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Abstract— Methods to certify the robustness of neural
networks in the presence of input uncertainty are vital in
safety-critical settings. Most certification methods in the
literature are designed for adversarial or worst-case inputs,
but researchers have recently shown a need for methods
that consider random input noise. In this paper, we examine
the setting where inputs are subject to random noise com-
ing from an arbitrary probability distribution. We propose
a robustness certification method that lower-bounds the
probability that network outputs are safe. This bound is
cast as a chance-constrained optimization problem, which
is then reformulated using input-output samples to make
the optimization constraints tractable. We develop suffi-
cient conditions for the resulting optimization to be convex,
as well as on the number of samples needed to make the ro-
bustness bound hold with overwhelming probability. Case
studies on synthetic, MNIST, and CIFAR-10 networks exper-
imentally demonstrate that this method is able to certify
robustness against various input noise regimes over larger
uncertainty regions than prior state-of-the-art techniques.

Index Terms— Robustness Certification, Learning, Opti-
mization, Stochastic/Uncertain Systems

[. INTRODUCTION

EAL-WORLD data is inherently uncertain. Such uncer-

tainty comes in a variety of forms, including random
measurement noise, adversarial attacks, and even structural
perturbations in the underlying graph topology of networked
systems [1]—[3]. Despite their excellent performance in a vari-
ety of decision and control tasks, e.g., distributed control using
graph neural networks [4], researchers have found that neural
networks are highly sensitive to uncertainties in their inputs
[5S]-[7]. This sensitive behavior is intolerable when using
neural networks to operate safety-critical control systems, such
as the power grid [8]. As a result, a large emphasis has been
placed by researchers on the development of methods that
certify the robustness properties of neural networks.

Much of the literature on robustness certification has re-
volved around adversarial inputs, i.e., inputs with small-
magnitude perturbations that are designed to cause a worst-
case prediction [9]-[12]. However, as argued in [13] and
[14], random input uncertainty better models reality in many
applications. Areas that commonly use a probabilistic model
of uncertainty include stochastic control and finance, where
unpredictable measurement errors and state disturbances are
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assumed to be random [15], [16]. The stochastic framework
also naturally encapsulates applications where unbounded un-
certainties may exist, albeit with an extremely low probability.
This is typical in real-world applications such as aviation
[17]. In fact, the International Organization for Standardization
(ISO) asserts in their guide on safety aspects that there is never
absolute safety, and therefore the goal is to achieve what they
define to be folerable risk [18], [19]. Not only are random
uncertainties pervasive and realistic, they have been shown to
pose a legitimate threat—small uniform noise causes misclas-
sification rates of well over 10% on MNIST and CIFAR-10
networks, and for Bernoulli noise the misclassification rates
become drastically worse, sometimes reaching 100% [20].

The aforementioned motivations have led to an influx of
recent works considering robustness against random inputs,
which we review in Section [-A. Many of them make strin-
gent assumptions on the structure of the network or input
distribution, or the formal certification guarantees are relaxed
or eliminated in order to enhance computational tractability.
Since neural networks are more sensitive to adversarial inputs
than to random input noise [1], worst-case sensitivity analyses
are too conservative for random input noise when the goal
at hand is to achieve a tolerable risk level, whereas high-
probability robustness certificates may completely fail in the
presence of adversaries; the two settings are disjoint and
should be studied using distinct methods. Consequently, our
study is intended to certify robustness against random input
noise with minimal conservatism, and is not intended to assess
adversarial robustness.

A. Related Works

In this section, we review the state-of-the-art methods for
assessing robustness to random inputs, highlight their usages,
and address their limitations. For instance, [14] defines robust-
ness as the network output being Lipschitz continuous with
high probability when two inputs are chosen randomly. Their
proposed method is limited to neural networks composed of
conditional affine transformations, e.g., ReLU networks. On
the other hand, [20] analytically bounds the probability that a
classifier’s margin function exceeds a given value. Although
this probabilistic method applies to general neural network
models, it assumes that the random input noise is constrained
to an £,-norm ball and is either Gaussian or has independent
coordinates. Furthermore, their bounding technique relies on
worst-case analysis methods, making their resulting certificates
relatively loose (see Section VI).

/
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 31,2022 at 19:41 :411) UTC from IEIgI}:Z Xplore. Restrictions apply.

ublications/rights/index.html for more information.


mailto:bganderson@berkeley.edu
mailto:sojoudi@berkeley.edu

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3199148

2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

In [13], robustness is measured by the probability that
random input noise results in misclassification. The authors
propose a sampling-based approximation of the robustness
level. However, no theoretical guarantees are given to certify
the network’s robustness. Contrarily, [21] formally bounds the
probability that a random input maps to an unsafe output.
However, the bounding function is nonconvex, and therefore
obtaining tight bounds amounts to nonconvex optimization.
Alternatively, [1] bounds the size of a random input perturba-
tion that causes a classifier prediction error with high prob-
ability. Their bounds provide elegant theoretical guarantees,
but they depend on the network’s worst-case robustness level,
which is generally NP-hard to compute without approximation
errors or additional assumptions [10], [22].

The works [23] and [24] provide methods to guarantee that
network outputs do not significantly deviate from the nomi-
nal output when the input is subject to random uncertainty.
This corresponds to the problem of localizing the network
outputs within the output space. The work [23] uses the
output localization to issue high-probability guarantees for the
network’s robustness. However, their method requires solving
a semidefinite program, and their results are demonstrated
on small, single-layer networks, so it is not clear whether
their method scales to realistic applications. The concentration
bounds presented in [24] can be applied to deep networks, but
their localization results do not immediately translate into a
meaningful certificate of robustness.

The authors of [25] and [26] use input-output samples to
learn how input noise is propagated to the output space through
a method called scenario optimization. This approach naturally
embeds the stochastic nature of the input noise into the assess-
ment procedure. The work [25] provides a method to estimate
a network’s set of possible outputs, but this localization may
fail to determine the safety of the output since the underlying
optimization does not directly consider any safety specifi-
cations, e.g., classification boundaries. We demonstrate this
phenomenon in Appendix I-A. Other scenario-based output
set estimation techniques for general nonlinear maps, such as
[271-[29], suffer from the same limitation in the context of
neural network certification. Contrarily, [26] directly consid-
ers output safety in their scenario approach. However, their
method makes use of an affine approximation to the network’s
nonlinear margin function, a worst-case analysis technique
from the adversarial robustness literature. In our experiments,
we show that this worst-case technique yields loose robustness
bounds as the size of the input noise increases.

Finally, [17] also uses sampled data to bound the probability
of failure. Their guarantees take the probably approximately
correct (PAC) form in terms of probability levels €,d € [0, 1],
and they improve the sample complexity from O(%2 log %) of
the naive Chernoff bound to O(% log }). This is achieved by
imposing a Bayesian framework and assuming that the failure
probability follows a uniform prior distribution. As the authors
remark, this is a “very conservative choice.” In contrast, the
method to be proposed in this paper solves for the optimal
(least conservative) robustness bound of this form with the
same O(1log %) sample complexity.
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B. Contributions

In this paper, we develop a data-driven framework for cer-
tifying neural network robustness against random input noise
using scenario optimization. Our direct approach avoids worst-
case analysis techniques, such as those found in the adversarial
robustness literature, e.g., [20], and also avoids the need for
selecting a Bayesian prior distribution governing the network’s
failure probability, as in [17]. We show in Section III that a
general class of sets, termed e-covers, suffice for localizing
and certifying network outputs. In Section IV, we develop
sufficient conditions on this class to ensure that the procedure
amounts to a convex optimization problem, and we develop
formal guarantees that the resulting robustness certificate holds
with overwhelming probability upon using sufficiently many
samples in the scenario optimization. These results draw on
the areas of output set estimation, parametric and set-valued
optimization, and scenario optimization to provide a unified
data-driven assessment procedure that is novel and state-of-
the-art in the robustness certification literature. Although the
method is applicable to all neural networks and all input
noise distributions, we show in Section V how to exploit
the structure of networks with affinely bounded activation
functions in order to reduce sample complexity.

Our numerical experiments demonstrate that the proposed
optimization is capable of issuing robustness certificates in
cases where the two-step process of optimally localizing the
outputs (e.g., using [25]) and then certifying them cannot, pro-
viding a novel perspective that output set estimation techniques
do not necessarily work well for certification. Furthermore,
we show on both synthetic networks and large MNIST and
CIFAR-10 networks that our robustness bounds are much
tighter than those obtained by the state-of-the-art method [20],
particularly for large noise levels.

Due to space restrictions, proofs, supplementary exper-
iments, and additional technical details are moved to the
technical report [30].

C. Notations

The ceiling of z € R is written [z]. For x,y € R"™, we
define [z,y] = {z € R" : & < z < y}, where the inequalities
are interpreted element-wise. Given a set X', we denote its
power set by P(X’). The Minkowski sum of sets X and ) is
defined as XY + Y ={z+y: 2z € X, y € V}. We define
Riy = {z € R: z > 0}. For a function f: R™ — R", we
write the image of X C R™ under f as f(X) = {f(z) €
R™: 2 € X}. If g: R®™ — RP is another function, we define
the composition g o f: R™ — RP by go f(z) = g(f(x)).
If X: Q — R” is a random variable on a probability space
(Q,F,P), g: R* — R is a Borel measurable function, and
¢ € R, we use the notation P(¢(X) > ¢) to mean P({w €
Q: g(X(w)) > c}). Similarly, if S € R™ is a Borel set
and h: R™ — R™ is a Borel measurable function, we write
P(h(X) € S) to mean P({w € Q : h(X(w)) € S}). For a
norm || - || on R™ we denote its dual norm by || - ||., where
llyll« = sup{zTy : ||z|| < 1}. We assume throughout that
optimization problems are attained by a solution.

Xplore. Restrictions apply.
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Il. PROBLEM STATEMENT
A. Network Description, Safe Set, and Safety Level

In this paper, we consider a Borel measurable neural net-
work f: R% — R™ with arbitrary structure and parameters. '
We assume that the input to the network is a random variable
X: Qx — R" on a fixed probability space (Qx,Fx,Px).?
We do not assume that the distribution Px is exactly known—
we only assume that we are able to sample from Px. The
support of the probability measure Px is called the input set,
which is denoted by X C R"=. The output set of the network
is defined to be ) = f(X) C R™.

Next, consider a given convex polyhedral safe ser S = {y €
R™ : Ay+b > 0}, where A € R™*"™ and b € R™. Without
loss of generality, we assume that n, = 1, henceforth setting
A=a" € R and b € R.3 The results of this paper can
be immediately generalized to the case where ngs > 1. See the
technical report [30] for a detailed explanation.

The elements of the set S are considered to be safe. For a
point y in the output space R"v, the value s(y) = a'y +b is
called the safety level of y. The point y is safe if and only if its
safety level is nonnegative. Broadly speaking, the overall goal
of this paper is to certify that the random output Y = f(X) is
safe. When this holds for all or many of the possible outputs
in )Y, we obtain a natural certificate for the robustness of the
network against the random noise.

Example 1. When f is an ny-class classifier and z €
R™ is a deterministic nominal input with class * &
arg MaX;c(1 5. n,}.fi(%), a common goal is to certify that
additive random noise § on T does not cause misclassification
[20]. This problem falls within our framework by defining
the safety level of f(X) to be the margin function value
g,L(X) = fz*(X) — fz(X) fOI' X = T+ (5

B. Various Notions of Robustness

We now use the safety level of outputs to introduce three
meaningful notions of robustness against random input noise,
and discuss how they are related to one another.

1) Deterministic Robustness Level: The deterministic ro-
bustness level of the network is defined as

r* = inf a'y +b. (1)
yey

If r* >0, then ) C &, implying that the random output ¥ =
f(X) is safe with probability one. This notion of robustness
coincides with that used when considering adversarial inputs

'Borel measurability of the network is almost always satisfied in practice.
Indeed, every continuous function is Borel measurable.

21t is easily verified that all probabilistic expressions in this paper are well-
defined from a measure-theoretic perspective. We leave out these measurability
verifications for the sake of exposition.

3The polyhedral safe set assumption is without loss of generality. Suppose
that the safe set is S = {y € R™ : a' g(y) + b > 0} for some nonlinear
Borel measurable g: R™"v — R™= and some a € R™= b € R. Then we can
reduce the problem to our assumed form by considering f’ := go f to be the
(Borel measurable) neural network and S’ := {z € R™> : alz+b> 0} to
be the (polyhedral) safe set, since then f(z) € S if and only if f'(z) € &,
for all £ € X. The architecture-dependent results of Section V must be
applied to f/ with care, since g must now be considered as another layer in
the network, making Assumptions 1 and 2 to follow slightly more stringent.
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[9], [11], [12], but the resulting worst-case safety level is often
much lower than the safety levels of random outputs in practice
[13]. Consequently, using r* to assess robustness may falsely
indicate that the network is sensitive to the input noise.

2) Approximate Robustness Level: Although r* can issue
strong guarantees about the safety of the network output, (1)
amounts to an intractable nonconvex optimization problem,
since ) is generally a nonconvex set. Instead of computing
r*, we can consider approximating it by

(V) = inf ay +b, 2
yey

where J> C R™v, termed the surrogate output set, is more
tractable than ), and preferably convex. We call (2) the
approximate robustness level of the network. If ) C )>, then
12(3}) < r*. In this case, if f(j)) > 0, then the random output
Y = f(X) is safe with probability one. In general, choosing
ji to cover ) makes f(j)) an over-conservative measure of
robustness for the same reasons r* is.

3) Probabilistic Robustness Level: The notion of determin-
istic robustness is too strong for applications involving random
input noise, as many input distributions have unbounded
support or have their worst-case inputs in regions of low
probability measure [13]. Furthermore, (1) and (2) neglect
the distributional information given for X. This conservatism
means that the robustness levels (1) and (2), with Y C )7,
are generally unable to certify that Y is safe, even when
Y concentrates around safe outputs. Consequently, for a pre-
scribed probability level € € [0, 1], we define the more natural
probabilistic robustness level of the network to be

7€) =sup{r e R:Px(a' f(X)+b>r)>1—¢€}). (3)

Intuitively, the random output f(X) has a safety level at least
7(e) with high probability. In the case that 7(¢) > 0, we certify
that the random output Y = f(X) is safe with probability
1 —e¢, and we say that the network is probabilistically robust.*
Another interpretation of probabilistic robustness is that the
majority of possible outputs (with respect to the distribution
Px) are safe. The probabilistic robustness level is catered to-
wards our setting of random input noise, and, compared to the
worst-case alternatives, reduces conservatism by considering
the actual likelihood of the possible inputs. This is precisely
the notion of robustness we adopt in this paper. We remark
that this definition of probabilistic robustness coincides with
that used in [13] and [20], albeit our subsequent analysis and
guarantees vastly differ from these works.

Example 2. Consider again the classification network in
Example 1. In this setting, if »* > 0, then the probability
of misclassification is zero, in which case the noise ¢ is
not important. On the other hand, if there exists a perturbed
input T + § in the input set X that is misclassified, then
r* < 0. It may be the case, however, that this misclassification
occurs with a sufficiently low probability with respect to
the tolerance e. This is precisely what we seek to certify:

“Note the distinction: “safety” is a property of outputs, whereas “robust-
ness” is a property of the neural network (with respect to the noisy input
distribution Px). We are always careful when using these terminologies.

Xplore. Restrictions apply.
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that the probability of misclassification is less than e, which
mathematically amounts to showing that 7(¢) > 0.

In this paper, we aim to certify the safety of Y = f(X)
by lower-bounding the probabilistic robustness level 7(e). A
trivial lower bound is easily verified: r* < 7(e) for all
e € [0,1], and r* = 7(0). However, as we will see in Section
VI, this approach of considering worst-case inputs instead
of likely inputs, often results in a very loose lower bound,
sometimes failing to issue a robustness guarantee at all. In the
next section, we show that by using a special type of surrogate
output set in #()), we can optimize a lower bound on 7(¢) and
obtain an estimate of the output set ) as a natural byproduct.

[1l. FORMULATING THE CERTIFICATE
A. Bounding the Probabilistic Robustness Level

As we have seen, 7()) =~ r* < 7(¢). Two natural questions
arise. 1) Can one use #())) to certifiably lower-bound the
quantity 7(e) of interest? 2) If so, how can Y be chosen to
optimize the bound? In this section, we study the first question.
As it turns out, such a lower bound holds so long as )> has
high enough coverage over ). Before proving this claim, we
formally define this notion of coverage.

Definition 1. Let Y be a subset of R™. For e GA[O, 1], the
set YV is said to be an e-cover of Y = f(&x) if Y is Borel
measurable and Px (f(X) e V) >1—e.

Intuitively, an e-cover of ) is a set that contains Y = f(X)
with high probability. If we can compute an e-cover of ),
then we will have localized the output with high confidence.
By restricting ji in (2) to be an e-cover of ), we ensure
that the approximate robustness level takes into account the
likely inputs X, but not necessarily the worst-case inputs.
Consequently, this permits f()}) to be greater than r*, reducing
the conservatism in our measure of robustness caused by
unlikely worst-case inputs. We now show that this special type
of surrogate output set is a good enough estimate of ) to
maintain the lower bound on 7(e) that we seek.

Proposition 1. Let Y be an arbitrary subset of R"v. If Vis
an e-cover of Y = f(X), then

FY) < 7(e). “4)

B. Optimizing the Bound

From Proposition 1, we know that e-covers constitute good
choices of the surrogate output set Y used to compute the
approximate robustness level. This is because the random
output Y = f(X) is guaranteed to have safety level at least
#() with high probability. However, it is entirely possible
that the choice of e-cover results in f(j/) < 0, even when the
network is probabilistically robust. In this case, () fails to
issue a high-probability certificate for the safety of the random
output Y = f(X), despite ) being able to localize it.

To overcome the above problem, we turn to studying our
second inquiry from earlier, namely, how to optimize the lower
bound (4). This amounts to finding an e-cover of ) that

maximizes 7()). Since optimizing over all subsets of R™v

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

is intractable, we restrict our search to sets within a class
H = {h(f) : § € O} parameterized by a parameter set
© C RP and a set-valued function h: RP — P(R™). We
assume throughout that the class H is chosen such that i(0)
is a Borel set for all parameters § € ©. A concrete example
of one such class is given below.

Example 3. Let || - || be a fixed norm on R™ and © =
R™ x Ryy. Defining p = n, + 1, let h: R? — P(R")
be defined by h(y,7) = {y € R™ : ||y — g|| < r}. Then, ©
and h(-) define the class of || - ||-norm balls:

H={{yeR™:|ly—-gy| <r}:r>0, geR™}.

The problem of choosing h(-) and © (and therefore also
H) is discussed in detail in Section IV. By restricting our
search for e-covers to within the class H, our search reduces
to maximizing the approximate robustness level over the
parameter set ©. By slightly abusing notation, we denote
the dependence of the approximate robustness level on the
parameter 6 explicitly as 7(6) = inf{aTy+b:y € h(#)}, and
we formulate the following optimization problem:

maximize 7(6) — Av(0)
0€© (5)
subject to Px(f(X) € h(0)) >1—c¢,

where A > 0 and v: RP — R is taken to be a nonnegative
convex function on O that increases with the volume of h(6).
The objective #() in (5) is the approximate robustness level
computed using the set h(6) as the surrogate output set. The
constraint Px (f(X) € h(f)) > 1 — € enforces that we only
consider parameters 6 such that h(6) is an e-cover of ). The
regularization term —Av(6) penalizes the size of h(6). This
makes the set h(#) as small as possible while maintaining
its e-coverage, thereby yielding the tightest localization of
the output Y. The regularization is done at the expense of
a slightly suboptimal bound (4), and can be eliminated by
setting A = 0, if no localization of the output Y is desired.
On the other hand, increasing A amounts to putting more
assessment effort into localizing Y, making the e-cover h(6)
a better estimate of ). This certification-localization tradeoff
is experimentally explored in Section VI-A.

IV. DATA-DRIVEN REFORMULATION

Even when the set h(f) is convex for all § € O, the prob-
abilistic constraint in (5) is in general nonconvex [31]. Con-
straints of this form are referred to as chance constraints, and
there exist various approaches to reformulating and relaxing
them into convex constraints. Since the problem at hand con-
siders neural networks whose models are usually complicated
to analyze, but whose input-output samples are easily obtained,
we seek a data-driven approach to approximately enforcing
the chance constraint in (5), without losing the robustness
certificate provided by the solution. The scenario approach
is a popular method within the stochastic optimization and
robust control communities that replaces the chance constraint
with hard constraints on a number of random samples [31]-
[34]. The scenario approach has been studied for general
problems, even those with nonconvex objectives and those
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whose resulting hard constraints are nonconvex [35]. However,
the most powerful use of scenario optimization arises when
the resultant scenario problem is convex, as then a priori
probabilistic guarantees can be made about the solution’s
feasibility for the original chance constraint. As we will soon
see, this sampling-based method fits nicely into the framework
of our problem, and maintains a lower bound on 7(¢) with
high probability, provided that a sufficiently large number of
samples is used and the scenario problem is convex.

To implement the scenario approach, suppose that {z; : j €
{1,2,...,N}} C X is a set of N independent and identically
distributed samples drawn from Px. For each input x;, we
compute its corresponding output y; = f(x;). Then, replacing
the chance constraint in (5) with N hard constraints on the
samples y; yields the following scenario optimization:

maximize 7(6) — Av(0)

0€© (6)

subject to y; € h(f) for all j € {1,2,...,N}.
Note that, because the data y; is random, solutions 6* to (6) are
random. We assume throughout the paper that (6) is attained
by a solution #*, and we denote the probability space on which
it is defined by (Qg«, Fy~, Pg+).
Remark 1. The above assumption of independent and iden-
tically distributed samples is critical for relating the solution
0* back to the original chance-constrained problem (5). In
particular, it is a key assumption on which the forthcoming
high-probability robustness certificate in Theorem 2 rests.
Despite these assumptions holding in many practical models,
the independence may be violated in certain applications with
inherent time-correlation between samples, and the assumption
prevents the use of selective sampling to improve the efficiency
of the scenario approach.

The identical distribution assumption is also critical, and
it may be violated in two main ways. First, the underlying
distribution of the data used in (6) may change from sample
to sample, and second, the underlying noise distribution of
the actual input may be different in practice from the samples
used in the robustness certification procedure. Despite these
sources of modeling error, our scenario-based approach can
be modified into a distributionally robust variant to still give
high-probability robustness certificates in the case that the
distribution of the input is contained in a finite set of possible
distributions.

As mentioned in Section I-A, the scenario approach was
used recently in reachable set estimation for dynamical sys-
tems [25]. We remark that (6) recovers the scenario optimiza-
tion of [25] in the special case that the objective is re-scaled
to +7(f) — v(#) and A — oo, the regularizer v(6) equals the
volume of the set h(f), and H is the norm ball class. This
reduction amounts to finding the tightest norm ball e-cover of
Y, without regard to optimizing the lower bound (4) of interest.
In Appendix I-A, we demonstrate the necessity for the more
general formulation (6) by giving an example where reducing
to the special case of [25] causes robustness certification to
fail, despite finding the tightest e-cover of ).

Although the scenario approach has eliminated the chance
constraint from (5), there remain two problems to consider.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

First, it is not immediately clear whether (6) is convex or
computationally tractable, as it has an inherent max-min
optimization structure. However, it is important to ensure the
problem’s convexity, since no a priori guarantees can be made
regarding the feasibility of 6* for the original chance con-
straint in the general case of nonconvex scenario optimization
[35]. In Section IV-A, we leverage results from parametric
optimization to develop conditions on our choice of © and
h(-) to ensure that (6) is convex. Second, the solution of (6)
gives a random approximation to the solution of (5), which
optimizes the bound (4) on 7(¢). In Section IV-B we develop
formal guarantees showing that the solution of (6) maintains
a lower bound on 7(¢) with high probability, provided that N
is sufficiently large.

A. Conditions for Convex Optimization

In this section, we consider the choices of the parameter set
© and the set-valued function h(-) on lower-bounding 7(e),
and on the tractability of the resulting scenario problem (6).
A key insight is this: an e-cover of ) may in general be much
larger than ) itself. This is because regions of an e-cover
that do not intersect with ) also do not count towards the
coverage proportion 1—e. Therefore, if the class H from which
we choose an e-cover does not have high enough complexity,
then the e-covers within ‘H may need to be exceedingly large
in order to achieve e-coverage.

The problem with unnecessarily large e-covers is that the
feasible set in the optimization defining #(¢) includes many
vectors y that may not be actual outputs in Y. In this case, 7*(0)
is small, even though 7(¢) may be large. To avoid this problem,
our choice of © and h(-) should ensure that the class # has
high enough complexity. However, our choices should also
yield a scenario problem (6) that is convex. Indeed, Theorem
1 gives sufficient conditions for the convexity of the scenario
problem. Before presenting these conditions, let us recall a
fundamental definition for set-valued functions.

Definition 2. A set-valued function h: RP — P(R™v) is said
to be convex on a convex set © C RP if

(AR(B1) + (1 = N)A(6)) € h(Ms + (1 — \)6z)

for all 61,02 € © and all A € [0, 1]. The function h(-) is said
to be concave on © if

WAy + (1= A)f2) € (AB(01) + (1 — A)h(62))

for all 6,02 € © and all X € [0, 1]. Finally, the function h(-)
on O is said to be affine if it is both convex and concave.

Example 4. Consider the norm ball class  given in Example
3. It is easily verified by Definition 2 that the set-valued
function h(-) defining the class H is affine on © = R"v xR ;.

With tools for defining and proving convexity of set-valued
functions now in place, we can present conditions under which
the scenario optimization (6) is convex, and therefore easily
solvable. In Theorem 2, we will also rely on this convexity
to guarantee with high probability that h(6*) is an e-cover
of Y and that our desired lower bound 7(6*) < 7(e) holds.
Generating such guarantees is in general not possible for
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nonconvex scenario optimization [35], further illustrating the
importance of Theorem 1 below.

Theorem 1. Consider the scenario problem (6). Suppose that
O takes the form

©={0eRP:g(0) <0foralic{l,2,....m}},

where every g;: RP — R is convex. Furthermore, suppose that
h(-) is a concave set-valued function that takes the form

h(0) = {y € R™ : h;(y,0) <0 forall i € {1,2,...,n}},

where h;: R™ x RP — R and h;(y, ) is convex for all y €
R™. Then, (6) is a convex optimization problem.

Theorem 1 precisely answers our earlier inquiry: the class
‘H should be complex enough to contain tight e-covers of the
output set ), but at the same time © should be defined by
convex constraints and h(-) should be taken as a concave
set-valued function also defined by convex constraints. Note
that these conditions on h(-) are not as restrictive as they
may seem. In particular, Example 4 shows for the norm
ball class that A(-) is affine (and therefore concave) and
defined by convex constraints, and that this holds for all
norms on R™v, even though norm functions themselves are
not affine. Therefore, Theorem 1 guarantees that the scenario
optimization (6) using the norm ball class is a convex problem.
We verify this fact in the following example.

Example 5. Recall the norm ball class of Examples 3 and
4. We show that (6) using this class is convex. Indeed, the
approximate robustness level is

inf a'y+b=a'g—r|al.+b,

ly—gll<r
which is affine in the optimization variable 8 = (g, r). Hence,
the scenario problem reduces to

maximize

b+aTi_7ﬁ alls — (g, r
(§,r)ER™ xRy 4 Yy lall (g,7)

subject to lly; — gl <rforall je{l,2,...,N},
@)

which is a convex problem since v(-) is convex.

B. High-Probability Guarantees

We now turn to consider the randomness of the scenario
problem’s optimal value. In particular, we ask the following
question: Does the random solution to (6) maintain a certified
lower bound on 7(¢)? In Theorem 2, we show that the answer
is affirmative with high probability, provided that the problem
is convex and a large enough number of samples is used.

Theorem 2. Let €¢,6 € [0,1]. Assume that the scenario
optimization (6) is convex and is attained by a solution 0* €
RP.IfN > % (log % + p), then the following inequalities hold:
1) Py- (Px(f(X) S h(9*)) >1- 6) >1-96
2) Bo- ((6%) < 7)) 2 1 6.

The conclusions of Theorem 2 assert that, with overwhelm-
ing probability, h(6*) is an e-cover of ) and that the prob-
abilistic robustness level is lower-bounded as #(6*) < 7(e).

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

This gives high-probability guarantees for the simultaneous
localization and safety certification of the output Y = f(X).

In Theorem 2, randomness of a solution 8* to (6) is taken
care of by the 1—0 probability bound. In particular, A(6*) may
not actually be an e-cover, albeit with probability at most . For
this reason, we slightly abuse terminology and call h(6*) the
optimal e-cover. The additional layer of uncertainty embedded
into the parameter ¢ is precisely the price paid for replacing the
intractable chance-constrained problem (5) with the tractable
scenario problem (6). However, Theorem 2 shows that the
additional randomness is not an issue, since the requirement
on N scales as log % Therefore, we can select a small value
for 6 while maintaining a reasonable sample size N.

Remark 2. The guarantees in Theorem 2 are of the probably
approximately correct (PAC) form. In the language of PAC
learning, the surrogate output set h(6*) is the hypothesis of
the learner, which is selected from the concept class H =
{h(#) : 0 € O}. Theorem 2 asserts that the hypothesis is
probably approximately correct, where approximately correct
means the hypothesis (which is a set) contains the random
output Y = f(X) with probability at least 1 — €, and where
probably means the hypothesis (which is selected based on
the specific instances z1, xs, ..., ZN) iS approximately correct
(for general X) with probability at least 1 — §. Since this
PAC guarantee holds whenever the scenario problem is convex,
Theorem 1 gives sufficient conditions for the concept class ‘H
to be PAC learnable, and our proposed method can be viewed
as learning robustness using the framework of PAC learning.

V. EXPLOITING NETWORK STRUCTURE

In this section, we show how to exploit the structure of deep
neural networks to reduce the time complexity of our method.
The basic idea is to utilize adversarial bounds on the deep
layers to replace f with a shallower neural network, in ef-
fect developing a hybrid adversarial-probabilistic certification
scheme. We assume that the network takes the form

F=o) o 4K ouh o 40

where o(®) : R — R"* is the k™ layer’s activation function
and AF): R™ — R™s+1 is the affine map given by A®)(z) =
W® 2 4+ p(*). Note that ng = n, and ng = n,.

Now, suppose that fr, fy: R™ — R™ are two functions
satisfying f1(z) < f(x) < fy(x) for all z € X, which are to
be determined. Then, define the function f': R"= — R"™» by

() = (fL(I))z
S {(fum

for all 4 € {1,2,...,n,} and all x € R"=. It is immediately
clear that a' f'(x) +b < a' f(x) + b for all z € X, so
f(z) € S for all x € X such that f/(z) € S. This shows
that Px(f(X) € S) < Px(f(X) € S). Therefore, to
certify the probabilistic robustness of f, it suffices to apply
our certification procedure to the function f’. By bounding the
deep layers’ activations in f by affine functions, we will reduce
the problem to analyzing a simpler and shallower network f’
that allows for faster sampling of the outputs y;. For notational
simplicity, we let (%) = ¢(¥) o A=V o... 051 0 AO) for all

if a; Z O,
if a; <0,
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ke {1,2,...,K}, so that $¥)(z) is the activation at layer k
corresponding to the input z. Let ¢(?) be the identity map on
R™ . We now recall the notion of preactivation bounds, and
make two assumptions.

Definition 3. A vector I(¥) € R satisfying I(*) < A(k=1 o
d*F=D(x) for all 2 € X is called a k" layer preactivation
lower bound. A vector u®*) ¢ R™ satisfying A*~1 o
p*V(z) < u® for all x € X is called a k" layer
preactivation upper bound.

Assumption 1. For all £ € {1,2,..., K}, there exist k"
layer preactivation lower and upper bounds [*) and (%),
respectively.

Assumption 2. For all & € {1,2,..., K}, there exist func-
tions £ 1/®: Rme — R™ given by £L*)(z) = WMz +
b(Lk) and UP) (2) = Wl(]k)z + bg), that satisfy £*)(z) <
o®)(2) <UP)(2) for all z € [IF) 4 *)],

Definition 3 and Assumptions 1 and 2 are standard in the
adversarial robustness literature. Notice that in many common
architectures, n, > ng and the rank of A©) g ng, and in this
case Assumption 1 requires the input set X to be bounded. For
most common activation functions and input sets, there exist
a variety of methods for computing the above preactivation
bounds and affine bounding functions—see, e.g., [36].

The following lemma transforms our affine bounds on
each activation function ¢(*) into affine bounds relating the
activation of one layer to the activation of the next layer.

Lemma 1. Suppose that Assumptions 1 and 2 hold. For all ke
{1,2,..., K}, it holds for all x € X that W™ ¢k=D(z) +
b(Lk) < oW (z) < Wl(]k)gﬁ(k’l)(a:) + 5% where

VNVI(/]C) — Wék)W(k_1)7 E(Lk) _ Wl(/k)b(k—l) + b(Lk)’
= (k k) _ (k) (k) (h— k
P =wPwE=n 5 — wiptb 4 )

Next, we use the affine bounds between each neighboring
layer in Lemma 1 to develop one overall affine bound relating
the activation at some layer k* to the output ¢(%)(z) of the
neural network. The proof technique follows the idea devel-
oped in [10], [36], albeit allows for more general activation
functions and allows us to “start” the affine bounding within
the interior of the neural network architecture.

®)

Proposition 2. Suppose that Assumptions 1 and 2 hold, and
assume that K > 3. Ler k* € {1,2,...,K — 2} and
define M = K — k*. Consider the matrices Wék),W((Jk)
and vectors B(Lk)’ggjk) defined in (8). Define I} = Wék* 1),

= B(Lk*—H), Gy = W[(Jk*—i_l), and H, = ngk*—H). Also, for
n €{2,3,..., M}, define
E, = min{0, W¥ TG, _; + max{0, W T} E,_,
F,, = min{0, Wék*+7l)}Hn—1
+ max{0, W& T, 4 plET),
G = max{0, W ¥ T @,y + min{0, W} TV E, .,
H, = max{0, WI(Jk*+n)}Hn,1
+ min{0, W TYE,  + 0T,

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

Then, for all x € X, it holds that
En¢* () + Fyy < ¢ (2) < Gro™ ) (z) + Huy

Since ¢¥)(z) = f(z), Proposition 2 shows that we may
take the functions fr, fy to be fr = A o ¢*") and fy =
Ay od*") | where Ap(z) = Epjz+Fpy and Ay (2) = Gz +
Hj;. In this case, our function f’ becomes

fila) = {W 0 ) (a)),

if a; >0,

(Au 0 o) (2)), if a; <O.

This function f’ is a new neural network with the same
first k* < K nonlinear layers as f, and with one final
affine transformation. Thus, a lower bound on the probabilistic
robustness level of this shallow surrogate network f’ is also a
lower bound on the probabilistic robustness level of the deep
original network f.

When k* is chosen to be small, the depth of this surrogate
network is reduced, making it more efficient to sample outputs
from it. As k* increases, our method incorporates more of
the underlying nonlinear nature of the network f into the
samples that we use to assess f’s robustness, meaning that
the robustness certificate becomes tighter, but at the expense of
increased sampling time. Specifically, in the common setting
where every activation o(®) is an element-wise operator with
the time complexity O(ny), the time complexity of the sam-
pling procedure for f is O(N(noni+ning+---+ng_1ng)),
whereas the time complexity for [’ is O(N(noni + nins +
s npe_1ngr +ngeng)). If, for example, every number ny,
is of order O(n), then f would have the sampling time com-
plexity O(N Kn?), whereas f’ would be of order O(Nk*n?),
giving a factor of k*/K reduction in time complexity. As
we will see in Appendix I-B, this reduced time complexity
is particularly helpful in deep neural network settings.

VI. NUMERICAL EXPERIMENTS
A. lllustrative Example

We consider the distributed linear system z(t+1) = Ax(t)+
Bu(t) for times t € {0,1,...,T}, T = 20, as constructed in
[4]. The system has n = 10 nodes, with a single state and input
associated with every node; z(t),u(t) € R™. The system and
control matrices A, B respect the underlying graph topology
of the system, encoded by the support matrix S—see [4].

The control law is defined by a graph neural network:

ult) = ®(a(t), 8) = U5 b2 5% (3]0 W),

with o(-) = ReLU(), K = J = 3, A = (1,1 1) and
h(® = (1,1,1). This neural network controller, defined in
terms of S, respects the distributed nature of the system [4]. In
this experiment, we consider the case where the graph support
of the control law may be randomly perturbed, so that u(t) =
(x(t),s") for some S' € R™™ with S}, = XS;;, where
X is a Bernoulli random variable equal to 1 with probability
0.8; the controller loses an edge in its support graph with
probability 0.2. We fix a (normal random) initial condition
2(0) € R™, and we consider the map f: R"*" — R? given by
f(S") = (z1(T), z2(T)), where x(T) is the terminal state of
the system under the control law given by u(t) = ®(z(t), S’).
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The safe set is defined by S; = {y € R? : a'y +b > 0},
where a = (1,0) and b = 0.05. We seek to certify that the
first two elements of the (random) terminal state are safe even
under the perturbed control support 5, i.e., that f(S’) € Sy.

The norm ball class H of Examples 3, 4, and 5 is employed
with || - || being the ¢3-norm, and with probability levels
e = 0.05 and § = 107°. We choose the regularizer for
the scenario problem (7) to be the square of the norm ball
radius, i.e., v(¥,r) = r2. The optimization problem is convex
as guaranteed by Theorem 1. We solve the scenario problem
first without regularization, and then with two different levels
of regularization: Ay = 1 and Ao = 100. The respective
solutions are denoted by 6%, j‘\l, and 9;‘\2. Each instance takes
approximately 15 seconds to solve using CVX in MATLAB
on a standard laptop with a 2.6 GHz dual-core i5 processor.
The resulting approximate robustness levels are 7(6*) =
0.0058, 7#(¢%,) = 0.0054, and #(f5,) = —0.0061. In the
instances without regularization and with regularization level
A1, Theorem 2 guarantees that the perturbed terminal state
(21(T), z2(T)) has a safety level of 0.005 with our prescribed
high probability, granting the probablistic robustness certificate
we seek. On the other hand, since 7(03,) < 0, the scenario
problem using regularization level A2 is not able to certify the
safety of the terminal state. This is due to the inherent tradeoff
between localization and certification, which we now discuss.

The optimal e-covers h(6*), h(0% ), and h(05,) are shown
in Figure 1, which is placed in Appendix I due to space
constraints. The unregularized set h(6*) is massively over-
conservative due to the choice A = 0, which corresponds
to pure robustness certification. Indeed, h(6*) is the e-cover
from our class of sets that is furthest from the boundary of
the safe set, making #(0*) the tightest lower bound on 7(e).
On the other hand, the optimal e-covers using A = A; and
A = Ay are seen to give tighter localizations of the terminal
state (1(T"), x2(T")). The approximate robustness level using
regularization J\; is only slightly lower than the unregularized
value, but the regularization Ao is large enough to cause the
approximate robustness level 7*(9;‘\2) to become negative at
the expense of localization. This shows how overemphasizing
localization may harm the certification aspect of robustness
assessment, and empirically demonstrates why output set
estimation methods may not be adequate for issuing robustness
certificates. This is explored further in Appendix I-A.

We repeat the experiment with the more complicated safe
set S, = {y € R? : Ay +b > 0}, where A = [} §]
and b = (0.05,0), applying our method to each row of So
individually. To do so, we set ¢ = ¢€/2, 6’ = /2, and
N’ = [2 (log §; +p)] = 1217. For each of the two half-
spaces defining S, we solve the scenario problem using
N’ independent and identically distributed samples, and then
intersect the two resulting €'-covers. Doing so, we obtain an
e-cover with probability at least 1 — §. We repeat this process
again using regularization levels Ay = 1 and A, = 100,
and we find that each scenario problem takes approximately
30 seconds to solve. As seen in Figure 2 in Appendix I,
some samples may reside outside the resulting intersection e-
covers—this is valid, and the robustness certificates still hold.

Again, we find robustness certificates for A = 0 and A = ;.

. . ©2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt s://www.ieee.org/l;:gublications/rights/index.html for more information.
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However, for A = Ao, the optimal e-covers corresponding to
both half-spaces are found to intersect the unsafe region of
the state space, due to the increased emphasis on localization.
Interestingly, the overall localization after intersecting the two
€’-covers for A = )5 is in a sense looser than that of the case
A = )1, indicating that moderate regularization levels, like Ay
in this experiment, may simultaneously perform best for both
localization and certification in the case of safe sets defined
by more than one half-space. Optimizing A in general poses
an interesting problem for future research.

B. Comparison to PROVEN

In this experiment, we compare our approach using the
half-space class H = {{y € Rw : c'y+d > 0} :
(c,d) € R™ x R}, for which we solve the scenario prob-
lem using its closed-form solution (see our technical report
[30]), to the state-of-the-art algorithm, PROVEN [20], for
assessing robustness against random input noise. Throughout,
we use open-source neural network models provided in [20].
The underlying framework of PROVEN relies on bounding
a classifier’s margin function by affine functions. PROVEN
uses the affine functions to give closed-form bounds on the
misclassification probability. We remark that, since PROVEN
does not rely on sampling, their lower bound on 7(e) is
deterministic, whereas our bound holds with probability 1— 4,
which is taken to be 1 — 107° = 0.99999 in this experiment.
The results in this section are computed using TensorFlow
in Python on a standard laptop with a 2.6 GHz dual-core i5
Pprocessor.

We first consider a variety of pre-trained MNIST digit
classification networks with ReLLU activation functions [37]. A
network model with m hidden layers, each having n neurons,
is denoted by m x [n]. We model the noisy input X as being
distributed uniformly on X = {z € R" : ||z — T||oo < €1}
For 10 randomly selected nominal inputs Z, we compute a
lower bound 7(6*) on the probabilistic robustness level 7(e).
The robustness level of a network (for a particular pair (e, €,,))
is evaluated by computing the average robustness level lower
bound across the 10 inputs.’ This is done for probability
levels € € {0.001,0.1,0.25} (with corresponding sample sizes
N € {25026,251,101}) and for a variety of noise levels e,.
We include the certified adversarial radius computed using
[36], which is a lower bound on the smallest radius such that
X contains an input that yields an unsafe output. The targeted
class ¢, which defines the margin function g; relative to the
nominal input’s true class ¢*, is randomly chosen for each
input tested. See Examples 1 and 2 for more information on
this application. The average lower bound values computed
using our approach (denoted Ours) and PROVEN’s (denoted
PRVN) are shown in Table I, which is placed in Appendix I
due to space constraints.

SDespite 7(e) being an input-specific quantity, we follow the literature’s
standard practice and average our robustness metric over a collection of
test inputs. This standard was popularized in [5], where model robustness is
evaluated using average certified input set radii. Our average robustness level
lower bound immediately gives an average certified input set radius when the
bound is nonnegative. In the probabilistic setting, it can be more natural to
evaluate models in terms of misclassification probability, like our bounds do,
instead of in terms of certified input set radii, see, e.g., [13], [17], [23], [24].

Xplore. Restrictions apply.
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As seen in Table I, our method is able to certify larger
input sets than PROVEN for every network tested. Although
PROVEN’s lower bound is tighter for small radii, at large radii
our bound is significantly tighter than PROVEN’s, particularly
for the larger networks in Tables Ic and Id. This indicates that
our method is especially powerful for certifying deep neural
networks. The end-to-end affine bounding scheme in PROVEN
tends to become looser as the network becomes deeper and as
the input set becomes larger [20]. The technique comes from
the adversarial robustness literature, and therefore it being
embedded into PROVEN is likely the reason why PROVEN
fails for radii larger than the certified adversarial radius. Our
method bypasses this preliminary bound altogether. We also
remark that our method certifies much larger input set radii
(sometimes up to 20 times larger) compared to the certified
adversarial radii (italicized) computed using the state-of-the-
art worst-case analysis [36]. The exact minimum adversarial
radii (averaged across the 10 inputs) for the 2 x [20] and
3 x [20] ReLU networks are efficiently computed to be around
0.07 using mixed-integer linear programming [38]. With the
tolerance ¢ = 0.001, our method certifies radii over 0.1
for these networks. This evidences the claim that worst-case
approaches, including exact ones, are over-conservative when
applied to settings where a small amount of risk may be
tolerable, in effect justifying our data-driven framework. We
repeat the experiment using the sample-based certification
method of [17], which we recall is only able to issue binary
certificates for whether or not 7(¢) is lower bounded by 0.
Our method gives much less conservative lower bounds—see
Table II in Appendix I for the 2 x [20] ReLU network and our
technical report [30] for the other models.

In Table III of Appendix I, we repeat the experiment using
three variants in the neural network model. Model 1 is an
MNIST classifier with tanh(-) activation functions of size
4 x [1024]. On the other hand, Model 2 is a CIFAR-10
network with ReLU activations of size 5 x [2048]. We see
that both Model 1 and Model 2 exhibit the same behavior as
before; for small input set radii, the lower bounds provided
by PROVEN and our method are similar and both yield high-
probability robustness certificates. For larger radii, our lower
bound significantly outperforms PROVEN’s. Since the affine
bounds in PROVEN are relatively tight for small input sets
radii, we suspect the PROVEN bound to closer match our
bound for large input set radii in the special case of linear
classification networks.

Model 3 is a linear classifier, i.e., of the form f(z) = Wa+
b, with 50 inputs, 10 outputs, and weights, biases, and nominal
input all chosen randomly with elements uniform on [0, 1].
We computed lower bounds on 7(e) for 100 such models and
averaged the results. Table III shows that indeed the PROVEN
bound closely matches our bound for every radius tested in this
special case, and that the two methods succeed and fail to issue
robustness certificates simultaneously. These results show that
the worst-case bounding techniques used in the adversarial
robustness literature may work satisfactorily for simple models
with random inputs, such as linear classifiers, but that these
bounds are too loose for general nonlinear networks.
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VIl. CONCLUSIONS

In this paper, we propose a data-driven method for certifying
the robustness of neural networks against random input noise.
Sufficient conditions are developed for the convexity of the
resulting optimization, as well as on the number of samples
to issue a high-probability guarantee for the safety of the
output. The method applies to general neural networks and
general input noise distributions. In cases where the activation
functions can be affinely bounded, we show how to exploit the
network structure to reduce sample complexity. The unified
framework allows the user to balance the strength of the
robustness bound with the tightness of the resulting output set
estimate. Our numerical experiments show that the proposed
method gives less conservative robustness bounds than the
prior state-of-the-art techniques, as it is capable of certifying
larger input uncertainty regions on syntheticc MNIST, and
CIFAR-10 networks. In situations where neural network fail-
ure modes may exist but are unlikely and hence robustness
amounts to achieving tolerable risk, these results suggest that
re-tooling worst-case analysis techniques from the adversarial
robustness literature results in overly conservative bounds.
We conclude that taking a data-driven approach to generate
probabilistic robustness guarantees, as developed in this paper,
is the better option in these contexts.
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FIGURES, TABLES, AND ADDITIONAL EXPERIMENTS
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Fig. 1: Optimal ¢5-norm ball e-covers for safe set S.
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TABLE I: Average probabilistic robustness level lower bounds 7(6*) for MNIST ReLU networks subject to uniform noise over
{~-norm ball. All values are averaged over 10 nominal inputs with randomly chosen target classes i. Lower bounds giving
certified robustness (on average) are bolded, and the average certified adversarial radii computed using [36] are italicized.

(a) 2 x [20] network.

(b) 3 x [20] network.

Radius e =0.001 e=0.1 e=0.25 Radius e =0.001 e=0.1 e=0.25
) PRVN Ours PRVN Ours PRVN Ours ) PRVN Ours PRVN Ours PRVN Ours
0.01 24.51 14.11 24.79 14.26 24.88 14.28 0.01 29.24 17.28 29.59 17.45 29.70 17.49
: 1.491s  0.605s 1.405s  0.004s 1.370s  0.003s ’ 1.416s  0.380s 1.345s  0.003s 1.388s  0.001s
0.027 14.71 13.36 15.45 13.77 15.68 13.85 0.022 18.80 16.65 19.49 17.02 19.71 17.10
’ 1.434s  0.599s 1.540s  0.004s 1.427s  0.003s ’ 1.382s  0.362s 1.345s  0.003s 1.364s  0.001s
0.05 —1.33 12.34 0.02 13.11 0.44 13.26 0.05 —22.31 15.19 —20.67 16.00 —20.17 16.19
: 1.511s  0.597s 1.468s  0.004s 1.423s  0.003s : 1.377s  0.345s 1.325s  0.003s 1.374s  0.001s
0.1 —42.09 10.25 —39.43 11.66 —38.61 12.00 0.1 —114.83 12.57 —111.59 14.19 —110.60 14.58
’ 1.485s  0.623s 1.437s  0.004s 1.437s  0.002s ’ 1.351s  0.372s 1.343s  0.003s 1.340s  0.002s
0.5 —404.42 —7.21  —=391.05 —0.05 —386.96 1.71 0.5 —866.28 —9.36 —857.82 —0.55 —855.22 0.36
: 1.525s  0.645s 1.472s  0.004s 1.432s  0.002s : 1.385s  0.368s 1.351s  0.003s 1.336s  0.003s
(c) 2 x [1024] network. (d) 3 x [1024] network.
Radius e =0.001 e=0.1 e=0.25 Radius e =0.001 e=0.1 e=10.25
PRVN Ours PRVN Ours PRVN Ours PRVN Ours PRVN Ours PRVN Ours
0.01 51.07 27.73 51.40 27.87 51.50 27.93 0.01 68.87 36.86 69.28 37.06 69.41 37.12
: 0.899s  1.102s 0.877s  0.008s 0.874s  0.004s : 2.535s  1.782s 2.382s  0.015s 2.464s  0.009s
0.032 30.34 26.69 31.37 27.13 31.69 27.32 0.024 44.14 35.97 45.18 36.44 45.50 36.58
: 0.869s  1.202s 0.858s  0.008s 0.846s  0.004s : 2.434s  2.026s 2.448s  0.013s 2.510s  0.008s
0.05 6.95 25.83 8.59 26.53 9.09 26.82 0.05 —111.09 34.32 —108.25 35.32 —107.39 35.59
: 0.846s 1.125s 0.851s  0.008s 0.844s  0.004s : 2.739s  2.258s 2.671s  0.013s 2.761s  0.007s
0.1 —77.53 23.46 —74.13 24.84 —73.09 25.42 0.1 —729.24 31.10 —723.45 33.10 —721.68 33.69
’ 0.861s  1.137s 0.854s  0.008s 0.881s  0.004s ’ 3.081s  2.325s 2.916s 0.014s 2.912s  0.007s
0.5 —914.36 4.83 —900.22 11.79 —895.89 14.45 0.5 —6872.3 6.89 —6849.5 15.85 —6842.5 18.56
’ 0.869s  1.159s 0.883s  0.008s 0.868s  0.004s ’ 2.877s  1.955s 2.996s 0.014s 3.012s  0.007s
0.12 TABLE II: Experiment of Section VI-B and Table a using [17]
-%anfree;tmzed ccover with percentages of inputs that each method is able to certify.
[JRegularized e-cover, \; =1
0.1r Regularized e-cover, Ay = 100| | Radi e = 0.001 e=0.1 e =0.25
+  Sampled outputs adivs 190 " ows (171 Ous 171 Ours
J 0.01 0.00 14.11 0.00 14.26 0.00 14.28
’ 100% 100%  100% 100%  100% 100%
0.027 0.00 13.36 0.00 13.77 0.00 13.85
’ 100% 100%  100% 100%  100% 100%
i 0.05 0.00 12.34 0.00 13.11 0.00 13.26
’ 100% 100%  100% 100%  100% 100%
0.1 0.00 10.25 0.00 11.66 0.00 12.00
1 ’ 100% 100%  100% 100%  100% 100%
0.5 N/A —-721 N/A  —-0.05 N/A 1.71
’ 20% 20% 40% 40% 50% 50%
-0.06 -0.04 -0.02 0 0.02 0.04 0.06
z1(T)

Fig. 2: Optimal e-covers amongst intersections of two £3-norm
ball 5-covers for safe set Sa.

A. Comparison to Output Set Estimation

In this example, we compare our proposed method to an
alternate approach. In the second approach, we first estimate
the output set of the neural network using the scenario-based
reachability analysis in [25]. We then use the resulting output
set estimate to assess robustness. Recall that our proposed
scenario optimization (6) generalizes the reachability analysis
of [25]. In addition to localizing the network outputs, our
approach directly takes the goal of robustness certification into
account, whereas the estimation technique of [25] does not.

To illustrate our comparison, consider a simple ReLU neural
network given by f: R? — R?, where f;(z) = max{0, z;} for
i € {1,2}. The noisy input X is distributed uniformly on the
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input set X = {z € R? : ||z — z|; < 1}, where Z = (1,0).
The safe set is given as S = {y € R? : a'y +b > 0},
where a = (0,1) and b = 0.5. It is straightforward to show
that the output set is the top-half of the input set, namely,
Y=xn{yecR?:y, >0} Hence, if y € Y thena'y+b=
yo2 +b > b > 0. Therefore, Y C S, and so the random output
Y = f(X) is safe with probability one.

We now perform the two assessments at hand, computing
our proposed solution first. We choose the ¢5-norm ball class
for our candidate e-covers and draw sufficiently many output
samples {y; jV: 1 according to Theorem 2 with € = 0.1 and
§ = 107°. Next, we choose the regularizer v(y,7) = 2 with
A = 0.1 and solve the scenario problem (7) for the /5-norm
ball class. The solution correctly certifies that network outputs
are safe with high probability; see the blue set in Figure 3.

We now turn to the alternative method. We use the same ¢5-
norm ball class as above and solve for the minimum volume
e-cover using the same N sampled outputs. The estimated
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TABLE IIl: Average probabilistic robustness level lower bounds 7(6*) for various other models. Values for Models 1 and 2
are averaged over 10 inputs, and for Model 3 they are averaged over 100 network realizations. Lower bounds giving certified
robustness (on average) are bolded, and the average certified adversarial radii computed using [36] are italicized.

Model 1 Model 2 Model 3
Radius PRVN Ours  Radius PRVN Ours  Radius PRVN Ours
0.005 7.81 19.01 0.001 48.80 33.26 0.01 1.96 1.97
0.0068 2.20 18.96 0.0023 10.90 33.17 0.05 1.71 1.79
0.01 —26.31 18.88 0.003 —-91.20 33.12 0.1 1.40 1.56
0.05 —1769.97 17.83 0.005 —1056.85 32.98 0.5 —1.06 —0.29
0.1 —4493.02 16.48 0.01 —8717.05 32.62 1.0 —4.13 —2.60

output set is shown in red in Figure 3. Despite being a tighter
localization, a substantial portion of the estimated output set
exits the safe set, meaning that this approach cannot certify
the robustness of the network, even though the random output
is truly safe with probability one. This comparison shows that
a good estimate of the output set may not be the most infor-
mative set to use for assessing output safety. This observation
endorses our proposed method, which simultaneously encodes
both goals of certification and localization.

[ ISafe set, S
[ Our approach
[T]Output set estimation approach | |
e Sampled outputs, {y]}?;l

1.5}

-1 s s s . s \ \
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Y

Fig. 3: The tightest e-cover of the output set (red) does not
correctly certify robustness. Our approach (blue) correctly
certifies robustness and maintains reasonable localization.

B. Exploiting Network Structure

In this experiment, we implement the complexity-reducing
method of Section V. We consider networks with 10 inputs, 10
outputs, and 250 neurons in every hidden layer. The number of
layers K varies from 3 to 25. The weights and biases for every
architecture are chosen randomly (with Gaussian elements,
then normalized). Every activation function ¢(*) is chosen
to be ReLU, with preactivation and affine bounds derived
according to [10]. We consider (randomly chosen Gaussian)
clean inputs z with uniform additive random noise on the ¢..-
norm ball with radius €, = 0.1, so that the noisy inputs X are
distributed uniformly on {z € R™* : ||z — Z|loc < €}

For every architecture, we lower-bound the probabilistic
robustness level for 50 different realizations of the weights,
biases, and inputs, where for each realization we solve the
scenario optimization problem using the class H = {{y €
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R : c¢c'y+d >0} : (c,d € R x R} of half-spaces
with N = 1000 sampled inputs. This is done both using
our baseline methodology, maintaining the full nonlinearity
of each deep network, as well as using the shallow surrogate
networks proposed in Section V. Figure 4 displays the ratio
Ty /Ty between the sampling time T (averaged over all
realizations of a given depth) for the shallow surrogate network
f’ and the sampling time T (again, averaged) for the deep
network f. We see that, when k* = O(K), meaning that the
majority of nonlinearity is maintained in f”, the sampling times
remain roughly the same. On the other hand, when £* = O(1),
meaning the majority of nonlinearity is replaced by affine
bounds, the sampling time is reduced by nearly two orders
of magnitude, and the reduction follows the expected rate
of k*/K = O(1/K). For in-between surrogate architectures
using k* = O(log K) and k* = O(V/K), we find respectable
time complexity reductions, nearing an order of magnitude
decrease in sampling time. The decreases in the lower bound
on the probabilistic robustness level are also shown in Figure
4. The average lower bound r; without exploiting structure
is 0.1. Therefore, the degradation of the bound incurred by
using the shallow surrogate networks is relatively constant and
minimal. The experiment results in the same conclusions when
using tanh activation functions, and when using smaller and
larger input set radii €.
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Fig. 4: Ratio between the average sampling time of the shallow
surrogate network f’ and that of the deep original network f,
and the corresponding decrease in the lower bound on the
probabilistic robustness level.
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