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Abstract—The rapid growth in the size of Graph Convolutional
Neural Networks (GCNs) encounters both computational- and
memory-wall on classical computing platforms (e.g., CPU, GPU,
FPGA, etc.). Quantum computing, on the other hand, provides
extremely high parallelism for computation. Although quantum
neural networks have been recently studied, the research on
quantum graph neural networks is still in its infancy. The key
challenge here is how to integrate both the graph topology
information and the learning ability of GCNs into quantum
circuits. In this work, we leverage the Givens rotations and
its quantum implementation to encode graph information; in
addition, we employ the widely used variational quantum cir-
cuit to bring the learnable parameters. On top of these, we
present a full-quantum design of Graph Convolutional Neural
Networks, namely “QuGCN”, for semi-supervised learning on
graph-structured data. Experiment results show our design is
competitive with classical GCNs in terms of node classification
accuracy on Cora sub-dataset. More importantly, we show the
potential advantages that can be achieved by the proposed
quantum GCN design when the number of features grows.

Index Terms—Graph Convolutional Neural Network, Quan-
tum circuit design, Givens rotation, NISQ.

I. INTRODUCTION

Due to the consistently growing size of machine learning
models and the high parallelism of the quantum computing
paradigm, Quantum Machine Learning (QML) has become
one of the most active emerging topics. The basic concept
of QML is to perform machine learning tasks on quantum
devices, such as quantum feedforward neural network [1]-
[3], quantum convolutional neural network [4], and quantum
recurrent neural network [5]. Recently, Graph Convolutional
Neural Networks (GCN), a deep learning method designed
to process graph-structured data, raise much attention. GCN
can handle the Non-Euclidean datasets that are not suitable
for traditional neural networks. Given the graph structure and
nodes’ information as input, GCNs can work on graph tasks
such as node/graph classification and edge prediction [6], e.g.,
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Semi-Supervised Classification with Graph Convolutional Net-
works [7], [8]. Due to the high complexity of graphs, classical
computing platforms (e.g., CPUs, GPUs, and FPGAs) met
bottlenecks in both storage and computation. With the ability
to represent 2%V features on N qubits, quantum computing
has great potential for GCN applications. However, there are
limited research efforts on quantum GCNSs; in particular, it
lacks a design of quantum-version GCN to leverage the power
of quantum computing in the near-term Noisy Intermediate-
Scale Quantum (NISQ) era.

Although the quantum computing platform has demon-
strated its ability to accelerate standard neural networks, (e.g.,
feedforward neural network, FFNN), when quantum comput-
ing meets GCNs, new challenges arise. In the conventional
FFNN, it only contains a parameterized classifier (or called
weight matrix), which can be easily realized by a Variational
Quantum Circuit (VQC); on the other hand, instead of a weight
matrix, GCN further has an adjacency matrix to represent
the topology of a given graph. Existing quantum GCN works
either only implement the weight matrix [9] or use classical
computing for the adjacency matrix [10]. The former approach
cannot extract the features from the graph structure, while the
classical computation in the latter approach can easily become
the performance bottleneck. The key challenge here is how
to implement the adjacency matrix on the quantum circuit.
Second, the design should be scalable, targeting the near-
term quantum devices; in particular, the quantum GCN should
be accommodated to the limited number of qubits. Existing
designs apply O(NN) or even more qubits to represent N nodes
in GCN, which is obviously not scalable. To overcome the
above challenges, innovations are needed in the design of
quantum circuits for both adjacency matrix and weight matrix
with a limited number of qubits.

In this paper, we propose a brand new design to implement
the quantum circuit for GCN, namely quantum graph con-
volutional neural network (QuGCN). In QuGCN, we apply
Givens rotation to realize the message passing with neighbor
nodes, which has the same function as the adjacency matrix.
Second, we employ amplitude encoding to represent the node
features in the quantum circuit, as such, N node features can
be encoded to log N qubits. Last, we seamlessly attach the
VQC to the quantum circuit with the graph information; i.e.,



the circuit implemented by Givens rotation for the adjacency

matrix. As such, the proposed design can present the structure

feature of a given GNN using a small number of qubits, and

perform GCN tasks, such as node or graph classification.
The main contributions of this paper are as follows.

e« We propose an end-to-end design, namely QuGCN, to
implement graph convolutional neural networks to quan-
tum circuits to process graph-structured data.

e« We bring the Givens rotation and variational quantum
circuit into the QuGCN design so that the adjacency
matrix and weight matrix in the graph neural network
can be successfully encoded to the quantum circuits.

« Experiments are conducted on a commonly used dataset
to evaluate the effectiveness of QuGCN, on top of which,
we provide the insights the design of quantum GCN and
point out the future directions on QGCN.

QuGcCN is evaluated on the commonly used dataset, Cora.
With the comparison of multiple baselines, the proposed
QuGCN can outperform the existing quantum GNN without
integrating the graph’s topology information, in terms of
accuracy. The node classification accuracy is similar to the
GCN in classical computing. What’s more, we analyze the
design cost complexity of QuGCN and the classical GNN
model. With the increase of input features, the total cost of
QuGCN can be exponentially reduced from a classical GCN.
In the meanwhile, we also show that for the nodes with 256
features, QuGCN can outperform classical GCN when the
number of nodes in the graph is less than 128.

The remainder of the paper is organized as follows. Section
I provides the preliminaries and reviews the related work;
Section III presents the proposed QuGCN design. The detailed
quantum circuit design based on Givens rotation is presented
in Section IV. Experimental results are reported in Section V.
Section VI discusses the insights of QuGCN and concluding
remarks are given in Section VII.

II. PRELIMINARIES AND RELATED WORK
A. Quantum Basics

The basic unit in the quantum computing is the quantum
bit, called qubit. It is a linear combination of two basis states:
|¢) = al0) + b|1), where |0) and |1) are the basis states.
Coefficients a and b are known as amplitudes, which are
complex numbers and satisfy a®> + b?> = 1. For a n-qubit
system, a vector, x with 2" complex elements, is used to
represent the amplitudes of 2™ basis quantum states. All the
elements in x satisfy Z?:o 75| = 1.

A set of qubits is composed of a quantum circuit, and
the computation is to transit the qubits from one state to
another. Here, the basic computation unit is the quantum gate.
A quantum gate can be represented by a unitary matrix, U (6),
where 6 is a trainable parameter. The quantum computation is
the transition of qubits’ state, e.g., |¢) = --- U(6)|do), where
¢o is the initial state and |¢) is the output state. In a quantum
circuit, a set of quantum gates are performed sequentially to
realize a function.
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Fig. 1. Background of VQC: (a) A general design of VQC. (b) A typical
design of VQC without encoding. The purple block is repeated for certern
times. (¢) Three commonly-used VQC design with trainable parameters and
strong entanglement.

H©

Hidden Layer

> HOW® 7’{5(5‘%,@5—%}1(1)”}(1)) b

Fig. 2. Background of Graph Convolutional Network (GCN): The high-level
depiction of multi-layer GCN for semi-supervised learning

At the end of the quantum circuit, a readout subcircuit is
applied to extract the computation results, which measures the
probability of a qubit state, say state |0) for Z-measurement.

Variational Quantum Circuit (VQC) [11] is commonly used
to perform learning tasks in quantum computing [12]. Fig-
ure 1(a) shows the general design of VQC, including encoding
unit U(z), computation unit W (), and measurement sub-
circuit M. For data encoding U (), there are different ways to
convert classical data to quantum data, such as amplitude en-
coding , angle encoding [13], etc. In computation unit W, the
qubits are entangled to represent one function, which include
a set of trainable parameters 6 = [0, 63, ... 6,]. After the
measurement sub-circuit M, the results are usually connected
with an activation function, which is similar to classical neural
networks to perform further tasks (e.g., classification). With
these components, Figures 1(b)(c) give the commonly-used
VQC designs.

B. Graph Convolutional Neural Networks

Graph Convolutional Neural Network (GCN) [7] shows
its potential to process graph tasks (e.g., graph classification
and semi-supervised node classification), where the data have
graph structures opposite to the data with regular structure,
like images. The key idea of GCN is to use edge structure to
aggregate node information and generate new node represen-
tations with regular structure. As such, the newly generated
node representations can be processed using the conventional
deep neural networks, such as Multi-Layer Perceptron (MLP).
Existing GCN works [7] have shown the remarkable ability
of GCN to accomplish fast and scalable semi-supervised
classification of nodes for given graphs.



Figure 2 illustrates an example of a multi-layer GCN for
semi-supervised learning. The hidden layers include two parts,
feature extraction and edge representation, sharing the same
graph structure (i.e., edges shown as black lines) for each layer
and aggregate node information through the spatial neighbor-
hood. At the end of the last layer, we obtain a set of nodes
having the label Y;, and we will need to predict the labels
of the rest nodes in semi-classification tasks. In the above
process, one key component is the layer-wise propagation, in
the following equation, we give a commonly used rule for
such propagation,

O+ _ (H“),A) - (AH(Z)W(I)) 1)

where A represents the adjacency matrix, W represents the
weight matrix, H I ¢ RN*D is the matrix of features in
the ith layer; AHOW® selects the first-order neighbor
nodes to realize the information transmission. Equation 1 can
successfully complete the information transmission; however,
it makes the values of nodes with more neighbors become
an infinite number during iterations. This problem can be
addressed by normalizing the adjacency matrix as follows,

AU = [ (0, 4) =0 (DTHADEHOWD) - @)

C. Givens Rotation

Givens rotation is originally from the numerical linear
algebra, which is a rotation in the plane spanned by two
coordinates axes [14]. The fundamental representation of a
Givens rotation is as follows:

1 0 0 0
0 c S 0
GN (i,5,0) = |: : : : 3)
0 —s c 0
0 0 0 1]

where ¢ = cosf and s = sin  appear at the i-th and j-th rows
and columns. More detailly, given i, j, where i >j, the non-
zero elements in the matrix of Givens roation are as follows:

gy, =c fork=1,j

9ji = —Gij =
Givens rotation can be employed for computing the QR
decomposition of a matrix. One advantage over QR decom-
position using Givens rotations is that they can easily be
parallelized, and another is that they have a lower operation
count for very sparse matrices.

—S

D. Related Work

G Verdon et al. [15] conducted one of the first quantum
graph neural network studies. They introduced a general Quan-
tum Graph Neural Network ansatz, a parameterized quantum
circuit representing quantum processes with graph structure.
To be more specific, they applied the concept of Hamiltonian
evolutions to simulate the graph structure. Graphs can natu-
rally describe it if we consider two connected nodes as two
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qubits with interaction. Based on this proposed ansatz, they
gave different specialized architectures.

J Zheng et al. [10] later proposed a quantum Graph Con-
volutional Neural Networks model aiming to demonstrate
the graph’s topology in a quantum architecture similar to
traditional graph convolutional neural networks. The main task
of the paper was to design a quantum circuit that can solve
graph-level problems(i.e., graph classification). With the test
on the dataset, they could distinguish the input image into two
categories.

Limited by the number of usable qubits in the quantum
circuit, the previous methods can only handle small graphs.
X Ai et al. [16] gave a more comprehensive model to not
only achieve the goal of simulating Graph Neural Networks to
classify graphs but also propose a strategy to solve the lack of
available qubits. The key in their method was to use Subgraph
decomposition and CNOT gates to handle the topology of a
given graph. For a given graph with n nodes, they split the
whole graph into n subgraphs. Thus, each subgraph consisted
of a node with its neighbors, represented by qubits equal to
the number of subgraph’s nodes and followed by a series of
trainable parameterized gates. Then, they could entangle their
information by applying CNOT gates to each pair of nodes in
a subgraph. Finally, they combined all subgraphs and got the
graph representation for classification.

Besides the pure quantum circuits, some hybrid methods
adopt quantum layers and classical layers to solve machine
learning problems. C Tiiysiiz et al. [9] proposed a Hybrid
quantum-classical graph neural network to reconstruct the
track of particles(i.e., edge prediction). Their model had three
components, the Input network(classical neural network) used
to increase the dimension of node features, and the Edge
network and the Node network used to update the graph’s
features. In their design of the Edge network and Node
network, they applied trainable classical layers before and after
one quantum neural network. The model could predict the
connection between two nodes with the extracted edge features
in the last Edge network.

The above methods attempt to use the quantum circuits
to simulate the graph structure and do neural network tasks.
They do not integrate the graph neural networks with quan-
tum machine learning, i.e., encoding the adjacency matrix
(representation of a graph) into quantum. Thus, they do not
consider the graph’s topology in the circuit design. Here,
we develop a novel quantum machine learning algorithm for
graph-structured data called Quantum Graph Convolutional
Neural Network (QuGCN), which implements the quantum
circuit design of GCN.

ITII. QUANTUM GRAPH CONVOLUTIONAL NEURAL
NETWORKS (QUGCN)

A. Design Principles

Before introducing the details of the QuGCN design, we
will first present our design philosophy.

Principle 1: The quantum version GCN should include
all operations in a classical GCN, as shown in Formula 2.
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Fig. 3. An overview of Quantum Graph Convolutional Neural Networks (QuGCN)

In our design, QuGCN will perform three operations on a
quantum circuit to process the given graph for a learning
task: (1) Represent node features in the quantum circuit. (2)
Embed graph structure using the quantum operations, called
“Graph Structure Embedding”. (3) A quantum neural network
model to perform learning tasks (e.g., the semi-supervised
classification of nodes in a graph), called “Feature Extraction”
in this paper.

Principle 2: Design cost can be optimized by leveraging
the property that operations (2) and (3) can be swapped.
As shown in Formula 2, the order of multiplication between
D 3AD~3 x H® and HY x WO will not affect the
function. However, if the number of features is decreasing
along layers, we can reduce the quantum circuit complexity
by firstly executing H® x W®),

With the assumption that the number of features is decreas-
ing along layers, the proposed QuGCN design is illustrated
in Figure 3. It contains two sequential steps, each of which
will have a block to encode node features into the quantum
circuit, denoted as “Node Representation” in the figure. The
first step takes the given graph-structure data as input, and
propagates a trained VQC to obtain the intermediate graph-
structure data. Then, the second step will process the obtained
data according to the graph structure. Finally, the output of the
second step will pass an activation function to perform the ML
task (e.g., node classification in this figure). In the following
of this section, we will introduce these steps in detail.

B. Node and Feature Representation

In this work, we apply amplitude encoding to do the
quantum state preparation for both node and feature. For the
node representation, our purpose is to map feature vectors
X e RV*4 (o the amplitudes of quantum states, where N is
the number of nodes (i.e., vector) and d is the dimensions of a
vector (i.e., the number of features in each node). In dimension
j, there are N features corresponding to N nodes, denoted
as X.;, which will be encoded in the jth quantum circuit.
To correctly encode N classical features to the quantum
circuit, we will firstly normalize X.; by L2-norm to satisfy
va:0|mij\2 = 1. If N < 27, where n is the number of
qubits, we fill the empty positions with zero. In all, there
are d quantum circuits in total. Similarly, for the feature
representation, we will encode d features of the i node in
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one quantum circuit, and there will be N quantum circuit in
total.

C. Feature Extraction Based on VQC

In classical GCN (Equation 2), W is a layer-specific, node-
shared, and trainable weight matrix. The shape of the weight
matrix will depend on the dimensions of input features and
output features in each layer. A simple fully connected (FC)
layer is usually used as the trainable weight matrix. To
mimic the FC function in GCN, in QuGCN, we employ the
variational quantum circuit (VQC) to extract features. With the
feature representation introduced in Sec. III-B, we will have
N quantum circuits, each of which has the encoded features
corresponding to a node. Similar to weight matrix W, all
these circuits will propagate the layer-specific and node-shared
VQCs.

D. Graph Structure Embedding Based on Givens Rotation

In Equation 2, D :AD~ > represents the graph structure,
which realizes the information communication with the first-
order neighbor nodes. Similarly, we need to achieve the infor-
mation transmission with neighbor nodes on quantum circuits.
Based on the node representation in Sec. III-B, we will have d
quantum circuits with the encoded N features. Since each node
corresponds to a quantum state, the communication between
nodes in the graph is now equivalent to the information
communication between quantum states. That is, we need
a quantum gate/circuit to operate on two quantum states at
one time and it will not affect other states. Kindly note that
since such an operation is performed by the quantum gates,
indicating that the operation should be a unitary matrix. To
satisfy the above needs, Givens rotation (see Sec II.C) can be
used for graph structure embedding.

Givens rotation can intuitively pass the amplitude of the
p state to the ¢ state. For a Givens rotation GV (p,q,0) €
RN*N only the elements of rows p, ¢ and columns p, g are
different from the identity matrix [ N ¢ RNXN Let 6 = g,
the elements of row p, ¢ and column p, ¢ are selected as the

submatrices:
) 7)
) cos (b

2 2)

2
The state transmission process is as S; 11 = GV (p, q,0) x S;,
where the state vector S5; € RV*1. The other elements can

COS (g

fsin(

a2 _ sin ( 4)
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Fig. 4. The quantum implementation of 4-node edge mapping

remain unchanged except for the positions of p and ¢ in the
state vector.
Example 1: N =2,p=0,q= 1,50 = [a, b]T

0

5) + b X sin (7)

2)—&—b><cos(2) )

From Equation 5, it is clear that the involved states corre-
spond to two neighbor nodes. To enable such operation in a NV
qubits system, the communication between a pair of arbitrary
nodes can be formulated as follows,

GY|p) = G (p,p,0)Ip) + GV (p.q,0)|q)
GNlg) = GN(q,p,0)lp) + GV (¢,4,9)|q)

where p, ¢ is the index of matrix G™. Except |p) and |g), other
basis states are left unchanged. In this way, we will generate
N Givens rotation to represent the graph structure for an N-
nodes graph. Note that # is a hyperparameter, which is the
same in all implemented Givens rotations in QuGCN.
Givens rotations can represent directed graphs. For an
undirected graph, we only consider the givens(p, q,0) where
<gq
p

0

8

axcos(
axsin(

S, =G?(0,1,6) Sy =

(6)

IV. CIRCUIT IMPLEMENTATION OF GIVENS ROTATION

As discussed above, any two quantum states can be commu-
nicated by a Givens rotation. For an example of two states, the
matrix to represent Givens rotation is Equation 4. In quantum
computation, the matrix representation of Ry quantum gate is
exactly the same as the matrix of Givens rotation. Therefore,
the communication of edge (0,1) in Example 1 can be
implemented by a Ry gate in a quantum circuit. To extend
the implementations of quantum circuit for the arbitrary scale
of Givens rotation, there are two steps: First, we need a design
of 2-qubit quantum circuit for a Givens rotation with the
dimension of 4 x 4. Then, for a quantum system with n qubits,
we need to apply the designed 2-qubit quantum circuit for
arbitrary 2 states.

A. Two-qubit Quantum Circuit for Givens Rotation

To design the quantum circuit for Givens rotation, we will
need to involve the following sets of quantum gates. First, the
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Fig. 5. An example of generating a circuit from a graph.
not gate, X. The matrix representation is as follows:
0 1
(N
1 0

Second, the control-not gate, C'X. Its matrix representation is
as follows:

X

CcX ®)

oo o
o O = O
—_ o O O
o= OO

Lastly, we will invovle the control-Ry gate, whose matrix
representation is as follows.

1 0 0 0
0 1 0 0

CRY = 0 0 cos(9) sin (%) ®)
0 0 —sin(4) cos(%)

By combining several CX, X, and CRY gates, we can
obtain all the 2-qubits implementations for 4-nodes edge rep-
resentation. We summarize these implementations in Figure 4.
With the design of edge representation for any pair of nodes,
we can construct the node representations in a given graph.
Figure 5 shows an example of constructing the quantum circuit
for a graph.

B. Givens Rotation in a Multi-qubit quantum circuit

Now, we will introduce how to leverage the above 2-qubit
circuit design to perform the communication between two
states in a N-qubit circuit. Specifically, 2-qubit implementation
G? (p,q,0) can be extended to multi-qubit GV (p,q) by a
multi-control unitary Gate. In the following, we will use an
example to show the communication between nodes p = 13
and ¢ = 18 in a 5-qubit circuit. The method can be further
extended to the quantum circuit with more qubits.
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Fig. 6. (a) The implementation of Co100G? (p,q,0) (b) The implementation
of C10F?(p,q)C10 (c) The implementation of G° (13, 18)

TABLE I
COMPLEXITY ANALYSIS. L IS NUMBER OF LAYERS, N IS NUMBER OF
NODES, D IS NUMBER OF FEATURES AND E IS NUMBER OF EDGES.

GCN QuGCN
HW O(LND?) O(LNlog2(D))
AH O(L(E + N)D) O(Llog2(N)ED)
AHW | O(LND? + LED) O(LNlogz(D) + Llog2(N)ED)

Example 2: the implementation of G° (13, 18) can be
completed in 3 stages:

In the first stage, we will get a binary number of p and q
to represent the node. For example, p = 13: 01101, q = 18:
10010.

Next, in the second stage, we will generate the transmission
steps from left to right. Our target is to transmit the amplitude
value from the p — th state to the ¢ — th state. In one step,
only 2 bits of binary p can be changed by G? (p,q,), and
other bits need to remain unchanged. We repeat the two-qubit
transmission from left to right by adding 1 to the index i. In
order to minimize the steps, if the i-th bit in the binary of p and
the binary of ¢ are the same, we could skip the i-th step. For
example, we generate the steps for G° (13, 18) as follows.
Step i=1: 01101 ->10101; Step i=2 (skip): 10101->10011;
Step i=3: 10101->10011; Step i=4: 10011 ->10010.

At last, we need to generate the multi-control unitary gates
for each step. Multi-controls U-gates with states can achieve
only the qubits with U-gates are processed while other qubits
remain unchanged, noting Cl;ateU Csiate. (Figure 6(a)(b) are
examples of CyiqteU Cloiate- The last step is with Givens rota-
tions, noting G™ (p, q), while all pre-steps are with flip gates,
noting F'" (p, q). Givens rotations are used to do information
transmission between 2 states, which is not for arbitrary states.
Therefore, we need flip gates to exchange the amplitude
between different states. CX gate is an example of flip gate,
the matrix representation of which is Equation 8. In a Givens
rotation circuit, F" (p, ¢q) should be added symmetrically to
prevent changing the other states. The circuit is shown in
Figure 6(c).

C. Complexity Analysis

We divide the GCN or QuGCN model into two parts to
analyze the complexity. The two parts are graph structure
embedding (noted as AH) and feature extraction(noted as
HW). For simplicity, we assume the number of features is
fixed for all layers. At the same time, we dismiss the sparsity
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of the feature matrix but only focus on the sparsity of the
adjacency matrix.

For classical GCN, we do HW first and then do AH. We
consider both  and W as dense matrices, so the complexity
of HW is summed up to O(LN D2) for L layers. We consider
normalized adjacency matrix D~ 3AD"z as a sparse matrix,
so the operation number of AH is L||A||oF, where ||A||o is
the number of non-zero elements in the normalized adjacency
matrix. Considering that normalization will not change the
sparsity pattern of the adjacency matrix thoroughly except for
diagonal elements, the operation number of ||A||y is 2E + N
and the complexity of AH is O(L(FE + N)D).

For quantum GCN, the execution order of HW and AH is
the same as QuGCN. In this paper, we consider the number of
basic gates "U, CU, X,CX,CCX, P’ as the operation number
of quantum circuits, where C,, is multi-control gate. For
commonly-used VQC design, the operation number is rn,
where r is a constant value and n is the number of qubits.
So the complexity of HW is O(LNlog2(D)). For Givens
rotations, the complexity of n-control U-gate Cs;qteUCistate 18
O(n) and it should be repeated O(n) times according to step
3, so the complexity of G.,(p, q) or Fy,(p, q) is O(n?) and the
complexity of A x H is O(LNlogz(D) + Llog3(N)ED).

We summarize the complexity of GCN and QuGCN in
Table I. We can clearly learn from the last row that QuGCN
can achieve exponential speedup on F' but lose the advantage
because of the superfluous O(log3(N)).

V. EXPERIMENTS
A. Experiment Setups

Datasets We follow the experiment in [7] to evaluate
QuGCN on semi-supervised classification tasks in citation
networks, Cora. We randomly generate different sub-datasets
of Cora with different sizes (ranged from 128 to 1024) to do
a binary classification task. Label rate denotes the number of
labeled nodes used for training divided by the total number of
nodes in each dataset. We do not use the validation set labels
for training.

QuGCN models We apply the amplitude encoding pre-
sented in [13]. In detail, we convert the input values to the
amplitudes by L2-normalization. For the weight matrix, we
repeat the main part in VQC 7 times. The classification results
are obtained based on the measurement results. We divide
the outputs into two groups and sum them up in each group
to generate the output values. Finally, we adopt Softmax as
the activation function for classification. The QuGCN model
is implemented using Qiskit APIs and Torch-Quantum [17],
which can be executed on the IBM Qiskit Aer simulator

Competitors We compare QuGCN with the existing works
on the same dataset. Our design QuGCN consists of Givens
rotations and variational quantum circuits. To verify the effec-
tiveness, the baselines are (1) Classical GCN [7]: normalized
adjacency matrix and a fully connected linear layer. (2) Hy-
brid QGNN [9]: classical normalized adjacency matrix and
variational quantum circuits (3) QNN [11]: only variational
quantum circuits.
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[ Classical GCN Hybrid QGCN QNN [ QuGCN
Accuracy
1.0

0.7§

0.5
0.2§

0.0
1024 512 256 128 Nodes
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B. Design Cost and Accuracy Comparison

Figure 7 shows the increase of operations affected by the
number of nodes and features, which verify the conclusion of
complexity. In section 4, we have analyzed the complexity
of GCN and QuGCN, showing that QuGCN can achieve
exponential speedup on F' but lose the advantage because of
the superfluous O(log3(IV)). In the experiments, we calculated
the operation number on the subset of Cora. When the number
of nodes is a relatively small fixed number and the number
of features dominates complexity, GCN grows faster than
QuGCN. In contrast, when the number of nodes dominates
complexity, QuGCN grows faster than GCN. We have to admit
that the current implementation of Givens rotations in this
paper is not a good design.

Figure 8 reports the accuracy of our proposed model
QuGCN and the other four baselines. We learn that the
accuracy of QuGCN is higher than QNN on datasets of
different sizes. From this result, we can verify that Givens
rotations could embed the graph structure to quantum circuits
and achieve information transmission between neighbor nodes,
which makes the accuracy better in semi-supervised classifi-
cation tasks. Comparing Hybrid QGNN with classical GCN,
the accuracy of the classical GCN layer is usually higher than
that of Hybrid QGNN. This is mainly because the number of
trainable parameters in VQC is limited due to barren plateaus
in quantum neural network training landscapes. Besides, our
proposed model can beat the hybrid method in some situations,
which shows the effectiveness of Givens rotations to replace
the adjacency matrix.
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Fig. 9. Visualization of adjacency matrix with heatmap: (a-c) classical GCN
32 to 128 nodes; (d-f) QuGCN with corresponding number of nodes.

C. Visualization

Figure 9 shows the heatmap of the normalized adjacency
matrix (the first row) and the product of Givens rotations
(the second row). We found that they have similar patterns.
First, the diagonal element from top-left to bottom-right is
1. Second, the position of outstanding points is the same in
the corresponding two graphs. We also observe differences in
these results. The values of outstanding points on both sides
of the diagonal are different in the Givens rotation product
but are the same in the normalized adjacency matrix. This is
mainly because all of the non-zero elements in the classical
normalized adjacent matrix are over zero but the non-zero
elements in Givens rotations are skew-symmetric (AT = —A,
A is called skew-symmetric).

From the similar patterns, we can conclude that a product of
Givens rotations can take the place of a normalized adjacency
matrix to transmit information between nodes.

VI. DISCUSSION AND INSIGHTS

A. Potential Speedup against Classical GCN

Noticing that the implementation in this paper is rela-
tively easy to understand even though it has not been the
most effective yet. Since the hyperparameter in each Givens
rotation is the same, we can merge the Givens rotations
groups in a specific pattern by multiplication. For example,
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G2(0,1) x G2(2, 3) can be implemented by only one RY gate,
which makes quantum operations achieve advantages.
Besides, classical GCN is a kind of batch operation, which is
suitable for parallel computing. Considering the parallelism of
quantum computing, there is enormous potential for QuGCN.
In our future work, we will explore the speedup to show
the great potential of quantum implementation of GCN.

B. Scalability on Large-scale Graph

We know that there are currently no stable quantum comput-
ers with large-scale qubits; our design shows the scalability on
large-scale graphs even in today’s small-scale NISQ quantum
computers. Figure 10 reports the required number of qubits to
implement a QuGCN model with a certain number of nodes
and features. As the supplied number of qubits increases, we
can map exponential-increase information to quantum qubits.

C. Sparsity of Features and QNN Compression

It should be noticed that the feature vectors of Cora are
also sparse. If we consider feature sparsity into computation,
the complexity of HW in Equation 2 is O(LN||W||y), where
[[W]|o is the number of non-zero elements in weight matrix.
O(LN||W||o) is much better than O(LN D?).

In the meanwhile, feature sparsity can also makes quan-
tum circuit faster. For sparse feature, large-size VQC is not
necessary. Existing works [18], [19] show the effectiveness of
quantum neural network compression.

VII. CONCLUSION

In this work, we make the very first design to map the
graph convolutional neural networks (GCNs) to the quantum
circuit, including the implementation of the weight matrix
by the variational quantum circuit and the adjacency matrix.
In this way, both graph information and learnable parame-
ters are integrated into the quantum circuit. Experiments are
conducted on the subset of the widely used Cora dataset.
Results show that the proposed QuGCN design can achieve
competitive accuracy with classical GCN. In addition, QuGCN
significantly outperforms the existing quantum implementation
without integrating the graph topology information. Last, we
provide insights on the design to show the potential advantage
of quantum computing for GCN.
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