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Abstract—In recent years, graph representation learning has
gained significant popularity, which aims to generate node
embeddings that capture features of graphs. One of the methods
to achieve this is employing a technique called random walks that
captures node sequences in a graph and then learns embeddings
for each node using a natural language processing technique
called Word2Vec. These embeddings are then used for deep
learning on graph data for classification tasks, such as link
prediction or node classification. Prior work operates on pre-
collected temporal graph data and is not designed to handle
updates on a graph in real-time. Real world graphs change
dynamically and their entire temporal updates are not available
upfront. In this paper, we propose an end-to-end graph learning
pipeline that performs temporal graph construction, creates low-
dimensional node embeddings, and trains multi-layer neural
network models in an online setting. The training of the neural
network models is identified as the main performance bottleneck
as it performs repeated matrix operations on many sequentially
connected low-dimensional kernels. We propose to unlock fine-
grain parallelism in these low-dimensional kernels to boost
performance of model training.

Index Terms—graph learning algorithm, random walks, dy-
namic graphs, performance characterization

I. INTRODUCTION

Graph representation learning (GRL) utilizes artificial intel-
ligence methods to learn the representation of graph structured
data [1]–[6]. It has gained significant popularity in various
application areas from social networks [7], [8], to biology
and chemistry [9]–[11]. Although prior works have analyzed
the performance of GRL workloads [12]–[14], they have
mostly focused on static input graphs using graph representa-
tion learning techniques such as Graph Convolution Network
(GCN) [15] and others [2], [16].

To learn graph dynamics on temporally changing graphs,
random walk based GRL algorithms have been proposed
[17]. Unlike static graphs, temporal graphs are dynamically
changing graphs with time data associated with each inter-
action between nodes. The front-end of the pipeline takes a
temporal graph as an input and maps the underlying graph
structure into a low-dimension embedding space by feeding
temporal random walks [18] into a word2vec model, which is a
common technique from Natural Language Processing (NLP)
[19]. This GRL process outputs node embeddings that capture
the underlying features of the nodes in the graph. These node
embeddings are then used to train a Feed-forward Neural
Network (FNN) for link prediction or node classification tasks.

A shortcoming of prior work [17] is that the input graph
to the pipeline is not temporally updated. The workload takes

graph data that contains the entire temporal information and
performs the GRL algorithm to train an FNN on the pre-
collected graph data. Therefore, the pipeline is not designed
to assign temporal updates on the GRL algorithm and train
FNNs on the fly with streaming snapshots of dynamic graphs.
However, real world graphs change dynamically and their
temporal updates are not available all at once, but sequentially
collected between graph snapshots associated with timestamps
[20]–[22]. At each timestamp, GRL needs to be performed
only on the updated portion of the graph. More importantly,
node embeddings that capture the entire history of graph
dynamics are not available to the FNN prior to the training in
a real world setting. As the graph evolves, embeddings also
change temporally, and the FNN training at timestamp t is
performed with the node embeddings that contain information
about only the current and previous timestamps {0, 1, ..., t}
and not future timestamps {t+ 1, t+ 2, ..., T}. Due to these
reasons, it is computationally infeasible to perform the FNN
training on the entire temporal graph data once. The training
must be performed on discrete data batches that are collected
in sequential order. In the previous work, this type of training
approach has not been evaluated.

The main objective of this paper is to implement and
characterize a temporally updating graph learning pipeline and
perform the FNN training using an online setting where the
training data becomes available as the graph evolves. Our
pipeline takes temporal graph snapshots at each timestamp
t, and starts with an R-Tree based graph construction step
[23] that can keep track of the new updates in the graph since
the last timestamp t − 1. These updates are then streamed
into the GRL step that performs random walks and word2vec
on the graph to obtain node embeddings. We utilize EvoNRL
[24] that continuously learns embeddings from the temporally
updated graph into low-dimension graph representations, while
avoiding redundant updates between graph snapshots. The
graph updates are then forwarded to the final training step
for link prediction or node classification. Here, we adopt
an online learning strategy, where a single temporal graph
batch is trained for consecutive iterations at each timestamp
t. This step concludes the temporal graph learning pipeline
for a timestamp. These steps are repeated for the subsequent
timestamps, {t+ 1, t+ 2, ..., N}.

Our evaluation of the temporal GRL pipeline shows that
the execution time is dominated by the FNN training phase.
Although several parallelization methods are proposed for
random walks and word2vec in [17], the FNN training im-
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plementation is left out for future performance enhancements.
In this paper, we explore fine-grain parallelization of FNN
training for performance acceleration. Our strategy considers
parallelization opportunities in the individual matrix kernels in
the forward and backward propagation paths for each iteration
of the FNN model. We implement four state-of-the-art matrix
multiplication (MM) algorithms (i.e., inner, outer, row-wise
and column-wise product) for each low-dimensional kernel in
the FNN model. The evaluation on a large core count shared
memory multicore shows that using the right parallelization
strategy yields significant potential for performance scaling.
In summary, we make the following contributions:

• We propose an end-to-end temporal random walk-
based graph learning algorithm for online processing
of temporal graphs. The proposed real-time GRL al-
gorithm is implemented in Python, and released as
an open-source benchmark at https://github.com/grvndnz/
ST-Graph-Learning. The performance analysis identifies
the FNN training as the main performance bottleneck.

• We implement a C++ parallel implementation of the N-
layer Feed-forward Neural Network (FNN) pipeline. The
individual matrix kernels in the forward and backward
propagation steps of FNN training are evaluated for in-
depth performance analysis. We implement four state-of-
the-art parallelization strategies for the low-dimensional
matrix-multiplications in the FNN pipeline to evaluate
the performance scaling potential on multicore proces-
sors. The FNN pipeline implementations are released as
an open-source benchmark at https://github.com/grvndnz/
Parallel-FNN.

II. RELATED WORK

In the recent years, there has been a surge in research in
the area of graph representation learning (GRL), which aims
to encode graph structure into a low-dimensional embedding
space [25]. The main goal of GRL research is to optimize this
encoding in a way that the representations in the learned space
reflect the original graph structure. Some of the early works
in GRL include DeepWalk [4] and Node2Vec [26], which
leverage node proximity in graphs using the the idea of word
proximity NLP [19]. Later, other works have incorporated this
idea to learn graph structural properties such as similarity in
degree sequences [6] and the behavioral roles of the nodes
[5]. These embedding algorithms train node embeddings for
individual nodes, and therefore, require additional training via
stochastic gradient descent to make predictions on new nodes.
There are works for learning inductive node embeddings that
combine external node features into graph structures. These
works include graph convolutional networks (GCN) [15],
GNNs [1], GraphSAGE [2], and Graph Attention Networks
(GAT) [3].

Most research for deep learning on graphs assumes that the
underlying graph is static. However, the idea of temporally
changing graphs is more realistic when it comes to most real-
life systems. While static graph learning models can be applied
to temporal graphs by ignoring the temporal evolution [27],

temporal graph structure contains significant insights about
the system. There have been works that explore processing
temporal graphs as a sequence of snapshots [28]–[31] that can
capture the evolution of temporal graph dynamics. Similarly,
streaming graphs process temporally changing data in the
finest granularity in terms of time and it is computationally
much more expensive compared to snapshots [32].

Previously, in terms of processing temporal graphs for graph
representation learning, Talati et al. [17] proposed an imple-
mentation using a temporal random-walk based algorithm.
This work has performed detailed algorithm and hardware
based performance characterization of the pipeline and identi-
fied several execution bottlenecks. However, the analyzed GRL
and FNN training algorithms are performed on pre-collected
graph data and not temporally evolving snapshots of graph.
Consequently, the FNN model is trained with node embed-
dings that capture the entire history of the graph structure
(past and future node interactions). In this work, we propose
an implementation that evaluates prediction tasks in an online
setting on temporally changing graphs.

III. RUN-TIME TEMPORAL GRAPH LEARNING

In this section, we give the details of the proposed run-time
GRL algorithm for temporal graphs. We begin with giving the
following definitions.

Definition 1: A graph G is defined as a tuple G = (V,E)
where V = {v0, v1, ..., vn} is the set of n nodes and E =
{e0, e1, ..., em} is the set of m edges where an edge connects
two nodes.

In the case of temporal graphs, where nodes are contin-
uously added/removed and edges dynamically change with
time, in order to maintain these temporal updates, the graph
is processed into a sequence of discrete graph snapshots.
Therefore, a temporal network is traditionally represented as a
sequence of static graphs (G1, G2, ..., GT ) for T timestamps.
Similarly, an edge between node va and node vb at a timestamp
t ∈ {0, 1, ..., T − 1} is represented as (va, vb, t).

Definition 2: In a graph G = (V,E), a random walk from
node va to node vb is defined as a sequence of connected
edges w = {(va, v1), (v1, v2), ..., (vk, vb)} where k + 1 is the
length of w.

The main concept of random walks is that they capture the
structure of the graph and node properties by randomly visiting
neighboring nodes and sampling the graph. In order to math-
ematically represent these node properties, a GRL algorithm
maps node properties in a graph into a low-dimensional space.

Definition 3: Given an input graph G = (V,E), a graph
representation algorithm f : G −→ Rd maps nodes of the graph
into a d-dimensional space that captures the properties and
closeness of the nodes.

GRL algorithms are widely used in practice and one of
the most employed methods is collecting multiple random
walks starting from each node in the graph and converting
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Fig. 1: The overview of our proposed temporal graph learning
pipeline. The pipeline takes snapshots of a temporally changing graph
at each timestamp t and processes the temporal updates using a graph
construction step. These updates are then sent to random walk and
word2vec steps to map the graph snapshot into a low-dimension
embedding space. Finally, the updated graph embeddings are fed to
an FNN training step for link prediction or node classification.

them to a low dimensional embedding using word2vec [4],
[26], a natural language processing (NLP) technique. These
node embeddings can be used in several machine learning
based graph learning tasks, such as link prediction and node
classification since they significantly reduce the complexity of
input graph data.

In the proposed temporal implementation, since the input
graph is dynamic and temporally updating, we take snapshots
of the graph in timestamps and apply the GRL algorithm
using the temporal updates coming from each timestamp. As
shown in Figure 1, these updates are sequentially processed
and node embeddings are learned, not in one single iteration,
but as the graph evolves. In every timestamp, the learned node
embeddings are fed to the training model. Therefore, the node
embeddings used for training only contain the past and current
temporal updates, but not the future ones. For example, in
the link prediction task, the embeddings of the nodes that are
linked to each other are given to the model as training inputs.
However, since the graph is temporally evolving, these node
embeddings change over time. Because of this reason, when
an edge at timestamp t is given to the training model as an
input, the node embeddings only take the graph updates at
timestamp t and previous timestamps {t− 1, t− 2, ..., 0} into
consideration. In other words, since the graph updates from
t + 1 is not available yet, the node embeddings should not
contain this information when the model is being trained at
timestamp t. This provides a more realistic training approach.
Below, we explain how each individual step in the temporal
GRL pipeline operates.

A. Graph Construction
The pipeline starts with taking raw graph data that contains

node ID, edges and temporal information. It first constructs
a dynamically updated graph and updates the graph structure
with upcoming nodes and edges. The traditional approach is
to construct static networks from the temporal snapshots of
the graph that cannot handle temporally changing data. There
have been works that attempted to construct temporal graphs
more efficiently [33]. We follow an efficient R-Tree based

Fig. 2: An overview of graph construction with R-Trees, which
clusters all nodes that are linked to each other in MBRs and only
updates a portion of the tree structure as the graph evolves over time
to avoid redundant updates.

construction method [23] that generates and maintains a tem-
poral graph. The proposed method is based on a customized
R-Tree based constructor to keep track of all nodes and
their interactions. It avoids redundant updates as nodes evolve
over time, resulting in a significant reduction in temporal
graph construction time compared to the naive construction.
Although a graph construction step has not been implemented
and evaluated in the baseline method, in a temporal setting,
only the new updates from the graph should be considered
while learning the node embeddings. For this reason, this R-
Tree based graph construction method is a suitable technique
for keeping track of node interactions between timestamps.

In this step, when the temporal graph data at timestamp t
is streamed, all the nodes that form edges with each other are
clustered together in minimum bounding rectangles (MBRs),
and represented in a tree structure as seen in Figure 2. While
some nodes change their interactions over time, not every node
changes its interactions at each timestamp. Therefore, instead
of processing every node, we only update MBRs that contain a
node that has changed its interactions. No updates are needed
in the tree structure as long as the nodes remain in their MBRs.

B. Random Walks and word2vec

For random walks, we borrow the idea of EvoNRL [24]
that continuously learns embeddings from the temporally
updating graph into low-dimension graph representations using
random walks without redundant computations. In our setting,
although the graph is temporally evolving, not all nodes and
edges change in every timestamp. Therefore, it is redundant
to reconstruct the random walks for those nodes if they and
their neighbors do not change. For this reason, the algorithm
maintains a list of random walks for each node. In the next
timestamps, in the random walk list, only the random walks
that contain the nodes that are affected by the temporal
changes are reconstructed. This way we (1) maintain a set
of random walks that are consistently valid with respect to
the graph changes, and (2) eliminate the effect of the random
processes by preserving, as much as possible, the original
random walks that haven’t been affected by the graph changes.

When the graph temporally changes from one timestamp
to another, new edges are formed and some existing edges
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Fig. 3: Demonstration of a random walk update for an added edge
from timestamp t − 1 to t. Only a portion of the random walks
including one of the edge nodes are updated.

Fig. 4: Online training approach demonstrated for a 2-layer FNN.
For streaming data batches containing updated node embeddings from
the graph representation learning (GRL) algorithm, forward and back
propagations are applied on a single instance in each online iteration.

are removed. When an edge (u, v) is formed (or removed) at
timestamp t, the immediate neighbors of node u and node
v and their interactions with other nodes are consequently
affected by this change if new random walks are collected.
Instead of collecting new random walks, the random walk list
from the previous timestamp t− 1 is utilized and the random
walks containing either node u or v are retrieved and updated.
This update only applies to the portion of the random walk
after the updated node, i.e. only the rest of the walk that comes
after node u or v need to be re-simulated. At each timestamp
t, after the necessary updates are assigned to the random walk
set, the updated random walks are fed to the word2vec model
to map the graph structure into a d-dimensional space. Figure
3 shows an example of how this process works. The approach
differs from the previous work [17] that uses word2vec once
to capture node embeddings. However, the proposed approach
invokes word2vec at each timestamp and collects temporal
embeddings on the updated graph data.

C. Online FNN Training

A feed-forward neural network (FNN) is utilized for training
on the graph data. Inputs to this step include the node
embeddings from the GRL step. Link prediction uses a 2-layer
FNN that takes an edge list (concatenation 2 node embeddings)
and their corresponding labels that show whether they are
present or absent in the graph. Node classification uses a 3-
layer FNN that takes node embeddings and their corresponding
category labels as inputs.

Fig. 5: Breakdown of the individual matrix operations in the forward
and backward propagation during the training of an FNN with n
hidden layers. D is the node embedding size and B is the batch size.
{H1, H2, ..., Hn} are the sizes of the hidden layers {Y1, Y2, ..., Yn}.
L represents the number of labels of the nodes.

In our setting, training data is sequentially streamed in as
the graph evolves in each timestamp. Therefore, we adopt an
online learning strategy to train the FNN at run-time [20]–
[22]. Figure 4 depicts our approach. When a new data batch
arrives from the GRL step, it is fed into the training model
where forward and back propagation steps are applied on the
same batch for consecutive iterations. Here, our intuition is
that temporal batches that are large in size already contain
sufficient information about the graph since they include
node embeddings that capture graph history from from all
previous timestamps {0, 1, ..., t}. Hence, by collecting enough
updates our training approach tolerates slight over-fitting for
investigating the same batch or additional iterations before
moving on to the next one. Moreover, this approach can have
some performance advantages such as reducing the memory
overheads related to data loading on the internal memory
for training. In future work, more advanced online learning
techniques can be adopted, such as evolving the FNN model
depth from simple to complex over time [20].

IV. EXPLOITING PARALLELIZATION IN THE FNN PIPELINE

Talati et al. [17] proposed parallel implementations to
accelerate the performance of the random walk and word2vec
steps. However, it identified that FNN training significantly
dominates the execution time of the end-to-end workload and
left acceleration of training as future work. In this paper, we
provide a more in-depth analysis of the FNN training to iden-
tify the performance bottlenecks and propose parallelization
techniques for their acceleration.

A. In-Depth Analysis of the FNN Pipeline

We first break the FNN training into its components in the
finest granularity, which are the individual matrix operations
in each step. Figure 5 demonstrates the training pipeline and
each step taken in the forward and backward propagation for
an FNN with n hidden layers. In forward propagation, the
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(a) Inner Product (b) Outer Product

(c) Row-Wise Product (d) Column-Wise Product

Fig. 6: Four different approaches for computing dense-dense matrix
multiplications (DDMMs) in parallel. The elements of the first
and second input matrices are shown in blue and yellow color,
respectively. The elements of the output matrix are shown in green
color.

input batch X of size D (node embedding dimension size) and
B (batch size) is fed to the input layer and propagates through
n hidden layers {Y1, Y2, ..., Yn} with sizes {H1, H2, ..., Hn},
respectively. Each hidden layer Yi has its own corresponding
weight matrix Wi and can be computed as Yi = Yi−1 ×Wi.
The final layer is the readout layer R1 of size L (the number
of labels), with its weight matrix Wr. It is followed by an
activation function that produces R2. Finally, the cost function
is applied to compute the loss between the final layer R2 and
the correct labels R̂2. This completes the forward propagation
stage. After the loss is computed, backward propagation starts
to calculate the gradient for each weight matrix Wi for
i ∈ {0, 1, ..., n, r}. This is done by taking the derivative
of the cost function C with respect to the weight matrix
using the chain rule. After computing the gradient of Wr, the
gradient computation of the subsequent layers only consist
of two main matrix multiplications: M (1)

i and M (2)
i since

some portion of the chain derivatives are already computed
from the previous layer. After the backward propagation step
is completed, weight matrices are updated with their own
corresponding gradients.

B. Parallelization of Low-Dimensional Kernels
The matrix operations in the FNN pipeline are the main

bottlenecks that contribute to the overall training cost. It has
been identified that there is limited parallelism potential for
matrix-multiplications (MMs) due to the small and different
matrix sizes in the studied pipeline [17]. In this section, we dis-
cuss how we can exploit parallelism for these low-dimensional
kernels by using several state-of-the-art approaches.

One way of accelerating MMs is to distribute the operations
in rows or columns of the input matrices among multiple cores
and process them in parallel. In a matrix multiplication, X ×
Y = Z, each of the input matrices X and Y can be accessed

in either a row-wise or column-wise manner. Therefore, the
matrix operations can be performed in four different ways: (1)
inner product, (2) outer product, (3) row-wise product and (4)
column-wise product as shown in Figure 6.
Inner Product. This is the most commonly used MM ap-
proach. As shown in Figure 6a, it reads a row of the first input
matrix X and a column of the second input matrix Y , and
performs an index-matching dot product between two vectors.
As a result, one cell of Z is updated. This MM technique can
be performed by distributing the rows of X among different
cores. One disadvantage is that each row of X and each
column of Y needs to be read multiple times to update a
single row of Z. Even though there is high locality for the
repeated reads for the rows of X , they can still be costly.
For this reason, this approach works better when the input
matrices are small. On the other hand, each cell of Z is read
and updated once. This allows for different cores to write in
different cells of Z. This makes it suitable for parallelism and
provides better scaling when the output matrix is large.
Outer Product. As shown in Figure 6b, outer product [34],
[35] is performed between a column of the first matrix X and a
row of the second matrix Y . The result produces a partial sum
for all cells of Z. These partial sums are accumulated in each
cell after each multiplication. For parallelization, columns of
the first matrix X are distributed among different cores. The
advantage of outer product is that the rows and columns of the
input matrices are only read once. This makes outer product
a good option when the input matrices are large. On the other
hand, the output matrix Z needs to be updated atomically that
impact performance scaling at higher core counts. However,
outer product can still yield acceleration if both input matrices
are very large and the output matrix is small.
Row-Wise Product. As shown in Figure 6c, row-wise product
[36] takes a single row of the first input matrix X and
multiplies it with the rows of the second matrix Y . Each
multiplication outputs a partial sum for a row of Z and
these partial sums are accumulated after each multiplication.
Compared to inner product, row-wise product reads the single
row of X once and performs the multiplication by reading
all of the rows of Y . For parallelization, it is similar to
inner product and the rows of the first matrix are distributed
among different cores, and output matrix updates do not
require atomic operations. Row-wise product yields better
performance if the second input matrix is small, and thus
preferred to inner product since there are less number of reads
to the first matrix.
Column-Wise Product. As shown in Figure 6d, this approach
takes a single column of the second input matrix Y and
multiplies it with all the columns of the first input matrix X .
This produces partial sums for a single column of the output
matrix. This approach is similar to row-wise, and has the same
number of data reads and memory requirement. However, the
columns of the second matrix are distributed among cores
for paralellization. For this reason, depending on the row and
column counts of the input matrices, column-wise or row-wise
product might have better performance than each other.
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TABLE I: Parameters of the temporal graphs used for exper-
iments.

Task Dataset #Nodes #Edges #Timestamps
Link Prediction ia-email 87,274 1,148,072 2,244
Link Prediction wiki-talk 1,140,149 7,833,140 16,000
Link Prediction stackoverflow 6,024,271 63,497,050 125,000

Node Classification brain 5,000 1,955,488 10

In Section VI, each of these parallelization techniques are
applied to the matrix multiplications of the evaluated FNNs.
Note that the embeddings that are input to the FNN are dense.
Therefore, in this paper we only explore and evaluate dense-
dense MMs. However, in future work, these input embeddings
and the weight matrices can be sparsified, which has previ-
ously been explored through feature sparsification in GNNs
[37]–[39], and weight pruning techniques in DNNs [40], [41].
This approach can unlock sparse-sparse matrix multiplications
(SpGEMM) and further accelerate the FNN pipeline.

V. METHODOLOGY

We characterize our implementations on two CPU plat-
forms. For the temporal graph processing, we conducted our
experiments on an Intel Core i7-7820HK (4 physical cores, 8
logical cores at 2.90 GHz) machine with a 32GB memory an
8GB last-level cache (LLC). For the parallelization of the FNN
pipeline, we use a 20-core Intel Xeon E5-2650 v3 multicore
CPU with 2 sockets and 10-cores per socket. The machine has
512GB memory and a 25MB LLC.
Datasets. We use four real-world temporal graph datasets for
our evaluation: wiki-talk [42]–[44], ia-email [45], [46] and
stackoverflow [42], [43] datasets for link prediction, and brain
dataset [47], [48] for node classification. We divide the graphs
in snapshots to process them temporally. The details of the
datasets can be found in Table I.
Python Implementation of Run-time GRL. For temporal
graph processing, we implement a Python framework that
contains: (1) graph construction, (2) temporal random walks &
word2vec, (3) data preparation, and (4) online FNN training
and testing steps. We use Python 3.6-64 in our imple-
mentation. For graph construction, we implemented an R-
Tree based construction based on [23]. For random walks,
we use an open source implementation1 by [24] and use
the word2vec model from Python’s gemsim3.8.1 library.
For the data preparation and training codes, we implement
a Python version of the C++ implementation2 of [17]. The
downstream FNN is implemented using the PyTorch library.
For node classification, we use batch size B = 512, embedding
size D = 64, hidden layer sizes H1 = 128 and H2 = 256 and
output size L = 10. For link prediction we use B = 1024,
D = 8, H1 = 128 and L = 1.
C++ Implementation of the FNN Pipeline. To exploit
parallelism for the matrix multiplication operations in the
FNN pipeline, we have implemented a C++ framework that
performs an entire training iteration with custom implemen-
tations of the forward and backward propagation steps. The

1https://github.com/farzana0/EvoNRL
2https://github.com/talnish/iiswc21 rwalk

TABLE II: Sizes of the main matrix multiplications in link
prediction and node classification FNNs.

Task MM Matrix 1 Matrix 2

Link Prediction

Y1 XT (1024, 16) W1 (16, 128)
R1 Y1 (1024, 128) Wr (128, 1)

M
(2)
r Y T

1 (128, 1024) M
(1)
r (1024, 1)

M
(1)
1 M

(1)
r (1024, 1) Wr (1, 128)

M
(2)
1 X (16, 1024) M

(1)
1 (1024, 128)

Node Classification

Y1 X (512, 64) W1 (64, 256)
Y2 Y1 (512, 256) W2 (256, 128)
R1 Y2 (512, 128) Wr (128, 1)

M
(2)
r Y T

2 (128, 512) M
(1)
r (512, 10)

M
(1)
2 M

(1)
r (512, 10) WT

r (10, 128)
M

(2)
2 Y T

1 (256, 512) M
(1)
2 (512, 128)

M
(1)
1 M

(1)
2 (512, 128) WT

2 (128, 256)
M

(2)
1 XT (64, 512) M

(1)
1 (512, 256)

Fig. 7: Accuracy of temporal training with different batch sizes.

framework implements multi-threaded inner, outer, row-wise
and column-wise parallelization techniques for each matrix
kernel. The pthreads library is used to utilize the available
core counts on the machine, and are compiled using the
g++ v6.4.1 compiler. Table II lists all the evaluated MMs
with their sizes for link prediction and node classification
FNNs. We exclude M (1)

r since it is always an element-wise
multiplication. The rest of the operations shown in Table II
are regular matrix multiplications.

VI. EXPERIMENTAL EVALUATION

A. Temporal Processing Pipeline

Figure 7 shows the accuracy of the temporal training
with different batch sizes for each dataset: ia-email, wiki-
talk and stackoverflow for the link prediction task and brain
for the node classification task. The link prediction datasets

Fig. 8: Execution time overheads of the proposed temporal graph
learning pipeline and comparison with the prior work [17] for 4
temporal graph datasets. The final accuracy at the end of training
is reported for each dataset.
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(a) Link Prediction.

(b) Node Classification.

Fig. 9: The performance evaluation of the matrix multiplications in the training pipeline of link prediction (wiki-talk) and node classification
(brain) FNNs which are parallelized using inner, outer, row-wise and column-wise product algorithms. The scaling for each is shown for 1,
4, 8, 16, 32 and 40 threads.

have the best accuracy with a batch size of 1024, which
is 83.45%, 80.1% and 86.31% for ia-email, wiki-talk and
stackoverflow, respectively. The link prediction accuracy is
lower for smaller batches because the online training strategy
causes slight over-fitting. On the other hand, with larger batch
sizes the model accuracy degrades. This is because larger
batches cannot capture sufficient temporal information about
the graph as some temporal information of the graph is lost
when processing larger time windows. The performance of the
node classification task on the brain dataset is not significantly
affected by different batch sizes since brain dataset has less
number of timestamps (i.e. less temporal data). However, a
batch size of 512 on brain dataset yields the highest accuracy.
Therefore, we fix the batch size to 1024 for link prediction
datasets, and 512 for node classification dataset for the rest of
the experiments.

Figure 8 depicts our experimental results for the imple-
mentation of the temporal graph learning pipeline and its
comparison with the baseline [17]. We measured the execution
time of different steps for one temporal batch in the pipeline:
temporal graph construction, temporal random walk, word2vec
and finally training for node classification or link prediction
depending on the dataset. In comparison, we measured the
execution time of the baseline pipeline for the same size of
data. The accuracy for each dataset is reported in Figure 8.

Overall, brain dataset takes the most amount time due to the
density of temporal updates in the dataset as well as the node

classification task having a 2-FNN layer with more matrix
kernels. Since the graph construction is not implemented in
the baseline, there is an additional overhead for temporal graph
construction in our pipeline, which is the most costly operation
after the training step. Overall, in comparison to the baseline,
the proposed implementation’s execution time is comparable.

In conclusion, the experiments show the breakdown of
all the steps in the temporal pipeline and verify that FNN
training is the performance bottleneck, which confirms the
findings of the baseline method [17]. In the next section
we show the breakdown of the FNN training, and propose
performance acceleration using parallelization of the low-
dimensional kernels.

B. Exploiting Parallelism in FNN Pipeline

Figure 9 shows the performance analysis for the breakdown
of one iteration in the training pipeline. We show the per-
formance of each matrix multiplication kernel in the forward
and back-propagation stages using the row-wise, column-wise,
inner and outer matrix multiplications. The results are shown
for increasing thread counts from 1 to 40 threads. The sizes
of each individual matrix can be found in Table II.

Figure 9a shows the results for the 2-layer FNN for the link
prediction task. All timing measurements are normalized based
on the row-wise multiplication at 1 thread. Here, we mainly
show the performance of the main matrix multiplications and
group the rest of the operations in the pipeline (e.g. sigmoid
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(a) Link Prediction (column-wise). (b) Node Classification (row-wise).

Fig. 10: Performance scaling of the best MM strategy with different
batch sizes at varying thread counts.

function, cost function, vector subtractions, etc.) as “Others”.
As it can be seen, Y1 and M (2)

1 are the most expensive matrix
operations, followed by R1 and M (2)

r in the link prediction
FNN. Overall, row-wise and column-wise both have the best
performance scaling at 16 threads. We observe ∼2.5× speedup
compared to the single thread execution of row-wise. Figure
9b shows the results for the 3-layer FNN for the link prediction
task. All timing measurements are normalized with the row-
wise multiplication at 1 thread. Since the matrix sizes are
relatively larger in this FNN, we observe better performance
scaling for all kernels. At 32 threads, row-wise product shows
the best performance scaling with a 6.6× speedup compared
the row-wise using 1 thread.

In the above experiments, the same parallelization technique
is used for all matrix kernels in an FNN pipeline. However, we
observe that different parallelization techniques perform better
for each individual matrix kernels. For example, for the link
prediction FNN in Figure 9a, even though row-wise has the
best performance for Y1, it is not the case for M (2)

r since inner-
wise product has the best performance. Further performance
acceleration is possible by combining different parallelization
techniques at the kernel granularity. We plan to explore such
fine-grain methods as future work.

Figure 10 shows the scaling of link prediction (wiki-talk)
and node classification (brain) training with different batch
sizes with increasing thread counts. For both tasks, the best
MM strategy is used from the experiment in Figure 9, that
is column-wise for link prediction and row-wise for node
classification. Link prediction achieves 5× speedup with a
batch size of 4096 at 16 threads. Node classification achieves
a higher speedup than link prediction, 13.5×, with a batch size
of 4096 at 40 threads. This is due to the larger matrix sizes in
node classification training pipeline. While larger batch sizes
enable better performance scaling for matrix multiplications,
larger batch sizes might have negative impact on accuracy
depending on the temporal characteristics of the dataset, as
previously shown in Figure 7.

VII. DISCUSSION AND FUTURE WORK

In this paper, we consider dense input embedding and
weight matrices in the FNN during training and inference.
We have shown the performance scaling with different dense-
dense matrix multiplication parallelization techniques. In
graph neural networks, sparsification of the input embedding

matrix [37]–[39] and weight matrices [40], [41] is a common
approach for accelerating the training and inference of models.
These sparsification approaches can be applied to our pro-
posed temporal training pipeline, which will result in sparse-
dense and/or sparse-sparse matrix multiplications in forward
and backward propagation stages. Through parallelization of
sparse-dense and sparse-sparse matrix multiplications, further
acceleration can be achieved.

Other than exploiting the redundancy in embedding and
weight matrices, redundancy between temporal timestamps
can also be exploited for further acceleration. The redundancy
between consecutive timestamps can be explored by observ-
ing the learning trajectory of the FNN during training. One
possible way is to monitor the loss of temporal batches after
forward propagation. The loss is an interpretation of how well
the model performs for a particular set of data. A high loss
value on a batch indicates that the model has not yet learned
enough from the previous batches to be able to make a good
prediction for that particular batch. Therefore, it is an indicator
of better learning opportunity for the model. On the other hand,
a lower loss is an indicator of redundant temporal batch, which
captures temporal events that have already been learned by
the model previously. By following this approach, redundant
batches can be dropped after calculating the loss and backward
propagation can be avoided, which will reduce the overall
training time. This approach needs further investigation and
has been left for future work.

In our experiments, we have shown that there is a trade-
off between the performance scaling of matrix multiplications
and the model accuracy with different batch sizes. Another
future research direction is the optimization of the batch size
for a given temporal graph that co-optimizes accuracy and
performance scaling.

VIII. CONCLUSION

This paper proposes random walk-based temporal graph
learning and online training for link prediction and node classi-
fication tasks on temporally evolving graphs. The performance
evaluation identifies FNN training as the most expensive op-
eration of the proposed pipeline. The low-dimensional matrix
kernels are identified as the main performance bottlenecks
during training. Four state-of-the-art matrix kernel paralleliza-
tion techniques are implemented and evaluated on a large
core count machine. The evaluation shows that FNN pipeline
acceleration significantly improves the overall performance of
the run-time graph learning pipeline.
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