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Abstract—Graph Neural Networks (GCNs) have attracted wide
attention and are applied to the real world. However, due to the
ever-growing graph data with significant irregularities, off-chip
communication with poor data locality has become the major
bottleneck hurdling the development of GCNs. Fortunately,
recent works demonstrate Resistive Random Access Memory
(ReRAM) has the potential to perform inherently parallel in-
situ computation of Matrix-Vector Multiplication (MVM) in
the analog regime fundamentally breaking the communication
bottleneck.

Inspired by this observation, we propose a novel ReRAM-
based GCN acceleration co-design (i.e. algorithm-hardware)
framework, CoDG-ReRAM, that can deliver real-time GCN
inference with high accuracy. On the algorithm side, we propose
a novel model optimization pipeline that simultaneously and
efficiently sparsifies and regularizes both graph and parameter
matrices in GCNs and creates ReRAM-friendly models. On the
hardware side, we take advantage of the software optimization
results to provide a more systematic mapping scheme and in-
crease computation efficiency to have an energy-efficient ReRAM-
based GCN acceleration with low latency. Experimental results
show that the proposed work improves performance and energy
efficiency by 4x and 5.1 x respectively over SOTA ReRAM-based
accelerators of GCNs with a negligible accuracy loss.

Index Terms—Graph Neural Network, Processing In Memory,
Computer Architecture, Resistive Random Access Memory

I. INTRODUCTION

Due to the high accuracy and excellent information acqui-
sition capability, GCN has become an extremely vital and
fundamental method in graph applications including recom-
mendation systems, power grids, and biomedical research
[54]. Different from the traditional Deep Neural Networks
(DNNs) whose data have to be structured, GCNs directly
work with non-Euclidean data, which drastically extends their
applications. However, due to the ever-growing graphic data
size and its irregularity, data communication has been the key
bottleneck [1], [32], hurdling the development of GCNs and
seriously restricting their industrial boarding.

As a rising and rapidly developing technology, ReRAM de-
vices are considered to be a promising approach to perform the
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inherent parallel in-situ MVM in the analog regime with O(1)
complexity [33], [37], [41], [48], which can greatly reduce
the data movement and save computation resources. Thanks
to those distinctive properties, researchers have enforced DNN
accelerators on ReRAM devices [30], [33], [47], [48], which
present excellent performance including low energy consump-
tion and low inference latency. Although there exist several
high-performance accelerators [16], [18], [44], [46] and even
ReRAM-based solutions to accelerate GCNs [22], few of them
leverage the potentials of algorithm-hardware co-design of
ReRAM-based mixed-signal accelerators for GCNs.

In this paper, we propose a novel ReRAM-based GCN
acceleration co-design framework to fundamentally eliminate
the communication bottleneck in GCN computation while
maintaining extraordinary accuracy. Figure 1 illustrates the
overview of our co-design framework. There are two essential
efforts that contribute to this work to achieve superior perfor-
mance: software algorithm and hardware design. In the algo-
rithm part, we propose and enforce three optimizations: a novel
semi-structural graph topology optimization, column balanced
block-wise weight pruning, and ReRAM-customized weight
quantization. Starting with graph topology optimization, to
reduce the irregularity and enhance the structural sparsity
of the graphs, we reconstruct the whole graph via subgraph
classification and group partitioning. Besides, to maintain high
accuracy, we also detect and prune edges that make nega-
tive contributions to classification. Then, to reduce redundant
computation, we apply ADMM-based column balanced block-
wise weight pruning [31], which can ensure that the weight
matrices share a similar pruning pattern with the optimized
graph and furthermore make the entire model more hardware-
friendly. Finally, to better deploy GCNs on ReRAM, we apply
ADMM-based weight quantization [52] to reduce the precision
of weight matrices from single/double precision floating point
to 2/4/8 bits while maintaining high accuracy. On the hardware
level, we propose an efficient ReRAM-based accelerator that
utilizes the optimizations from the algorithm side to more sys-
tematically map the weight and feature matrices into crossbars.
our contributions are summarized as follows:
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Fig. 1. Overview of the proposed CoDG-ReRAM codesign framework for GNN acceleration.

o We propose the ReRAM-based GNN co-design acceler-
ation framework, CoDG-ReRAM, to fundamentally ad-
dress the inherent communication problems in GNNs,
delivering both low latency and high accuracy.

We propose a novel algorithmic optimization pipeline
for GCNs, which creates highly sparse and regular GCN
models that are friendly to ReRAM.

We leverage the algorithm optimizations into hardware
design and come up with a more systematic approach to
map weights and feature matrices into ReRAM crossbars
to increase computational efficiency and reduce latency.
Experimental results demonstrate that CoDG-ReRAM
reduces inference latency and energy consumption by
4x and 5.1x over SOTA ReRAM-based accelerators of
GCNs with a negligible accuracy loss.

To the best of our knowledge, this work is the first attempt
on algorithm-hardware co-design of ReRAM-based GCN ac-
celeration framework.

II. BACKGROUND AND RELATED WORKS
A. Resistive Random Access Memory

ReRAM memory technologies are non-volatile, with high
density, almost free of leakage power, and more immunity
to transient faults compared with traditional volatile DRAM
memories. They also have shown high, excellent speed switch-
ing and low power consumption [13], [35]. Compared to other
types of nonvolatile memories, ReRAM-based devices show
high scalability, superb multilevel cell storage capability, and
the possibility of low-cost 3D fabrication [13]. In the last
decade, there are extensive works that illustrate the results of
fabricated ReRAM memory cells [55], memory arrays [39],
and also fabricated ReRAM-based accelerators [6], [9], [43].
Moreover, constant progress has been made towards pushing
non-volatile memories to commercial products. For instance,
Micron and Intel jointly produced 3D Xpoint [19], [21].

B. Graph Convolutional Networks

As one of the most distinguished Graph Neural Network
(GNN) models, GCN [26] starts the trend of using neural
network methods in graph information extraction. There are
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many other modalities based on message passing methods of
GraphCONYV used in GNNs, e.g. GraphSage [20] and Graph
Isomorphism Network (GIN) [42].

As stated in [18], the forward computation flow of these
models generally contains two common phases: Aggregation
and Combination. During the aggregation phase, all nodes
gather and aggregate the features of their neighbor nodes
to update their own feature vectors. During the combination
phase, the GraphCONV layer builds up a local Multi-Layer
Perceptron (MLP) network to merge the updated feature-
vectors, which helps the model extract high-level abstraction
information.

Let define a graph & = (¥, &) with N nodes v; € ¥, edges
(vi,vj) € &, the adjacency matrix A € RV ¥, the degree matrix
Di;=Y jA, ; and the feature matrix X = {x1 7xl, ., XN }. We can

assume A as the normalized A: A = D~2AD~7 and W; as the
weight matrix of the " layer. Using given parameters, the
forward procedure of a two-layer GCN model can be simply
formulated as follow:

Z=f(A,X)
C. GCNs Accelerator

Researchers have proposed a series of high-performance
computer architecture for GNN acceleration focusing different
computational and communication problems in GNN training
and inference [1]-[3], [12], [16]-[18], [28], [44], [46], [49],
[50], [53].

In [3], Auten et al., first introduces the concept of GNN
hardware accelerator which can realize high performance in
tackling irregular data movement and intensive computation
for GNN inference by designing four specialized modules for
graph traversals, dense matrix operations, data scheduling, and
graph aggregations, respectively. HyGCN [44] is one of the
earliest GNN accelerators. Since the inference procedure of
GCNs contains two phases with different computation pat-
terns, HyGCN proposes a hybrid architecture with dedicated
modules for aggregation and combination, respectively. AWB-
GCN [16] is another early study of GCN acceleration. It
observes that the power-law distribution of the non-zeros in
the adjacency matrix results in workload imbalance issues. To

= AReLU (AXWo)W, (1)



solve this problem, the authors propose a workload autotun-
ing technique. Inspired by AWB-GCN, researchers discover
another basic problem in GNN acceleration is the poor data
locality, especially in graph aggregation.

Recently, I-GCN [18] is proposed to solve this problem.
I-GCN uses a new graph reordering algorithm named is-
landization and realized it with Intel FPGA. With islandization
algorithm, I-GCN can greatly improve the data locality of
graph aggregation at runtime to the point that almost all
data of the graph adjacency matrix, feature matrices, and
weight matrices are accessed from off-chip only once. EnGN
[28] introduces a unified architecture to accelerate GNNs and
enforces a ring-based network to perform aggregation. The
results produced by PEs are sent to the network where they are
aggregated. Researchers have also developed novel hardware
designs for training. Rubik [12] proposes an offline graph
reordering method to improve data locality. GraphACT [49]
uses heterogeneous platforms with CPUs and FPGAs and uses
pre-processing to find and skip redundant operations among
two-node shared neighbors.

G-CoS [53] is the first GNN co-search framework for
network structure and accelerator architecture. G-CoS can
automatically search for the matched GNN structures and
accelerators to maximize both task accuracy and acceleration
efficiency.

In addition to the efforts on designing hardware architecture
for GNN acceleration, GCoD [46] first proposes a co-design
framework targeting traditional devices which can alleviate
the aforementioned workload imbalance and poor data local-
ity problems and accelerate GNNs’ inference by effectively
enhancing graph regularity.

Besides the aforementioned digital accelerators for GNNs,
researchers have also investigated the potentials of using
mixed-signal designs to accelerate GCNs. REFLIP [22] builds
an in-situ ReRAM-based PIM acceleration engine for both
combination and aggregation kernels of GCNs. It presents
a novel flexible mapping scheme for crossbar architectures
by exploiting intra- and inter- vertex parallelism of GCNs.
PIM-GCN [10] proposes a ReRAM-based accelerator. To
take full advantage of the intra-vertex parallelism, it employs
dense data mapping as well as a search-execute architecture.
It also proposes two scheduling strategies to improve inter-
vertex parallelism and pipeline. PASGCN [45] optimizes the
PIMGCN further by proposing edge selection strategies that
are obtained in the training phase by learning downstream
feedback signals for each GCN layer separately and adaptively.
The selected edges are used in the inference time.

III. SOFTWARE FRAMEWORK

In this section, we present our newly proposed model
optimization pipeline that generates ReRAM-friendly GCN
models with superior regularity and sparsity with the focus
on the three optimizations including graph topology optimiza-
tion, ReRAM Customized model quantization, and Block-wise
model sparsification.
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With the extensive use of model compression techniques
in all kinds of neural networks, semi-structured pruning and
quantization have been demonstrated that they can efficiently
accelerate deep learning inference while maintaining high ac-
curacy. On the other hand, recent works indicate the inference
speeds of GNN models can also be greatly and uniquely im-
proved via graph topology optimization. Therefore, to take the
advantages of both methods at the same time, we first propose
a new GCN model optimization pipeline. The key novelties in
our work are graph topology simplification/optimization and
model compression. To enforce the graph topology optimiza-
tion, we perform non-structural sparsification and polarization
with the adjacency matrices after partitioning the raw graph
into several subgraphs. Then, using the optimized graph, the
weight matrices of GCN models are further optimized with
semi-structural pruning and quantization based on ADMM,
which effectively makes GCN models ReRAM-friendly. In the
following subsections, we describe these three optimization
methods and explain how to implement and deploy them in
general GCN training process.

A. Graph Topology Optimization

The purpose of graph topology optimization is to reconstruct
the graph adjacency matrices to have higher sparsity with
regular non-zero distributions, which drastically enhances the
data locality of graph processing and further makes GCN
models more hardware-friendly. The proposed optimization
algorithm is inspired by the ones used in GCoD which demon-
strates that graph reconstructing can significantly improve the
performance of GNN inference. However, the algorithms used
in GCoD unfortunately lead to non-negligible accuracy degra-
dation which can be further enlarged after weight sparsification
and quantization are applied. To this end, on the top of the
algorithm designs proposed in GCOD, we propose a new graph
topology optimization algorithm to obtain adjacency matrices
with the same level of regularity but higher sparsity and higher
accuracy.

Same as GCoD, to improve the sparsity and regularity of
adjacency matrices, CoDG-ReRAM also adopts the subgraph
classification algorithm and the group partitioning algorithm
proposed in the graph topology optimization stage as shown
in Figure 2(a). We briefly introduce these algorithms below
for the convenience of readers. More details are omitted due
to space limitations and can be found in [46]. The subgraph
classification algorithm is mainly in charge of improving the
regularity of the graph adjacency matrix by clustering nodes
with homologous degrees into the same class. After alleviating
the irregularity of the adjacency matrix, the group partitioning
algorithm is used to decrease the boundary connections, which
helps reduce inter-group communication.

As mentioned above, the method used in GCoD leads to
severe accuracy degradation on GCN models. To maintain
GCN models’ inference accuracy, we further augment the
method described above by adding a novel inferred-class-
based negative edge pruning technique which is able to par-
tially filters out the edges that make negative contributions to
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Fig. 2. Illustrating (a) GCoD’s algorithm for graph reconstruction and (b) the
workflow of negative edge pruning

the classification results. By so doing, the models’ accuracy
and sparsity can be both improved. Besides, as negative edges
are normally the ones connecting different graph components,
we also observe that this optimization also helps create more
regular graph typologies, more clustered non-zero elements
in adjacency matrices, and clearer connections among graph
components.

Figure 2 (b) shows the workflow of the proposed inferred-
class-based negative edge pruning. From the last process of
previous graph reconstruction, we have trained a GCN model,
with which we can obtain inferred class of each sample X;.
The inferred class can be formulated as:

Ylnferred_Class\X,- = indexyax (YX,-\classl ) YX,~|classZa "'7YX,-\classM)a

@)
where Y;) 4551 denotes the output probability of the i" sample
for class M. For two nodes with a connection, if their inferred
classes are different, we consider their connection as a negative
edge and will wrongly contribute to the task and hence prune
these negative edges from the graph. With this optimization,
we can not only avoid accuracy degradation but also even
obtain accuracy improvement for some datasets. Section V.A
will evaluate the benefits of this proposed method.

B. Column Balanced Block-wise Weight Pruning

Given a GCN model with N layers with W; as the weight
matrix at the i"" layer and b; as the bias at the i layer, the
loss function for the N-layers GCN model can be formulated
as: 3({%}?’:1,{19,-};\’:1). Then the problem of weight pruning
can be written as an optimization problem:

minimize £ ({Wi}iLy {bi}iLy)
{Wibi} 3)
subject to W;eCyi=1,...,N,

where the C; is the constraint set for the i weight matrix

W;. Specifically, the constraint set C; restricts the number of
non-zero values in weight matrix W; to be less than or equal
to J;, where .7 is the desired number of non-zero value after
pruning in the " layer.

However, obviously, the optimization mentioned above is
non-convex with combinatorial constraints, which means that

we cannot reach the global minimization via traditional gradi-
ent descent algorithms (e.g. SGD and Adam). Thanks to the
rapid development of the non-convex optimization methods,
we can efficiently solve it by using the Alternating Direction
Method of Multipliers (ADMM) framework which can get rid
of the combinatorial constraints. To help apply the ADMM
method to weight pruning, we define an auxiliary indicator
function as:

oy 0 if WyeC;
Si(Wi) = { o0 otherwise

Then we can use an auxiliary variable V; instead of W; in the
non-differentiable terms and rewrite our optimization problem
to be:

“)

minimize

N
nimize 2 ({Witioy, {bikiza) + LAV

(&)

subject to W;eVyi=1,..,N.

Applying the augmented Lagrangian, the rewritten problem
can be divided into two subproblems by ADMM. We solve
each subproblem respectively and iteratively until reaching the
global solution. The first subproblem can be written as:
minimize £ (WYL, {bi})
{Wi.bi}
o Pi ke k(2 ©
+L G IWE =+ DA
i=

where D¥ = D¥"! 4+ Wk — V¥ and D¥ is the dual variable which
will be updated in each epoch. In the first subproblem function,
the left term stands for the differentiable loss function of the
GCN model and the right term is a quadratic function that
is differentiable and convex. Therefore, without the combi-
natorial constraints in it, the first subproblem is similar to
the original GCN optimization problem and can be solved
efficiently via gradient descent algorithms (e.g. Adam). The
second subproblem can be formulated as:

N
minimize F(G)
{G} ;

N @)
Pijyrk+1 k|2
"’ZEHWI' —Vi+Dillr
i=1

Since g;(-) denotes the indicator function of S;, we can
conclude the solution to the second problem is

i =TIw "+,
G

®)

where []s. denotes the Euclidean projection of the term
WXt 1 DX, Then the updated V/! will be used instead of
Vik in the first subproblem in the next epoch.

Furthermore, to enforce the weight matrices that can simply
be mapped to ReRAM, as Figure 3 shows, we adopt a
column balanced block-wise weight pruning algorithm which
can enhance GCN inference performance on ReRam devices
and make the resulting weight matrices have a similar sparse
pattern to the one in optimized adjacency matrices hence
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Fig. 3. Illustrating the detailed pruning workflow of Column Balanced Block-
wise Weight Pruning with 0.33 pruning rate

simplifying the ReRAM hardware design. Assuming that the
weight matrix W has the shape n x m and setting the pruning
block size to be a x ¢, the weight matrix can be efficiently
decomposed into k sub-matrices where k = n/c. For each sub-
matrices W, we can divide it into 1 sub-matrices where [ =
m/a. Finally the weight matrix W is separated into k x I blocks.
For each W;, we set the values in the block with the lowest
[, norm to be zeros. After pruning each W, the sub-matrices
Wi, W,, W3, ..., W, can be concatenated horizontally to compose
the pruned matrix W),,,.q. Compared with other structural or
nonstructural pruning algorithms, column balanced block-wise
weight pruning algorithm greatly improves the regularity of the
weight matrix and provides high sparsity.

C. ReRAM Customized Weight Quantization

After enforcing the column balanced block-wise weight
pruning algorithm, we have obtained semi-structural pruned
weight matrices with 32-bit (or 64-bit) precision. Compared
to the models with original weight matrices, the current models
have the potential to provide a much superior performance of
GCN inference due to structural and clustered zeros. Until
now, there is only one problem that needs to be solved
before the optimized GCN models can be efficiently mapped
onto ReRAM crossbars — the models need to be quantized
with an acceptable loss of accuracy, otherwise, they cannot
be mapped and implemented on ReRAM. Fortunately, re-
searchers have proposed many efficient quantization methods
for DNNs. Among them, ADMM-based quantization has been
demonstrated to be highly efficient. Hence, in this work,
we select ADMM-based model quantization methods that are
normally used in DNNs, map them to GNN acceleration, and
demonstrate their efficiency with GNNG.

Similar to the weight pruning process, we build up a GCN
model with N layers and assume that the weight matrix for
the " layer is W; and the bias for the i’ layer is b;. The
loss function for an N-layer GCN model can be written in
the following form: f({W;}Y_,,{b;}",). Then the problem of
weight pruning can be written as an optimization problem:

minimize L ({W}¥, {bi}Y))
{W;.b;}

(€))

subject to W;eCyi=1,...,N,
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where the C; is the constraint set for the weight matrix
W; at the /" layer. In our work, we apply fixed % bit
pruning algorithms which means the values in the quan-
tized matrices should satisfy the requirement W; ; € O, where
Q={-2141,-2142,..,251 _1}. Therefore, different
from the previous section, the constraint set S; here is that
all the values in weight matrices should be mapped to the
possible value set Q. Using the same algorithm for decompos-
ing non-differential problems, the optimization problem (i.g.
formula 3) in the weight quantization procedure can also be
divided into 2 subproblems (e.g. formula 6 and formula 7)
using different constraint sets mentioned above. Then, we can
conclude the optimal solution to subproblem 2 is to set every
element’s value to the closest possible quantized value and
then feed them into subproblem 1, where we can efficiently use
the gradient descent algorithm(e.g. Adam) to reach the global
optimization iteratively. Finally, the weight matrices’ values
will be mapped to the desired bit width while preventing the
accuracy from dropping significantly.

IV. HARDWARE FRAMEWORK

In this section, we introduce the architecture, mapping
mechanism, and the dataflow of the ReRAM-based GCN
mixed-signal accelerator. We explain how CODG-ReRAM
leverages the proposed software optimizations to build a
more efficient hardware design along with a more systematic
mapping solution.

A. Hardware Architecture

Due to irregular non-zero distribution in the weight and
feature matrices, various demeanour of unbalanced workloads,
different characteristics of the combination and aggregation
phases, massive vector-matrix multiplication operations, and
especially the huge and irregular off-chip data movement,
conventional DNN [33], [47], [48] and GCN accelerators
[16], [44], [46] fall short of providing satisfactory speedups.
Recently a few PIM designs such as PIM-GCN [10], PAS-
GCN [45], and REFLIP [22] address the aforementioned
issues; however, there is still vast space for improvement. The
reason is that the current PIM-based GNN works are almost
oblivious to algorithmic optimizations and try to address the
current issues with hardware-only procedures, which incurs
considerable hardware overheads.

As Figure 1 shows, the mixed-signal GCN accelerator
entails several tiles, which are connected to each other with
an on-chip mesh network. Each analog tile contains multiple
Multiply-Accumulate Units (MACs), three different eDRAMSs
that hold values as crossbar inputs, crossbar weights, and
intermediate results as crossbar outputs. It also entails shift-
and-add units, activation, and pooling functions that are
connected with a shared bus. MAC units are made up of
DACs, ReRAM crossbars, ADCs, and shift-and-add units. The
CODG-ReRAM utilizes voltage/buffer and the current reducer
techniques recommended in [22] to save more power and area
due to the reduced overheads of DAC and ADCs.
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B. Mapping Procedure

As combination and aggregation phases in GCNs have
different demeanors, they have to be differently treated to
achieve high performance. To do so, we employ the same
MVM engine of crossbars but utilize different mapping mech-
anisms to handle combination and aggregation procedures.
Note that the proposed method is different from the one
used in GCOD that utilizes two-pronged engines for sparse
and dense workloads in combination and aggregation. Like
REFLIP [22], the eDRAM crossbar entails weight parameters
and vertex features in combination and aggregation phases,
respectively. Similarly, eDRAM Input holds vertex features
and edge data during combination and aggregation episodes.
By so doing, it is ensured that the hardware utilization is
increased considerably without imposing different engines
with significant overheads to handle these two procedures
separately.

Inspired by REFLIP [22], we employ a SIMT model and
parallelize workloads of a GraphCONV layer among different
tiles to enjoy inter- and intra-vertex data parallelism per layer.
The reason is that, unlike DNN engines, GCN accelerators
need to store both weights and graph data; however, they have
limited layers where the load intensity per layer is usually
high.

To map the parameters into crossbars, there are two distinct
ways: row-wise and column-wise. In the row-wise solution,
each node is loaded into crossbars only once and the edge data
are fed into crossbars in a row-wise manner. Therefore, there is
a chance that input edges become null. As a result, this method
suffers from feeding zero bits that do not contribute to the final
results [22], [48]. This happens especially frequently for the
sparser parts of the adjacency matrices. On the other hand, in
the column-wise mapping procedure, each node is normally
processed multiple times in crossbars and null edges are
usually abstained from being fed into crossbars. The column-
wise solution removes those zero-valued edges considerably,
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however, it incurs significant parameter overheads [22].

To overcome the problems of both row-wise and column-
wise approaches, REFLIP recommends a hybrid approach
where row-wise schemes are adopted for vertices with a high
degree and column-wise ones are employed for vertices with
lower degrees. However, REFLIP employs an ad-hoc approach
to find a threshold and identifies high-degree and low-degree
vertices, which may lead to low hardware utilization especially
when processing vertices that are close to the threshold.

Unlike REFLIP, CoDG-ReRAM employs sparsification and
polarization of adjacency matrices in the algorithm optimiza-
tion to identify the proper mapping mechanisms. Our results
indicate that 27%, 32%, and 25% of Cora, Pubmed, and, Cite-
Seer adjacency matrices lead to denser sub-matrices, which
can be handled with the row-wise mapping scheme; while the
rest are sparser and are steered by the column-wise approach.
By so doing, in a more systematic way, CODG-ReRAM
increases resource utilization and computational efficiency of
ReRAM in accelerating GCNs.

The Crossbar Mapper takes the responsibility to control this
procedure during transferring parameters in combination and
aggregation stages. The mapper also decides which partial re-
sults should be added up to produce the correct results. Graph
optimization techniques lead to different classes/subgraphs
with different sizes as shown in Figure 4. Crossbar Mapper
estimates the workload sizes of dense subgraphs and tries to
distribute them among the row-wise crossbars evenly to create
better load balancing. This makes the mapping mechanism
more complex but brings better load balancing and higher
system utilization. It is noteworthy to mention that graph
optimization, weight pruning, and quantization mechanisms
reduce to workloads considerably and hence less data needs
to be mapped in crossbars.

Figure 4 illustrates the concept of CoDG-ReRAM mapping
procedure. The left-side visualizes the adjacency matrices after
applying the proposed algorithmic optimizations, while the



right-side manifests the hybrid mapping mechanism.

Like previous works [10], [22], [51], [51], we use Compress
Sparse Row (CSR) and Compress Sparse Column (CSC)
formats for high- and low-degree vertices to maintain the
edges [10], [22]. We can then ensure sequential off-chip access
to edge data and reduce irregular and redundant accesses.
Due to the structure of the matrices in GCNs, we prioritize
combination over aggregation as it demands less computation
and converts both multiplications in A(X x W) to MVMs that
can be handled by the analog engine of the crossbar very
efficiently.

V. EXPERIMENTS

In this section, we first evaluate the proposed software
optimization algorithms in terms of model accuracy and data
sparsity achieved after graph optimization, column balanced
block-wise weight pruning, and ReRAM customized weight
quantization are applied on different real-world and widely-
evaluated graph datasets. We then evaluate the efficiency of
the proposed ReRAM hardware by comparing the latency and
energy consumption of the CoDG-ReRAM and SOTA GNN
accelerators.

In particular, our evaluation uses a 2-layer GCN model
consisting of 16 hidden units based on three citation graph
datasets (i.e. Cora, CiteSeer, and Pubmed). The algorithm eval-
uation compares GNN models with different combinations of
optimizations with the raw baseline model. The hardware eval-
uation results are based on the optimized GNN models after
all optimizations are applied. The graph topology optimization
includes both structural optimization that is already used in
GCoD and negative-edge pruning that is newly added in this
work. For Column Balanced Block-wise Weight Pruning, the
pruning ratio is set to be 0.3. For ReRAM Customized Weight
Quantization, targeting bit widths are set to be 2, 4, and 8. All
models are trained on a 4 x NVIDIA 1080ti GPU server using
Pytorch-Geometric (PyG) framework.

We implement an in-house simulator to get the overhead
of the proposed ReRAM architecture and the baselines. The
tool employs Cacti [5], NVSIM [15], and PIM primitives
library [40]. The results of software optimizations are back
annotated to the hardware simulator. We are able to run the
tool in the mode of the design space exploration to get the area
and power of buffer, ReRAM cells, read and write latency and
energy, and size, power, and area of the crossbars. We can run
the tool in simulation mode to get execution time, energy and
throughput. To have a fair comparison with REFLIP, we use
the same parameters as REFLIP [22].

A. Algorithm Evaluation

As table I shows, our novel optimization algorithms can
greatly maintain high accuracy while applying structural graph
topology optimization and model compression algorithms to
the GCN models. Compared to the original model, we discover
that with our graph topology optimization algorithm, even
though the graph has been reconstructed to match the ReRAM
property, it can still achieve superior accuracy which is even
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TABLE I
THE EXPERIMENTAL RESULTS OF EACH STEP

Accuracy (%)

Methods Cora Pubmed CiteSeer
Vanilla 81.1 79.1 70.2
(+) Graph Optimization 80.0 78.7 71.5
(+) CBB Weight Pruning  76.6 78.1 60.5
(+) Weight Quantization
2-bit 77.8 79.5 67.8
4-bit 79.8 78.6 70.5
8-bit 79.5 78.6 69.9
TABLE I

COMPARISON AMONG VANILLA, GRAPH OPTIMIZATIONS WITH AND
WITHOUT NEGATIVE EDGE PRUNING

Vanilla Without With
Dataset Cora
Number of edges 10556 9500(-10.0%) 8178(-22.5%)
Accuracy(%) — 79.6 80.0(+0.4)
Dataset Pubmed
Number of edges 88648  79782(-10.0%)  69090(-22.0%)
Accuracy(%) —_— 79.4 78.7(-0.7)
Dataset CiteSeer
Number of edges 9104 8192(-10.0%) 7476(-17.8%)
Accuracy(%) —_— 70.3 71.5(+1.2)

higher than the raw graphs with no pruning applied for some
datasets. The accuracy improvement is from the proposed
negative-edge pruning. Table II further demonstrates this phe-
nomenon that cutting down the negative edges can effectively
enhance the accuracy by preventing the negative edges from
wrongly contributing to the classification tasks by comparing
our final models with the ones optimized by GCoD and the raw
model. Besides the high accuracy, the proposed graph topology
optimization technique also significantly reduces the number
of edges compared to both GCoD and raw models, which
benefits the computation of GCNs with not only ReRAM but
also other devices. Moreover, from the table I we can also
observe that the Column Balanced Block-Wise weight pruning
leads to accuracy degradation due to the constraints from
block pruning pattern which greatly improves the regularity
of the weight matrices. Fortunately, the ADMM-based weight
quantization algorithm not only helps us reduce the data width
but also effectively rescues the accuracy from the unavoidable
dilemma.

B. Hardware Evaluation

Table III compares the power and area results of CoDG-
ReRAM with REFLIP [22] and HyGCN [44]. Due to graph
optimization, pruning, and quantization (8bits vs 32bits), the
number of required crossbars and also the total number of
required tiles are significantly reduced. We utilize a 64 X
64 crossbar array. Each MAC unit comprises 16 ReRAM
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crossbar arrays, while we use 8 MAC units per tile and 36
tiles. Accordingly, compared to REFLIP (HyGCN), the area
and power of the proposed accelerator are reduced by 35%
(39%) and 28% (37%), respectively.

Figure 5 compares the execution time of the CoDG-ReRAM
with GCOD [46], AWB-GCN [16], and REFLIP [22]. The
figure shows normalized results with Y axis using a loga-
rithmic scale and CoDG-ReRAM as 1 (hence not illustrated
in the figure). As the results demonstrate, CODG-ReRAM
outperforms these baselines by 19.5x, 78.4x, and 4 x, respec-
tively. Since CoDG-ReRAM performs in-situ computation,
it reaches superior performance compared with GCoD and
AWB-GCN. Due to proposed algorithm optimizations and
more efficient mapping solutions, we are able to outclass
the REFLIF baseline as well. Figure 6 shows the impact of
assorted algorithm optimizations on the execution time. As it
can be observed, due to aggressive high-quality quantization, it
has the most impact on reducing execution time. Moreover, the
graph topology optimization plays a more important role than
pruning in the execution time reduction while applying the
pruning rate of 0.3. Those algorithm/hardware optimizations
also contribute to reducing energy consumption as Figure 7
illustrates. Compared with REFLIP, AWB-GCN, and GCOD,
the energy improvements are 5x, 196.6x, and 91.6x, respec-
tively.

TABLE III
COMPARING POWER AND AREA OF CODG-RERAM WITH REFLIP
REFLIP [22] HyGCN [44] CoDG-ReRAM
Power(W)  Area(mm?) Power(mW)  Area(mm*) Power(mW)  Area(mm~)
47.38 43.63 54.66 46.2 34.22 28.17
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VI. RERAM-BASED GNN ACCELERATOR CHALLENGES

In this section, we talk about the challenges that need to be
addressed to have efficient ReRAM-based GNN accelerators.
Several of them will be also valid for other machine learning
accelerators.

A. Algorithm Perspective

Efficient full-stack software is a key that enables us to get
the maximum benefits of underline hardware. This is a missing
component in many GNN accelerator designs. This is helpful
as instead of addressing challenges at the hardware-level with
a significant cost, we can address them at the algorithm-
level [46]-[48] with orders of magnitude lower cost as we
showed in this paper.

The main components in a software stack are the program-
ming language and its compiler [11], [23], [27], [34]. We
need a programming language that allows designers to define
different requirements of the accelerators such as various types
of memories, the graph model, optimizations that need to be
employed, the location and the order in which these optimiza-
tions need to be applied, and etc [23]. Having an efficient
compiler that automatically maps the proposed GCN dataflow
into underline architecture and fills the gap between high-level
accelerator description and low-level execution engine is also
highly desired.

B. Hardware Perspective

Although ReRAM-based GCN accelerators show promising
results and capabilities, there are still problems that prevent
them to be extensively used in the commercial products.
Endurance is a fundamental problem of ReRAM memories. It
causes to have small crossbar array sizes (i.e., the maximum
size is 512 x 512 [43]), which imposes crossbar to crossbar
communication cost. However, in recent years, there is a good
progress in improving ReRAM endurance [36]. In addition,
memory cells can only be written a few number of times before
they stop working. This can be mitigated by utilizing ReRAM
devices that endure more writes or employing architecture
techniques such as wear leveling [7], [38] that distribute
writes across all memory locations evenly. Another problem
is the ReRAM sneak currents, which can be alleviated using
techniques such as using access transistors (e.g., two-terminal
selector) and self-rectifying RRAM [24], [25].



Besides the aforementioned problems, we also summarize
other three worth mentioning challenges in designing and
deploying ReRAM solutions for GCN acceleration. The first is
the size of ADC-size that contributes significantly to the area
and power consumption (58% of tile power and 31% of tile
area [33]). Recently researchers propose various solutions to
reduce the ADC size by leveraging hardware and software
techniques [4], [47], [48]. The second problem is that the
engine of these accelerators works in analog regime, which is
sensitive to noise and imperfections. Techniques such as noise-
aware training [29] and hybrid acceleration where important
weights are handled by digital cores are proposed to mitigate
this problem [8], [14]. One more challenge is the writing
cost in non-volatile memories. Unlike volatile memories, the
energy and latency associated with the non-volatile ones are
high. This is also why many architectures unfold all the tiles
and write all the weight parameters of all layers into ReRAM
crossbars at the beginning. Although it helps increase the
parallelism and throughput, it incurs hardware overhead.

We hope by having a full software stack along with ad-
dressing challenges associated with the hardware counterpart,
mixed-signal accelerators can be commercialized and em-
ployed extensively.

VII. CONCLUSION AND FUTURE WORK

This paper proposes, CoDG-ReRAM, a ReRAM-based
GCN acceleration framework with algorithm-hardware co-
design. On the algorithm side, CoDG-ReRAM is equipped
with three optimizations as follows: (1) a graph topology
optimization method with negative edge pruning to regular-
ize graph topology, improve the model accuracy, and re-
duce the computation demand and the number of edges of
graphs; (2) Column Balanced Block-wise Weight Pruning
to sparsify weight matrices with the semi-structural sparse
pattern; and (3) ReRAM customized Weight Quantization
to provide high-quality quantization so that the optimized
model can be mapped onto ReRAM devices. Overall, the
newly proposed model optimization pipeline delivers more
regular sparse matrices with higher sparsity and lower bit-
widths while maintaining high accuracy. On the hardware side,
we take advantage of the algorithm optimization results to
provide a more systematic mapping scheme, reduce latency
and increase the computation efficiency of the ReRAM-based
GCN accelerator. Conclusively, CoDG-ReRAM provides 4 x
speedups over SOTA ReRAM-based GNN accelerators with
negligible loss of accuracy.

In future work, we will further explore the scalability of
CoDG-ReRAM by examining it with larger graphs and sizes
of crossbars. Besides, the proposed algorithm optimizations
especially the graph topology optimization insert extra work-
load imbalance to the graphs which limits the performance
of our work. Therefore, it is worthy to study how to fun-
damentally address the graph-level workload imbalance issue
within ReRAM crossbars. Last, CoDG-ReRAM focuses on
static graphs. In the future, we will try to extend its support
to evolving graphs and spatio-temporal graph models.
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