Anticipatory Path Planning for Continuum Arms in Dynamic
Environments

Brandon H. Meng, Dimuthu D.K. Arachchige, Jiahao Deng, Isuru S. Godage, and Iyad Kanj

Abstract— Continuum arms are more adaptable to their
environments and inherently human-friendly compared to their
rigid counterparts. Path planning of continuum arms is an ac-
tive research area with many challenges. The hyper-redundancy
of continuum arms, which renders them highly versatile, is
their curse in path planning. This problem becomes even
more challenging in dynamic environments in the presence of
mobile obstacles. In this paper, we propose an anticipatory path
planning approach for continuum arms in dynamic environ-
ments. Our approach is based on obstacle prediction coupled
with temporal graphs to model the dynamic environment. We
evaluate the proposed approach’s performance and compare it
to prevailing path planning approaches for continuum arms in
dynamic environments.

I. INTRODUCTION

Continuum arms are inspired by the anatomies of animal
appendages such as elephant trunks [1], tongues [2], and
tentacles [3]. In contrast to rigid manipulators that use
actuated joints, the continuum arm’s movement is generated
by structural deformation. As such, continuum arms can
achieve postures that are impossible for rigid robots to
achieve. Fig. 1 shows several postures of a continuum arm [4]
while traversing a trajectory. Continuum arms can be used
across various domains; larger macro-scale continuum arms
can be applied in heavy-duty tasks such as car painting [5],
nuclear reactor repair [6] and search and rescue [7]. Smaller
continuum arms are used in areas that require more precision,
such as minimally invasive surgeries [8]. Due to the inherent
safety of continuum arms, they are ideal for manipulation
tasks in dynamic environments with humans.

There has been considerable work on path planning for
rigid mobile robots in dynamic environments. One such
planning method is the potential field approach [9]-[11]. The
work reported in [12], [13] uses the potential field approach
for continuum arm path planning in dynamic environments.
These approaches were implemented for restricted settings
(for 1 or 2 obstacles in [13], and partially dynamic envi-
ronments in [12]). As we demonstrate in this current work,
given its greedy nature, the potential field approach fails in
environments with many dynamic obstacles.

Other popular approaches are based on anticipatory path
planning. Anticipatory path planning mainly involves two
components: (1) predicting the state of the environment
for the near future, and (2) performing path planning with

Com-
USA.

The authors are affiliated with the School of
puting, DePaul University, Chicago, IL 60604,
{bmeng], darachch, jdeng5, igodage, ikanj} @depaul.edu.

This work is supported in part by the National Science Foundation Grants
1IS-1718755, 11S-2008797, and 11S-2048142.

Fig. 1.

Two different postures of a continuum-arm robot

respect to the predicted environment [14]. Based on this
general approach, different combinations of prediction and
planning algorithms have been proposed. The combination
of a Gaussian process as the obstacle prediction algorithm
with the use of sampling-based algorithms, such as Rapidly-
exploring Random Tree (RRT) and Probabilistic Roadmap
(PRM), has been widely used, in particular in human en-
vironments [15], [16]. Machine learning has also been used
for human environment prediction [17], [18]. Other planning
algorithms, such as A* [19], genetic algorithms [20], and
variants of the D* algorithm [21]-[23], have also been
used in anticipatory path planning. Even though sampling-
based approaches (such as RRT and PRM) are used widely
in robotics, few such approaches have been attempted for
continuum arms. The relation between the Work Space (W-
Space) and the Configuration Space (C-Space) for continuum
arms is complex, and no closed-form inverse kinematic (IK)
solutions exist. Consequently, sampling techniques do not
translate well for continuum arms.

In general, reliable path planning for continuum arms
must consider both previous and future positions of the
arm to avoid making greedy choices that may drive the
arm into knotting/contorted positions from which it can
no longer make any progress. As was demonstrated in
previous research on path planning of continuum arms in
environments with stationary obstacles [24], path planning
approaches based on Inverse Kinematics behave very poorly
and have a low success rate.

In this paper, we propose an anticipatory path planning
scheme for continuum arms in dynamic environments. The
scheme combines a prediction process with a temporal graph
approach and works as follows. We first predict the future
positions of the obstacles during the next time window. This
prediction is based on the history positions of the obstacles
during the past time windows and is performed using a cubic

Fig. 2. (Left) diagram showing the layout of the actuator and the backbone;
and (Right) the schematic of the i section when looking from an angle
normal to the bending plane.

interpolation [25]. We define a temporal graph whose edges
indicate their availability during a short time window in the
future, computed based on our prediction. We then compute
a local shortest path in the temporal graph that the continuum
arm can follow during the predicted time window. The above
process is then repeated until the destination point is reached.

We implemented the proposed anticipatory path planning
algorithm and compared it to conventional path planning
approaches. We evaluated the performance of all algorithms
by simulating them on a large number of instances and report
our findings. For all considered scenarios, the proposed
temporal-graph approach significantly outperforms the other
approaches.

II. PRELIMINARIES

A. System Model

The continuum arm prototype considered in this work is
detailed in [24]. The arm consists of three inextensible
continuum sections each with independent omnidirectional
bending capability. Although the system can be extended to
any number of sections, in our model, we use three sections
after the prototype 3-section continuum arm available in
our lab. The kinematic model used in this paper is the
one proposed in [24]. Configurations are 6-tuples consisting
of actuator length changes for each section. Given the
inextensible backbone, each section can be defined by 2
length changes and deforms in a circular arc parameterized
by the radius of the circular arc, \;, subtended angle, ¢;, and
bending plane angle with respect to the +X axis, 6; (Fig. 2).
See [24], [26] for more details.

B. The Cubes-Graph

The cubes-graph is a critical piece of the approach de-
scribed in [24] and will also be used extensively here.
It allows us to discretize the }V-Space in a convenient
way. To construct the cubes-graph, we discretize the W-
Space into cubes, each of dimension equal to lcm, treat
the center of each cube as a point/vertex, and connect each
vertex corresponding to a cube ¢ to the at most 26 vertices
corresponding to the neighboring cubes of g. We assign the
weight of an edge to be the Euclidean distance between its
endpoints. We denote the cubes-graph as Gg.

Temporal Graph

Fig. 3. An illustration of a temporal graph with 4 =1 and d = 0 and its
corresponding static graph [27].

C. Temporal Graphs

To model a dynamic environment with moving obstacles,
we use a temporal graph; this graph is capable of modeling
which parts of the environment are accessible/available (i.e.,
devoid of obstacles) during certain times, which is crucial
for path planning in such environments. As their name
suggests, temporal graphs are graphs that have edges open
only during certain time windows and closed otherwise [28].
More formally, in the model we use [27], a temporal graph
is defined as a directed weighted multigraph G=(V,E), where
V represents the set of vertices of G and E represents the set
of edges. Each edge e € E is a tuple (u,v,t,14,d), where u,v
€ V are the start and end vertices of this edge, respectively;
t is the start of the time window associated with the edge
(in other words, this edge is open at time f); x is the time
taken to traverse the edge; and d the cost associated with
traversing the edge.

Figure 3 shows an example of a temporal graph (left
figure) with A as the source vertex, compared to its static
counterpart graph (the right figure). In the figure, we as-
sumed that ;4 = 1 and that the cost of each edge is zero.
The values on each edge stands for the start of the time
window associated with that edge. Note that, for example,
the path (A, I, L) is valid for the static graph but not for the
corresponding temporal graph.

D. Smoothness Measure

Smoothness is a key measure of the quality of a path for
continuum robots. In [24], the authors defined the shape
curvature parameters 6, ¢ and A. The orientation of the
robot’s arm can be represented as a vector whose coordi-
nates/components are these three parameters. Since A can
be inferred from ¢ in our robot’s model, we only need to
use 0 and ¢ to represent this orientation. For a given path,
its smoothness can be measured as the cumulative change
in orientations over the pairs of consecutive configurations
on the path. This change is quantified using the Euclidean
distance between the orientations of the pairs of consecutive
configurations on the path. More specifically, consider a
configuration C™ on the path with curvature parameters
07, o7, where ¢ € {1,2, 3} refers to the robot’s arm section
number. Consider the configuration C™** that follows C™
on the path and whose curvature parameters are ™1, ¢+,
The smoothness, A™, between the two configurations C™

and C™*1 is calculated as

3
A™ — Z \/(e;m-‘rl _ 9;”)2 + (¢;n+1 _ <75Zn)2
=1

For a configurations path P = (C*, ..., C¥), the smooth-
ness of P is calculated as:

k-1
S=>"Am
m=1
Our goal becomes to compute an obstacle-avoiding path
P in the C-Space that minimizes this cumulative value S.

See [24] for more details about the curvature parameters.

E. Cubes Path and the Layered Graph

In a static environment, the cubes-graph was employed
in [24] to create a cube path as follows. Following the
construction of a cubes-graph, paths can be created between
two desired cubes. For some starting point s and ending
point ¢, two cubes g5 and ¢; are found such that s and ¢,
respectively, fall within these cubes. Using the cubes-graph
Gq, a path P is found from g, to g; using a shortest path
algorithm, such as Dijkstra’s algorithm. First, the C-Space
is enumerated (with respect to some level of discretization),
and then each of the enumerated configurations is mapped to
its corresponding VW-Space point. In order to find a smooth
path of configurations that takes the arm tip from point
s to t, a layered graph of configurations is constructed.
The vertices in each layer consist of all the enumerated
configurations whose W-Space points fall within the same
cube of P. Any configurations whose corresponding W-
Space points intersect with obstacles are purged. Then, each
vertex/configuration in a layer is connected via a directed
edge to all of the configurations in the next layer. The
weight of an edge between two consecutive configurations
C™ and C™*! is defined using the smoothness metric A™
described in the previous section. Finally, the Bellman-Ford
Algorithm [29] is used to compute a smooth path in the
layered graph.

III. ANTICIPATORY PATH PLANNING ALGORITHM

In this section, we develop a temporal path planning
scheme for dynamic environments. The scheme utilizes
obstacle prediction and temporal graphs to accomplish path
planning in a dynamic environment. We give a high-level
description of this scheme before proceeding to the details.

Suppose that the arm tip is at some current cube q.
(initially the starting cube ¢;). First, we predict the motion of
the obstacles for h steps in the future based on the historical
data of the obstacles’ motion that we have collected. Second,
we construct a (local) temporal cubes-graph, G, centered
around ¢, that extends h hops in all directions by employing
both the cubes-graph (described in Section II-B) and our
prediction of the obstacles’ motion. The temporal cubes-
graph G'r allows us to model the availability/unavailability of
certain areas in the VW-Space during certain time windows.
Finally, we compute a subpath (of cubes) in this temporal

cubes-graph from ¢, to the cube g that is the closest cube in
G to the target cube ¢;. The above process is then repeated
starting at q; until ¢, is reached.

A. Obstacle Prediction

Obstacle prediction is performed using cubic interpola-
tion [30]. This is a widely used methodology for making
predictions based on a small set of data [31]. For some given
amount of input data, cubic interpolation constructs a poly-
nomial of degree 3, with time as the variable, that includes
all of the input data. Using this third degree polynomial, we
can interpolate future times to obtain a data prediction.

As the obstacles move, their » most recent locations are
stored as historical obstacle data in a fixed-length list/queue,
denoted O. Though r can be as large as desired, in general r
should at least be 4 as 4 data points are needed to determine a
polynomial of degree 3. At each time step, the oldest location
is removed and the current location is inserted. Given the
historical obstacle data for each obstacle, we can employ
cubic interpolation to predict the movement of the obstacle
for a small number of hops, h, in the future, where h € N
is an input parameter to the algorithm. For each obstacle,
we store h predictions in O, indicating our prediction of the
locations of the obstacle for the next h time steps.

B. Temporal Cubes-Graph and Path

Suppose that the arm tip has reached some current cube
g, and that we have predicted the motion of the obstacles for
the next h steps. To proceed, a temporal cubes-graph Gr is
constructed, and a path in G is computed as follows.

Using Breadth-First Search [32], starting from ¢q,, we find
all the cubes in the cubes-graph G, within h hops from
qa- We then define a temporal subgraph G whose vertices
are the cubes within distance h from ¢,, and in which
(u,v,t,p = 1,d) is an edge if the arm can move from the
cube ¢, corresponding to u to the cube ¢, corresponding
to v at time ¢ without colliding with obstacles, where d is
the Euclidean distance between the centers of ¢, and q,.
(We assume that the traversal time, p, between any two
adjacent cubes is 1.) Finally, a local target cube/vertex g
in G is selected such that ¢ is a closest cube in G to
the final destination cube g;. Using a shortest temporal paths
algorithm [27], a sequence of cubes is found in the temporal
cubes-subgraph from ¢, to g,. If ¢; is more than h hops
away from the starting cube, the above process of generating
a temporal cubes path is repeated starting from g.

We note that, due to the temporal requirement, the shortest
path between two vertices in a temporal graph cannot be
computed using any of the folklore shortest path algorithms,
such as Dijkstra’s algorithm; however, a similar efficient
algorithm to Dijkstra’s was proposed in [27] and is used
in this paper.

Algorithm 1 illustrates the construction of the temporal
cubes-graph starting at a current cube ¢,, and for a given
number h of hops. The algorithm uses a similar idea to
Breadth-First Search.

C. The Algorithm

The anticipatory path planning algorithm combines ob-
stacle predictions and the temporal cubes-graph model to
construct a sequence of configurations that navigates the arm
tip from some starting point to a target point. We assume that
we are given the configuration C° corresponding to the arm
tip’s initial position. This configuration is mapped to its cor-
responding WW-Space point s. First, we bin the starting point
s into the starting cube g5 and the target point ¢ into the target
cube ¢;. We then must wait 5 time steps so that the historical
obstacle data can be collected. Next, the temporal cubes-
subgraph at g, is constructed using the process described in
Subsection III-B. After a sequence of cubes from ¢, to an
intermediate target cube gy is found, a layered configurations
graph L is constructed as described in Section II-E using
the configurations in each one of these cubes. The first layer
includes the starting configuration (initially C) and the final
layer includes all of the configurations whose corresponding
W-Space points fall in g;. The Bellman-Ford algorithm is run
on L, and a sequence of configurations Py, is computed. The
first configuration C° in Py, places the arm tip at s (inside of
¢s) and the last configuration C® places the arm tip inside of
q»- These configurations in Py, are appended to a global path
P and then the arm progresses to configuration C®. If the
target point has not been reached, the temporal cubes-graph
is reconstructed centered around cube ¢,. The first layer of
the new layered graph consists of only configuration C®. The
process of constructing a temporal cubes-graph, finding a
shortest cubes path, constructing a layered graph, and finding
a sequence of configurations is repeated until the tip of the
arm falls inside the final destination cube g;. At this point, the
global path P is returned. See Algorithm 2 for the details.

Algorithm 1: Temporal cubes-graph construction

input : Current cube ¢,, temporal prediction length
h, end cube ¢, obstacle prediction data (for

h steps) O
output : A temporal cubes-subgraph G and a cube
b
1 GT = @;

2 Use Breadth-First Search to find the set), of cubes
in G¢ within hop-distance h from g,;

3 Define the vertices of G'r to be the vertices of G
corresponding to the cubes in Q;

4 Use the prediction data in O to construct the edges of
Q.; more specifically, there is a edge (u,v,t, i, d),
where 1 = 1 and d is the Euclidean distance
between the centers of the cubes corresponding to u
and v, if the arm can move from ¢, to ¢, without
collision during the time interval [¢,¢ + 1];

5 Using the coordinates of the centers of the cubes in
G, find a cube ¢, in G that is closest (W.r.t. its
Euclidean distance) to q;

6 return G, qp;

Algorithm 2: Shortest path for temporal approach

input : Starting configuration C°, target point t,
temporal prediction depth h

output : A list of configurations €2

Q:=0;

Let s be the WW-Space point corresponding to C?;

3 Collect enough historical obstacle data to perform
cubic interpolation and use it to initialize O;

4 Let qcur = qs, Where g, is the cube containing s, and
let ¢; be the cube containing ¢;

5 repeat until q.., = q;:

6 Predict the future position of the obstacles for the
next h steps and update O;

7 Apply Algorithm 1 with g, = geur, b, and O, to
construct G and determine a local target cube
gp in Gr;

8 Compute the shortest temporal cube path P in
GT from Geur 1O qp;

9 Compute the layered graph L corresponding to P;
10 Find a shortest path P, of configurations in L by
running Bellman-Ford Algorithm;

1 Append Pp to Q;

12 end
13 return ()

[S

IV. RESULTS

In our implementation of the temporal approach, we
used the built-in inferpld function provided by the SciPy
library [33] to perform interpolation. This function allows
us to input previous positions of the obstacles, and retrieve
predictions as to their location for a limited number of time
steps in the future. In our implementation, we interpolate on
the positions of obstacles over the past 5 steps.

In order to evaluate our approach, we compared it against
several approaches, including the folklore rapidly exploring
random trees (RRT) [34] and potential field approaches, used
for path planning of rigid robots. We also implemented two
simple heuristics that rely on greedy methods. The empirical
results obtained using the greedy heuristics demonstrate that
the proposed anticipatory path planning approach for con-
tinuum arms is superior to baseline approaches, whereas the
empirical results obtained using the potential field approach
demonstrate that the anticipatory path planning approach
for continuum arms is superior to some of the folklore
methods used for path planning of rigid robots in dynamic
environments.

A. First Heuristic Approach

One straightforward approach that may be used by the
continuum arm to avoid mobile obstacles is to stop (or
slow down) and wait for the obstacles to clear the way.
This heuristic approach imitates the static obstacle planning
approach in [24] but with modifications to account for the
changing state of the graph. Since the obstacles are moving,
our cube path must be constantly recomputed. At each

time step, we check to see if the next cube in the cube
path is free of obstacles. If so, we compute the smoothest
transition between the configurations in the current cube and
the next cube using the method discussed in Subsection II-
D. If the next cube contains an obstacle, that cube must be
purged from the cubes-graph and then a new cube path is
reconstructed. This proceeds until the arm collides with an
obstacle, indicating a failure, or until the arm tip reaches the
target point.

B. Second Heuristic Approach

The second heuristic approach is also based on the static
path planning proposed in [24]. However, rather than recom-
puting a new path every time a cube is unavailable, the arm
waits until the obstacle moves away. At each time step, we
check to see if any obstacles are colliding with the next cube
in the cube path. If not, the smoothest transition between the
configurations in the current and next cube is calculated using
the method discussed in Subsection II-D. If the obstacle is
in the next cube, however, we simply wait until the obstacle
is no longer colliding with the cube.

C. Potential Field Approach

A Potential Field [9] is a greedy method of path planning
that uses attracting and repelling forces to move the arm
tip towards a target point. A path planning implementation
of a potential field approach for continuum arms was given
in [13]. A similar approach was developed in [12]. Our
implementation closely follows that in [13] and we compare
our results to those obtained in [13].

The approach in [13] is a greedy approach that is unreli-
able in the presence of obstacles. When multiple obstacles
are in the WW-Space, the magnitude and spread of repelling
forces creates a repulsive “wall” that prevents the arm from
moving towards the target. Additionally, in a dynamic envi-
ronment, changes in the position of obstacles (and repelling
forces) could reverse progress that the arm has already made
towards the target point. These two issues, taken together,
can cause the arm to move wildly back and forth.

V. EMPIRICAL RESULTS

In order to test the performance of each approach fairly,
we randomly generated test cases with moving obstacles that
followed certain criteria. Each approach was tested on these
trials, and their relative performance was recorded. Please
refer to the supplemental multimedia material for a recording
of some of these simulations.

The task for each algorithm is to output a sequence of
configurations that brings the arm tip from some starting
point to an ending point. If an obstacle collides with the arm
at any point, that trial is considered a failure. Otherwise,
the task is complete when the arm tip is within some small
distance from the target point.For each number of obstacles
n € {1,3,5,6}, we generate 100 test cases. For each n,
we run each approach on each of the 100 test cases and
keep track of the average running time (in seconds) and the
success rate over all 100 test cases. Obstacles are modeled

TABLE I
SIMULATIONS OF OBSTACLES BETWEEN START AND END POINTS

Obs
Algo.
T> Time(s)/Succ

31.86 [92% | 39.37 | 69% | 35.01 | 55% | 32.58 | 46%
T3 Time(s)/Succ | 42.56 | 93% | 50.61 | 72% | 42.98 | 56% | 40.19 | 46%
H Time(s)/Succ | 10.41 | 58% | 21.30 | 20% | 30.31 | 14% | 33.36 | 4%
H, Time(s)/Succ | 5.31 |58% | 12.23 |21% | 17.32| 10% | 18.57 | 4%
PF Time(s)/Succ | 39.07 [17% | 41.22 | 17% | 37.93 | 19% | 70.27 | 19%

as spheres with their radius randomly chosen as either 2cm
or 3cm. These obstacles orbit around random points along
the straight line joining the starting to the ending point.
The radius of these orbits is selected randomly in the range
of 6cm to 15cm. The total range of x-axis, y-axis, and z-
axis of the entire W-Space are around [—40.20cm, 40.20cm],
[—40.20cm, 40.20cm], [—29.95¢m, 45¢m), respectively. For
purposes of simplicity, we treat time as a discrete unit. Time
is discretized into steps of 1 second each. In all of our
simulations, we assume the obstacles move at a relatively
low speed. Speed is a randomly generated number that is no
greater than 1.5 ¢m/s. This is a reasonable assumption as
today’s high speed camera can capture moving objects at the
frequency of multiple frames per second, which means the
object moves at a low speed between frames [35].

Table I shows the simulation results. We compare five
different algorithms. 75 and 73 in the table refer to the
temporal approaches that run on the next 2 and 3 predicted
positions of obstacles while the H and H; refer to the first
and second heuristic approach, respectively. PF' refers to the
potential field approach.

As indicated from the simulation results, both temporal
approaches perform significantly better than the heuristic
approaches and potential field approach in all cases. Under-
standably, as the number of obstacles increased, the perfor-
mance of all approaches decreased. However, the temporal
approaches were consistently the best performing algorithm.
As we discussed before, the limitations of potential fields
prevented the arm tip from reaching the target point in
most cases. Though this was expected with high numbers of
obstacles, the potential field approach also under performed
with few obstacles. The heuristic approaches were also
understandably worse than the temporal approach as they do
not consider the predicted motion of the obstacles. Although
the larger prediction window should give 75 an advantage
over 15, in some of our simulation cases, we observed
that 75 performed better than T35. This is mainly caused by
the fact our prediction algorithm (cubic interpolation) does
not predict the obstacle motions at the third time step as
accurately as the first two.

VI. CONCLUSION

In this paper, we studied path planning for continuum arms
in dynamic environments. We proposed an anticipatory path
planning algorithm based on temporal graphs, and compared
its performance to folklore path planning approaches used
for rigid robots in dynamic environments. Our findings

demonstrate the superiority of the proposed approach over
other standard approaches.

Our work strongly advocates for the use of temporal
graphs for performing anticipatory path planning in dy-
namic environments, and opens up many avenues for future
research. In the current work, we used the simple cubic
interpolation—as a proof of concept—as our prediction
method. One obvious research avenue is to explore the use
of more sophisticated prediction methods, or even the use
of a set of different methods that each is suitable for a
specific environment, such as prediction methods that rely
on machine learning techniques [15], [16].

Finally, we mention that the construction of the tempo-
ral graph in each stage of our algorithm would be time
consuming if implemented for a large prediction depth. To
keep our algorithm efficient, we limited the depth to 2 and
3. While this depth still achieves a reasonable success rate
compared to other approaches, the success rate gets lower as
the number of obstacles increases. To achieve a high success
rate in the presence of a large number of obstacles, one would
need to explore paths in larger temporal graphs, which would
require a faster construction of the temporal graph. We leave
this direction as another avenue for future research.

REFERENCES

[1] M. W. Hannan and I. D. Walker, “Kinematics and the implementation
of an elephant’s trunk manipulator and other continuum style robots,”
Journal of robotic systems, vol. 20, no. 2, pp. 45-63, 2003.

[2] B. A. Jones, R. L. Gray, and K. Turlapati, “Three dimensional statics
for continuum robotics,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2009, pp. 2659-2664.

[3] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum
robots,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 43-55,
2006.

[4] 1. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Dynamics for variable length multisection
continuum arms,” The International Journal of Robotics Research,
vol. 35, no. 6, pp. 695-722, 2016.

[5] S. Hirose and M. Mori, “Biologically inspired snake-like robots,” in
2004 IEEE International Conference on Robotics and Biomimetics.
IEEE, 2004, pp. 1-7.

[6] R. Buckingham, “Snake arm robots,” Industrial Robot: An Interna-
tional Journal, vol. 29, no. 3, pp. 242-245, 2002.

[71 H. Ohno and S. Hirose, “Study on slime robot (proposal of slime
robot and design of slim slime robot),” in Proceedings. 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2000)(Cat. No. 00CH37113), vol. 3. 1EEE, 2000, pp. 2218-2223.

[8] R. J. Webster III, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and
A. M. Okamura, “Nonholonomic modeling of needle steering,” The
International Journal of Robotics Research, vol. 25, no. 5-6, pp. 509—
525, 2006.

[91 Y. K. Hwang, N. Ahuja et al., “A potential field approach to path

planning.” IEEE Transactions on Robotics and Automation, vol. 8,

no. 1, pp. 23-32, 1992.

K. P. Valavanis, T. Hebert, R. Kolluru, and N. Tsourveloudis, “Mobile

robot navigation in 2-d dynamic environments using an electrostatic

potential field,” IEEE Transactions on Systems, Man, and Cybernetics

- Part A: Systems and Humans, vol. 30, no. 2, pp. 187-196, 2000.

S. Ge and Y. Cui, “Dynamic motion planning for mobile robots using

potential field method,” Autonomous Robots, vol. 13, pp. 207-222, 11

2002.

A. Ataka, P. Qi, H. Liu, and K. Althoefer, “Real-time planner for multi-

segment continuum manipulator in dynamic environments,” in 2016

IEEE International Conference on Robotics and Automation (ICRA),

2016, pp. 4080-4085.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

I. S. Godage, D. T. Branson, E. Guglielmino, and D. G. Caldwell,
“Path planning for multisection continuum arms,” in 2012 IEEE
International Conference on Mechatronics and Automation, 2012, pp.
1208-1213.

S. J. Guy and I. Karamouzas, “Guide to anticipatory collision avoid-
ance,” Game Al Pro, vol. 2, 2019.

C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic nav-
igation in dynamic environment using rapidly-exploring random trees
and gaussian processes,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2008, pp. 1056-1062.

G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles
with uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1,
pp. 51-76, 2013.

P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in 2010 IEEE International Confer-
ence on Robotics and Automation. 1EEE, 2010, pp. 981-986.

M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning mo-
tion patterns of people for compliant robot motion,” The International
Journal of Robotics Research, vol. 24, no. 1, pp. 31-48, 2005.

A. Cosgun, E. A. Sisbot, and H. I. Christensen, “Anticipatory robot
path planning in human environments,” in 2016 25th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE, 2016, pp. 562-569.

A. Ismail, A. Sheta, and M. Al-Weshah, “A mobile robot path planning
using genetic algorithm in static environment,” Journal of Computer
Science, vol. 4, no. 4, pp. 341-344, 2008.

A. Stentz, “The focussed d* algorithm for real-time replanning,” ser.
IJCAT’95. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1995, pp. 1652-1659.

S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National Con-
ference on Artificial Intelligence. USA: American Association for
Artificial Intelligence, 2002, pp. 476-483.

S. C. Yun, V. Ganapathy, and T. W. Chien, “Enhanced d* lite algorithm
for mobile robot navigation,” in 2010 IEEE Symposium on Industrial
Electronics and Applications (ISIEA). 1EEE, 2010, pp. 545-550.

J. Deng, B. H. Meng, 1. Kanj, and I. S. Godage, “Near-optimal smooth
path planning for multisection continuum arms,” in 2019 2nd IEEE
International Conference on Soft Robotics (RoboSoft). 1EEE, 2019,
pp. 416-421.

J. Stoer and R. Bulirsch, Introduction to numerical analysis. Springer
Science & Business Media, 2013, vol. 12.

I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Modal kinematics for multisection continuum
arms,” Bioinspiration & biomimetics, vol. 10, no. 3, p. 035002, 2015.
H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems
in temporal graphs,” Proceedings of the VLDB Endowment, vol. 7,
no. 9, pp. 721-732, 2014.

V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and
its Applications, vol. 388, no. 6, pp. 1007-1023, 2009.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms,, 3rd ed. The MIT Press, 2009.

F. Lekien and J. Marsden, “Tricubic interpolation in three dimensions,”
Journal of Numerical Methods and Engineering, vol. 63, pp. 455471,
2005.

E. Maeland, “On the comparison of interpolation methods,” IEEE
Transactions on Medical Imaging, vol. 7, no. 3, pp. 213-217, 1988.
G. B. Dantzig, “On the shortest route through a network,” Management
Science, vol. 6, no. 2, pp. 187-190, 1960.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001-. [Online]. Available: http://www.scipy.org/
S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

I. C. Jeong and J. Finkelstein, “Introducing contactless blood pressure
assessment using a high speed video camera,” Journal of medical
systems, vol. 40, no. 4, p. 77, 2016.

