yielding, turning, and then
feeds such intention to an optimization-based predictor.

Besides the intention of changing lane and turning, the
vehicle’s style such as aggressiveness will also influence its
motion. Generally, aggressive vehicles tend to drive at higher
acceleration. Most works measure aggressiveness based on
sensors’(e.g., accelerator, gyroscope) data [23], [24] or long-
term statistics [25]. Some works propose online measurement
in different scenarios. [26] demonstrates an aggressiveness
measurement in lane changing scenario by using a combi-
nation of space utility and safety utility, where the space
utility is the available space for lane changing while the
safety utility is measured by the time headway of a vehicle,
which can be generalized to other driving scenarios.

C. Adversarial Autoencoder
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Fig. 2. Architecture of the basic adversarial autoencoder (AAE).

The variational autoencoder (VAE) [27] provides a princi-
pled method for jointly learning deep latent-variable models
and corresponding inference models using stochastic gradient
descent [28]. Training a VAE model consists of two steps:
regularization and reconstruction. The regularization step is
aimed to encode the input as certain distributions (usually
Gaussian) over the latent space using Kullback-Leibler (KL)
divergence, while the reconstruction step is used to decode
the latent variables to the target space. In contrast to VAE
that uses KL divergence and evidence lower bound, adver-
sarial autoencoder (AAE) [29] uses adversarial learning for
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Fig. 3. Overview of our proposed TAE architecture and training pipeline.

imposing a specific distribution on the latent variables. The
AAE architecture is superior to VAE in terms of imposing
complicated distributions and shaping the latent space.

More specifically, let x be the input, y be the output,
and z be the latent vector of an autoencoder with a deep
encoder and decoder. Let p(z), q(z|x), p(y|z) and pd(x)
denote the prior distribution on the latent vectors, encoding
distribution, decoding distribution and input data distribution,
respectively. The encoding function of the autoencoder q(z|x)
defines an aggregated posterior distribution of q(z) on the
latent vector of the autoencoder as follows:

q(z) =
∫

x
q(z | x)pd(x)dx (1)

The q(z) is expected to match the prior distribution p(z).
In the AAE, the encoder tries to fool the discriminators into
thinking the generated latent vectors are from the prior target
distribution p(z).

As shown in Fig. 2, the AAE architecture maps the input
x to the latent space of a Gaussian distribution. The real
data sampled from the Gaussian distribution and the latent
codes are fed into the discriminator. The discriminator tries
to distinguish the real samples from the generated ones, and
the discrimination scores are used to update the encoder to
generate data following target distribution. Then the decoder
reconstructs the output from the latent code z. In our work,
we will extend the AAE architecture to model multiple and
complex distributions, and encode label information in the
latent space.

III. OUR PROPOSED TAE ARCHITECTURE

The design of our proposed TAE architecture for trajectory
generation/prediction is shown in Fig. 3. In this section,
we will explain the major modules in our framework and
the methodology for modeling and optimization, i.e., the

context feature extractor (III-A), the architecture of the semi-
supervised behavior-aware AAE (III-B), the latent space
modeling with prior knowledge of vehicle’s behavior (III-
C), the optimization pipeline (III-D), and several additional
improvements (III-E).

A. Context Modeling

In order to capture features of the environment, we need
to consider the past trajectories, the interactions between
vehicles, and the map information. Similar to [11], we use
the one-dimensional dilated convolutional neural network to
extract features from history trajectories and utilize the graph
convolutional network (GCN) to model the graphed map
information and the interaction. The GCN-based method has
shown good performance in modeling transportation contexts
since most vehicles drive on the structured roads, especially
in urban scenarios. Then, the feature extractor applies an
attention mechanism to combine the information and outputs
a 128-dimensional feature for each agent. The pipeline of the
feature extraction is shown in Fig. 4.

Vehicles’ past trajectories

Graph of lanes

1-D CNN 

Lane-GCN

Combine features
by attention mechanism Extracted 128-D feature

Fig. 4. Feature Extractor: extract trajectories using 1-D CNN; model
interactions and structured map information by GCN [11].



B. Behavior-aware Semi-supervised AAE
The AAE architecture itself blends the autoencoder archi-

tecture with the adversarial loss concept introduced by GAN,
and replaces the KL divergence in VAE with adversarial
loss to regularize diverse and complex distributions of latent
space. In our model, we further utilize semi-supervised
learning to model the driving behavior in the latent space by
incorporating the limited label information. The architecture
of the proposed semi-supervised behavior-aware AAE is
shown in Fig. 5. The model consists of an encoder, behavior-
aware and remaining latent space, discriminators for different
latent vectors, and a decoder.
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𝒚
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Fig. 5. Behavior-aware adversarial autoencoder.

The input x is a 128-dimensional feature generated by
the GCN-based feature extractor. The multi-head encoder
based on a two-layer GCN projects the features to a lower-
dimensional latent space.

Our proposed AAE model has three parts of the latent
space, which follow different distributions. They are three-
dimensional intention latent vector zintent , following cate-
gorical distributions, one-dimensional aggressiveness latent
vector zagg, following a log-normal distribution, and remain-
ing latent vector zgauss, following Gaussian distributions. For
the dimension of the remaining latent vector, we notice a
trade-off between the generated trajectory’s smoothness and
behavior’s controllability and we allocate six dimensions to
the remaining latent space after preliminary experiments.

For each group of latent variables, we input the samples
from real target distribution and the generated latent variables
to the corresponding discriminators (D net in Fig. 5) to
regularize the latent distribution. For instance, the discrimi-
nator for intention latent vector is trained to distinguish our
generated latent vector from the sample in real categorical
distribution. By adversarial learning, we can force the three
latent vectors to follow their corresponding distributions.

After the adversarial generation learning stage, we collect
data and labels for the semi-supervised aggressiveness and
intention modeling. Only part of the vehicles’ behaviors can
be identified and labeled, but in general, these behaviors are
in certain distributions. This is the reason why the semi-
supervised learning works for training the behavior vectors.

In the semi-supervised training mini-batch, we optimize the
encoder to predict the real intentions and aggressiveness
levels in the latent space, based on the limited labelled data.

Besides regularizing the latent space and optimizing the
encoder, the model needs to generate realistic trajectories.
The latent vectors are concatenated and fed to the decoder.
The decoder is a three-layer fully-connected network that
maps the latent vectors into future trajectories. Finally, we
update the whole pipeline including feature extractor, en-
coder and decoder to make the generated trajectory close to
the reference.

The details of behavior modeling and multi-stage opti-
mization process are introduced in the following sections.

C. Latent Space Modeling

Most previous works directly predict or generate the
waypoints for future trajectories and the VAE-based works
generally use unified latent variables.

With our semi-supervised AAE architecture, we can rep-
resent both distribution and label information of important
driving features in the latent space if we define them in a
learnable way. In this work, we have two behavior latent
vectors, aggressiveness and intention.

1) Aggressiveness: Aggressiveness is an important feature
of vehicle’s behavior. Conservative vehicles and aggressive
vehicles may take different actions even in the identical
scenario. However, it is still an open question to measure and
predict the aggressiveness, especially in a general setting.
As mentioned in Section II, some recent works [26], [30]
propose different measurements of aggressiveness in specific
scenarios such as lane changing or merging. In our work,
we consider time headway as a common measurement when
building the aggressiveness model, which measures the time
difference between two successive vehicles when they cross
a given point. We believe that time headway is a feature that
we can capture in most driving scenarios and it can stand for
vehicles’ aggressiveness, especially in the longitudinal direc-
tion. Intuitively, the shorter the time headway is, the more
aggressive the driving behavior is. We learn such attribute
in a semi-supervised way because only some vehicles have
close and observable interaction with the vehicle in front of
them but we can assume every vehicle has its own intrinsic
level of aggressiveness that follows a general distribution.

To model the latent variable of aggressiveness by proposed
AAE, we should have prior knowledge of the distribution
of the aggressiveness, which could be influenced by many
different factors such as traffic scenarios and vehicles’ be-
haviors [31]. Log-normal distribution, Gamma distribution
and normal distributions are potential distribution to model
the time headway in various scenarios. Here we focus on the
urban scenario and calculate time headway of all valid cases
in the Argoverse [32] motion forecasting dataset. The data
histograms and fitted distributions are shown in Fig. 6.

We notice that the log-normal distribution fits the aggres-
siveness data best with the lowest KL divergence (0.017)
and sum of squared error (0.16). In our model, we use



Fig. 6. The histogram and fitted distribution of valid aggressiveness (time
headway) in the Argoverse motion forecasting dataset.

the log-normal distribution as the prior distribution for the
discriminator of aggressiveness latent vector.

In the semi-supervised learning phase, we collect labelled
aggressiveness mini-batch and train the latent vectors to
match their true values as a regression problem.

2) Intention: In our work, we represent intentions by
three simple but reasonable classes: moving forward, turn-
ing/changing lane to the left, and turning/changing lane to the
right. We are inspired by human-driving vehicles that inform
other vehicles of the ego vehicle’s intentions by using turn
signals. These three intentions are discrete by nature and
we model them with categorical distribution. We only label
the vehicles that show clear intention in a long enough time
frame (5 seconds in experiments).

D. Optimization Pipeline

To produce realistic, diverse and controllable trajectories,
our model is designed to optimize and balance several
different targets. The optimization process consists of three
phases: prediction phase, regularization phase and semi-
supervised phase.

First, in the prediction phase, the whole model including
the feature extractor, encoder and decoder is optimized to
produce accurate and realistic trajectories. We apply the
smooth L1 loss as shown below in (2) on all time steps
to calculate the distance between the generated trajectory ŷ
and ground truth y.

Losspred (yi, ŷi) =

{
0.5(yi − ŷi)

2 if ∥yi − ŷi∥< 1
∥yi − ŷi∥−0.5 otherwise

(2)

To model the latent space, we apply both the adver-
sarial learning loss and the semi-supervised learning loss.
We utilize three different generators and discriminators to
regularize the distribution of the latent space by adversarial
learning. The adversarial regularization loss is shown in (3).
Here x represents the input of the encoder G, and m equals
3, corresponding to the three distributions: Gaussian, Log-
normal and Categorical distributions.

Lossadv(x) =
1
m

m

∑
i=1

log(1−Di (Gi (x))) (3)

For the discriminator D, we train them by maximizing the
average of the log probability of real latent samples s and
the log of the inverse probability for fake latent samples:

LossD(x,s) = logDi (si)+ log(1−Di (Gi (x))) (4)

In the semi-supervised phase, we update the encoder on
labelled data of the behavior-aware latent space to make
the latent variables explainable. To model the latent variable
of aggressiveness zagg, the encoder is trained to minimize
the mean square error of the predicted aggressiveness and
labeled ones lagg. To represent the intention vector zint , the
encoder is updated to minimize the cross entropy cost on a
labeled mini-batch (class labels are lint ), which is modeled
as a classification problem. The total loss of semi-supervised
learning phase is shown in equation (5).

LossSemi(zagg,zint , lagg, lint) =−
3

∑
i=1

lint logzint +(lagg − zagg)
2

(5)
The optimization pipeline is illustrated as Algorithm 1.

Algorithm 1 Optimization Pipelines
1: Initialize: feature extractor F , AAE encoder G, decoder

R, discriminator Di, target distribution pi, i = 1,2,3.
2: Input: past trajectories t and map graph m.
3: for each batch do
4: Let features x = F(t,m).
5: Let latent vectors z = G(x).
6: Sample si from target distribution pi and calculate

Di(zi) and Di(si).
7: Update G by adversarial generation loss Lossadv (3).
8: Update Di by discrimination loss LossD (4).
9: Obtain the labelled mini-batches for intention and

aggressiveness, respectively.
10: Calculate Losssemi (5) and update G.
11: Concatenate the latent vectors and feed to decoder R

ŷ = R(z).
12: Calculate the prediction loss Losspred(y, ŷ) and update

F , G, R.
13: end for

E. Diverse Generation and Multi-modal Prediction

In our preliminary tests, we noticed that our model only
had limited capacity to generate diverse trajectories, even
though we had already shaped and trained the latent space
to model the aggressiveness and intention using our proposed
architecture. We found that in the training, the sampling was
aimed to maximize the likelihood that may only produce
samples corresponding to the major modes of the data
distribution [33]. We also did not have control over all latent
variables, and particularly, we only used one-dimensional
variable to represent the aggressiveness. To address these



problems, we introduce a diversity-promoting prior over sam-
ples as a diversity objective to optimize the latent mappings
for improving sample and decoding diversity. We calculate
the diversity loss as in the equation (6) [33] based on a
pairwise Euclidean distance among generated trajectories.
In (6), xi is the i-th generated trajectory and σd is used to
normalize the distance.

Lossd(X) =
1

K(K −1)

K

∑
i=1

K

∑
j ̸=i

exp
(
−

D2 (xi,x j)

σd

)
(6)

In the diversity optimization stage, we sample different be-
haviors and feed corresponding latent vectors to the decoder.
By combining this loss with prediction loss, we can promote
the generation diversity of different modes and improve the
aggressiveness’ control over the trajectories.

For trajectory prediction, we add an additional classifier to
select a most possible trajectory from different ones, which
enhances the performance of multi-modal prediction.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings

We train our model on the Argoverse motion forecasting
dataset [32] and evaluate the generation and prediction per-
formance on the corresponding validation and test sets. The
Argoverse motion forecasting benchmark has more than 30K
scenarios collected in Miami and Pittsburgh. Each scenario
has detailed graph of road map and multiple agent trajectories
sampled at 10 Hz. In the motion forecasting and generation
tasks, trajectories of the first 2 seconds are offered as input
data. The dataset contains the straight road and intersection
scenarios, most of which are easy and safe cases.

We train our model on an NVIDIA Titan RTX platform for
30 epoches. The batch size is 32. The learning rates are set
as 1e−4, 1e−5, 1e−5 and 5e−5 for the Adam optimizers
of prediction, adversarial generation learning, discrimination
and semi-supervised phases, respectively.

B. Diverse and Controllable Trajectory Generation

To measure the performance of the trajectory generation,
we 1) calculate the cluster numbers of the dataset to evaluate
the augmented complexity and diversity, 2) visualize the
generated trajectories to demonstrate the controllability and
interpretability in generation, and 3) sweep the behavior
latent space and count the risky cases to test the capability
of generating safety-critical scenarios.

First, we cluster normalized generated trajectories and
obtain the cluster numbers with different thresholds. Gen-
erally, a larger cluster number represents a higher level of
complexity and diversity, while the threshold constrains the
minimum proportion the clusters. Since we do not have
clear labels for generated trajectories, we utilize Dirichlet
Process Gaussian Mixture Models (DPGMM) [34] to cluster
the dataset. DPGMM is an infinite mixture model with the
Dirichlet Process as a prior distribution on the number of
clusters, so it does not need predefined cluster number.

In the experiments, we generate trajectories based on the
scenarios in the Argoverse validation set. For each scenario,
we generate six trajectories that are: 1) the most likely, 2)
aggressive, 3) conservative, 4) turning (changing lane to)
left, 5) turning (changing lane to) right, and 6) moving
forward. We compare the results with trajectories gener-
ated by other representative and state-of-the-art trajectory
generator/predictors including GCN-based [11], transformer-
based [1] and autoencoder-based works. All the results are
in the same scenarios and of the same number of trajecto-
ries. We only count the clusters containing more data than
the threshold ratio. The result in Table I shows that our
model can generate more diverse and complex scenarios
based on past reference trajectories. Our model significantly
outperforms other methods, especially when the threshold is
high, which means that our model can effectively augment
rare behaviors and scenarios in the dataset (e.g., changing
lane on the straight road), and balance their distribution.
This augmentation can benefit the training and evaluation
of prediction and planning modules.

TABLE I
GENERATION DIVERSITY OF ARGOVERSE VALIDATION DATASET

Model
Threshold 0.05↑ 0.03↑ 0.01↑

GCN+Multi-head predictor[11] 6 9 29
mmTransformer[1] 2 6 33

Vanilla AAE 2 5 18
Ours 10 13 35

Second, for the visualization, after inputting the past
trajectories and road map, we adjust the aggressiveness
(Fig. 7) and intention (Fig. 8), respectively. We can find that
the behaviors are represented and disentangled in the latent
space. The change of intention mainly leads to turning or
lane changing according to the contexts. And the change of
aggressiveness can be decoded to different accelerations in
the longitudinal direction.

Finally, to test the capability of generating safety-critical
scenarios, we count the number of risky scenarios with
different aggressiveness and intention settings. We define the
risky scenario as situations where closest distance between
two vehicles is less than 0.5 meter. We assume that the ego
vehicle has an ideal planner that exactly follows the reference
trajectory in the dataset while we can manually change other
vehicles’ behaviors by TAE. We first get the most-likely
generation result with its aggressiveness (agg) and sweep the
aggressiveness from most conservative to most aggressive.
The result in Table II shows that more aggressive behaviors
will cause more risky situations on the road exponentially.
A conservative vehicle will be safer in general, although,
being too conservative could also be unfavorable for safety,
which matches our driving experience. We also switch the
intention to the values representing more actively turning or
lane changing behavior and observe an increase of the risky
scenarios by 35.5%.



(a) (b) (c) (d)

Fig. 7. Trajectories generated with different levels of aggressiveness. The green trajectories are generated ones and the red trajectories are the references.

(a) (b) (c) (d)

Fig. 8. Trajectories generated with different intentions. The green trajectories are generated ones and the red trajectories are the references. We generate
1) most-likely trajectory, 2) turning/changing lane to the left, 3) turning/changing lane to the right.

TABLE II
SAFETY CRITICAL SCENARIOS CHANGES

agg−3 agg−2 agg−1 agg+0.5 agg+1 agg+1.5
−10.0% −10.8% −6.0% +8.4% +65.9% +227.5%

C. Behavior-aware Trajectory Prediction

Without manipulating in the latent space, we can directly
obtain the behavior-aware motion predictor. We evaluate the
accuracy of 1) behavior prediction in the latent space, and
2) most-likely trajectory in the final stage. The Table III
shows the performance of behavior prediction. The intention
prediction can be regarded as a classification problem and the
accuracy of our approach is 89.16%. For the aggressiveness
prediction, we use mean square error (MSE) to measure the
accuracy. Our model can achieve an average MSE of 0.36
s2, given the standard deviation of the aggressiveness over
the dataset is 0.96.

TABLE III
BEHAVIOR PREDICTION RESULTS

Accuracy/MSE
Intention ↑ 89.16%

Aggressiveness ↓ 0.36

To assess the average performance of trajectory prediction,
we measure the average displacement error (ADE) between
predicted and ground truth waypoints, and final displacement
error (FDE) between last-predicted and ground truth way-
point. Table IV shows the results of our model and recent
state-of-the-art works. Despite focusing more on long-tail

events and diverse trajectory generation, our model achieves
similar prediction performance in these average metrics and
the results show that our model can generate natural and
realistic trajectories based on a small latent space.

TABLE IV
PREDICTION RESULTS

Model
Metrics ADE↓ FDE↓

Argoverse Baseline (NN)[32] 3.45 7.88
Jean[35] 1.74 4.24
TNT[12] 1.77 3.91

LaneGCN[11] 1.71 3.78
WIMP[36] 1.82 4.03
TPCN[2] 1.66 3.69

Ours 1.73 3.83

D. Discussions

By explicitly modeling the behavior-level vehicle intention
and aggressiveness in the latent space, our framework can
provide more diverse and controllable trajectory generation
as well as good prediction performance in a unified architec-
ture. And we believe that the semi-supervised latent space
modeling can be extended to more behaviors.

During experiments, we have a few observations that can
be further explored. In latent space modeling, we find that
there exist distribution imbalances in some attributes like
intentions (more than 60% scenarios are moving forward),
and it reveals a promising direction of improving the trajec-
tory modeling. We demonstrate that our model can produce
realistic trajectories with a smaller latent space compared to



other works. However, there still exists an information loss
when encoding features to the lower dimensional latent space
and this is part of the reason why works such as TPCN [2]
have better prediction displacement error than ours. In future
work, we plan to utilize our framework to further model
more driving behaviors, test other context extractors, and add
safety constraints to the current framework.

V. CONCLUSION

In this work, we propose a behavior-aware trajectory
autoencoder (TAE) for both vehicle trajectory generation
and prediction. We embed the domain knowledge such
as intention and aggressiveness into the latent space and
optimize the model with limited labelled data. Our method
can generate realistic, diverse, and controllable trajectories,
which could greatly benefit reliable decision making and
planning evaluation in critical scenarios.
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