2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

\

o

HD-CPS: Hardware-assisted Drift-aware Concurrent Priority Scheduler
for Shared Memory Multicores

Mohsin Shan
University of Connecticut, Storrs, CT USA
mohsin.shan@uconn.edu

Abstract—Efficiently exploiting parallelism remains a chal-
lenging problem in multicore processors. For many algorithms,
executing tasks in some priority order results in a work-efficient
execution. However, searching high-priority tasks requires com-
munication that hampers performance. A concurrent priority
scheduler (CPS) selects high-priority tasks and schedules them
on different cores. Modern CPS designs offer various strategies
to select high-priority tasks at low communication cost for
improved performance. However, they do not explicitly track
the priority of tasks and cannot adjust task distribution if
the cores are processing low-priority tasks. Moreover, they
cannot estimate the right amount of communication required
to select high-priority tasks. This paper critically observes that
the cores’ priority drift can be quantified and used for better
performance. A novel CPS design, HD-CPS is proposed to
use priority as a signal to optimize drift and communication
at runtime. Furthermore, compute-intensive task transfer and
processing aspects of the CPS are offloaded to per-core local
hardware at a low cost to enhance performance. HD-CPS is
shown to consistently improve performance over several state-
of-the-art software-based and hardware-assisted CPS designs.
With hardware-assist, it approaches near-linear performance
scaling as a function of core counts for large shared-memory
multicores.

Keywords-Task-Level Parallelism, Concurrent Priority
Scheduler, Shared-Memory Multicore, Hardware Messages

I. INTRODUCTION

Graph algorithms are universally used in domains like
robotics [1], web search [2], and data mining [3]. This
ubiquitous nature has led to various methods to execute them
on shared memory multicores for enhanced performance [4].
Concurrent Priority Schedulers (CPS) [5], [6], [7], [8] are
proposed to execute these algorithms concurrently. CPS
is a data structure that stores newly created tasks and
distributes them among cores for processing. CPS generally
utilizes a task-based paradigm, decomposing an algorithm
into tasks during runtime. Each task is associated with a
graph node, and processing it requires several instructions.
The cores process tasks and generate new tasks at runtime
for processing. When a core generates a new task 7, an
algorithm-defined priority P is associated with it.

Prior works (e.g., [9]) have shown that task-parallel graph
algorithms benefit from processing tasks roughly according
to their priority order. However, following priority order

Omer Khan
University of Connecticut, Storrs, CT USA
khan@uconn.edu

poses several challenges to a CPS design. The cores need
to communicate to select high-priority tasks, which hampers
performance. A CPS can mitigate the communication burden
by selecting sub-priority tasks. However, processing low-
priority tasks can lead to the generation of further low-
priority tasks. This process worsens work efficiency, which
is the total number of tasks processed compared to the
sequential algorithm [10]. On the other hand, a CPS strives
to select high-priority tasks, leading to high communication
effort among the cores [11], [12]. Therefore, a good CPS
needs to select high-priority tasks for processing and low
communication cost to be effective.

RELD [10] is a distributed CPS design that uses a
priority queue per core, where cores continuously distribute
tasks for processing. This continuous distribution leads to
load-balanced execution in the multicore, but incurs high
communication cost for task transfers. On the other hand,
OBIM [9] uses a global work-list for cores to fetch high-
priority tasks. The global work-list is shared by all cores,
thus allowing faster propagation of tasks among the cores.
However, the global work-list requires high synchronization
among the cores. OBIM mitigates communication overheads
by processing tasks in bulk using the idea of a bag of
tasks. It merges tasks with similar priority range into bags
of tasks, and executes one bag at a time in a core. The
challenge with this approach is to ensure high bag utilization
that requires manual tuning for bag size, and the range
of task priorities. PMOD [10] introduces a heuristic to
tune bag size at runtime. Both OBIM and PMOD serialize
task transfers and processing, thus incurring communication
costs that hamper performance. Minnow [13] introduces
the idea of decoupling task transfers from task processing.
Building on top of OBIM, it implements a separate helper
core to prefetch bags, while each worker core performs
task processing for the current bag. Using this additional
hardware cost, Minnow extracts high task-level parallelism.

All works mentioned above do not explicitly track whether
cores execute high-priority tasks. We observe that the lack
of tracking task priorities leads to redundant computations
and unnecessary communication across cores. We introduce
priority drift as the average difference of priority between
the global highest priority task and the tasks being processed

2378-203X/22/$31.00 ©2022 IEEE
DOI 10.1109/HPCA53966.2022.00046

528

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

by the cores at a given execution instance. A CPS can
measure this metric at different time epoch-based intervals.
Priority drift is an important signal as it directly correlates to
work efficiency and communication cost. A low priority drift
among the cores implies that most cores are processing high-
priority tasks, which improves work efficiency. Moreover,
priority drift depends on the flow of high-priority tasks
among the cores, making it an excellent proxy to track and
optimize communication cost.

We propose HD-CPS, a software-hardware CPS design
that co-optimizes priority drift and communication cost at
runtime. HD-CPS decouples task transfer and processing
at the software level, which prevents serialization between
these two phases. It implements a per-core software receive
queue for inter-core task transfers, allowing task processing
to overlap transfer of tasks. The idea of bags from OBIM
is adopted to reduce the number of priority queue (PQ)
operations. A runtime heuristic optimizes bag utilization to
ensure that the benefits obtained by using bags outweigh
the computation costs of creating bags. HD-CPS proposes
a software feedback-driven runtime heuristic that calculates
priority drift among cores at different coarse-grain time
intervals. The priority drift at each interval is compared
against the previous intervals’ priority drift, and the task
distribution method adapts at runtime to optimize work
efficiency and communication cost.

The task transfers and PQ operations are identified as two
significant time-consuming software overheads. However,
these operations can be accelerated by offloading them
to hardware. HD-CPS introduces a lightweight per-core
hardware receive queue and a priority queue that does not
require global intervention. These queues offer lower latency
than their software counterparts, and are co-designed with
software to ensure optimized hardware overhead. The hard-
ware queues further improve priority drift by accelerating
task transfer and processing, resulting in high performance
scaling. With hardware support, HD-CPS outperforms Min-
now despite using considerably less hardware.

HD-CPS and state-of-the-art CPS designs, OBIM, PMOD,
Minnow, and RELD are evaluated using an Intel Xeon
machine with 40 cores. A software variant of Minnow
is modeled on the Intel machine by allocating dedicated
cores as minnow cores. The evaluation is performed using
representative graph benchmarks and inputs. HD-CPS is
shown to improve performance by 1.25x and 1.12x respec-
tively against PMOD and Software Minnow. The hardware
enhancements to HD-CPS are implemented in a RISC-V
based multicore simulator. HD-CPS improves performance
over Minnow with dedicated minnow cores by 8%.

II. RELATED WORK AND MOTIVATION

Task-based parallel programming models have gained
popularity because they are general-purpose and have supe-
rior performance [10]. This paradigm dynamically decom-

529

poses an algorithm into tasks that are scheduled to different
cores for parallel processing. In a graph setting, each parent
task represents a node that performs operations and creates
new children tasks (or nodes). Each task has a priority
associated with it, which depends on the algorithm.

There are two ways to process tasks according to their
priority. An unordered execution disregards priority, and the
algorithm executes tasks in an arbitrary order. This execution
mode results in ample parallelism but requires additional
iterations for convergence guarantees. Consequently, the
unwanted iterations heavily degrade work efficiency. On
the other hand, an ordered execution follows strict priority
constraints, where the highest priority tasks are always
processed ahead of low priority tasks. This execution mode
improves work efficiency. However, previous work (such
as KDG [12]) has shown that synchronization and com-
munication efforts required for ordered execution outweigh
the performance benefits. To overcome this, Swarm [14]
proposes speculation across ordering constraints using spe-
cialized hardware. Swarm achieves super-linear speedups
over sequential implementation at the cost of high hardware
overheads.

Previous works [10], [9] have shown that the task execu-
tion can follow a partial priority order to improve perfor-
mance instead of ignoring priority order. In this paradigm,
a concurrent priority scheduler (CPS) data structure selects
high-priority tasks and schedules them to different cores for
parallel processing. CPS reduces the communication burden
by selecting high-priority tasks instead of the highest priority
task at an execution instance. Following a relaxed priority
order, a CPS exploits multicore parallelism for improved
performance. However, due to the potential divergence of
priority ordered task processing across cores, a CPS may
end up executing redundant tasks. Therefore, a good CPS
design aims to select high-priority tasks with low commu-
nication among the cores to improve work efficiency of the
underlying algorithm.

A CPS can schedule tasks among the cores in two ways.
In a pull style CPS, a core pulls tasks from a global work-
list, or steals/requests work from other cores when it is out
of work. This mode minimizes communication since a core
only pulls work from other cores on demand. However,
minimizing communication can lead to divergence in task
priorities being processed by the cores. In a push style
CPS, each core continuously distributes tasks to other cores
to ensure high-priority task propagation and load-balanced
execution. However, this mode of task distribution leads to
high communication cost among the cores.

A. State-of-the-art CPS designs

A recent study conducted an empirical performance anal-
ysis of modern CPS designs [10]. It concluded that Galois,
ordered by integer metric (OBIM) scheduler, delivers high
performance followed by RELD. OBIM is a pull-style,

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

relax-ordered distributed priority scheduler that implements
a coarse-grain task distribution model. It merges tasks with
priorities in close range into a single priority distributed and
unordered bag. OBIM stores the bag metadata in a shared
global map data structure. Whenever a core runs out of work,
it first searches for the highest priority bag in the global map
and then process all tasks in that bag. Moreover, each core
adds newly created bags to the global structure. Following
this approach, OBIM schedules a few bags instead of many
tasks, which leads to reduced communication cost.

In OBIM, processing bags at fixed-size granularity leads
to tasks with diverging priorities in a bag, which degrades
work efficiency. PMOD [10] addresses the fixed bag size
constraint of OBIM. It dynamically estimates the usage of
bags at runtime. It merges and divides the bags based on
application behavior to prevent under- and over-utilization
of bags. Both OBIM and PMOD serialize task transfers and
processing that leads to degraded performance. Minnow [13]
introduces decoupling task transfers from processing using
hardware support. It introduces a per-core helper minnow
core to offload task (work-list) scheduling and pre-fetching
to improve communication cost. However, the performance
benefits come at the high hardware cost of dedicated minnow
cores.

RELD [10] is a push-style CPS that implements a fine-
grain task distribution model. It maintains a distributed array
of concurrent priority queues, where each priority queue
(PQ) is associated with a core. Each PQ is a software data
structure that stores tasks, and maintains ordering based
on task priority. The dequeue operation returns the highest
priority task available in the PQ. Each core dequeues a
task from its PQ, executes it, and distributes the generated
children tasks to other cores by selecting a remote core
at random. The continuous task distribution aims for load-
balanced execution, while keeping cores from diverging
on their execution of high-priority tasks. However, this
approach creates significant communication overhead.

All aforementioned CPS designs search high-priority
tasks, but they are unaware that cores may drift in priority.
Without explicit tracking of task priorities, a CPS cannot
adapt and compensate for the drift. Moreover, even if the
cores are not drifting, the CPS is unaware of the commu-
nication cost required for efficient execution. A CPS design
should track priorities of tasks and use it as a signal to co-
optimize drift and communication at runtime [15]. Adapting
for priority drift improves work efficiency of the algorithm,
which improves both communication and computation costs.
Moreover, if priority drift does not improve work efficiency,
the drift signal is helpful to optimize communication by
preventing unnecessary task transfers.

B. A case for priority drift aware CPS design

We quantify the priority drift of a core as the average
absolute difference of priority between its highest priority

530

task (Pp), and the highest priority of tasks being processed
by all the cores at a given time instance. A formal definition
of priority drift is shown in Equation 1 for N cores.

SN abs(Py — P;) 0
N

The use of priority drift seamlessly integrates in a push
style CPS design (RELD) since it implements fine-grain
controls for the rate of task distribution among the cores.
On the other hand, use of priority drift in a pull-style CPS
design (like OBIM and Minnow) is limited since it does not
offer direct control over adjusting the rate of task distribution
among cores. Therefore, we choose RELD as a starting point
for HD-CPS to optimize priority drift among cores using
hardware-software co-design for work-efficient execution. It
implements the following software methods.

Priority_Drift =

« A novel feedback-driven runtime heuristic that com-
putes priority drift among cores at different coarse-
grain time intervals. The heuristic allows each core
to independently adapt task distribution to minimize
priority drift among cores, improving work efficiency
and communication cost.

Decouple task transfers from task processing using a
dedicated per-core software receive queue, enabling fast
propagation of tasks and improving priority drift.
Dynamically cluster tasks with similar priorities into
bags that reduce task processing overheads, which
improves priority drift.

The proposed HD-CPS software capabilities show that PQ
operations and task transfer costs are the main contributors
to the execution time. The following hardware methods are
proposed to mitigate these overheads.

o Implement a per-core hardware receive queue to ac-
celerate task transfers. Further, the task transfers rely
on hardware messaging support in the on-chip network
to achieve low task transfer latency. Accelerating task
transfer helps lower priority drift among cores. Prior
works have implemented hardware messages for task
transfers (e.g., [16], [17], [18], [14]), including com-
mercial multicore processors [19], [20].
Implement a per-core hardware priority queue to ac-
celerate PQ operations. The low latency enqueue and
dequeue operations enable fast processing of tasks,
which improves priority drift among cores.

These proposed HD-CPS software and hardware methods
are described next.

III. HD-CPS ARCHITECTURE

A. Decoupling task transfer from task processing

HD-CPS uses software distributed per-core priority
queues (PQ) to store tasks. Each core continuously dis-
tributes tasks among the cores, which leads to load-balanced
execution and fast propagation tasks. However, the PQ is

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

used for both task transfer (enqueue) and processing (de-
queue). Since a core can perform remote enqueue operation
on any core’s PQ, it must be done atomically. Consequently,
a core must lock its priority queue to perform the dequeue
operation. Both enqueue and dequeue operations are time-
consuming, resulting in a rebalancing of the priority queue.
The blocking nature of these atomic PQ operations obstructs
the cores from processing and distributing tasks. These time-
intensive atomic operations prevent the propagation of high-
priority tasks among the cores and reduce the task processing
rate.

HD-CPS decouples task transfers from task processing.
Instead of using a single PQ per core for both these
operations, it uses two software queues per core, a receive
queue for incoming tasks and a priority queue for selecting
high-priority tasks for processing. The receive queue for
incoming tasks is a circular list and contains a finite number
of entries. Each slot comprises a flag and a placeholder for
task metadata. A sending core atomically increments the cor-
responding receive queue’s write pointer in the destination
core, then places its data into the slot and sets the flag. The
atomic increment on the pointer makes sure that multiple
cores do not write to the same slot. Each core processes
new task(s) in its receive queue with high priority, and moves
them to its priority queue for future processing. Unlike the
atomic operations on the priority queue, the receive queue’s
atomic operations are faster while the priority queue is
relieved from processing enqueue and dequeue operations
atomically. Figure 1:(1) shows the proposed decoupled per-
core receive queue and its task transfer flow, as well as its
interface with a core’s priority queue.

This separation of task transfer and processing allows the
sender core to transfer tasks faster. Moreover, a receiver
core eliminates the blocking atomic operations on its priority
queue, allowing for faster processing of high-priority tasks.
In turn, priority drift improves among the cores, resulting in
improved performance.

B. Adaptive processing of tasks and bags

Performing PQ operations at per task granularity can re-
sult in high PQ overheads. A PQ returns the highest priority
element on a dequeue operation. The addition and removal
of elements from the PQ result in re-ordering operations
within the queue to ensure this constraint. These ordering
operations are compute-intensive and dominate the overall
execution time. Moreover, these operations also obstruct the
cores from progressing forward, leading to increased priority
drift. One way of reducing these PQ overheads is to decrease
the number of PQ operations. HD-CPS uses bags of tasks
to overcome these overheads. Tasks with the same priority
are bundled together in bags (similar to the concept of bags
in OBIM). The bag consists of the payload for its tasks and
metadata to track the bag identifier and its priority. Only
the bag metadata is enqueued in the core’s PQ, while the

531

Coherent
Load(s)

Master e
Core
Task

Distribution
Factor

Task Executor
(Generates Child Tasks)

Enqueue Task
or Bag
Pointer

Task or Bag
Distributor

!
@ From Remote '@
Cores Receive Queue

Priority
Queue

Core Level View of HD-CPS:SW

Receive
Queue

I_Remote

Core

Figure 1: Core Level view of the HD-CPS Architecture.

payload is either stored at the sender or the destination
core’s side. The PQ at the destination core dequeues the
bag metadata when it becomes the highest priority at that
core. The storage of bag payload offers two implementation
options. (1) Store the bag payload at the sender core and use
coherent loads to retrieve data when the bag is dequeued
from the PQ. (2) Communicate bag payload alongside its
metadata and store payload and metadata at the destination
core’s PQ. Both these options are evaluated in the evaluation
section. However, the coherent loads option delivers better
performance since it transfers a bag’s payload on-demand
and exploits inherent data locality in large data payload
sizes.

Algorithm 1 Heuristic For Creating Bags of Tasks

Algorithm:
1: while (PQ # 0) do

2: task = Q.pop ()
3: children_tasks = PROCESS_TASK(task)
4: <priorities, task_ids> =

COUNT_PRIORITY(children_tasks)

5 for priority in priorities do

6: if priority.count within threshold then
7: bag = CREATE_BAG(task_ids)

8: SEND(bag)

9: else

10: SEND(tasks)

Selecting bag or individual task for processing: HD-
CPS utilizes bags when it is beneficial to process proximity
priority tasks together. It implements a heuristic to transfer
an individual task or a bag at runtime. The highest priority
task (or bag) is executed to generate children tasks on each
dequeue of a core’s PQ. Algorithm 1 shows the modified
dequeue operation in a core. Instead of sending all children
tasks one by one to their destination PQs, HD-CPS bundles
the tasks with approximate priorities into bags (Algorithm 1,
line 7-8). However, children tasks that do not fall in a

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

priority range are still distributed at the task granularity
(Algorithm 1, line 9-10). HD-CPS chooses a bag when
the payload size exceeds a threshold (>3 but <10 tasks
used in this paper), while it distributes the tasks individually
otherwise (Algorithm 1, line 6). The latter is chosen when
the payload is small; thus, it is beneficial to distribute tasks
individually and insert them in their destination PQ. HD-
CPS also puts an upper bound on the bag size. If the bag
size is quite large, it can bind the core to process all assigned
tasks even if high priority tasks/bags are available in cores’
PQ. Therefore, HD-CPS uses an empirically determined
upper bound to make the system robust against this issue.
This adaptive behavior avoids unnecessary computations
associated with handling individual tasks as bags, i.e., insert
bag metadata in a PQ, and then separately retrieve its
payload on dequeue. Figure 1:(3) and (@) visualizes the flow
of task and bag at the core level in HD-CPS.

C. Priority drift-aware task distribution among cores

As discussed in Section II, work-efficiency and com-

munication are both directly related to priority-drift. A
high priority drift indicates that not all cores process high-
priority tasks, which degrades work efficiency. Thus, if the
priority drift is deteriorating during execution, the rate of
task transfers among the cores must be adjusted to improve
it. However, this value needs to be a non-zero number as
the task distribution improves load balance among cores,
even when it incurs communication cost. Moreover, it is also
essential to be aware that increasing the task distribution rate
may not help improve priority drift at some point. There-
fore, aggressive task distribution without motioning priority
drift can lead to superfluous communication overheads.
Moreover, it does not account for the fact that increasing
communication also obstructs the cores from processing
tasks, ultimately increasing priority drift.
Feedback drift-aware heuristic for task distribution:
HD-CPS proposes a history-based heuristic for task distri-
bution that optimizes both priority drift and communication
cost. The objective is to keep the priority drift low while
preventing unnecessary traffic into the on-chip network. The
heuristic quantifies task distribution using a metric task
distribution factor (TDF), which is defined as the ratio of
remote enqueue operations and the total number of enqueues
performed by a core. For instance, consider a TDF of 75%,
then the core will send three tasks out of every four enqueued
tasks to random cores, and the remaining one task will be
inserted into its own priority queue.

The heuristic measures priority drift among the cores at
different coarse grain time intervals and compares it with
the previous interval’s priority drift to determine the next
interval’s task distribution factor. It also keeps track of
whether TDF was increased or decreased in the previous
sampling period. To calculate priority drift, after processing
a fixed number of tasks (2K in this paper), each core sends

532

Algorithm 2 Task Distribution Factor calculation

T DF': Task Distribution Factor
pd: Average priority drift of current interval
pd_prev: Average priority drift of previous interval
decision_prev: Previous decision to increase or decrease tdf
Algorithm:

1: for all (cores) do
pd += ABS(remote_priority - master_priority)
:pd=pd/ NUM_CORES

»

3
4:
5: if (pd > pd_prev AND decision_prev == increase) then
6: TDF =TDF -1
7: decision_prev = decrease
8: else if (pd > pd_prev AND decision_prev == decrease)
then
TDF =TDF + 1
decision_prev = increase
else if (pd < pd_prev) then
TDF =TDF -1
decision_prev = decrease

9:
10:
11:
12:
13:
14:
15: pd_prev = pd

Algorithm 3 Transfer of latest priority value to master core

send_threshold: Sampling interval.
processed: Number of tasks processed
master_id: Master core id
PQ: Priority Queue
Algorithm:

1: while (PQ # 0) do

2: task = Q.pop ()

3 PROCESS_TASK(task)

4 processed = processed + 1

5: if (processed == send_threshold) then
6 SEND(master_id, task.priority)

the priority of its latest task processed to a dedicated core
(c.f. Figure 1:(@ for core level view, and Algorithm 3 for the
decision flow). After receiving task priorities from all cores,
the dedicated core calculates the relative priority differences
to get the average priority drift (c.f. Algorithm 2, lines 1-3.).
It then compares the calculated priority drift to the previous
interval’s priority drift to decide about its TDF value. A
positive difference implies priority drift is getting worse
and leads to two scenarios. If the TDF was increased in
the previous interval and the latest drift worsened, then the
next TDF is decreased as increasing communication did not
help the priority drift (c.f. Algorithm 2, line 5-7). Similarly,
if the TDF was decreased in the previous interval and the
latest drift worsened, the next TDF is increased to improve
the priority drift (c.f. Algorithm 2, line 8-10). A negative
difference implies priority drift is getting worse. However, in
this case, the TDF is always increased as the heuristic’s goal
is to optimize priority drift (c.f. Algorithm 2, line 11-13).
A key advantage of this heuristic is that it is non-blocking.
It does not block the remote cores as they proceed with an

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

old value of TDF until the new value propagates to them.
However, it does require computations on the dedicated
core’s side for TDF decisions. Thus, the granularity at which
HD-CPS updates TDF needs to be selected empirically, as
discussed in the evaluation section. Moreover, the initial
value of TDF also affects the subsequent decisions of the
heuristic. We use an initial value of 50% based on empirical
results discussed in the evaluation section.

Adaptive TDF Oracle: To evaluate the efficacy of the
proposed adaptive TDF heuristic, an oracle TDF is intro-
duced. It starts by sweeping all TDF values for the first
sampling period, and selects the best TDF that results in
the highest performance. The algorithm is executed again
with this optimal TDF for the first interval. But the TDF is
now swept again for the second interval to select its optimal
TDF. Continuing in this manner, the dynamic oracle finds the
best TDF for each interval iteratively, and creates a history of
best TDF values for each sampling interval. The algorithm is
then executed with these best TDF values at each sampling
interval and the completion time is measured. The oracle
only serves as a method to compare performance against
the proposed adaptive TDF heuristic.

D. Hardware acceleration of task transfer & processing

As discussed in Section III-A, HD-CPS uses a per-core
receive queue to decouple task transfers from task pro-
cessing. However, this software approach keeps the cores’
pipeline busy as it requires computation to transfer the task
into a remote core’s receive queue. Moreover, the software-
based priority queue operations (enqueue and dequeue)
significantly contribute to the total completion time of a task-
parallel program. The reason is that these operations block
the cores from processing and distributing tasks, where cores
are occupied in ordering the priority queue elements for fast
priority access.

HD-CPS mitigates the challenges mentioned above using
software-backed hardware queues. It implements a dedicated
per-core hardware receive queue, hRQ. Moreover, it also em-
ploys hardware-based non-blocking core-to-core messages
to transfer tasks between cores [19]. The hRQ along with
fast hardware messages lowers communication cost and
improves task propagation and transfers, thus optimizing
priority drift. HD-CPS also implements per-core hardware
priority queue, hPQ, which offers much lower latency than
its software counterpart and accelerates enqueue/dequeue
operations. The number of entries in both these queues is
limited as these queues act as buffers for already existing
software queues. The interactions between software and
hardware queues is core local, and does not require any
global intervention.

Lifetime of a Task: A core receives a task when it
performs an local enqueue operation (c.f. Figure 2: (3@),
or a remote enqueue from another core (c.f. Figure 2: (b ,

@2). Remote enqueues are done using hardware messages in

533

Remote
Insert |

® Remote Receive
hrRQ
wpt
Task State
//' Machine
Local Insert

Figure 2: hRQ and hPQ hardware queues in HD-CPS.

Software
Receive Queue

CORE

the on-chip network [19]. These messages are asynchronous;
thus, the sender core can proceed forward after injecting
a message into the network (c.f. Figure 2 (D). On the
receiver core side, every incoming message is added to the
hardware receive queue (c.f. Figure 22). This step does
not require any software intervention from the core. If the
hRQ is full, the incoming task(s) are pushed in the software
receive queue. An interrupt is flagged whenever a remote
message arrives at a core, triggering an interrupt service
routine (ISR). The core invokes the task state machine to
transfer tasks from the hardware-software receive queue to
the priority queue using the ISR. This interrupt is serviced
with high priority when the core is not executing its PQ-
related operation.

The enqueue of tasks in the hPQ is handled by the
task state machine (c.f. Figure 2:3)). The goal is to
efficiently utilize the hardware entries in the hPQ since the
number of entries is finite. If the hPQ is full, the least
priority task is evicted from the hPQ to make space for
the incoming task. Consequently, the evicted task is moved
to the software priority queue. The core continues its future
operations without waiting for the software task queue to
rebalance its elements, as it is done by dedicated logic.
Thus, the rebalancing operation is asynchronous with the
core’s pipeline. In essence, the hardware priority queue acts
as a buffer to hide the rebalance latency. In the case of
low hPQ utilization, all tasks fit and result in fast enqueue
latency. However, when priority queue utilization is high,
the buffering nature of hPQ advocates hiding the latency
overheads of balancing the software priority queue.

On a dequeue operation (c.f. Figure 2:(4)), the core
removes the highest priority task from the hardware or
software priority queue. If tasks are present in the software
queue, the dequeue operator checks the balanced software
queue with a constant latency. This is done in parallel to
the dequeue operation on the hardware queue. The highest
priority task from the software queue is compared with
the one acquired from the hPQ, after which the highest
priority one is selected to be returned to the core pipeline.
If the task is removed from the software queue, it needs to
be rebalanced. Here again, the rask state machine makes
sure there is no pending balancing operation. If there is
a pending operation, the core stalls; otherwise, the core
continues its work while the software queue gets rebalanced

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

in the background.

Queue sizing and utilization: The size of both hardware
queues has an impact on performance. However, it is difficult
to predict the queue sizes as their usage depends on the
algorithm and input. For example, the usage of hPQ is
relatively high for dense and large graphs. As these factors
are difficult to control, the size of both these queues is
determined empirically, optimizing both performance and
hardware overheads. Our evaluation has chosen the sizes
32 and 48 for hRQ and hPQ respectively.

The size of each entry in the hRQ and hPQ is 128 bits.
Each entry contains two fields, ID and data, each of which is
64 bits. The total hardware overhead for a 32 entry hRQ and
48 entry hPQ is 1.25K B per-core. If the size of both these
queues is set to zero, then the system becomes a software-
only solution without any hardware acceleration.

Flow control of hardware messages: The hardware receive
queue is backed up in software; therefore, there is no need
for precise flow control. However, HD-CPS uses a flow
control mechanism to prevent over-utilization of hRQ. Each
core maintains an array of shared hardware flags, capacity
counter for all other cores. When a sender core chooses
a random destination core, it checks the corresponding
capacity counter atomically. If the flag is set, the sender
core chooses some other core to send the message. However,
if the flag is not set, the core sets the flag and sends the
message. The destination core is responsible for moving the
tasks in its receive queue to the priority queue. Whenever
the task is moved to the priority queue, the sender core’s
capacity counter flag is cleared to send other tasks.
Termination Condition: Whenever both priority queue and
receive queue of a core are empty, it broadcasts its status
to all other cores in the system. Moreover, the core also
checks the status of these queues for all other cores. Each
core terminates when all other cores are out of work. As
the hardware messages are asynchronous with the core’s
pipeline, a message can be in transit when the termination
check happens. HD-CPS addresses this situation by using the
hardware messages flow control mechanism. Each core also
checks its capacity counters to ensure no incoming message
are outstanding.

IV. METHODOLOGY

A 40-core Intel Xeon ES5-2650 v3 multicore CPU with
4 sockets, and 10-cores per socket is used for evaluation.
The machine has 512GB DDR4 RAM and a 25M B L3
last-level cache. All benchmarks use the pthreads library
to utilize up to 80 threads and are compiled using the g++
compiler (v 6.4.1).

The hardware queues and messages in HD-CPS, as well
as Minnow and Swarm are implemented using an in-house
industry-class RISC-V multicore simulator [21]. A 64-core
tiled multicore processor with a two-level coherent private
L1, shared L2 cache hierarchy per core, and a 2D mesh

Number of Cores

[64 RISC-V, In-Order @ 1 GHz |

Memory Subsystem

L1-I, LD-D Cache per core | 32 KB, 4-way Assoc., 1 cycle
L2 Inclusive Cache per core | 256 KB, 8-way Assoc.
Directory Protocol Invalid—based MESI, ACKwise4
DRAM Controllers 8, 10 GBps per Contr./ 100ns

Electrical 2-D Mesh with XY Routing
2 cycles (1-router, 1-link)
Only link contention, 64 bit Flits
(Infinite input buffers)

Hop Latency
Contention Model

Hardware Queues

32 hRQ, 48 hPQ entries
5 cycles per access
128-bits

Per-core Queue Entries
HW Queue Latency
Task and Bag ID Size

Table I: Multicore simulator parameters for evaluation.

on-chip network with X-Y routing is evaluated. The default
architectural parameters used for evaluation are shown in
Table I. Task management instructions are added to the
ISA, which include enqueue to add a task to the task
queue using core-to-core hardware messaging support. The
dequeue instruction pops a task with the highest priority
from the priority queue. The results from the simulator are
also correlated with Tilera®Tile-Gx72™ multicore proces-
sor [19].

A. Software CPS Designs

All software CPS designs are evaluated using the 40-
core Intel Xeon machine. Open-source implementations of
OBIM and PMOD [9], [10] are used from the Galois
framework (version 2.2.1). Software Minnow [13] is im-
plemented on top of OBIM by partitioning the total number
of available cores in the processor into two groups. The
first group executes the worker threads that perform task
processing operations. The second group executes Minnow
threads responsible for prefetching task data, and storing
generated tasks (bag) into data structures used by the as-
sociated worker threads. Software Minnow is implemented
using 36 worker and 4 minnow cores in the Intel Xeon
machine. This selection process is empirically evaluated in
Section V-C.

The open-source implementation of RELD is used from
the Galois framework release of PMOD [10]. HD-CPS:SW
uses the RELD implementation as its starting point, but it is
implemented in the latest version 5 of the Galois framework.
The following software configurations are evaluated for HD-
CPS.

« SRQ implements decoupling of task transfer from pro-
cessing using the method outlined in Section III-A.

« SRQ + TDF adds priority drift heuristic on top of sRQ
as discussed in Section III-C.

« SRQ + TDF + AC always uses bags on top of sRQ +
TDF as mentioned in Section III-B.

e SRQ + TDF + SC uses the heuristic from Section III-B
to select tasks or bags. This configuration is also

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

referred to as HD-CPS:SW.

B. Hardware assisted CPS Designs

In Minnow [13], each worker core is paired with a
dedicated minnow helper core that performs the bag pre-
fetch operations. These hardware capabilities are modeled
in the RISC-V multicore simulator. HD-CPS:HW is also
modeled in the simulator by adding the following hardware
capabilities on top of HD-CPS:SW.

« hRQ implements hardware receive queue for task trans-
fers as mentioned in Section III-D.

« hRQ + hPQ implements hardware priority queue on
top of hRQ as discussed in Section III-D. This config-
uration is also referred to as HD-CPS:HW.

Swarm [14] exploits task-parallelism for strictly ordered
algorithms that go well beyond a CPS design’s scope.
It employs speculative task execution in hardware, where
tasks are processed out-of-order but always committed in-
order. At commit time, if a task is determined to have
violated task ordering constraint during its execution, the
task along with all children tasks originating from this task
are recursively killed. This process requires reverting all
memory modifications made by the task being killed, as well
as its children tasks. Although this approach results in super-
linear speedup compared to sequential implementation, it
requires multiple per-core task, order, and commit queues.
This results in 10s of kilobytes of hardware overhead per
core, as well as complex parallel lookup logic. Swarm is
also modeled in the RISC-V multicore simulator.

It is non-trivial to outperform Swarm due to its highly
sophisticated hardware for out-of-order task execution. How-
ever, HD-CPS:HW is compared against Swarm to demon-
strate that it can reach Swarm’s level of performance using
significantly less hardware.

C. Breakdown of Completion Time

The performance of each CPS design is measured by
tracking the parallel completion time. To gain insights, the
completion time measurements are also tracked as follows:
enqueue incorporates the time to enqueue a bag or a task,
and time spent in creating bags; dequeue is the time to
dequeue a task or a bag (and tasks inside it); compute is
the time to process tasks by a core; comm is the time spent
in transferring tasks and the time spent while the core is
idle. For Swarm, the cost of rollback is shown as part of the
compute component.

D. Evaluation Benchmarks

The following task-parallel graph benchmarks from the
PMOD [10] baseline are used for evaluation. Each bench-
mark picks its best performing sequential baseline and state-
of-the-art parallel, shared memory implementation.

Single Source Shortest Path (SSSP) algorithm uses Delta-
Stepping [22] to find the minimum distance paths from a

535

Inputs Nodes Edges | Avg. Deg. | Max. Deg.
CAGE14 [28] 1.505M | 234M | 34 80

rUSA [29] 24M 58M 1.2 9
Web-Google [30] | 875k 5M 11 6.4K
LiveJournal [31] 4.8M 69M 28 20k

Table II: Input graphs and their respective statistics.

source vertex to all vertices in a weighted graph. Each task
processes a vertex whose priority is its distance from the
source node, with lower distances having a higher priority.

A* Shortest Paths (A¥*) is a search algorithm that utilizes
a heuristic to guide its search [23]. Like SSSP, each task
processes a vertex, and its priority is the sum of its distance
from the source node and heuristic’s value.

Breadth-First Search (BFS) starts from a source vertex and
searches vertices in a graph using the edge first method with
the weight of each edge set to one [24]. Each task processes
a vertex whose priority is its distance from the source node,
with lower distances having a higher priority.

Minimum Spanning Tree (MST) uses Boruvka’s algo-
rithm [25] to find a spanning tree over all vertices with
minimum total edge weight. Each task processes a vertex,
picks the minimum weight edges, and merges them with the
corresponding neighbor. Each merge results in a new task
and is prioritized by its degree.

Graph Coloring (Color) implements vertex coloring based
on their saturation degree [26]. Each task processes a vertex
and tasks are prioritized by their degree.

PageRank determines the rank of a vertex in a graph. This
work uses push-pull version [27] that calculates a vertex’s
rank by evaluating incoming edges and propagating the
change to the vertices associated with outgoing edges. Tasks
are prioritized according to their rank using integer numbers
to make them compatible with OBIM.

E. Evaluation Inputs

Table II shows the evaluated directed graph inputs and
their characteristics. These graphs represent varying degrees,
densities, and sizes. We note that the size of hardware queues
does not depend on graph size; instead, it depends primarily
on the density of the graph. We evaluated several dense
graphs of large size (e.g., Twitter graph), and found our
results to be consistent with the evaluated inputs, CAGE14,
LJ, and WG. For a dense graph, a parent task generates
more children tasks than a sparse graph. However, as long
as the receive queues are cleared at a reasonable rate,
the core can accept new tasks and keep the priority drift
low. Dense graphs also take advantage of bags, thereby
reducing communication cost and keeping the receive queue
utilization low. In addition to dense graphs, we also evaluate
a sparse representative graph from the USA road networks.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

WRELD OOBIM HSoftware Minnow DHD-CPS:SW

Normalized Speedups
over PMOD

over PMOD

Normalized Priority Drift

N @R
S $FF S
ST Y EE

. Q . &
A > °

o O N QO
& T MRt

Figure 3: Completion times and Priority drift normalized to
PMOD on Intel Xeon.

V. EVALUATION

Figures 3 shows the performance evaluation of RELD,
OBIM, Software Minnow, and HD-CPS:SW normalized to
PMOD on the Intel Xeon machine. The figure also shows the
average priority drift computed at different fixed sampling
intervals during the execution of each workload. RELD
is not aware of priority drift, which leads to unnecessary,
redundant task executions. Second, it suffers from unwanted
communication due to constant distribution of tasks among
the cores. The results show an average of 1.4x increase
in priority drift that translates to more than 2.2x perfor-
mance loss compared to PMOD. In OBIM, when bags are
under-utilized (e.g., SSSP, BFS, and A* with USA graph),
the priority drifts among cores, resulting in performance
loss compared to PMOD. PMOD optimizes priority drift
over OBIM using better bag utilization. Software Minnow
exploits parallelism in OBIM by hiding the latency of
task transfers. However, it also suffers as some cores are
allocated as minnow cores. The loss of computing power
in Software Minnow hinders performance. Overall, both
PMOD and Software Minnow improve priority drift, and
thus performance over OBIM.

HD-CPS:SW tracks and adapts to improve priority drift
across cores. In general, the improvement in priority drift
translates to consistent performance improvements. The
gains in performance may not correlate with gains in priority
drift across different workloads as the priority’s role is dif-
ferent for each workload. Moreover, even if the priority drift
does not improve, HD-CPS:SW manages communication
cost better by dynamically adapting the task distribution rate
(e.g., Color-USA). Overall, HD-CPS:SW improves perfor-
mance over PMOD and Software Minnow by 1.25x and
1.12x respectively.

Figure 4 shows the performance scaling with increasing

40

SSSP-USA SSSP-CAGE BFS-USA BFS-CAGE

HD-CPS:SW

s s PMOD o=
20 = A c
— = = = s
=z z

1

1 20 401 20 40 1 20 401 20 40
40 "

PR-lj Color-USA Color-CAGE

Speedups over Sequential
~
S

-

1
Number of Cores

Figure 4: Performance normalized to optimized sequential
implementation on Intel Xeon. X-axis shows the number of
threads.

core counts for PMOD and HD-CPS:SW on the Intel ma-
chine. HD-CPS-SW consistently performs better or at par
with PMOD, and its performance increases with increasing
core counts. This behavior is primarily attributed to higher
communication cost at higher core counts that HD-CPS-
SW is able to overcome better with its explicit tracking of
priority drift among cores.

Figure 5 shows the completion time breakdowns and pri-
ority drift of different workloads with HD-CPS:SW variants
normalized to RELD. sR(Q accelerates task transfers using a
per-core software receive queue and leads to two cases. (1)
It improves priority drift and subsequently improves work
efficiency, which reduces the number of tasks processed.
Therefore, sR() improves all the breakdown components
(e.g., SSSP-USA, A* USA, BFS and, PR). (2) It improves
priority drift, but the amount of work done does not change
significantly. However, this case shows improved commu-
nication delays (e.g., SSSP-CAGE, MST, Color, and A*-
CAGE). sRQ improves performance over RELD by 1.3x.

sRQ+TDF uses priority drift to balance communication
and the total amount of work. In some cases, it improves the
priority drift significantly and thus improves work efficiency
(e.g., SSSP-USA, A* USA. BFS and PR). However, adapt-
ing TDF prevents aggressive task distribution in other cases,
thus improving communication cost (e.g., SSP-CAGE, A*-
CAGE, MST, Color). sRQ + T DF improves performance
over RELD by 2x.

sRQ+TDF + AC always creates bags and is beneficial
when each parent task creates several children tasks (e.g.,
SSSP-CAGE). However, it hurts performance when a parent
task creates few children tasks (e.g., SSP-USA, A*-USA,
MST, and Color). These cases show increased enqueue and
dequeue costs due to the additional bag creation overheads.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

N

[T
N o
® >
E_‘._:0.5
s .2
Za
0
12
«
g @ Compute B Enqueue @ Dequeue BComm
- z E B :
5 g g g g g
= 08 |H = H = =
H B B g B
£
E o6
o
T 04
N
]
£ 02
LT 1T
z
0
ogwQV ogwQY ogw Qv aQow OV ogwQY ogwQY ogwQV [-R-A"E°R*) ogwQY ogwQv ogwQY agowQQ agwQQ
2ERTY [2ERTY [2%RTY |2€RTY [FEETT |2%8TT |2%ETT |2%ETY |2%ET7Y |2%eTY |2%eTY [2%eTY |2%eTY
3 +"‘E 3 +"‘E 3 +“‘E 5 +“‘E 3 +"‘E 3 +"‘E 3 +“‘E 5 +“‘E 3 _,,u_a_ 3 _,,u_l_nl_ -3 +"“E 3 +“‘E 4 _,,u_a_
ger ger ger ger ger ger ger ger ger ger ger ger ger
6oy o+ G o4+ G o+ G o+ o+ G o4+ G o4+ C G+ G o4+ G o4+ G o4+ w4 o+ G+ o+
ggd gg gg gg gg gg gg gg gg g9 gg gg g g
2% 2% 3 2% Z% 2% 2% 2% 2% g% 2% 2% 2%
SSSP - USA SSSP - CAGE BFS - USA BFS - CAGE MST - USA MST - CAGE PR-1j PR-wg A* - USA A* - CAGE Color - USA Color - CAGE GEOMEAN
Figure 5: Completion times and Priority drift of HD-CPS:SW variants normalized to RELD on Intel Xeon.
1.2
E B Compute BEnqueue EDequeue BComm
£ 1B = = = = =
H = = = = = =
208 |M B = = A B
% I = I I =
g L] il
o
o
o
[
]
]
£
£
o
z
0
299 |39¢ |3¢¢9 (3¢9 |39¢ |39¢ |[3¢9¢ |3¢¢ |39¢ |3¢¢ |3¢¢ |39¢ |3¢¢
@ < < & < < & < < @ < < & < < @ < < @ < < & < < & < < @ < < & < < @ < < @ < <
o + -9 + o + o + o + o + -9 + -9 + o + -9 + -9 + o + o +
9 g Q g Q g 9 g Q g Q9 g 9 g Q g 9 g 9 g Q g Q9 g Q g
g £ |2 £ |2 £ |2 E |2 £ |2 £ |2 £ |2 £ |2 £ |2 £ |2 2 |2 £ |2 £
SSSP-USA | SSSP - CAGE | BFS-USA | BFS-CAGE | MST-USA | MST - CAGE PR-j PR-wg A* -USA A*-CAGE | Color-USA | Color - CAGE |GEOMEAN

Figure 6: Completion times of HD-CPS:HW variants normalized to HW-CPS:SW on the Simulator.

sRQ + TDF + AC improves performance over RELD
by 1.9x, which is worse than sRQ + TDF. However,
sRQ +TDF + SC selectively creates bags and overcomes
the shortcoming of sRQ + T'DF + AC. It significantly
reduces enqueue and dequeue overheads where bags are
helpful (e.g. , SSSP-CAGE, A*-CAGE). sRQ+TDF +SC
improves performance over RELD by 2.4x.

A. Evaluation of HD-CPS:HW

Figure 6 shows the completion time breakdowns of dif-
ferent workloads with HD-CPS:HW variants. These break-
downs are normalized to HD-CPS:SW. hR(Q lowers com-
munication cost for all workloads due to faster task prop-
agation. The overall improvement achieved by hR(@) over
HD-CPS:SW is around 10%. The benefits of hRQ + hPQ
primarily depend on the priority queue (PQ) utilization. In
sparse graphs (e.g., USA), the PQ utilization is around 50
tasks per PQ at any given time. However, for dense graphs
(e.g., CAGE), PQ utilization can reach several thousand
tasks. Therefore, when PQ utilization is low, the benefits
shown by hRQ + hPQ are high. When PQ utilization is
high, hPQ still shows good performance benefits due to
the buffering and latency hiding nature of hP(Q. Moreover,

537

80
70
60
50
40
30
20

Sequential

Geomean of Performance over

A
o
Y
S

Figure 7: HD-CPS:HW with different queue sizes. The tuple
on x-axis shows hRQ size, followed by hPQ size for each
configuration.

hPQ@ allows faster transfer of tasks from receive queue to
hPQ@, allowing the priority drift to stay in check. Overall,
hPQ + hRQ improves performance over HD-CPS:SW by
20%.

1) Sizing of Hardware Queues for HD-CPS:HW: Figure 7
shows the geometric mean performance of the evaluated
benchmarks using different queue sizes for HD-CPS:HW.
The initial five setups fix hPQ size to 32 and decrease

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

= mSwarm EMinnow GHD-CPS:HW
£ 100 - i
3 - L -
§ "EH s 1S Bl E NG BE
e EEEEEL
s 40 1WE BH BE BE 5 BH BE B2 KR RE KE
2 =: = ’: = = :: = :: H K8 RE
2 20 3i0E Ko RE RE BE = e B BE KE :E ;E ;E
s e E D WE BE BE BE S KH BE B B BS
)
< 3 PN < 3
FTETIFT TS TS
S L & < L

Figure 8: Performance speedup over sequential baseline for
Swarm, Minnow and HD-CPS:HW on the Simulator.

the hRQ size from 1024 to 32 entries. We observe that
hRQ utilization is approximately 30 or average; hence
performance drops when its size decreases from 32 to 24.
After tuning hR(Q size to 32, the hP(Q is increased in the
following three setups. Performance improves when h P(Q) is
increased from 32 to 48 but saturates at larger hPQ) sizes.
This behavior is in line with the earlier observation that PQ
utilization is either 50 or in thousands based on the type of
the input graph. Based on this empirical analysis, we pick
the default size of 32 for hR(Q and 48 for hP(). Since each
entry is 128 bits wide, the total per-core overhead of these
queues is 1.25K B.

2) HD-CPS:HW comparisons to Minnow and Swarm:
Figures 8 shows the speedups of Minnow, HD-CPS:HW, and
Swarm for the evaluated workloads. Swarm maintains strict
ordering of tasks during execution, resulting in high work
efficiency. It also allows executing tasks out of order, which
results in high task-level parallelism. However, it incurs
performance penalties whenever speculative tasks are rolled
back. Overall, Swarm achieves geometric mean speedup of
66x over sequential workload implementations. Minnow
fails to reach Swarm’s level of performance as some work-
loads show low work efficiency due to highly divergent task
priorities (e.g., SSSP-USA, BFS-USA, A*-USA). However,
for dense graphs Minnow exploits the available task-level
parallelism and achieves competitive performance against
Swarm. HD-CPS:HW co-optimizes for priority drift and
communication cost at runtime, resulting in competitive per-
formance for all workloads against Swarm. Overall, Minnow
achieves 48x, while HD-CPS:HW achieves 61x speedup
over sequential workload implementations. Swarm edges
ahead compared to HD-CPS:HW by ~7%. However, this
performance improvement comes with significantly higher
hardware overheads compared to HD-CPS:HW.

Figure 9 shows the completion time breakdowns of Min-
now and HD-CPS:HW relative to Swarm. Swarm shows the
lowest compute time component compared to other systems
as it achieves the highest work efficiency. This behavior is
prominent for the USA road network graph, where priority
divergence is a challenge. On the other hand, task priorities

538

do not diverge in dense graphs like CAGE. Hence, Swarm
is unable to gain performance over the CPS designs. HD-
CPS:HW optimizes priority drift as compared to Minnow,
which results in higher work efficiency, as evident by the
improvements in compute component for most workloads.
Minnow improves enqueue and dequeue components due
its decoupling of bag pre-fetching from task processing.
However, it shows high compute and communication costs
due to degraded work efficiency. HD-CPS:HW also opti-
mizes for communication cost at runtime, which allows it
to incur lower comm latencies as compared to Minnow. As
compared to Swarm, HD-CPS:HW is unable to achieve strict
ordered processing of tasks for some workloads, such as
SSSP-USA and A*-USA. This results in relatively higher
compute, enqueue and dequeue costs. Overall, our evaluation
highlights that HD-CPS:HW is competitive against Swarm,
and outperforms Minnow by ~8%.

B. Correlation between Simulator and a Real Machine

The simulator used in the evaluation is modeled after
Tilera’s 72-core multicore processor. Moreover, the Tilera
multicore also supports core-to-core hardware messaging,
and per-core hardware receive buffer capability. These fea-
tures enable the implementation of HD-CPS:SW and hRQ)
on Tilera. To determine the efficacy of the simulator’s
performance models, Figure 10 shows the performance
evaluation for the simulator versus the Tilera machine. Both
HD-CPS:SW and HD-CPS:HW (hRQ only) results show an
average performance variation of ~5%, which validates the
efficacy of our simulator results.

C. Analysis of Software Minnow Configurations

Figure 11 shows the performance evaluation of different
worker and minnow core configurations on the Intel Xeon
machine. For example, the 36—4 configuration implies 36
worker cores and four minnow cores. Each minnow core
is responsible for prefetching bags from the work-list for
nine dedicated worker cores. For the sparse USA graph, in-
creasing the number of minnow cores improves performance
because bag size in this input is underutilized, resulting
in many work-list prefetch operations. However, increasing
the minnow cores past a certain point shows performance
degradation due to the loss of parallelism for worker cores.
All other input graphs are relatively dense, resulting in
better bag utilization, thus requiring much fewer work-list
prefetches. Therefore, Software Minnow benefits from fewer
minnow cores and more worker cores in these cases. Overall,
we select the 364 configuration as it delivers the best
geometric mean performance.

D. Analysis of the Adaptive TDF Scheme

Figure 12 shows the performance of HD-CPS:HW and
dynamic oracle compared to PMOD. HD-CPS:HW performs
at par with dynamic oracle in cases where task priorities are

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

1.6

] = B Compute

g 14 =

= =

c 1.2 =

L 8 B = 8

o 1 |=m BB = H B = = = = =

s B { BHEE H B EBEE H

go.s DEHN EHQ § HE O E

3 i Tl OHdT NI

3 0 N | il I

5 04

E

5 0.2

4

0
E 33 E 33 E 33 E 33 E 33 E 33
s 2 T s 2 X s & s 2 T s 2 X s 2
2 £9 2 EY9 2 £9 2 £9 2 £9 2 £9
756 P8¢ ["EG |"8G |86 ["EGQ

[=] [=] o [=] [=] [=]
I T T T T T

SSSP-USA | SSSP-CAGE | BFS-USA | BFS-CAGE | MST-USA | MST- CAGE

BEnqueue @EDequeue

Swarm

Ellg HE
E £ 22 £ 23 £ 32 £ 33 £ 23 £ 322
2z s 2= s 2 s 2 s 2 s 2z s 2=
£ 9 2 £ 2 E£E% 2 £ 2 E£8 2 £9 2 £8
] s 9 =] s 9 s 9 s 9 = 9
[=] [=] [=] [=] [=] [=] [=]
I I x I T T I
PR-Ij PR-wg A* - USA A*-CAGE | Color-USA | Color - CAGE [GEOMEAN

Figure 9: Completion time breakdowns of HD-CPS:HW, Swarm, and Minnow normalized to Swarm on the Simulator.

100

W HD-CPS:SW - Simulator EITile-Gx72

Performance over
Sequential

]
3 =
g £
c €
FE)
£3
]
]
a
FE& P EFE D@ E &S
Q'& & 5’09 o‘?(’,\,\"’ & N Qfx*‘\g-, o é\g-) & &v
Q’ . . *7 ¢ & o
e"s"é‘é"&@ LG e

Figure 10: Performance comparisons of Simulator versus
Tilera Machine.

1.6

g 14 IMinnow(36-4) EMinnow (32-8) B Minnow (20-20)
2 121p /] L— —
3 1 ’ F] H o5 1 :- . v
il b HLEEEEELEERE
e BB ELEEEEEEEEE
S oaiNE KE WE BEH BE BE BE BE RE BE BE KE RE
'EHE BE BE RE BE BEH B2 BEH BE BH RE BE
: 2 HEEEEEEEEEEEE
2
< N <
S & S & F e «*‘Q’y"’i & TS
F&ELEE ¢ P

Figure 11: Performance evaluation of different Minnow
configurations on Intel Xeon.

close to each other, i.e., most benchmarks that use the CAGE
input. However, in cases where priorities are divergent (e.g.,
SSSP-USA and PR), dynamic oracle shows a slight improve-
ment over HD-CPS:HW. The adaptive heuristic changes the
TDF incrementally, while the dynamic oracle swiftly picks
the right TDF for a given interval. Overall, the performance
of the heuristic is comparable with that of the Dynamic
Oracle.

539

%‘: 25 WHD-CPS:HW EDynamic Oracle
«
Qo
=]
°
[
[
Qo
)
-}
[
N
©
£ A A
2
¥ E&EF EFE LN P&
ST T P T TS &
S 8 o & & ¥ eS¢ O
& & & ¢ (& ©

Figure 12: Performance of HD-CPS:HW and Dynamic Or-
acle normalized to PMOD on the Simulator.

E. Analysis of HD-CPS:SW with different tunable parame-
ters

The priority drift-aware task distribution mechanism de-
scribed in Section III-C uses a sampling interval parameter
that determines when to re-calculate priority drift and update
TDF. We use an interval size of 2000 tasks using an
empirical evaluation presented in Figure 13:A. For large
interval sizes (e.g., 2500 tasks), the priority drift begins to
drift before the TDF can be adjusted, leading to performance
loss. However, for too small an interval size (e.g., 100
tasks), the computation costs negate the benefits of fine-
grain increments. Another tunable parameter is the initial
TDF, which determines the TDF for the first interval. As
observed in Figure 13:C, the choice of initial TDF does
not dramatically affect the final results as HD-CPS quickly
corrects it according to the priority drift. We select an
initial TDF of 50% since it is easier for the heuristic to
move on both sides of the TDF spectrum. The step size
determines how much TDF change is desirable to update
it. A too low TDF change (e.g., 5%) induces unnecessary
oscillations, while a too high TDF change (e.g., 30%) may
miss opportunities to optimize priority drift. We use a 10%
step size using the empirical study presented in Figure 13:B.

As discussed in Section III-B, HD-CPS can transport
the bag’s payload data to a remote core in two ways,
i.e., over the network (push) or via coherent loads upon

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

% Ointerval Size D Step Size Blnitial TDF
v

2 1.5 1§)

°))

o0 X X

20 14

SFS))

- &))) =)

g 05 4 =)

=))))

£ o ; o I I e I M

2 100 100020002500 5 10 20 30 25 50

Figure 13: Performance Evaluation of HD-CPS with (A)
Sampling Point, (B) Step Size, and (B) Initial TDF of Adap-
tive TDF Heuristic normalized to PMOD on the Simulator.

@Push

|Pull

Normalized Speedups over

TN KN &N @ F & & & 0
N ,_,,"" el ,\)’" ° q.'“‘*."" &L
Q . . . & . o
) 3 CAY * o £ &
& K I & & ® v <,°\° &

Figure 14: Performance Evaluation of HD-CPS with differ-
ent bag transport methods normalized to PMOD on Simu-
lator.

priority queue’s dequeue of a bag (pull). The push scheme
suffers from preemptive creation and transport of each bag’s
payload data over the network, while the pull scheme is
efficient because it only retrieves data when a core needs it to
process the bag. The empirical evaluation of both schemes is
presented in Figure 14. Although the push scheme performs
at par with PMOD, the pull scheme delivers 1.5x better
performance. Therefore, it is used in HD-CPS to retrieve
the bag’s data payload.

HD-CPS also parameterizes selecting the minimum num-
ber of generated tasks with the same priority to create a bag.
To understand its effect, Figure 15 shows the performance
evaluation for a different threshold number of tasks. For a
task count of 1, HD-CPS always creates bags. Similarly, for
a task count of 5, HD-CPS creates a bag when at least five
tasks are generated with the same priority. This parameter is
workload-dependent, where the task count threshold depends
on the number of tasks being generated with the same
priority. We use a threshold of 3 since it delivers the best
overall performance.

VI. CONCLUSION

This paper proposes a novel CPS design that co-optimizes
work efficiency and communication among cores using
priority drift as a signal. A set of dynamically adaptive task
distribution heuristics and fast task transfer mechanisms are
proposed to minimize priority drift among cores. Moreover,
simple hardware primitives are employed to accelerate task
transfers and priority queue operations. HD-CPS is shown to

540

3
% 2.5 E1 @2 Q3 04 =5
2
g 214 o
éo [: Al o 0. g o
so 1Ml o Kl v E A Al il o [H
w3 Al 80 BE FEL BH BBl W BB [l A1 Al 8L XE
T ' HH i A i B EEd H
2 A B REBEEHBEHBEHREH K
: “HHEEREEEEEE EEE
g o 1t KHI BHI M Al FHL B2 RHL REH #HL BEl EH M
2 ’
FoEFEFE DS &FEF &S
Q»s e s‘& 00«'\)5 & e q‘z~'$*«$’ ° (Qs e &
. . . . s
& S F & ¥ ° (P\o‘ &

Figure 15: Performance Evaluation of HD-CPS with differ-
ent bag sizes normalized to PMOD on Simulator.

improve the performance of task-parallel graph algorithms
executing on a large core count Intel Xeon machine, and
an in-house RISC-V multicore simulator. It outperforms
state-of-the-art CPS designs, PMOD and Software Minnow
by 25% and 12%, respectively. Moreover, with hardware
support, HD-CPS improves performance over Minnow with
dedicated minnow cores by 8%, and performs at par against
Swarm with significantly lower hardware overhead.

VII. ARTIFACT APPENDIX

This appendix describes the process of acquiring a subset
of experimental results. The artifacts include implementa-
tions of various state-of-the-art CPS designs executing paral-
lel graph workloads using real-world inputs. The evaluation
is done using an Intel Xeon 40-core CPU with four 10-
core sockets, and 512G B of DDR4 memory. However, the
artifacts can also be evaluated using other multicore CPU
systems, as long as the CPS design parameters are tuned for
the underlying hardware platform.

A. Artifact check-list (meta-information)

Program: Concurrent Priority Schedulers: OBIM, PMOD,
RELD, Software Minnow, and HD-CPS:SW

Algorithm: SSSP, BFS, MST, and PageRank graph algo-
rithms

o Compilation: Galois graph processing framework

Data set: USA road network for SSSP, BFS and MST, and
web-google graph for PageRank

Run-time environment: Linux based Operating System
Hardware: Intel shared memory multicore CPU
Execution: Bash scripts for automation of artifacts
Metrics: Completion Time and Priority Drift

Output: Per benchmark completion time and priority drift
Experiments: Subset of Figure 3

How much disk space required (approximately)?: 5GB
How much time is needed to prepare workflow (approxi-
mately)?: 6 hours

How much time is needed to complete experiments (ap-
proximately)?: 3 hours

o Publicly available?: Yes

« Code licenses (if publicly available)?: BSD 2-Clause

B. Description

1) How to access: The artifact codebase can be down-
loaded from https://zenodo.org/record/5794249

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

A latest version is also maintained on GitHub

https://github.com/RK4/HD-CPS_HPCA-22

2) Hardware dependencies: Intel multicore CPU

3) Software dependencies: The Galois graph processing
framework dependencies are listed below.

« https://github.com/IntelligentSoftwareSystems/Galois

e A modern C++ compiler compliant with the C++-17
standard (gcc > 7, Intel > 19.0.1, clang > 7.0)

o CMake (> 3.13)

e Boost library (> 1.58.0, we recommend build-
ing/installing the full library)

o libllvm (> 7.0 with RTTI support)

o libfmt (> 4.0)

C. Installation

Follow these steps in the prescribed order to complete the
artifact installation.

¢ Cloning the Artifact Repository We have created
Zenodo and GitHub repositories to clone our artifacts.
The repository links are provided in Section VII-B1.

o Installing Galois We provide a shell script
compile_galois.sh for fetching and compiling
the Galois framework. This script clones Galois
release 5.0 from Github, as well as the modified
Galois release for the PMOD CPS design. All build
files and binaries for Galois are installed in the
Galois/build release folder, while PMOD are installed
in the PMOD/build folder.

« Preparing datasets Run the script datasets_fetch.sh
in the main folder where the artifacts are downloaded.
This script fetches the USA road network! and web-
google? graphs, and converts them to the required
format for the Galois framework.

o Installing CPS Designs in Galois Run the script
install_cps.sh in the main folder. This script adds
priority drift related modifications to the OBIM and
PMOD CPS designs. Moreover, the Software Minnow
CPS design is added using the ObimS5.h header file. The
RELD and HD-CPS:SW CPS designs are added using
the WorklistHelpers_hdcps.h header file. These header
files are copied to the appropriate Galois framework’s
folders.

« Installing Benchmarks Run the script
install_benchmarks.sh in the main folder. This
script adds each benchmark in the Galois framework
and compiles them. Modified benchmarks are provided
with the support for all CPS designs.

D. Experiment workflow and expected results

Following the installation steps, each workload is exe-
cuted by calling the desired {workload name.sh} script. For

Uhttp://www.diag.uniromal.it//challenge9
Zhttps://snap.stanford.edu

541

example, for the SSSP benchmark, execute sssp.sh in the
main folder. This script executes all CPS designs for the
SSSP benchmark using the USA road network graph, and
saves the output in the output/sssp.out file. The benchmarks
included in the artifacts are SSSP, BFS, MST, and PageRank.

E. Evaluation and expected results

The Completion Time and Priority Drift metrics are saved
in the output folder for each benchmark.

FE. Experiment customization

All artifacts are tested using an Intel Xeon machine
with 40 cores and 512GB DDR4 memory. However, cus-
tomization parameters for SSSP and BFS are provided
for an Intel single socket 8-core machine. Run the script
sssp_8_core.sh and bfs_8 core.sh in the main folder.
For further customizations of OBIM and PMOD, the delta
parameter must be tuned for the underlying machine. For
Software Minnow, the minCores parameter that specifies
the number of minnow cores must be adjusted.

VIII. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant CNS-1718481. This research was
also partially supported by the Semiconductor Research
Corporation (SRC). The authors wish to acknowledge Brian
Kahne from Qualcomm, José A. Joao from Arm, and Masab
Ahmad from AMD Research for their valuable feedback.

REFERENCES

[1] S. Maleki, D. Nguyen, A. Lenharth, M. Garzardn, D. Padua,
and K. Pingali, “Dsmr: A parallel algorithm for single-source
shortest path problem,” in Proceedings of the 2016 Interna-
tional Conference on Supercomputing, ICS 16, (New York,
NY, USA), Association for Computing Machinery, 2016.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web.,” Technical
Report 1999-66, Stanford InfoLab, November 1999. Previous
number = SIDL-WP-1999-0120.

A. LUMSDAINE, D. GREGOR, B. HENDRICKSON, and
J. BERRY, “Challenges in parallel graph processing,” Parallel
Processing Letters, vol. 17, no. 01, pp. 5-20, 2007.

G. M. Slota, J. W. Berry, S. D. Hammond, S. L. Olivier,
C. A. Phillips, and S. Rajamanickam, “Scalable generation
of graphs for benchmarking hpc community-detection algo-
rithms,” in ACM International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC
2019, (New York, NY), 2019.

H. Rihani, P. Sanders, and R. Dementiev, “Multiqueues:
Simple relaxed concurrent priority queues,” in Proceedings of
the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 15, (New York, NY, USA), p. 80-82,
ACM, 2015.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

(6]

(71

(8]

[91

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Wimmer, J. Gruber, J. L. Triff, and P. Tsigas, “The lock-
free k-Ism relaxed priority queue,” SIGPLAN Not., vol. 50,
p- 277-278, Jan. 2015.

D. Alistarh, J. Kopinsky, J. Li, and N. Shavit, “The spraylist:
A scalable relaxed priority queue,” in Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, (New York, NY, USA),
pp. 11-20, ACM, 2015.

A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are
not good concurrent priority schedulers,” in Euro-Par 2015:
Parallel Processing (J. L. Triff, S. Hunold, and F. Versaci,
eds.), (Berlin, Heidelberg), pp. 209-221, Springer Berlin
Heidelberg, 2015.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight
infrastructure for graph analytics,” in ACM Symposium on
Operating Systems Principles, SOSP ’13, (NY, USA), 2013.

S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas,
“Understanding priority-based scheduling of graph algorithms
on a shared-memory platform,” in International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC ’19, pp. 46:1-46:14, 2019.

K. Pingali and et. al., “Ordered vs. unordered: A comparison
of parallelism and work-efficiency in irregular algorithms,”
in ACM Symposium on Principles and Practices of Parallel
Programming, PPoPP, 2011.

M. A. Hassaan, D. Nguyen, and K. Pingali, “Kinetic depen-
dence graphs,” in International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS 15, pp. 457-471, 2015.

D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Min-
now: Lightweight offload engines for worklist management
and worklist-directed prefetching,” SIGPLAN Not., vol. 53,
p. 593-607, Mar. 2018.

M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and
D. Sanchez, “A scalable architecture for ordered parallelism,”
in IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 228-241, Dec 2015.

M. Shan and O. Khan, “Accelerating concurrent priority
scheduling using adaptive in-hardware task distribution in
multicores,” IEEE Computer Architecture Letters, vol. 20,
no. 1, pp. 17-21, 2021.

H. Dogan, M. Ahmad, J. Joao, and O. Khan, Accelerating
Synchronization in Graph Analytics using Moving Compute
to Data Model on Tilera TILE-Gx72. 1EEE, 2018.

H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and
0. Khan, “Accelerating graph and machine learning work-
loads using a shared memory multicore architecture with
auxiliary support for in-hardware explicit messaging,” in
2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 254-264, May 2017.

D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architec-
tural support for fine-grain scheduling,” SIGARCH Comput.
Archit. News, vol. 38, p. 311-322, Mar. 2010.

542

[19]

(20]

(21]

[22]

[23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C. Miao, J. F. Brown III, and
A. Agarwal, “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007.

S. K. Moore, “Breaking the multicore bottleneck,” October
2016. [Online; posted 28-October-2016].

H. Dogan, M. Ahmad, B. Kahne, and O. Khan, “Accelerating
synchronization using moving compute to data model at
1,000-core multicore scale,” ACM Trans. Archit. Code Optim.,
vol. 16, pp. 4:1-4:27, Feb. 2019.

U. Meyer and P. Sanders, “delta-stepping: a parallelizable
shortest path algorithm,” Journal of Algorithms, vol. 49,
no. 1, pp. 114 — 152, 2003. 1998 European Symposium on
Algorithms.

L. H. O. Rios and L. Chaimowicz, “A survey and classi-
fication of a* based best-first heuristic search algorithms,”
in Advances in Artificial Intelligence — SBIA 2010 (A. C.
da Rocha Costa, R. M. Vicari, and F. Tonidandel, eds.),
pp. 253-262, Springer Berlin Heidelberg, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition. The MIT Press,
3rd ed., 2009.

J. Nesetiil, E. Milkov4, and H. NeSetfilova, “Otakar borivka
on minimum spanning tree problem translation of both
the 1926 papers, comments, history,” Discrete Mathematics,
vol. 233, no. 1, pp. 3 — 36, 2001. Czech and Slovak 2.

S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,
“Pannotia: Understanding irregular gpgpu graph applica-
tions,” in IEEE International Symposium on Workload Char-
acterization (IISWC), 2013.

J. J. Whang, A. Lenharth, I. S. Dhillon, and K. Pingali,
“Scalable data-driven pagerank: Algorithms, system issues,
and lessons learned.,” in Euro-Par (J. L. Triff, S. Hunold,
and F. Versaci, eds.), vol. 9233 of Lecture Notes in Computer
Science, pp. 438-450, Springer, 2015.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, Dec. 2011.

C. Demetrescu, A. V. Goldberg, and D. S. Johnson, eds., The
Shortest Path Problem, Proceedings of a DIMACS Workshop,
Piscataway, New Jersey, USA, 2006, DIMACS/AMS, 2009.

J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Com-
munity structure in large networks: Natural cluster sizes and
the absence of large well-defined clusters,” Internet Mathe-
matics, vol. 6, 11 2008.

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: Membership,
growth, and evolution,” in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, (New York, NY, USA), p. 44-54,
Association for Computing Machinery, 2006.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 23,2022 at 11:49:20 UTC from IEEE Xplore. Restrictions apply.

