

The preeminent role of directional selection in generating extreme morphological change in Glyptodonts (Cingulata; Xenarthra)

Fabio A. Machado^{a,1}, Gabriel Marroig^b, and Alex Hubbe^{c,1}

^aDepartment of Biology, Virginia Tech, USA.

^bDepartamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.

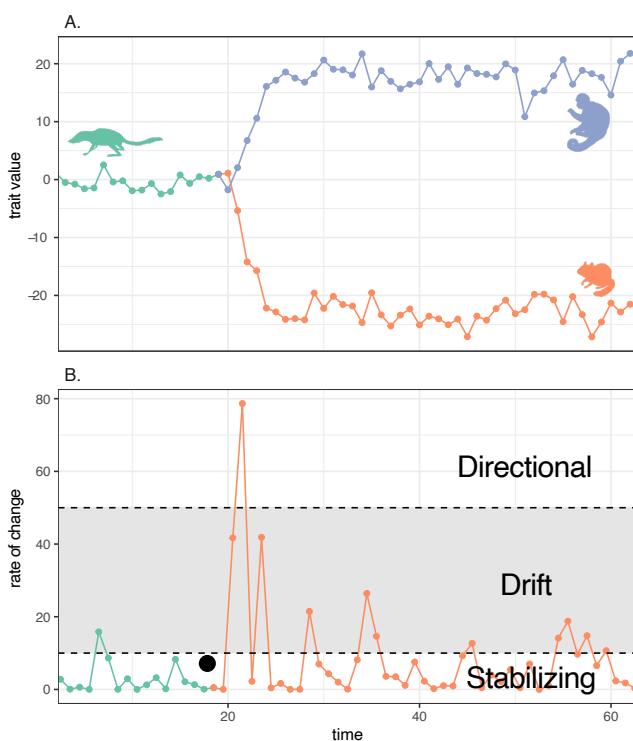
^cDepartamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia, Brazil

¹To whom correspondence should be addressed. E-mail: FAM: macfabio@gmail.com; AH: alexhubbe@yahoo.com

1 The prevalence of stasis on macroevolution has been classi-
2 cally taken as evidence of the strong role of stabilizing selection
3 in constraining morphological evolution. Rates of evolution calcu-
4 lated over longer time scales tend to fall below the expected
5 under genetic drift, suggesting that the signal for directional
6 selection is erased at longer time scales. Here we investigated
7 the rates of morphological evolution of the skull in a fossil lin-
8 eage that underwent extreme morphological modification, the
9 glyptodonts. Contrary to what was expected, we show here that
10 directional selection was the main process during the evolution
11 of glyptodonts. Furthermore, the reconstruction of selection
12 patterns shows that traits selected to generate a glyptodont mor-
13 phology are markedly different from those operating on extant
14 armadillos. Changes in both direction and magnitude of selec-
15 tion are probably tied to glyptodonts' invasion of a specialist-
16 herbivore adaptive zone. These results suggest that directional
17 selection might have played a more important role in the evolu-
18 tion of extreme morphologies than previously imagined.

19 | Skull | Extreme morphology | Fossil | Natural selection | Rates of Evolution

21 Introduction

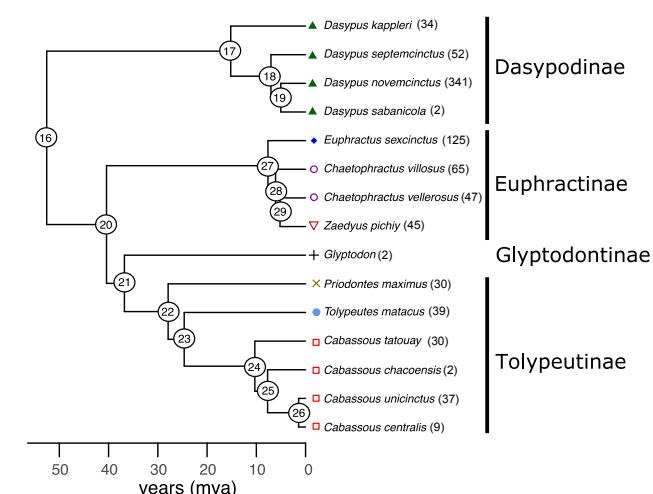

22 Identifying signals of adaptive evolution using rates of
23 change on a macroevolutionary scale is inherently problem-
24 atic because tempo and mode of evolution are intertwined.
25 While stabilizing selection slows down phenotypic change,
26 directional selection can produce faster rates of evolution (1–
27 3). This means that the action of selection (directional or
28 stabilizing) can be identified by contrasting how fast species
29 evolve to the expected rates under genetic drift (1, 2). While
30 this framework has been successfully applied to microevolu-
31 tionary time scales (4), its usefulness to macroevolutionary
32 and deep-time studies has been contentious (5).

33 At larger time scales, it is challenging to quantify the
34 effect of directional selection on the evolutionary process.
35 The leading mechanism of phenotypic evolution on the
36 macroevolutionary scale is thought to be stabilizing selection,
37 as attested by the prevalence of stasis in the fossil record (6).
38 This does not necessarily mean that directional selection did
39 not play any role in phenotypic diversification. In fact, be-
40 cause the adaptive landscape (the relationship between phe-
41 notype and fitness) is thought to be rugged, with many dif-
42 ferent optimal phenotypic combinations (peaks), evolution-

43 ary change under directional selection is bound to be fast
44 during peak shifts and punctuated at the macroevolutionary
45 scale (Fig. 1). Thus, because stasis is so prevalent and
46 measured rates of change reflect the net-evolutionary pro-
47 cesses that operated during the course of lineages' histo-
48 ries, rates of evolution calculated on phylogenies and fossil
49 record tend to be small compared to rates observed in ex-
50 tant populations (5). As a result, measured net-evolutionary
51 rates of morphological change are more commonly than not
52 consistent with evolution under stabilizing selection or drift
53 (3, 5, 7–10). This probably explains why macroevolutionary
54 studies usually infer the action of directional selection indi-
55 rectly through pattern-based methods (e.g., through peak-
56 transitions in diffusion-like models (11); the comparison of
57 rates of change between lineages (12), etc.), rather than
58 adopting biologically informed models (e.g., those derived
59 from quantitative genetics theory).

60 While this departure from a biologically informed model
61 might be justified for univariate traits (5, 7, 10), there is a
62 wealth of evidence showing that the evolution of multivariate
63 complex phenotypes, such as the mammalian skull, follow
64 rules of growth and inheritance that can be modeled using
65 quantitative genetics theory (9, 13, 14). Complex morpholog-
66 ical traits are composed of subunits that are interconnected
67 to each other to varying degrees. These different degrees
68 of interconnection, generated by the complex interaction of
69 multiple ontogenetic pathways, lead to an unequal variance
70 distribution among parts (15), which in turn results in con-
71 straints to adaptive evolution (1, 3, 16, 17). Ignoring the pos-
72 sible role of constraints on the evolution of morphology can
73 have many potential drawbacks, including the establishment
74 of unrealistic expectations for drift in certain directions of
75 the morphospace (3, 18) and possibly obscuring the signal of
76 directional selection. To investigate the effect of directional
77 selection on macroevolutionary scales, while avoiding poten-
78 tial pitfalls inherent to the analysis of multivariate traits, one
79 should aim at studying a complex trait with a well-known
80 trait covariance structure and that probably experienced high
81 rates of evolutionary change. One such example is the case
82 of the evolution of the glyptodont skull.

83 Glyptodonts originated in South America and are mem-
84 bers of the order Cingulata (Xenarthra, Mammalia), which
85 includes the extant armadillos. An emblematic characteris-


Fig. 1. A. Evolution of a trait in an ancestral population (green) and during cladogenesis caused by a peak shift, resulting in two daughter lineages (blue and orange). **B.** Rates of evolution of the trait depicted in **A** for the ancestral species and one of the daughter lineages. The gray band represents the rates of evolution consistent with the expectation under genetic drift. Values above it are produced by directional selection and values below it by stabilizing selection. Even though the lineage experienced expressive directional selection, in practice, one calculates net rates of evolution over the whole period since the origin of the species (black dot), which tend to be small and consistent with the expected under stabilizing selection.

The present contribution aims to use the unique glyptodont case to evaluate if we can identify the signal of directional selection on multivariate macroevolutionary data using biologically informed models of morphological evolution. Specifically, we calculate the empirical rates of evolution among Cingulata taxa and compare that to the expected rates of evolution under genetic drift to identify cases of morphological evolution that can be confidently associated with directional selection. Additionally, we retrospectively estimate the selective forces necessary to generate all morphological diversification within Cingulata to understand better if evolutionary processes responsible for the evolution of glyptodonts are qualitatively different (i.e., selection guided glyptodonts in different directions) from those associated with other Cingulata taxa.

Materials and Methods

Morphometrics and trait covariance. Morphometric analysis was based on 33 linear distances obtained from 3D cranial landmarks (Fig. S1) digitized from 860 museum collection specimens (Table S1). These measurements are designed to capture general dimensions of bones and structures of the mammalian skull. Landmarks and distances are based on (26). Traits were log-transformed to normalize differences in variance due to scale differences. Sample sizes ranged from 2—341 per species (Table S1). We adopted the phenotypic covariance matrix (or **P**) as a surrogate of the additive genetic covariance matrix **G** (see (26) for details).

Here, we calculated **P** as the pooled within-group covariance matrix for all species. This assumes that the **P** is stable throughout the group's evolution (26). Expressly, we assume that the **P** for glyptodonts is the same as for the rest of Cingulata. While this might be contentious due to the extreme morphological modification in the group, **P**s were shown to be similar among extant and fossil Xenarthra, including giant ground sloths (26). Additionally, because glyptodonts are

Fig. 2. Cingulata phylogeny used in the present analysis, including the extinct *Glyptodon* based on (24). Numbers represent the node names referred throughout our analyses. Colors and symbols are using in plot results.

146 nested within extant Cingulata, using the pooled covariance
 147 for living species as a model for glyptodont can be seen as a
 148 case of phylogenetic bracketing (27).

149 Form (shape+size) was quantified as the full morphospace,
 150 while shape was obtained by projecting out the leading PC of
 151 the within-group **P** the dataset. Given that PC1 is usually
 152 a size direction (i.e., where all loadings show similar values
 153 and the same sign 28; Tab. S2), this produces a dataset that is
 154 free from both size and allometric variation. Size was quanti-
 155 fied as the geometric mean of all traits for each individual.
 156 Morphological variation for form was described with a prin-
 157 cipal component analysis (PCA) for cranial data (Fig 3, Tab
 158 S2).

159 **Reconstruction of past selection.** To inspect if the
 160 selective pressures necessary to generate a Glyptodont mor-
 161 phology differ from the remaining Cingulata in scale and
 162 direction (i.e., which combination of traits are favored by
 163 natural selection), we calculated the selection gradients (β s)
 164 necessary to generate all divergence observed in our sample
 165 (10, 17) using a version of the multivariate Breeder's equa-
 166 tion

$$\beta = \mathbf{G}^{-1} \Delta z \quad (1)$$

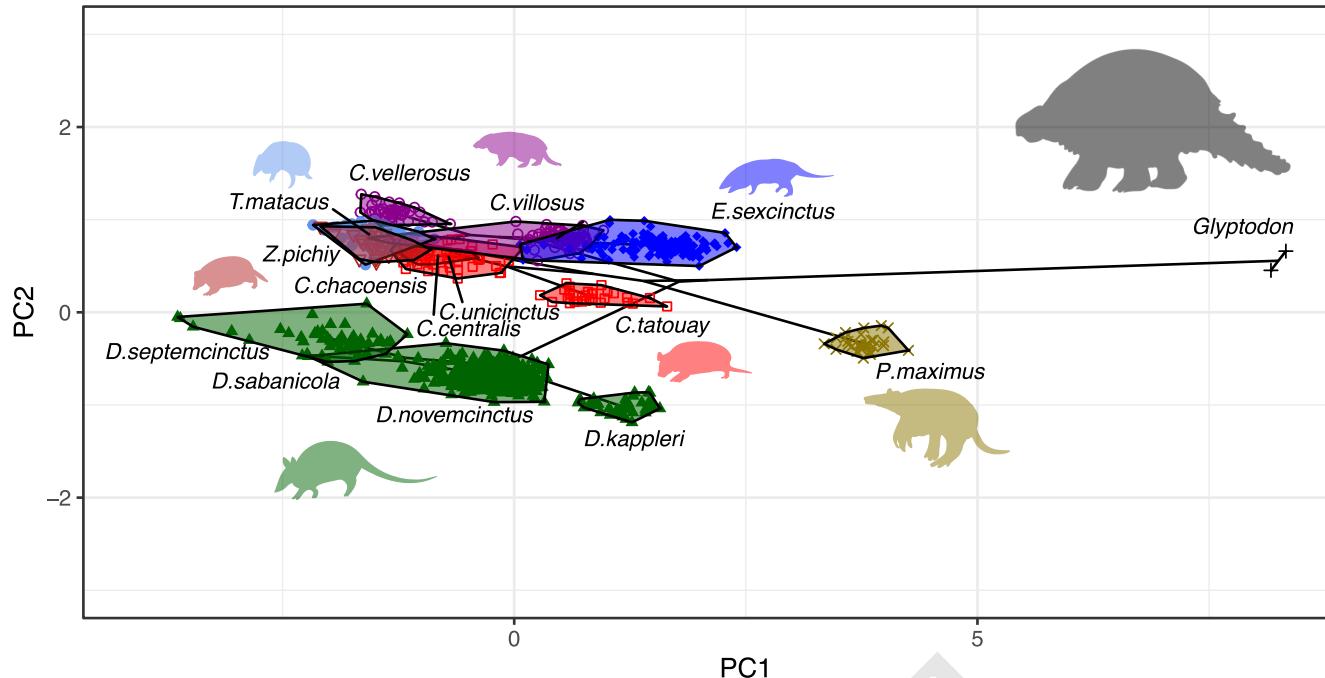
167 with Δz being the phenotypic evolution that happened dur-
 168 ing a period of time. Here, we estimated Δz as the time-
 169 standardized Phylogenetic Independent Contrasts (PIC) ob-
 170 tained at each node (29, 30), ensuring that β obtained like
 171 this are also phylogenetically independent from each other
 172 (31).

173 We applied an extension on eigenvalues after the 21st to
 174 minimize the effect of noise in the calculation of β (32) (see
 175 supplementary material; Fig. S4). To summarize multiple
 176 β s, we performed an analysis similar to PCA, in which node-
 177 wise β s are projected on the leading lines of most selection.
 178 This was done by calculating the matrix of average cross-
 179 product of β s (the matrix of covariance of realized adaptive
 180 peaks), extracting the leading eigenvectors from that matrix,
 181 and projecting individual β s on the subspace defined by these
 182 axes (31). The number of leading vectors was evaluated em-
 183 ploying a simulation approach (31) (see supplementary ma-
 184 terial).

185 **Mode of evolution.** To evaluate the evolutionary processes
 186 involved in generating these morphological patterns, we em-
 187 ployed Lande's generalized genetic distance (LGGD), which
 188 allows confronting observed rates of evolution to the ex-
 189 pected rate under genetic drift while taking into account
 190 the genetic association (covariances) among traits (1). The
 191 LGGD is calculated as

$$LGGD = \frac{N_e}{t} \Delta z^t \mathbf{G}^{-1} \Delta z \quad (2)$$

192 where t is the time in generations, and N_e is the effective
 193 population size. LGGDs were obtained for form, allometry-
 194 free shape features, and size.


195 For this analysis, the phylogeny was scaled, so the diver-
 196 gence time is given in generations instead of Myr. Genera-
 197 tion times were set to be equal to the timing of sexual matu-
 198 rity of females plus the incubation period without assuming
 199 any reproductive seasonality. This is considered a conser-
 200 vative estimate, as generation times calculated like this are
 201 lower, leading to lower rates of evolution. Nevertheless, re-
 202 laxing some of these assumptions (e.g., assuming seasonality
 203 or higher generation times) did not change our results (not
 204 shown). To obtain generation times for species without data
 205 on life-history traits (fossil species included), we estimated
 206 the linear relationship (in log scale) between body mass and
 207 generation time for 805 mammal species (33), and used the
 208 results to estimate the missing data. Because Cingulata shows
 209 a proportionally shorter generation time than the linear trend
 210 for all mammals, we subtracted a constant to correct for that
 211 difference (Fig. S2). Given that *Glyptodon* body mass esti-
 212 mates can vary, ranging from 819kg to 2000kg (21, 34), we
 213 calculated generation times for these extreme values. This
 214 resulted in generation times estimates ranging from 3.8-4.6
 215 years, consistent with generation times for large ungulates
 216 (33, 35). Finally, to scale the phylogeny, we reconstructed
 217 ancestral values for generation time using maximum likeli-
 218 hood (36). Each branch length was then divided by the aver-
 219 age between the ancestral and descendant generation times.
 220 PIC values obtained in the scaled phylogeny are given in units
 221 $\Delta z/t$.

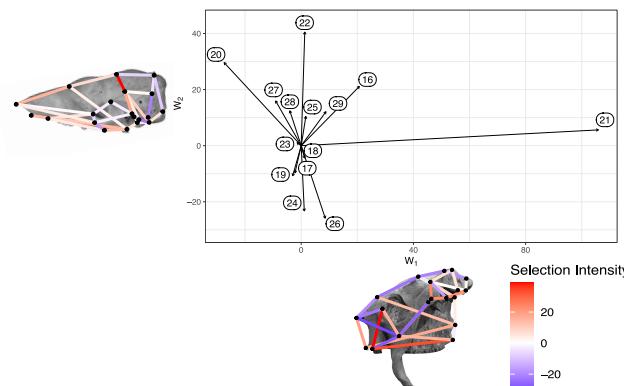
222 Since there is little available information for the N_e of Cing-
 223 ulata, we sampled N_e values from a uniform distribution
 224 ranging from 10,000 to 300,000. Estimates of effective pop-
 225 ulation sizes for other Late Quaternary large herbivores range
 226 from 15,000-790,000 (35), so the values chosen here can be
 227 seen as conservative estimates in the case of glyptodonts. To
 228 approximate **G**, we employed the Cheverud Conjecture (37),
 229 which states that the pattern of phenotypic covariances **P** can
 230 be used as a proxy for **G** when certain conditions are met
 231 (26). Because **P**s contain more variance than **G**s, we scaled
 232 the latter according to a constant which, in the case of per-
 233 fect proportionality between matrices, is equal to the average
 234 heritability (h^2) of all traits (9). Values for h^2 were drawn
 235 from a uniform distribution ranging from 0.3 and 0.6, which
 236 are compatible with heritability estimates for the same cra-
 237 nial traits in other mammalian species (38, 39). Thus, we
 238 produced a range of LGGD values for each node to account
 239 for uncertainty on both N_e and h^2 .

240 Because parametric methods had an inadequate type I er-
 241 ror rate (see Fig. S3), a null distribution of LGGD was con-
 242 structed by simulating multivariate evolution under genetic
 243 drift as follows

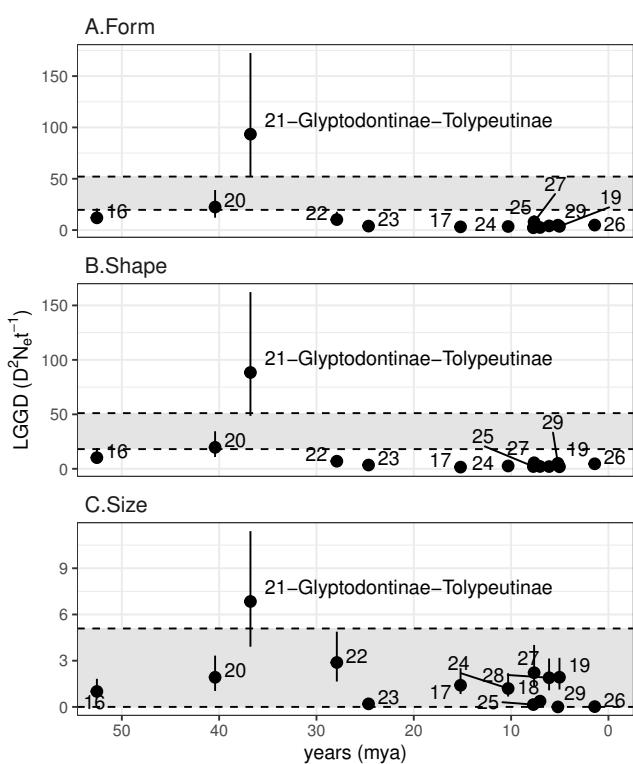
$$\mathbf{B} = \frac{t}{N_e} \mathbf{G} \quad (3)$$

244 where **B** is the covariance matrix between evolutionary
 245 changes (1). For each simulation, the randomly generated
 246 value of N_e was used to construct a **B** from which one ob-
 247 servation would be drawn for one generation ($t = 1$). This

Fig. 3. Principal component analysis (PCA) of the 33 morphometric measurements of the skull of Cingulata species. Convex polygons encapsulate each species. Symbols and colors identify genus as shown in fig. 2. Silhouettes kindly produced by M. C. Luna.


procedure was repeated 10000 times to generate a null distribution under drift. Values below 2.5% of the simulated values are considered to be dominated by stabilizing selection, and values above 97.5% of the simulated values are considered to be dominated by directional selection (Fig. 1). Note that estimated rates in a macroevolutionary context are better seen as the net effect of the sum of all evolutionary processes that acted during the history of a lineage (40). Thus, instead of classifying lineages under either directional or stabilizing selection (or drift), our results should be seen as an investigation of the relative importance of these multiple processes.

Results


Morphometrics and past selection. The principal component analysis (PCA) of our full multivariate dataset of skull measurements illustrates the uniqueness of glyptodontinae morphology (Fig. 3). Glyptodontinae shows an extreme score on PC1 compared to the extant armadillos, which is considered a size and allometric direction (Table S2); (28). The giant armadillo *Priodontes maximus* also presents a high score on PC1, but with values still closer to the remaining Cingulata than to *Glyptodon*. Dasypodidae species tend to occupy a different position of the morphospace than Euphractinae and Tolypeutinae, with similar PC1 values but smaller PC2 scores associated with an increase in the size of facial traits (Table S2).

The simulation approach designed to identify how many directions of preferential selection are necessary to produce the morphological diversity in Cingulata recovered the first three leading eigenvectors of the covariance matrix of selection gradients (W_1 , W_2 and W_3) as significant (Fig. S5). The leading vector W_1 summarizes selection for the reduc-

tion of the skull's total length while also showing a dorsoventral expansion of the face region, along with an increase in the tooth-row size (Fig. 4). The only node that scores heavily on this axis is the one associated with Glyptodonts' origin (node 21), suggesting that this is a Glyptodont-exclusive combination of selective pressures. The second axis W_2 summarizes a contrast between face and neurocranium. The nodes with the highest scores on this axis, 20 and 22, neighbor the node leading to glyptodonts, while the ones with the lowest scores, 24 and 26, are nodes internal to the *Cabassous* genus. The third axis W_3 shows strong selection on features associated with the skull height (Fig. S6). An inspection of the scores along W_3 reveals that this axis is mostly associated with the differentiation within Euphractinae (nodes 27—29).

Fig. 4. Projection of node-wise selection gradients on the two main predominant directions of directional selection (W_1 and W_2). Numbers represent the nodes on the phylogeny (Fig. 3A). Skulls depict a graphical representation of the two main directions W_1 (*Glyptodon* skull) and W_2 (*Cabassous* skull). Colors represent the intensity and direction (blue-negative and red-positive) of selection.

Fig. 5. Values for Lande's Generalized Genetic Distance (LGGD) calculated at each node plotted against node age for form (A.), shape (B.) and size (C.). Dots and solid lines represent the median and the ranges for the LGGD values for a given node. Nodes are numbered following fig. 3A. Gray area represents the expectation under drift. Values above it are consistent with directional selection and below it with stabilizing selection.

are usually measured as the ratio between total morphological differentiation and time (29). As divergence times increase, even extreme changes can get diluted, implying that searching for signals of directional selection in macroevolutionary data might be futile (Fig. 1). In this sense, or analysis produce a more nuanced understanding of such process.

Broadly speaking, our results agree with previous evidence that stabilizing selection is the dominant evolutionary process shaping mammalian morphological diversification (5, 7, 9). Rates of morphological evolution calculated throughout the evolutionary history of Cingulata are consistent with stabilizing selection, a pattern that is more expressive for shape than for size (4). This finding is in line with previous suggestions that shape features are more constrained than size, implying that the former is more affected by stabilizing selection than the latter (41). One proposed explanation for this pattern refers to the macroevolutionary dynamic of adaptive zones (42, 43). Adaptive zones are regions of the phenotypic space defined by a specific ecomorphological association between phenotype, function and ecology. Within that region, evolution normally results in quantitative differences in ecology and morphology. When lineages escape such region, thus invading a new adaptive zone, this is usually associated with more intense changes in morphology and ecology, a feature usually observed in major evolutionary transitions and innovations (42, 43). If, as some have suggested, shape features are more strongly associated with functional demands (44–48), than changes in functional requirements would probably lead to shape evolution, and possibly to the invasion of a new adaptive zone (31, 47). Size changes, on the other hand are less likely to impact ecomorphological relationships, being associated with within-zones evolution (31, 47). In fact, most of the evolution of Cingulata seems to concentrate on a similar region of the morphospace (Fig. 3), which could be evidence that their morphology is being maintained within a "generalist-armadillo" adaptive zone (45). Within that zone, shape and size would be under strong stabilizing selection, but size would be more prone to change

The only exception to this rule, both in terms of morphospace occupation and rates of evolution, is the glyptodont lineage (Fig. 3, 5). Glyptodonts seem to have reached a region unoccupied by other Cingulata (Fig. 3). The most straightforward explanation for this is that glyptodonts invaded a new adaptive zone fuelled by a drastic change in ecology. Glyptodonts are thought to be highly specialized herbivores, a diet with strong functional demands (21). These demands were then responsible for imposing a strong directional selection, leading to radical morphological change and functional innovation seen in this group (20). This interpretation is further reinforced by the investigation of hypothetical past selection. The description of W_1 , which is a Glyptodont-exclusive axis, matches the telescoping process that Glyptodonts went through during their evolutionary history (20). Furthermore, the required strength of selection for the divergence of glyptodonts is superior to those observed within the generalist-armadillo adaptive zone. Changes in the orientation and strength of selection have been associated

Mode of evolution. LGGD shows that stabilizing selection was the dominant force in the morphological evolution of Cingulata, a fact that is more evident for both form and shape (Fig. 5A-B). For size, most observed LGGD values fell within the expected under drift (Fig. 5C). While most nodes failed to exhibit values above the expected under drift, a noticeable exception was the one representing the divergence between Glyptodontinae and Tolypeutinae (node 21). This node presented LGGD values for form, shape, and size that fall above the expected under drift, suggesting that directional selection had a preeminent role during the divergence of this group. The multivariate PIC for this node and PC1 of the full dataset (Fig. 3) are highly aligned (vector correlation=> 0.98), indicating that this direction is mostly associated with the divergence of Glyptodonts from all remaining Cingulata. The increased evolutionary rate observed for this node does not seem to be an artifact introduced by the timing of the origin of Glyptodonts, as older nodes associated with the divergence of subfamilies within Cingulata did not show elevated LGGD values (Fig. 5).

Discussion

Previous investigations on the macroevolutionary rates of morphological evolution in mammals have shown that morphological change is usually orders of magnitude slower than would be expected by drift (5). Such macroevolutionary rates

375 with dietary shifts in other mammals (31, 49), reinforcing this
376 idea that the selective change observed in Glyptodonts has an
377 ecomorphological basis.

378 The fact that the signal of directional selection is
379 detectable in a macroevolutionary scale is remarkable. To our
380 knowledge, a comparable signal was only previously found
381 at the divergence between lower and higher apes, at 20mya,
382 and at the origin of humans, at 6mya (9). This is some-
383 what expected, as primates are marked by a phylogenetic
384 trend towards increased brain size, a pattern that is intensi-
385 fied on hominins (50). It is possible that the evolution of
386 Glyptodontinae was also marked by a continuous differen-
387 tiation trend. Early representatives of the group, such as
388 *Propalaeholophorus*, exhibit an intermediary version of the
389 cranial telescoping characteristic of latter glyptodonts (20).
390 Given that the split between Glyptodontinae and Tolypeuti-
391 nae happened 35mya ago (24, 25) and *Propalaeholophorus*
392 is known from the fossil record from 22-15mya (51), this
393 suggests that the accumulation of morphological changes in
394 this lineage was probably gradual and continuous. If that is
395 the case, then glyptodonts can be the oldest and longest case
396 of such a pattern of continuous change. Alternatively, if the
397 group's evolution was punctuated by long periods of stasis,
398 this could mean that directional selection events were even
399 more intense than shown by the present analysis (Fig. 1).
400 However, given the clear difference between primitive and
401 derived forms within the group, the truth probably lies some-
402 where in between, with a gradual directional evolution punc-
403 tuated by some periods of stasis but in proportions that differ
404 from the remaining Cingulata and even other mammals.

405 As mentioned above, the use of biologically informed
406 models to investigate evolutionary rates at macroevolutionary
407 scales is still rare and limited in scope. We suggest that
408 some of this dismissal comes from the assumed inapplicability
409 of these models at larger time scales due to the overwriting
410 power of stabilizing selection. Here we show that this
411 assumption does not hold for glyptodonts, raising the possi-
412 bility that directional selection is more pervasive than previ-
413 ously thought. The integration of more refined paleontolog-
414 ical, demographic, and life-history data in the investigation
415 of macroevolutionary questions can lead to a more nuanced
416 view of the role of directional and stabilizing selection on the
417 evolution of complex morphologies.

418 ACKNOWLEDGEMENTS

419 We thank the curators of the following institutions for providing access to speci-
420 mens and support for data acquisition: American Museum of Natural History; Cali-
421 fornia Academy of Science; Facultad de Ciencias de la Universidad de la Re-
422 publica; Field Museum of Natural History; Museu Paraense Emílio Goeldi; Idaho
423 Museum of Natural History; Los Angeles County Museum; La Brea Tar Pits and
424 Museum; Museo Argentino de Ciencias Naturales; Museu de Ciências Naturais
425 da Pontifícia Universidade Católica de Minas Gerais; Museu de Ciências Naturais
426 da Fundação Zoobotânica do Rio Grande do Sul; Museo de La Plata; Museo Pa-
427 leontológico de Colonia del Sacramento; Museu Nacional de Historia Natural de
428 Montevideo; Museu Nacional (Rio de Janeiro); University of California Museum of
429 Vertebrate Zoology; Natural History Museum (London); University of California Mu-
430 seum of Paleontology; Florida Museum of Natural History; Smithsonian National
431 Museum of Natural History; Museu de Zoologia da Universidade de São Paulo;
432 Universidade Federal do Piauí. We also thank EvoClub_BR discussion group and
433 the members of Uyeda's Lab (Virginia Tech) for thoughtful comments and suggestions
434 to the text. This work was partially supported by grants from NSF to FAM
435 (DEB 1350474 and DEB 1942717) and FAPESP to AH and GM (2012/24937-9;
436 2011/14295-7).

Bibliography

437

1. R Lande. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: 438 body size allometry. *Evolution*, 33(1):402–416. 439
2. M Turelli, J. H. Gillespie, and R Lande. 1988. Rate tests for selection on quantitative char- 440 acters during macroevolution and microevolution. *Evolution*, 42(5):1085–1089. 441
3. T Hansen and D Houle. 2008. Measuring and comparing evolvability and constraint in 442 multivariate characters. *Journal of Evolutionary Biology*, 21(5):1201–1219. 443
4. T Leinonen, R. S McCaughan, R. B O'hara, and J Merilä. 2013. Q_{ST} - f_{ST} comparisons: 444 evolutionary and ecological insights from genomic heterogeneity. *Nature Reviews Genetics*, 445 14(3):179–190. 446
5. M Lynch. 1990. The rate of morphological evolution in mammals from the standpoint of the 447 neutral expectation. *The American Naturalist*, 136(6):727–741. 448
6. R Lande. 1986. The dynamics of peak shifts and the pattern of morphological evolution. 449 *Paleobiology*, 12(4):343–354. 450
7. B Lemos, G Marroig, and R Cerqueira. 2001. Evolutionary rates and stabilizing selection in 451 large-bodied opossum skulls (Didelphimorphia: Didelphidae). *Journal of Zoology*, 255(2): 452 181–189. 453
8. T. F Hansen, T. M Solvin, and M Pavlicev. 2019. Predicting evolutionary potential: A numer- 454 ical test of evolvability measures. *Evolution*, 276:1182–15. 455
9. L Schroeder and N von Cramon-Taubadel. 2017. The evolution of hominoid cranial diversity: 456 A quantitative genetic approach. *Evolution*, 71(11):2634–2649. 457
10. M Grabowski and C. C Roseman. 2015. Complex and changing patterns of natural selection 458 explain the evolution of the human hip. *Journal of Human Evolution*, 85(C):94–110. 459
11. M. A Butler and A King. 2004. Phylogenetic comparative analysis: a modeling approach for 460 adaptive evolution. *The American Naturalist*, 164(6):683–695. 461
12. L. J Revell, D. L Mahler, P. R Peres-Neto, and B. D Redelings. 2011. A new phylogenetic 462 method for identifying exceptional phenotypic diversification. *Evolution*, 66(1):135–146. 463
13. R. R Ackermann and J. M Cheverud. 2002. Discerning evolutionary processes in patterns 464 of tamarin (genus *Saguinus*) craniofacial variation. *American Journal of Physical Anthropol- 465 ogy*, 117(3):260–271. 466
14. G Marroig and J. M Cheverud. 2004. Did natural selection or genetic drift produce the 467 cranial diversification of neotropical monkeys? *The American Naturalist*, 163(3):417–428. 468
15. B Hallgrímsson, H Jamniczky, N Young, C Rolian, T Parsons, J Boughner, and R. S Mar- 469 cuco. 2009. Deciphering the palimpsest: studying the relationship between morphological 470 integration and phenotypic covariation. *Evolutionary Biology*, 36(4):355–376. 471
16. L. T Shirai and G Marroig. 2010. Skull modularity in neotropical marsupials and monkeys: 472 size variation and evolutionary constraint and flexibility. *Journal of Experimental Zoology 473 Part B: Molecular and Developmental Evolution*, 314B(8):663–683. 474
17. G Marroig and J. M Cheverud. 2010. Size As A Line Of Least Resistance II: Direct Selection 475 On Size Or Correlated Response Due To Constraints? *Evolution*, 64(5):1470–1488. 476
18. A Goswami, J. B Smaers, C Soligo, and P. D Polly. 2014. The macroevolutionary conse- 477 quences of phenotypic integration: from development to deep time. *Philosophical Transac- 478 tions of the Royal Society B: Biological Sciences*, 369(1649):20130254. 479
19. R Owen. 1838. Fossil mammalia. In C Darwin, editor, *The Zoology of the voyage of H.M.S. 480 Beagle, under the command of Captain Fitzroy during the years 1832–1836*, page 111 pp. 481 Smith Elder and Co, London. 482
20. R. A Fariña and S Vizcaíno. 2001. Carved teeth and strange jaws: how glyptodonts masti- 483 cated. *Acta Palaeontologica Polonica*, 46(2):219–234. 484
21. S. F Vizcaíno, G. H Cassini, J. C Fernicola, and M. S Bargo. 2011. Evaluating Habitats 485 and Feeding Habits Through Ecomorphological Features in Glyptodonts (Mammalia, Xe- 486 narthra). *Ameghiniana*, 48(3):305–319. 487
22. R Hoffstetter. 1958. *Xenarthra. Traité de paléontologie mammifères évolution*. Paris, 488 France: Masson et Cie. 489
23. J. C Fernicola and K. O Porpino. 2012. Exoskeleton and Systematics: A Historical Problem 490 in the Classification of Glyptodonts. *Journal of Mammalian Evolution*, 19(3):171–183. 491
24. F Delsuc, G. C Gibb, M Kuch, G Bille, L Hautier, J Southon, J.-M Rouillard, J. C Fernicola, 492 S. F Vizcaíno, R. D. E MacPhee, and H. N Poinar. 2016. The phylogenetic affinities of the 493 extinct glyptodonts. *Current Biology*, 26(4):R155–R156. 494
25. K. J Mitchell, A Scanferla, E Soibelman, R Bonini, J Ochoa, and A Cooper. 2016. Ancient 495 DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: 496 Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos. *Molecular Ecol- 497 ogy*, 25(14):3499–3508. 498
26. A Hubbe, D Melo, and G Marroig. 2016. A case study of extant and extinct Xenarthra 499 cranium covariance structure: implications and applications to paleontology. *Paleobiology*, 500 42(3):465–488. 501
27. L. M Witmer. 1995. The extant phylogenetic bracket and the importance of reconstructing 502 soft tissues in fossils. In J Thomason, editor, *Functional morphology in vertebrate paleon- 503 tology*, pages 19–33. Cambridge. 504
28. P Jolicoeur. 1963. The Multivariate Generalization of the Allometry Equation. *Biometrics*, 505 19(3):497–499. 506
29. J Felsenstein. 1985. Phylogenies and the comparative method. *The American Naturalist*, 507 125(1):1–15. 508
30. J Felsenstein. 1988. Phylogenies and quantitative characters. *Annual Review of Ecology 509 and Systematics*, 19:445–471. 510
31. F. A Machado. 2020. Selection and constraints in the ecomorphological adaptive evolution 511 of the skull of living canidae (carnivora, mammalia). *The American Naturalist*, 196(2):197– 512 215. 513
32. G Marroig, D. A. R Melo, and G. R. G Garcia. 2012. Modularity, noise, and natural selection. 514 *Evolution*, 66(5):1506–1524. 515
33. J De Magalhaes and J Costa. 2009. A database of vertebrate longevity records and their 516 relation to other life-history traits. *Journal of evolutionary biology*, 22(8):1770–1774. 517
34. S. F Vizcaíno, R. E Blanco, J. B Bender, and N Milne. 2010. Proportions and function of the 518 limbs of glyptodonts. *Lethaia*, 44(1):93–101. 519
35. E. D Lorenzen, D Nogués-Bravo, L Orlando, J Weinstock, J Binladen, K. A Marske, A Ugan, 520 M. K Borregaard, M. T. P Gilbert, R Nielsen, S. Y. W HO, T Goebel, K. E Graf, D Byers, J. T 521

522 Stenderup, M Rasmussen, P F Campos, J A Leonard, K-P Koepfli, D Froese, G D Zazula,
523 T W Stafford, K Aaris-Sørensen, P Batra, A M Haywood, J S Singarayer, P J Valdes,
524 G Boeskorov, J A Burns, S P Davydov, J Haile, D L Jenkins, P Kosintsev, T Kuznetsova,
525 X Lai, L D MARTIN, H G McDonald, D Mol, M Meldgaard, K Munch, E Stephan, M Sablin,
526 R S Sommer, T Sipko, E Scott, M A Suchard, A Tikhonov, R Willerslev, R K Wayne
527 A Cooper, M Hofreiter, A Sher, B Shapiro, C Rahbek, and E Willerslev. 2011. Species-
528 specific responses of Late Quaternary megafauna to climate and humans. *Nature*, 479
529 (7373):359–364.

530 36. D Schlüter, T Price, A. Ø Mooers, and D Ludwig. 1997. Likelihood of ancestor states in
531 adaptive radiation. *Evolution*, 51(6):1699–1711.

532 37. J. M Cheverud. 1988. A comparison of genetic and phenotypic correlations. *Evolution*, 42
533 (5):958–968.

534 38. G. R. G Garcia, E Hingst-Zaher, R Cerqueira, and G Marroig. 2014. Quantitative Genetics
535 and Modularity in Cranial and Mandibular Morphology of *Calomys expulsus*. *Evolutionary
536 Biology*, 41(4):619–636.

537 39. A Porto, H Sebastião, S. E Pavan, J. L VandeBerg, G Marroig, and J. M Cheverud. 2015.
538 Rate of evolutionary change in cranial morphology of the marsupial genus *Monodelphis*
539 constrained by the availability of additive genetic variation. *Journal of Evolutionary Biology*,
540 28(4):973–985.

541 40. M Turelli. 1988. Phenotypic evolution, constant covariances, and the maintenance of addi-
542 tive variance. *Evolution*, 42(6):1342–1347.

543 41. W. C Clyde and P. D Gingerich. 1994. Rates of evolution in the dentition of early eocene
544 canines : comparison of size and shape. *Paleobiology*, 20(4):506–522.

545 42. G. G Simpson. 1953. *The major features of evolution*. Columbia University Press: New
546 York.

547 43. G. G Simpson. 1944. *Tempo and mode in evolution*. Columbia University Press: New York.

548 44. J. M. V Rayner. 1985. Linear relations in biomechanics: the statistics of scaling functions.
549 *Journal of Zoology*, 206(3):415–439.

550 45. P. D Polly. 2008. Adaptive zones and the pinniped ankle: a three-dimensional quantitative
551 analysis of carnivoran tarsal evolution. In *Mammalian evolutionary morphology*, pages 167–
552 196. Springer.

553 46. F. A Machado, A Hubbe, D Melo, A Porto, and G Marroig. 2019. Measuring the magnitude
554 of morphological integration: The effect of differences in morphometric representations and
555 the inclusion of size. *Evolution*, 33:402–11.

556 47. G. J Slater and A. R Frisca. 2019. Hierarchy in adaptive radiation: A case study using the
557 Carnivora (Mammalia). *Evolution*, 73(3):524–539.

558 48. V Segura, G. H Cassini, and F. J Prevosti. 2021. Evolution of cranial ontogeny in south
559 american canids (carnivora: canidae). *Evolutionary biology*, 48(2):170–189.

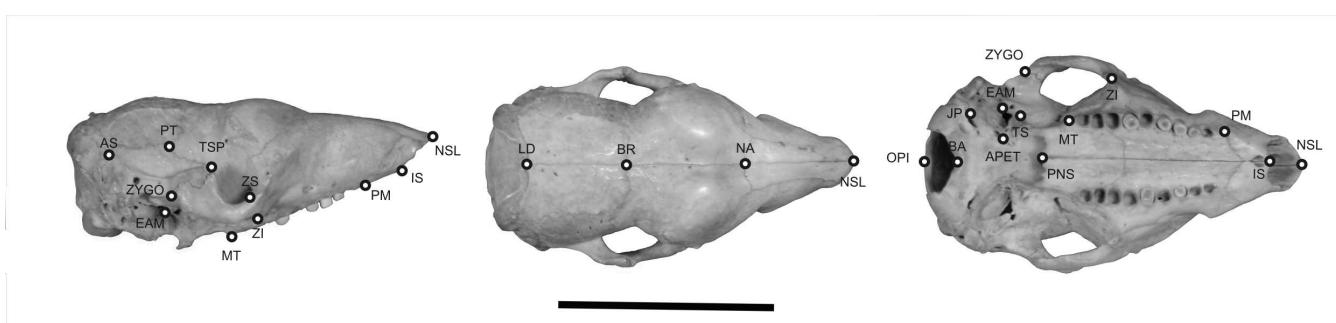
560 49. D. M Rossoni, A. P. A Assis, N. P Giannini, and G Marroig. 2017. Intense natural selection
561 preceded the invasion of new adaptive zones during the radiation of new world leaf-nosed
562 bats. *Scientific Reports*, 7(1):11076.

563 50. M Melchionna, A Mondanaro, C Serio, S Castiglione, M Di Febraro, L Rook, J. A. F Diniz-
564 Filho, G Manzi, A Profico, G Sansalone, and P Raia. 2020. Macroevolutionary trends of
565 brain mass in primates. *Biological Journal of the Linnean Society*, 129(1):14–25.

566 51. J. C Fernicola. 2008. Nuevos aportes para la sistemática de los glyptodontia ameghino
567 1889 (mammalia, xenarthra, cingulata). *Ameghiniana*, 45(3):553–574.

568 Supplementary methods and Results

569 **Sample and measurements.** We obtained morphometric variables from skulls belonging to 14 extant and one extinct species,
570 representing four Cingulata subfamilies (Table S1). Only adult individuals were sampled. Criteria used to determine adulthood
571 are explained in (26).


572 Landmarks are the same as in (26, Fig. S1). The set of measurements refer to the 35-measurements found in (26) minus two
573 measurements: PT-TSP and APET-TS. These measurements were excluded because they can sometimes reach small values on
574 some species, and their variance is disproportionately inflated on the log scale. See (26) for more information on landmark and
575 measurement description, data processing, and measurement repeatabilities.

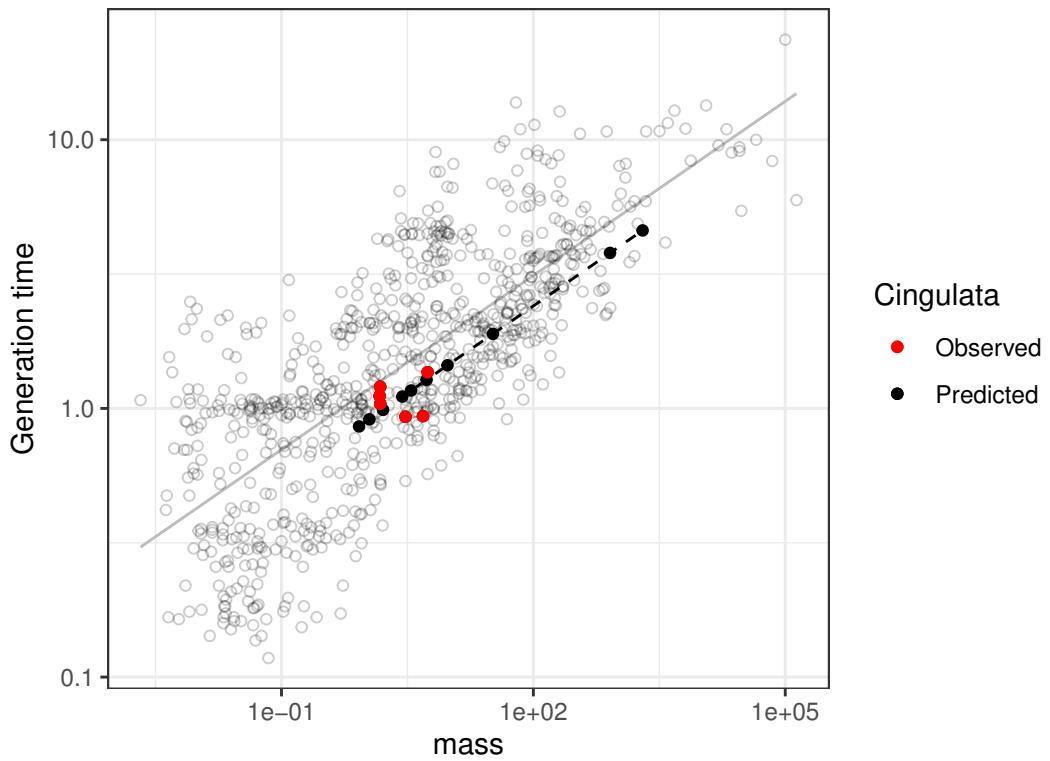
576 **Phylogeny.** The phylogenetic relationships between species were based on molecular analysis on mitogenomic data from
577 Delsuc et al. (24; Fig. 3C), consistent with other independently derived analyses (25). Both papers determined the placement
578 of Gliptodonts on the Xenarthran phylogeny based on ancient DNA samples extracted from *Doedicurus* sp specimens. Here,
579 we swapped *Doedicurus* sp. for *Glyptodon* sp. because there is ample evidence showing that both belong to the same subfamily
580 (19, 22). In the absence of any other member of the group in our analysis, the phylogenetic position of one glyptodontid can
581 be assigned to any other species of that clade. Furthermore, because both species are thought to have gone extinct at roughly
582 the same time (around the end of the Pleistocene and the beginning of the Holocene), there is no need to scale branch lengths
583 accordingly.

584 **Generation time.** Generation times were obtained (33) by summing up the timing of sexual maturity of females and the in-
585 cubation period. Because armadillos reproduce more than once throughout their lifetimes, real generation times are probably
586 larger than this. As a consequence of our calculations, the values used here for generation times are considered a minimum
587 benchmark value and not the true one. Furthermore, because larger generation times imply that fewer generations have trans-
588 spired during the same period, this means that our estimates of LGGD are probably underestimated. Given that small LGGD
589 are consistent with stabilizing selection and that stabilizing selection is expected to be the dominant force in the evolution of
590 morphological traits, the use of these underestimated generation times leads to conservative estimates of LGGDs.

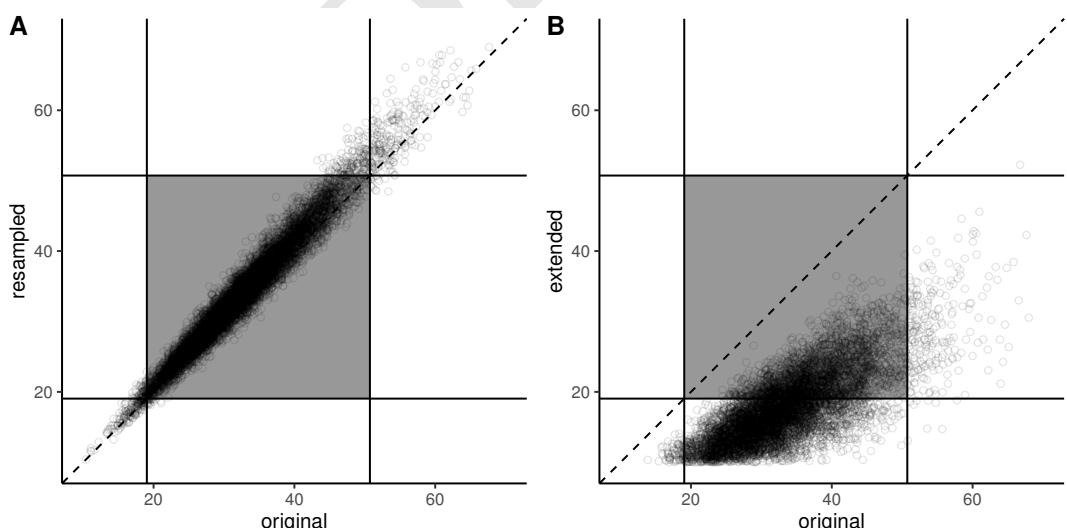
584 **Table S1.** Sample size by species.

Subfamily	Species	sample
Dasypodinae	<i>Dasyurus kappleri</i>	34
	<i>Dasyurus novemcinctus</i>	341
	<i>Dasyurus sabanicola</i>	2
Tolypeutinae	<i>Dasyurus septemcinctus</i>	52
	<i>Cabassous centralis</i>	9
	<i>Cabassous chacoensis</i>	2
	<i>Cabassous tatouay</i>	30
	<i>Cabassous unicinctus</i>	37
	<i>Tolypeutes matacus</i>	39
	<i>Priodontes maximus</i>	30
Glyptodontinae	<i>Glyptodon</i>	2
	<i>Chaetophractus vellerosus</i>	47
Euphractinae	<i>Chaetophractus villosus</i>	65
	<i>Euphractus sexcinctus</i>	125
	<i>Zaedyus pichiy</i>	45
	TOTAL	860

584 **Fig. S1.** Cranial landmarks measured in this study represented on a *Cabassous* specimen. Bar is equal to 5 cm.


Table S2. Loadings of the first two principal components of the intra and interspecific morphometric datasets. Traits are discriminated according to their cranial anatomical regions.

Trait	Anatomical region	Intraspecific		Interespecific	
		PC1	PC2	PC1	PC2
IS.PM	Face	0.194	0.058	0.178	-0.017
IS.NSL	Face	0.200	0.012	0.200	-0.031
IS.PNS	Face	0.175	0.033	0.175	-0.209
PM.ZS	Face	0.169	0.159	0.153	-0.337
PM.ZI	Face	0.165	-0.041	0.139	-0.315
PM.MT	Face	0.162	0.054	0.172	-0.114
NSL.NA	Face	0.183	0.101	0.178	-0.197
NSL.ZS	Face	0.177	0.132	0.160	-0.225
NSL.ZI	Face	0.175	-0.016	0.153	-0.217
NA.PNS	Face	0.170	0.002	0.175	-0.123
PT.ZYGO	Face	0.219	0.000	0.195	-0.118
ZS.ZI	Face	0.213	-0.904	0.126	-0.029
ZI.MT	Face	0.212	-0.009	0.189	0.275
ZI.ZYGO	Face	0.197	0.291	0.239	0.298
ZI.TSP	Face	0.244	0.138	0.235	0.207
MT.PNS	Face	0.181	-0.055	0.190	-0.340
EAM.ZYGO	Face	0.181	-0.027	0.195	0.095
ZYGO.TSP	Face	0.236	0.004	0.213	0.166
NA.BR	Neurocranium	0.171	0.021	0.161	-0.162
BR.PT	Neurocranium	0.090	-0.009	0.126	-0.021
BR.APET	Neurocranium	0.141	0.012	0.142	0.019
PT.APET	Neurocranium	0.136	0.015	0.141	0.041
PT.BA	Neurocranium	0.140	0.005	0.157	0.048
PT.EAM	Neurocranium	0.160	-0.003	0.181	0.076
PNS.APET	Neurocranium	0.204	0.075	0.189	0.015
APET.BA	Neurocranium	0.139	0.009	0.174	0.131
BA.EAM	Neurocranium	0.140	0.027	0.180	0.287
LD.AS	Neurocranium	0.139	-0.013	0.192	0.174
BR.LD	Neurocranium	0.133	-0.033	0.151	0.106
OPI.LD	Neurocranium	0.177	0.044	0.144	-0.026
PT.AS	Neurocranium	0.160	-0.024	0.200	0.141
JP.AS	Neurocranium	0.161	0.037	0.146	0.043
BA.OPI	Neurocranium	0.076	-0.010	0.115	-0.059


Type I error rates for LGGD. To access the adequacy of the parametric test proposed for Lande's Generalized Genetic Distance (1), we employed a simulation approach. We generated 10,000 rounds of one generation neutral multivariate evolution using equation 3 and known parameters for h^2 and N_e . For each simulated vector of divergence, we resampled \mathbf{P} using a Monte-Carlo approach to simulate sampling error. \mathbf{P} s were reestimated with the same original empirical sample (n=860). Because the calculation of LGGDs involves the inversion of the \mathbf{G} , we also evaluated if a matrix extension could improve the estimation of LGGDs. The simulated and observed values of LGGD were confronted against the 95% interval under the null hypothesis following a χ^2 -square distribution with 33 degrees of freedom (1).

Results show that in the original simulated LGGD (calculated directly from the simulated divergence and input parameters), the rejection rate of the null hypothesis using the parametric method is close to the nominal rate (rate=0.053). However, with sampling error, larger LGGDs seem to be moderately exaggerated (Fig. S3A), leading to inflated type I error rates (rate of rejection of the null hypothesis=0.062). Extensions of the \mathbf{G} prior to inversion led to underestimated LGGDs (Fig. S3B) and to even higher type I error rates (rate=0.669). This result shows that matrix extension does not constitute a solution to sampling errors in this case (but see below). Therefore, we adapted a simulation approach to construct a non-parametric confidence interval for the null hypothesis of evolution under drift.

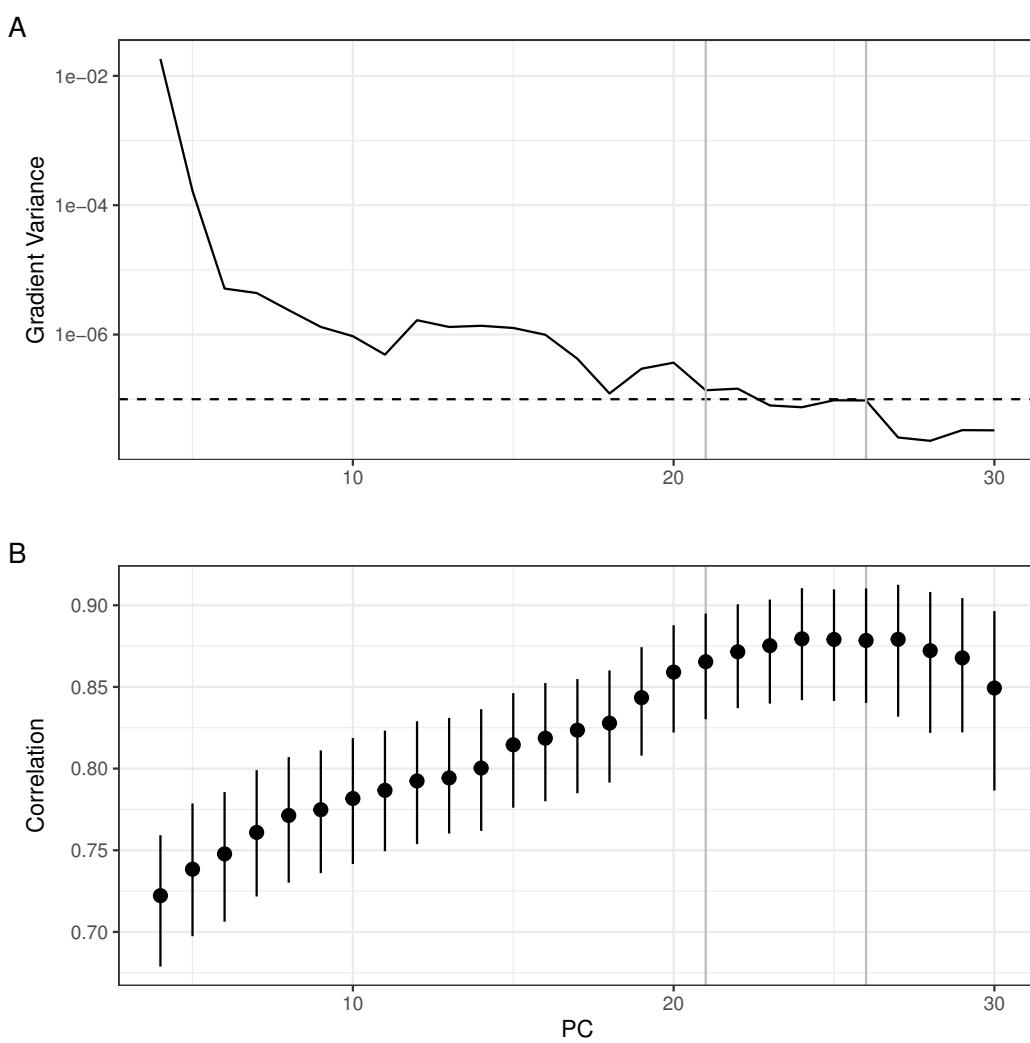
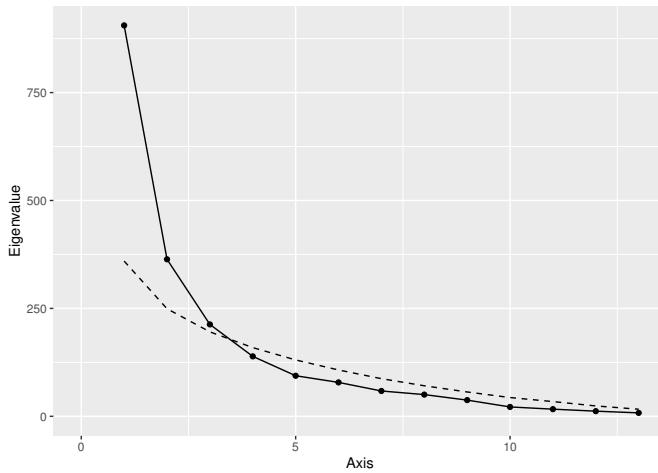

Matrix inversion and extension. To evaluate the potential effects of sampling error of \mathbf{G} on the estimation of selection gradients (β), we performed two analyses. The first is the evaluation of the noise-floor limit, as suggested by (32). In this analysis, we evaluate the behavior of the second derivative of a discrete function defined as the relationship between the rank of an eigenvalue and the variance of eigenvalues defined by binning five neighboring eigenvalues. The noise floor limit is reached

Fig. S2. Relationship between generation time and body mass for 805 mammalian species. The solid gray line represents the linear relationship for all species. Red-filled circles represent Cingulata taxa with both mass and generation time information. Black-filled circles represent Cingulata taxa with only mass and with a predicted generation time. The dashed line represents the model adopted for the association between mass and generation time among Cingulata.

Fig. S3. Relationship between actual (original) and estimated LGGD for resampled matrices without (A) and with extension (B), respectively. The dark quadrant represents the 95% theoretical intervals for the null-hypothesis under drift for both the original and resampled matrices. The dashed line represents the line in which observed and original values are equal.

Fig. S4. **A.** Noise floor analysis for the pooled within-group covariance matrix for Cingulata. **B.** Correlation between original and estimated β s on the simulation approach. Horizontal grey lines represent numbers of eigenvalues retained that show high vector correlation between original and estimated β s and are near the noise floor.


when the second derivative of this function approaches zero, and the eigenvalue rank in which this occurs is set to be the cutoff value for the extension method (32). Here we defined the noise-floor region at $1e-07$, suggesting that the first 21 eigenvalues should be maintained, and the remaining should be extended (Fig. S4A).

To validate this analysis, we replicated (32) simulations, in which a known β was re-estimated on a new matrix resampled adopting a Monte Carlo approach (see 31 as well). We performed this simulation by changing the number of retained eigenvalues from 6 to 30. In each case, we performed the simulation 1000 times (25,000 simulations in total). For each simulation, we calculated the vector correlation between the original and the estimated β . Higher values imply that the estimated β is in the same direction as the original simulated selection gradient. From 6 to 21 eigenvectors, the correlation between original and estimated selection gradients increased almost steadily, reaching a plateau from 21 to 26 eigenvalues (Fig. S4B). After 26 vectors, the vector correlation decreases, suggesting that retaining more vectors leads to badly estimated β s. We chose to keep 21 vectors because it is the first eigenvalue to reach the noise-floor on the previous analysis. Furthermore, estimations of the selection gradient to generate a glyptodont morphology did not significantly change with the retention of more axes.

Adaptive landscape and selective lines of least resistance. In a quantitative genetics framework, adaptive landscapes can be investigated as the variance-covariance matrix of adaptive peaks (17, 30, 31). Following (31), we calculated this matrix as follows

$$\Omega = \mathbf{G}^{-1} \Delta z \Delta z^t \mathbf{G}^{-1} \frac{1}{n} \quad (\text{S1})$$

609
610
611
612
613
614
615
616
617
618
619
620

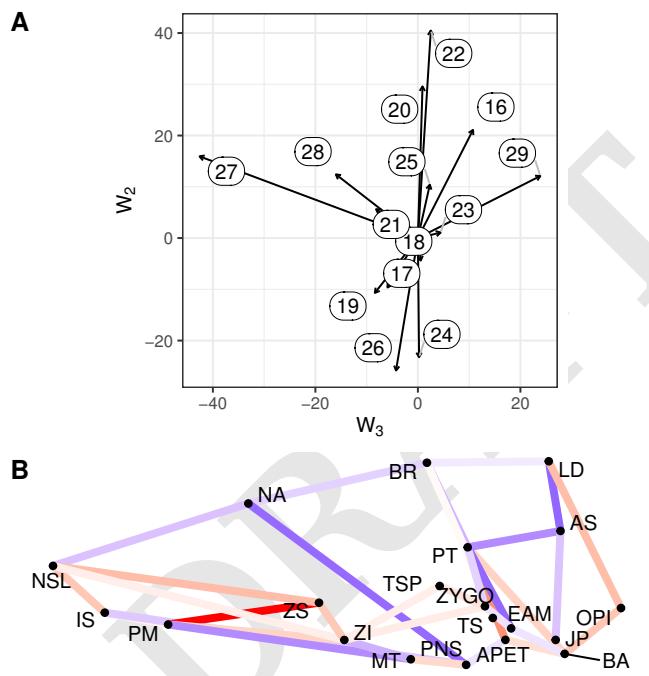


Fig. S5. Empirical (solid line) and simulated (dotted line) distribution of Ω 's eigenvalues.

624 With n being the species sample size. This equation is equal to the cross-products of the selection gradients. The i th eigenvectors
625 of Ω (W_i) can be interpreted as predominant directions of directional selection, and the projection of node-specific β s can
626 be interpreted as the loading of a specific gradient to that axis.

627 Following (31), we performed a Monte-Carlo simulation approach to investigate which axes could be considered different
628 from neutral evolution. This was done using equation 3 to generate 10,000 datasets under drift. For each round of the simulation,
629 Ω was calculated and its eigenvalues were obtained. The resulting Ω was scaled to have the same trace as the empirical
630 one, so we only consider the distribution of eigenvalues, not their absolute magnitude. The distribution of eigenvalues of
631 the simulations was then confronted to the empirical eigenvalues, and those greater than 95% than the simulated ones were
632 considered significant.

633 Because the Glyptodont divergence dominates the dataset, we performed two different sets of simulations. One where we
634 included Glyptodont to calculate the empirical trace of Ω , and one where it was excluded. For the simulations including
635 Glyptodont, only the first leading eigenvalue was considered significant, while the exclusion of glyptodonts showed that the
636 three leading axes are significant (Fig. S5). An investigation of the scores of node-specific β s on W_3 shows that the only
637 nodes with high scores are nodes 28 and 29 (Fig. S6A). These nodes represent the divergences among *Chaetophractus* and
638 *Zaedyus* species. The multivariate representation of the selection gradients shows mainly a concentrated pressure to expand the
639 nasal cavity and increase the distance between the anterior-most portion of the zygomatic arch and the tip of the snout (Fig.
640 S6B). This representation matches the described differences of *Zaedyus* in relation to *Chaetophractus*. Because this axis is so
641 phylogenetically restricted, we focus on the leading two directions on the main text.

Fig. S6. **A.** Projection of node-wise selection gradients on the two main predominant directions of directional selection (W_3 and W_2). Numbers represent the nodes on the phylogeny (Fig. 3A). **B.** Graphical representation of W_3 . Color represents the intensity of positive (red) and negative (blue) selection, as in Fig. 4.