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Abstract. We present POLAR5, aPOLynomialARithmetic-based frame-
work for efficient time-bounded reachability analysis of neural-network
controlled systems. Existing approaches leveraging the standard Taylor
Model (TM) arithmetic for approximating the neural-network controller
cannot deal with non-differentiable activation functions and suffer from
rapid explosion of the remainder when propagating TMs. POLAR over-
comes these shortcomings by integrating TM arithmetic with Bernstein
polynomial interpolation and symbolic remainders. The former enables
TM propagation across non-differentiable activation functions and local
refinement of TMs, and the latter reduces error accumulation in the TM
remainder for linear mappings in the neural network. Experimental re-
sults show POLAR significantly outperforms the state-of-the-art tools
on both efficiency and tightness of the reachable set overapproximation.

1 Introduction

Neural networks have been increasingly used as the central decision makers in
a variety of control tasks [21, 17].However, the use of neural-network controllers
also gives rise to new challenges on verifying the correctness of the resulting
closed-loop control systems especially in safety-critical settings [30, 29]. In this
paper, we consider the reachability verification problem of neural-network con-
trolled systems (NNCSs). The high-level architecture of a simple NNCS is shown
in Figure 1 in which the neural network senses the system state x⃗ at discrete
time steps, and computes the corresponding control values u⃗ for updating the
system dynamics which is defined by an ordinary differential equation (ODE)
over x⃗ and u⃗. The time-bounded reachability analysis problem of an NNCS is to
compute a state set that contains all the trajectories of a finite number of control
steps from a given initial set. The initial set may represent uncertainties in the
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Fig. 1: A typical NNCS
model.
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Fig. 2: Executions over 4 control steps.

starting state of the system or error (e.g. localization error) bounds in estimat-
ing the current system state during an execution of the system. Figure 2 shows
an illustration of reachable sets for 4 steps, where the orange region represents
the reachable set, and the two red, arrowed curves are two example trajectories
starting from two different initial states in the initial set X0 (blue).

Reachability analysis of general NNCSs is notoriously difficult due to non-
linearity in both the neural-network controller and the plant. The difficulty is
further exacerbated by the coupling of the controller and the plant over multiple
control steps. Since exact reachability of general nonlinear systems is undecid-
able [2], current approaches for reachability analysis largely focus on computing
a tight overapproximation of the reachable sets [10, 6, 1]. Verisig [14] leverages
properties of the sigmoid activation function and converts an NNCS with these
activation functions to an equivalent hybrid system. Thus, existing tools for hy-
brid system reachability analysis can be directly applied to solve the NNCS
reachability problem. However, this approach inherits the efficiency problem
of hybrid system reachability analysis and does not scale beyond very small
NNCSs. Another line of approach is to draw on techniques for computing the
output ranges of neural networks [16, 27, 28, 24, 12, 26] and directly integrating
them with reachability analysis tools designed for dynamical systems. NNV [25],
for instance, combines star set analysis on the neural network with zonotope-
based analysis of the nonlinear plant dynamics from CORA [1]. However, such
approaches have been shown to be ineffective for NNCS verification due to the
lack of consideration on the interaction between the neural-network controller
and the plant dynamics [8, 11, 13]. In particular, since the primary goal of these
techniques is to bound the output range of the neural network instead of approx-
imating its input-output function, they cannot track state dependencies across
the closed-loop system and across multiple time steps in reachability analysis.

More recent advances in NNCS reachability analysis are based on the idea of
function overapproximation of the neural network controller. A function overap-
proximation of a neural network κ has two components: an approximated func-
tion p and an error term I (e.g. an interval) that bounds the approximation error.
Such function overapproximation that produces a point-wise approximation of
κ with an interval error term (typically called a remainder) is also known as a
Taylor model (TM). Function-overapproximation approaches can be broadly cat-
egorized into two classes: direct end-to-end approximation such as Sherlock [8],
ReachNN [11] and ReachNN* [9], and layer-by-layer propagation such as Verisig
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2.0 [13]. The former computes a function overapproximation of the neural net-
work end-to-end by sampling from the input space. The main drawback of this
approach is that it does not scale beyond systems with more than a few input
dimensions. The latter approach tries to exploit the neural network structure
and uses Taylor model arithmetic to more efficiently obtain a function overap-
proximation of κ by propagating the TMs layer by layer through the network
(details in Section 3). However, due to limitations of basic TM arithmetic, these
approaches cannot handle non-differentiable activation functions and suffer from
rapid growth of the remainder during propagation. For instance, explosion of the
interval remainder would degrade a TM propagation to an interval analysis.

In this paper, we propose a principled POLynomial ARithmetic framework
(POLAR) that enables precise layer-by-layer propagation of TMs for general
feed-forward neural networks. Basic Taylor model arithmetic cannot handle
ReLU that is non-differentiable (cannot produce the polynomial), and also suf-
fers from low approximation precision (large remainder). POLAR addresses the
key challenges of applying basic TM arithmetic through a novel use of uni-
variate Bernstein polynomial interpolation and symbolic remainders. Univariate
Bernstein polynomial interpolation enables the handling of non-differentiable ac-
tivation functions and local refinement of Taylor models (details in Section 3.1).
Symbolic remainders can taper the growth of interval remainders by avoiding the
so-called wrapping effect [15] in linear mappings. The paper has the following
novel contributions: (I) A polynomial arithmetic framework using both Taylor
and univariate Bernstein approximations for computing NNCS reachable sets
to handle general NN controllers; (II) An adaptation of the symbolic remainder
method for ODEs to the layer-by-layer propagation for neural networks; (III)
A comprehensive experimental evaluation of our approach on challenging case
studies that demonstrates significant improvements of POLAR against SOTA.

2 Preliminaries

A Neural-Network Controlled System (NNCS) is a continuous plant governed by
a neural network controller. The plant dynamics is defined by an ODE of the form
˙⃗x = f(x⃗, u⃗) wherein the state variables and control inputs are denoted by the
vectors x⃗ and u⃗ respectively. We assume the function f is at least locally Lipschitz
continuous such that its solution w.r.t. an initial state and constant control
inputs is unique [20]. We denote the input-output mapping of the neural network
controller as κ. The controller is triggered every δc time which is called the control
stepsize. A system execution (trajectory) is produced as follows: starting from an
initial state x⃗(0), the controller senses the system state at the beginning of every
control step t=jδc for j=0, 1, . . ., and updates the control inputs to v⃗j=κ(x⃗(jδc)).

The system’s dynamics in that control step is governed by the ODE ˙⃗x=f(x⃗, v⃗j).
Given an initial state set X0 ⊂ Rn, all executions from a state in this set

can be formally defined by a flowmap function φN : X0 ×R≥0 → Rn, such that
the system state at any time t ≥ 0 from any initial state x⃗0 ∈ X0 is φN (x⃗0, t).
We call a state x⃗′ ∈ Rn reachable if there exists x⃗0 ∈ X0 and t ≥ 0 such that
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x⃗′ = φN (x⃗0, t). The reachability problem on NNCS is to decide whether a state is
reachable in a given NNCS, and it is undecidable since NNCS is more expressive
than two-counter machines for which the reachability problem is already unde-
cidable [2]. Many formal verification problems can be reduced to the reachability
problem. For example, the safety verification problem can be reduced to checking
reachability to an unsafe state. In the paper, we focus on computing the reach-
able set of an NNCS over a bounded number K of control steps. Since flowmap
φN often does not have a closed form due to the nonlinear ODEs, we seek to
compute state-wise overapproximations for it over multiple time segments, that
is, in each control step [jδc, (j + 1)δc] for j = 0, . . . ,K − 1, the reachable set is
overapproximated by a group of flowpipes F1(x⃗0, τ), . . . ,FN (x⃗0, τ) over the N
uniformly subdivided time segments of the time interval, such that Fi(x⃗0, τ) is a
state-wise overapproximation of φN (x⃗0, jδc + (i− 1)δ+ τ) for τ ∈ [0, δc/N ], i.e.,
Fj(x⃗0, τ) contains the exact reachable state from any initial state x⃗0 in the i-th
time segment of the j-th control step. Here, τ is the local time variable which
is independent in each flowpipe. A high-level flowpipe construction algorithm is
presented as follows, in which X̂0 = X0 and δ = δc/N is called the time step.

1: for j = 0 to K − 1 do
2: Computing an overapproximation Ûj for the control input range κ(X̂j);
3: Computing the flowpipes F1(x⃗0, τ), . . . ,FN (x⃗0, τ) for the continuous dy-

namics ˙⃗x = f(x⃗, u⃗), ˙⃗u = 0 from the initial set x⃗(0) ∈ X̂j , u⃗(0) ∈ Ûj ;
4: R ← R∪ {F1(x⃗0, τ), . . . ,FN (x⃗0, τ)};
5: X̂j+1 ← FN (x⃗0, δ);

Notice that x⃗(0) denotes the local initial set for the ODE used in the current
control step, that is the system reachable set at the time jδc, while the variables
x⃗0 in a flowpipe are the symbolic representation of an initial state in X0. Intu-
itively, a flowpipe overapproximates not only the reachable set in a time step,
but also the dependency from an initial state to its reachable state at a particular
time. For settings where the plant dynamics of an NNCS is given as a difference
equation in the form of x⃗k+1 = f(x⃗k, u⃗k), we can obtain discrete flowpipes which
are the reachable set overapproximations at discrete time points by repeatedly
computing the state set at the next step using TM arithmetic.
Dependencies on the initial set. As we mentioned previously, the reachable
state of an NNCS at a time t > 0 is uniquely determined by its initial state if there
is no noise or disturbance in the system dynamics or on the state measurements.
If we use Xj to denote the exact reachable set {φN (x⃗0, jδc) | x⃗0 ∈ X0} from
a given initial set X0, then the control input range is defined by the set Uj =
{κ(x⃗j) | x⃗j = φN (x⃗0, jδc) and x⃗0 ∈ X0}. More intuitively, the set Uj is the image
from the initial set X0 under the mapping κ(φN (·, jδc)). The main challenge
in computing NNCS reachable sets is to control the overapproximation, which
requires accurately tracking the dependency of a reachable set on the initial set
across multiple control steps. In this paper, we present a polynomial arithmetic
framework for tracking such dependencies using Taylor models.
Taylor model arithmetic. Taylor models are originally proposed to compute
higher-order overapproximations for the ranges of continuous functions (see [4]).
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They can be viewed as a higher-order extension of intervals [22], which are
sets of real numbers between lower and upper real bounds, e.g., the interval
[a, b] wherein a ≤ b represents the set of {x | a ≤ x ≤ b}. A Taylor model
(TM) is a pair (p, I) wherein p is a polynomial of degree k over a finite group
of variables x1, . . . , xn ranging in an interval domain D ⊂ Rn, and I is the
remainder interval. The range of a TM is the Minkowski sum of the range of
its polynomial and the remainder interval. Thereby we sometimes intuitively
denote a TM (p, I) by p + I in the paper. TMs are closed under operations
such as addition, multiplication, and integration (see [19]). Given functions f, g
that are overapproximated by TMs (pf , If ) and (pg, Ig), respectively, a TM for
f + g can be computed as (pf + pg, If + Ig), and an order k TM for f · g can be
computed as ( pf · pg− rk , If ·B(pg)+B(pf ) · Ig + If ·Ig +B(rk) ), wherein B(p)
denotes an interval enclosure of the range of p, and the truncated part rk consists
of the terms in pf ·pg of degrees > k. Similar to reals and intervals, TMs can also
be organized as vectors and matrices to overapproximate the functions whose
ranges are multidimensional. Notice that a TM is a function overapproximation
and not just a range overapproximation like intervals or polyhedra.

3 Framework of POLAR

In this section, we describe POLAR’s approach for computing a TM for the out-
put range of a neural network (NN) when the input range is defined by a TM.
POLAR uses the layer-by-layer propagation strategy, and features the following
key novelties: (a) A method to compute univariate Bernstein Polynomial (BP)
overapproximations for activation functions, and selectively uses Taylor or Bern-
stein polynomials to limit the overestimation produced when overapproximating
the output ranges of individual neurons. (b) A technique to symbolically repre-
sent the intermediate linear transformations of TM interval remainders during
the layer-by-layer propagation. The purpose of using Symbolic Remainders (SR)
is to reduce the accumulation of overestimation in composing a sequence of TMs.

3.1 Main Framework

We begin by introducing POLAR’s propagation framework that incorporates
only (a), and then describe how to extend it by further integrating (b). Although
using TMs to represent sets in layer-by-layer propagation is already used in [13],
the method only computes Taylor approximations for activation functions, and
the TM output of one layer is propagated by the existing arithmetic for TM
composition to the next layer. Such a method has the following shortcomings: (1)
the activation functions have to be differentiable, (2) standard TM composition
is often the source of overestimation even if preconditioning and shrink wrapping
are used. Here, we seek to improve the use of TMs in the above two aspects.

Before presenting our layer-by-layer propagation method, we describe how a
TM output is computed from a given TM input for a single layer. The idea is
illustrated in Fig. 3. The circles in the right column denote the neurons in the
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Algorithm 1 Layer-by-layer propagation using polynomial arithmetic and TMs

Input: Input TM (p1(x⃗0), I1) with x⃗0 ∈ X0, the M + 1 matrices W1, . . . ,WM+1 of
the weights on the incoming edges of the hidden and the output layers, the M + 1
vectors B1, . . . , BM+1 of the neurons’ bias in the hidden and the output layers, the
M + 1 activation functions σ1, . . . , σM+1 of hidden and output layers.

Output: a TM (pr(x⃗0), Ir) that contains the set κ((p1(x⃗0), I1)).
1: (pr, Ir)← (p1, I1);
2: for i = 1 to M + 1 do
3: (pt, It) ← Wi · (pr, Ir) +Bi; # Using TM arithmetic
4: Computing a polynomial approximation pσ,i for σ w.r.t. the domain (pt, It);
5: Evaluating a conservative remainder Iσ,i for pσ,i w.r.t. the domain (pt, It);
6: (pr, Ir) ← pσ,i(pt + It) + Iσ,i; # Using TM arithmetic
7: return (pr, Ir).

current layer which is the i-th layer, and those in the left column denotes the neu-
rons in the previous layer. The weights on the incoming edges to the current layer
is organized as a matrix Wi, while we use Bi to denote the vector organization
of the biases in the current layer. Given that the output range of the neurons in
the previous layer is represented as a TM (vector) (pi(x⃗0), Ii) wherein x⃗0 are the
variables ranging in the NNCS initial set. Then, the output TM (pi+1(x⃗0), Ii+1)
of the current layer can be obtained as follows. First, we compute the polyno-
mial approximations pσ1,i, . . . , pσl,i for the activation functions σ1, . . . , σl of the
neurons in the current layer. Second, interval remainders Iσ1,i, . . . , Iσl,i are eval-
uated for those polynomials to ensure that for each j = 1, . . . , l, (pσj ,i, Iσj ,i) is a
TM of the activation function σj w.r.t. zj ranging in the j-th dimension of the set
Wi(pi(x⃗0)+Ii)+Bi. Third, (pi+1(x⃗0, Ii+1)) is computed as the TM composition
pσ,i(Wi(pi(x⃗0) + Ii) +Bi) + Iσ,i wherein pσ,i(z⃗) = (pσ1,i(z1), . . . , pσl,i(zk))

T and
Iσ,i = (Iσ1,i, . . . , Iσl,i)

T . Hence, when there are multiple layers, starting from the
first layer, the output TM of a layer is treated as the input TM of the next layer,
and the final output TM is computed by composing TMs layer-by-layer.

Fig. 3: Single layer propagation

We give the whole procedure by Algo-
rithm 1, where the polynomial approximation
pσ,i and its remainder interval Iσ,i for the vec-
tor of activation functions σ in the i-th layer
can be computed in the following two ways.

Taylor approximation. When the activa-
tion function is differentiable in the range de-
fined by (pt, It). The polynomial pσ,i can be
computed as the order k Taylor expansion
of σ (in each of its dimension) at the center
of (pt, It), and the remainder is evaluated us-
ing interval arithmetic based on the Lagrange
remainder form. More details are described
elsewhere [19].
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Bernstein interpolation. The use of Bernstein approximation only requires
the activation function to be continuous in (pt, It), and can be used not only
in more general situations, but also to obtain better polynomial approximations
than Taylor expansions (see [18]). Intuitively, an order k Taylor approximation
can only guarantee to have the same value as the approximated function at the
expansion point, while an order k Bernstein interpolation has the same value as
the approximated function at k + 1 points. We give the details of our Bernstein
overapproximation method as follows.
Bernstein approximation for σ(z⃗) w.r.t. z⃗ ∈ (pt, It). Given (pt, It) computed in
Line 3, the j-th component of the polynomial vector pσ,i is the order k Bernstein
interpolation of the activation function σj of the j-th neuron. It can be computed

as pσj ,i(zj)=
∑k

s=0

(
σj(

Zj−Zj

k s+ Zj)
(
k
s

) (zj−Zj)
s(Zj−zj)

k−s

(Zj−Zj)
k

)
, such that Zj and

Zj denote the upper and lower bounds respectively of the range in the j-th
dimension of (pt, It), and they can be obtained by interval evaluating TM.
Evaluating the remainder Iσ,i. The j-th component Iσj ,i of Iσ,i is computed as
a conservative remainder for the polynomial pσj ,i, and it can be obtained as a
symmetric interval [−ϵj , ϵj ] such that

ϵj= max
s=1,···,m

(∣∣∣∣∣pσj ,i(
Zj−Zj

m
(s−1

2
)+Zj)−σj(

Zj − Zj

m
(s− 1

2
)+Zj)

∣∣∣∣∣+Lj ·
Zj−Zj

m

)

wherein Lj is a Lipschitz constant of σj with the domain (pt, It), and m is
the number of samples that are uniformly selected to estimate the remainder.
The soundness of the error bound estimation above has been proven in [11] for
multivariate Bernstein polynomials. Since univariate Bernstein polynomials is a
special case of multivariate Bernstein polynomials, our approach is also sound.

The following theorem states that a TM flowpipe computed by our approach
is not only a range overapproximation of a reachable set, but also a function
overapproximation for the dependency of a reachable state on its initial state.

Theorem 1. If F(x⃗0, τ) is the i-th TM flowpipe computed in the j-st control
step, then for any initial state x⃗0 ∈ X0, the box F(x⃗0, τ) contains the actual
reachable state φN (x⃗0, (j − 1)δc + (i− 1)δ + τ) for all τ ∈ [0, δ].

3.2 Selection of Polynomial Approximations

Since an activation function is univariate, both of its Taylor and Bernstein ap-
proximations have a size which is linear in the order k. Then we investigate the
accuracy produced by both approximation forms. Since the main operation in
the TM layer-by-layer propagation framework is the composition of TMs, we
study the preservation of accuracy for both of the forms under the composition
with a given TM. We first define the Accuracy Preservation Problem.

When a function f(x⃗) is overapproximated by a TM (p(x⃗), I) w.r.t. a bounded
domain D, the approximation quality, i.e., size of the overestimation, is directly
reflected by the width of I, since f(x⃗) = p(x⃗) for all x⃗ ∈ D when I is zero by the
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TM definition. Given order k TMs (p1(x⃗), I1) and (p2(x⃗), I2) which are overap-
proximations of the same function f(x⃗) w.r.t. a bounded domain D ⊂ Rn, we use
(p1(x⃗), I1) ≺k (p2(x⃗), I2) to denote that the width of I1 is smaller than the width
of I2 in all dimensions, i.e., (p1(x⃗), I1) is a more accurate overapproximation of
f(x⃗) than (p2(x⃗), I2).
Accuracy Preservation Problem. Assume (p1(x⃗), I1) and (p2(x⃗), I2) are
overapproximations of f(x⃗) with x⃗ ∈ D, and (p1(x⃗), I1) ≺k (p2(x⃗), I2). Another
function g(y⃗) is overapproximated by a TM (q(y⃗), J) whose range is a subset of
D, does (p1(q(y⃗) + J), I1) ≺k (p2(q(y⃗) + J), I2) hold by order k TM arithmetic?

We give the following counterexample to show that the answer is no, i.e.,
although (p1(x⃗), I1) is more accurate than (p2(x⃗), I2), the composition p1(q(y⃗)+
J) + I1 might not be a better order k overapproximation than p2(q(y⃗) + J) + I2
for the composite function f ◦ g. Given p1 = 0.5 + 0.25x − 0.02083x3, I1 = [-
7.93e-5, 1.92e-4], and p2 = 0.5+ 0.24855x− 0.004583x3, I2 = [-2.42e-4, 2.42e-4],
which are both TM overapproximations for the sigmoid function f(x) = 1

1+e−x

w.r.t. x ∈ q(y) + J such that q = 0.1y − 0.1y2, J = [−0.1, 0.1], and y ∈ [−1, 1].
We have that (p1, I1) ≺3 (p2, I2), however after the compositions using order 3
TM arithmetic, the remainder of p1(q(y) + J) + I1 is [−0.0466, 0.0477], while
the remainder of p2(q(y) + J) + I2 is [−0.0253, 0.0253], and we do not have
(p1(q(y) + J), I1) ≺3 (p2(q(y) + J), I2).

Since the accuracy is not preserved under composition, we do not decide
which approximation to choose directly based on the their remainders. Instead,
we integrate an additional step in Algorithm 1 to replace line 4-6: for each activa-
tion function, we compute both Taylor and Bernstein overapproixmations, and
choose the one that produces the smaller remainder interval Ir after composition.

3.3 Symbolic Remainders in Layer-by-Layer Propagation

We describe the use of symbolic remainders (SR) in the layer-by-layer propaga-
tion of computing an NN output TM. The method was originally proposed in [7]
for reducing the overestimation of TM flowpipes in the reachability computation
for nonlinear ODEs, we adapt it particularly for reducing the error accumulation
in the TM remainders during the layer-by-layer propagation. Unlike the BP tech-
nique whose purpose is to obtain tighter TMs for activation functions, the use
of SR only aims at reducing the overestimation accumulation in the composition
of a sequence of TMs each of which represents the input range of a layer.

Consider the TM composition for computing the output TM of a single layer
in Fig. 3, the output TM pσ,i(Wi(pi(x⃗0)+Ii)+Bi)+Iσ,i equals to QiWipi(x⃗0)+
QiWiIi+QiBi+pRσ,i(Wi(pi(x⃗0)+Ii)+Bi)+Iσ,i such that Qi is the matrix of the

linear coefficients in pσ,i, and pRσ,i consists of the terms in pσ,i of the degrees ̸= 1.
Therefore, the remainder Ii in the second term can be kept symbolically such
that we do not compute QiWiIi out as an interval but keep its transformation
matrix QiWi to the computation for the subsequent layers. Given the image
S of an interval under a linear mapping, we use S to denote that it is kept
symbolically, i.e., we keep the interval along with the transformation matrix,
and S to denote that the image is evaluated as an interval.
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Algorithm 2 TM output computation using symbolic remainders, input and
output are the same as those in Algorithm 1

1: Setting Q as an empty array which can keep M + 1 matrices;
2: Setting J as an empty array which can keep M + 1 multidimensional intervals;
3: J← 0;
4: for i = 1 to M + 1 do
5: Computing the composite TM (pσ,i,Iσ,i) using BP;
6: Evaluating qi(x⃗0) + Ji based on J and Q[1]I1; # Q[1]I1 = I1 when i = 1
7: J← Ji; Φi ← QiWi;
8: for j = 1 to i− 1 do
9: Q[j]← Φi · Q[j];
10: Adding Φi to Q as the last element;
11: for j = 2 to i do
12: J← J+Q[j] · J [j − 1];
13: Adding Ji to J as the last element;
14: Computing an interval enclosure Ir for J+Q[1]I1; # interval evaluation
15: return qM+1(x⃗0) + Ir.

Then we present the use of SR in layer-by-layer propagation. Starting from
the NN input TM (p1(x⃗0), I1), the output TM of the first layer is computed as

Q1W1p1(x⃗0) +Q1B1 + pRσ,1(W1(p1(x⃗0) + I1) +B1) + Iσ,1︸ ︷︷ ︸
q1(x⃗0)+J1

+Q1W1I1

which can be kept in the form of q1(x⃗0) + J1 + Q1W1I1. Using it as the input
TM of the second layer, we have the following TM

pσ,2(W2(q1(x⃗0) + J1 +Q1W1I1) +B2) + Iσ,2

=Q2W2q1(x⃗0) +Q2B2 + pRσ,2(W2(q1(x⃗0) + J1 +Q1W1I1) +B2) + Iσ,2︸ ︷︷ ︸
q2(x⃗0)+J2

+Q2W2J1 +Q2W2Q1W1I1

for the output range of the second layer. Therefore the output TM of the i-th
layer can be obtained as qi(x⃗0) + Ji + QiWi · · ·Q1W1I1 such that Ji = Ji +
QiWiJi−1 +QiWiQi−1Wi−1Ji−2 + · · ·+QiWi · · ·Q2W2J1.

We present the SR method by Algorithm 2 in which we use two lists: Q[j]
for QiWi · · · · ·QjWj and J [j] for Jj to keep the intervals and their linear trans-
formations. The symbolic remainder representation is replaced by its interval
enclosure Ir at the end of the algorithm.
Time and space complexity. Although Algorithm 2 produces TMs with
tighter remainders than Algorithm 1 because of the symbolic interval representa-
tions under linear mappings, it requires (1) two extra arrays to keep the interme-
diate matrices and remainder intervals, (2) two extra inner loops which perform
i−1 and i−2 iterations in the i-th outer iteration. The size of QiWi · · · · ·QjWj is
determined by the rows in Qi and the columns in Wj , and hence the maximum
number of neurons in a layer determines the maximum size of the matrices in
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Fig. 4: Comparison between reachable sets of the 6-dimensional attitude control
benchmark produced by POLAR (dark green), Verisig 2.0 (gray) and NNV (yel-
low). The red curves are simulated trajectories.

Q. Similarly, the maximum dimension of Ji is also bounded by the maximum
number of neurons in a layer. Because of the two inner loops, time complexity
of Algorithm 2 is quadratic in M , whereas Algorithm 1 is linear in M .
Sizes of the TMs. All the TMs computed in the layer-by-layer propagation
are over the same variables x⃗0 which are symbolic representation for the NNCS
initial set, i.e., x⃗0 ∈ X0. Therefore, the maximum size of an order k TM over
n variables is bounded by

(
n+k
n

)
, and hence the TM sizes are independent from

the total number of neurons in the hidden layers of the NN controller.

4 Experiments

We perform a comprehensive empirical study of POLAR against state-of-the-art
(SOTA) techniques. We first demonstrate the performance of POLAR on two
examples with high dimensional states and multiple inputs, which are far be-
yond the ability of SOTAs (Section 4.1). A comprehensive comparison over the
full benchmarks in [11, 13] is then given (Section 4.2). Finally, we present abla-
tion studies, scalability analysis, and the ability to handle discrete-time systems
(Section 4.3). More detailed results can be found in the full version of the paper.

All our experiments were run on a machine with 6-core 2.90 GHz Intel Core
i5 and 8GB of RAM. POLAR is implemented in C++. We present the results
for POLAR, Verisig 2.0 and Sherlock using a single core without parallelization.
The results of ReachNN* were computed on the same machine with the aid of
GPU acceleration on an Nvidia GeForce RTX 2060 GPU.
State-of-the-art tools.We compare with SOTA tools in the NNCS reachability
analysis literature, including Sherlock [8] (only works for ReLU), Verisig 2.0 [13]
(only works for sigmoid and tanh), NNV [25], and ReachNN*[9]6.

4.1 High Dimensional Case Studies: Attitude Control & QUAD.

We consider an attitude control of a rigid body with 6 states and 3 control
inputs [23], and quadrotor (QUAD) with 12 states and 3 control inputs [3] to

6 The results of ReachNN* are based on GPU acceleration.
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Fig. 5: (a) Results of QUAD. POLAR for 50 steps (dark green sets), Verisig 2.0
for 3 steps (grey sets), and simulation traces for 50 steps (red curves). It took
POLAR 1533 seconds to compute the flowpipes for 50 steps. On the other hand,
it took Verisig 2.0 more than 5 hours to compute the flowpipes for the first 3
steps, and the TM remainders computed in the 4th step are already of the size
1015. NNV crashed with out-of-memory errors when computing the 1st step. (b)
Results of Mountain Car. POLAR for 150 steps (dark green sets), Verisig 2.0
for 150 steps (grey sets), ReachNN* for 90 steps (light green sets), NNV for 65
steps, and simulation traces for 150 steps (red curves).

evaluate the performance of POLAR on difficult problems. The complexity of
these two example lies in the combination of the numbers of the state variables
and control inputs. For each example, we trained a sigmoid neural-network con-
troller and compare POLAR with Verisig 2.0 and NNV. The detailed setting of
these two examples can be found in the full version of the paper.

The result for the attitude control benchmark is shown in Figure 4, and the
result for the QUAD benchmark is shown in Figure 5a. In the attitude control
benchmark, POLAR computed the TM flowpipes for 30 control steps in 201
seconds. From Figure 4, We can observe that the flowpipes computed by POLAR
are tight w.r.t. the simulated traces. As a comparison, although Verisig 2.0 [13]
can handle this system in theory, its remainder exploded very quickly and the
tool crashed after only a few steps. NNV computed flowpipes for 25 steps by
doing extensive splittings on the state space and crashed with out-of-memory
errors. In the QUAD benchmark, POLAR computed the TM flowpipes for 50
control steps in 1533 seconds, while Verisig 2.0 and NNV took hours to compute
flowpipes just for the first few steps.

4.2 Comparison over A Full Set of Benchmarks

We compare POLAR with the SOTA tools mentioned previously, including Sher-
lock, Verisig 2.0, NNV, and ReachNN* over the full benchmarks in [11, 13]. We
refer to [11, 13] for more details of these benchmarks. The results are presented
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Table 1: V : number of state variables, σ: activation functions, M : number of
hidden layers, n: number of neurons in each hidden layer. For each approach, we
give the runtime in seconds if it verifies the property. ‘Unknown’: the property
is not verified. ‘–’: the approach cannot be applied due to the type of σ.

# V
NN Controller

POLAR
ReachNN* Sherlock Verisig 2.0

σ M n [9] [8] [13]

1 2

ReLU 2 20 12 26 42 –
sigmoid 2 20 17 75 – 47
tanh 2 20 20 Unknown – 46

ReLU+tanh 2 20 13 71 – –

2 2

ReLU 2 20 2 5 3 –
sigmoid 2 20 9 13 – 7
tanh 2 20 3 73 – Unknown

ReLU+tanh 2 20 2 Unknown – –

3 2

ReLU 2 20 16 94 143 –
sigmoid 2 20 36 146 – 44
tanh 2 20 26 137 – 38

ReLU+sigmoid 2 20 15 150 – –

4 3

ReLU 2 20 2 8 21 –
sigmoid 2 20 3 22 – 11
tanh 2 20 3 21 – 10

ReLU+tanh 2 20 2 12 – –

5 3

ReLU 3 100 13 103 15 –
sigmoid 3 100 76 27 – 190
tanh 3 100 76 Unknown – 179

ReLU+tanh 3 100 10 Unknown – –

6 4

ReLU 3 20 16 1130 35 –
sigmoid 3 20 21 13350 – 83
tanh 3 20 19 2416 – 70

ReLU+tanh 3 20 15 1413 – –

ACC 6 tanh 3 20 343 Unknown – 3344

QMPC 6 tanh 2 20 61 –1 – 652

Attitude Control 6 sigmoid 3 64 201 –1 – Unknown

QUAD 12 sigmoid 3 64 1533 –1 – Unknown
1 This example has multi-dimensional control inputs. ReachNN* only supports NN
controllers that produce single-dimensional control inputs.

in Table 1 where NNV is not included since we did not successfully use it to
prove any of the benchmarks likely because it is designed for linear systems.
Similar results for NNV are also observed in [13]. We can see POLAR success-
fully verifies all the cases and the runtime is on average 8x and up to 94x
faster7 compared with the tool with the second best efficiency. The ”Unknown”
verification results either indicate the overapproximation was too large for veri-
fying the safety property or the tool terminated early due to an explosion of the
overapproximation. POLAR achieves the best performance among all the tools.

We remark that the hyperparameter settings used by all of the three tools
for the benchmarks in Table 1 were set to be the same for a fair, lateral compar-
ison. However, they are not the best settings for POLAR. For example, POLAR
finishes in 0.5 seconds for the benchmark #1 with an integration stepsize that
is same as the control stepsize and a TM order of 4.

7 These are lower bounds on the improvements since other tools terminated early for
certain settings due to explosion of their computed flowpipes.
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4.3 Discussion

POLAR demonstrates substantial performance improvement over existing tools.
In this section, we seek to further explore the capability of POLAR. We conduct
several experiments for the QUAD benchmark to better understand the limita-
tion and scalability of POLAR. We also include a mountain car example to show
that POLAR is able to handle discrete-time systems.
Ablation Studies. To explore the impact of the two proposed techniques,
namely Bernstein polynomial interpolation (BP) and symbolic remainder (SR)
on the overall performance, we conduct a series of experiments on the QUAD
benchmark with different configurations. Table 2 shows the performance of PO-
LAR with and without the proposed techniques SR and BP in the NN propa-
gation: 1) TM: only TM arithmetic is used; 2) TM+SR: SR is used with TM
arithmetic; 3) BP is used with TM arithmetic; and 4) Both BP and SR are used
with TM arithmetic. Based on the results, we can observe that SR significantly
improves the accuracy of the reachable set overapproximation. Finally, the com-
bination of basic TM with BP and SR not only achieves the best accuracy, but
also is the most efficient. While the additional BP and SR operations can incur
runtime overhead compared with basic TM, they help to produce a tighter over-
estimation and thus reduce the state space being explored during reachability
analysis. As a result, the overall performance including runtime is better.

The following further observations can be obtained from Table 2. (i) Both
of the independent use of BP and SR techniques significantly improves the per-
formance of reachable set overapproximations. (ii) When the BP technique is
used, Bernstein approximation is often not used on activation functions, but
the few times for which they are used significantly improve the accuracy. The
reason of having this phenomenon is that Taylor and Bernstein approximations
are similarly accurate in approximating activation functions with small domain.
However, the Lagrange form-based remainder evaluation in Taylor polynomials
performs better than the sample-based remainder evaluation in Bernstein poly-
nomials in those cases. It can also be seen that for each X0, the use of Bernstein
approximation becomes more frequent when the TMs has larger remainders. (iii)
When both BP and SR techniques are used, the approach produces the tight-
est TMs compared with the other columns in the table even though the use
Bernstein approximation is less often. The reason is that the remainders of the
TMs are already well-limited and most of the activation functions handled in
the reachability computation are with a “small” TM domain.
Scalability Analysis. Table 1 shows that POLAR can handle much larger
NNCSs compared with the current SOTA. To better understand the scalability of
POLAR, we further conduct scalability analysis on the size of the NN controller
and the width of the initial set using the QUAD benchmark. The experiment
results in Figure 6 for the neural networks with different widths and depths show
that POLAR scales well on the number of layers and the number of neurons in
each layer in the NN controller. On the other hand, the time cost grows rapidly
when the width of the initial set becomes larger. Such a phenomenon already
exists in the literature for reachability analysis of ODE systems [5]. The reason
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Table 2: Ablation Studies for POLAR on the QUAD benchmark. We compare
the width of TM remainder on x3 at the 50th step under different settings. For
settings with BP, we also list the percentage of times where BP is used among
9600 neurons. If a setting cannot compute flowpipes for all 50 steps, it is marked
as Unknown. X0 is the radius of the initial set. k is the order of the TM.

X0 k
TM TM+SR TM+BP TM+BP+SR

Width Time (s) Width Time (s) Width Time (s) BP % Width Time (s) BP %

0.05
2 7.5e-04 229 1.3e-04 233 6.8e-04 228 5.79% 1.2e-04 231 1.34%
3 5.2e-04 273 6.5e-05 251 5.0e-04 274 3.62% 6.5e-05 251 0%
4 4.9.e-04 332 6.2e-05 270 4.7e-04 336 3.57% 6.2e-05 270 0%

0.1
2 Unknown – 2.3e-03 319 1.0e-02 325 9.68% 1.1e-03 289 4.80%
3 1.8e-03 352 2.2e-04 287 1.7e-03 349 6.85% 2.2e-04 287 0%
4 1.6e-03 431 1.9e-04 304 1.5e-03 427 6.70% 1.9e-04 304 0%

0.2
2 Unknown – Unknown – Unknown – – Unknown – –
3 9.0e-03 721 1.9e-03 412 7.8e-03 670 4.03% 1.6e-03 394 0.77%
4 5.0e-03 761 9.2e-04 403 4.7e-03 728 4.38% 8.1e-04 396 0.07%

0.4
2 Unknown – Unknown – Unknown – – Unknown – –
3 Unknown – Unknown – Unknown – – Unknown – –
4 Unknown – Unknown – Unknown – – 3.7e-02 1533 3.25%
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Fig. 6: Scalability analysis for POLAR on the QUAD benchmark. We present the
runtime of QUAD for 50 steps reachability analysis. Under all settings, POLAR
can verify that the system reaches the target set at the 50th step. Left figure:
Runtime on different neural network architectures with the input set radius as
0.05. We study neural-network controllers with different number of layers (2, 3,
4, 5) and neurons (64, 100, 150, 200). Right figure: Runtime on the different
input set radius of the QUAD benchmark. We use the same network in Figure 5
which has 3 hidden layers with 64 neurons in each layer.

for this is that when the initial set is larger, it is more difficult to track the state
dependencies and requires keeping more terms in a TM flowpipe.

Discrete-time NNCS. Finally, we use Mountain car, a common benchmark in
Reinforcement Learning literature, to show that POLAR also works on discrete-
time systems. The comparison with Verisig 2.0, ReachNN* and NNV is shown in
Figure 5b. POLAR also outperforms these tools substantially for this example.
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5 Conclusion

In this paper, we propose POLAR, a polynomial arithmetic framework, which in-
tegrates TM flowpipe construction, Bernstein overapproximation, and symbolic
remainder method to efficiently compute reachable set overapproximations for
NNCS. Empirical comparison shows POLAR performs significantly better than
SOTAs on both computation efficiency and tightness of reachable set estimation.
Our future work includes parallelization of POLAR on GPUs to further improve
computation efficiency.
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