Smooth Path Planning for Continuum Arms

Brandon H. Meng, Isuru S. Godage, and Iyad Kanj

Abstract— Continuum arms, with their mix of compliance,
payload, safety, and manipulability, are perfectly suited to serve
as co-robots, and their applications range from industry and
manufacturing to human healthcare. Their hyper-redundancy
serves as their most significant challenge for path planning
and path planning approaches commonly used with rigid-link
robots, such as inverse kinematics, that fail to provide reliable
trajectories for continuum arms.

We propose an Inverse Kinematics-based approach to ad-
dress the limitations of previously-proposed Kinematics-based
approaches. Using this new approach, we are able to efficiently
generate very rich sets of configurations, which, in turn, lead
to smooth path planning for such continuum manipulators.

To validate the smoothness of the paths generated by our
approach, we apply dynamics constraints to the generated
trajectories. We show that, when tracked by a controller,
the paths that are generated using the proposed approach
are much smoother than previously-proposed Kinematics-based
approaches: The proposed approach allows the continuum arm
to traverse the trajectories very accurately and in time less
than half of that taken by previous (reliable) path planning
approaches.

I. INTRODUCTION

Continuum arms are “bio-inspired” manipulators that seek
to find a middle ground between rigid and soft robots. They
are made of multiple sections, with each being a bundle of
compliant actuators, such as a pneumatic muscle actuator.
Figure 1 shows an example of a 3-section continuum arm
at rest and with some of the pneumatic muscle actuators
extended. Due to their mix of passive compliance, pay-
load, inherent safety, and dexterous manipulability, these
continuum systems are well suited to serve as co-robots [1].
Their applications range from industry and manufacturing
to healthcare. However, the characteristics that make these
devices promising also present significant challenges. As
such, many of these devices have not yet reached maturity,
and research on continuum arms has witnessed rapid growth
in recent years [2]-[5].

In this paper, we study smooth path planning for contin-
uum arms, where the goal is to compute a trajectory for
the arm to traverse while avoiding any obstacles, and while
obeying the physical constraints—including the actuators’
limitations—of the system. Such properties of the path
are paramount for continuum arms, as little perturbation
in their trajectories, coupled with sensor feedback lag and
actuator limitations, may result in uncontrolled oscillations
with eventual instability. The above problem can take place

The authors are affiliated with the School of Computing, DePaul Univer-
sity, Chicago, IL 60604, USA. {bmengl,igodage,ikanj} @depaul.edu.

This work is supported in part by the National Science Foundation Grants
I1S-1718755, 11S-2008797, and I1S-2048142.

Fig. 1.
spatial shapes.

A illustration of a 3-section continuum arm achieving different

in an environment with or without obstacles, where the latter
naturally makes the the path planning problem much more
challenging.

Path planning for continuum arms that produces both
reliable and smooth paths remains a challenging task. Con-
tinuum arms are hyper-redundant and there is a complex,
non-linear relationship between the C-space (the set of all
possible configurations that the robot may assume) and W-
space (the ambient 3D space of the physical continuum arm).
Conventional path planning approaches based on Inverse
Kinematics (IK) are unreliable for continuum arms—as was
shown in [6], since they suffer from issues such as knotting
and convergence to local minima. As the authors in [6]
demonstrated, approaches that consider future and previous
spatial shapes in path planning avoid these issues, and deliver
high-quality paths. Since very small changes in the configu-
rations of a continuum arm can lead to large changes in their
spatial shape, the generation of dense sets of configurations
allows for the selection of reliable and smooth paths.

The authors in [6] proposed a Kinematics-based approach
that relies on generating a dense/rich set of configurations
from which a smooth path is then selected. It is a brute-
force approach that requires the generation of a look-up table
prior to performing the path planning. As such, after the
look-up table has been generated, this approach is limited to
the set of configurations in the look-up table. The approach
in [6] was shown to be superior to traditional IK in terms of
its success rate. However, this approach becomes inefficient
when smoothness is inadequate for a given discretization
level. A larger look-up table can be generated, but this
requires significant memory overhead and substantial pre-
computation. Moreover, the approach in [6] was not validated
to ensure the smoothness of the generated trajectories when
tracked by a controller.

While IK remain one of the most widely used approaches
to path planning [7]-[9], addressing the shortcomings of
IK remains a challenge. An iterative approach to IK for



redundant manipulators was presented in [10] that relies on
a ranking system to select a sequence of configurations.
In this variant of IK, a set of configurations is generated
from among which a “best” configuration is selected and is
subsequently used as a seed for the generation of another
set of configurations. While this approach seems to be a
refinement on conventional IK implementations, it still relies
on a greedy, local search, and hence suffers from the same
issues of knotting and convergence to local minima that
traditional IK suffer from.

Another use of IK was proposed in [11] for path planning
of concentric tube robots. The authors in [11] are also
critical of path planning approaches that rely on precomputed
kinematic look-up tables. Instead, they propose a high-
performance IK library that is used to randomly generate
a set of points in the W-space that serve as a “roadmap” of
the W-space; using IK, this set of points is then mapped back
to generate a set of configurations in the C-space. A greedy
search heuristic is then used to find a suitable path in the C-
space among this set of configurations. This approach does
not necessarily generate a dense set of configurations in areas
of interest before employing global smoothness measures and
instead relies on the generation of a set of configurations that
serves as a roadmap of the whole C-space.

Lastly, an approach relying on break down of the W-
space and configuration generation for rigid-link robots using
IK was proposed in [12]. However, this approach focuses
on estimation of IK within a region of the W-space and
focuses on pose estimation of rigid-link robots rather than
path planning.

In this paper, we propose an IK-based path planning
approach for generating smooth trajectories for continuum
arms. The proposed approach combines the best of both
worlds: the flexibility and versatility of the local IK approach
coupled with a global path planning approach that selects a
path from a rich/dense set of configurations. The proposed
approach can be viewed as an iterative use of IK to generate
a rich set of configurations within each cell of a cell-
path in a discretized W-space; the number and richness
of the generated configurations in each cell of the path
can be controlled on the fly as opposed to the brute-force
approach in [6], which populates the look-up table prior to
performing the path planning. A smooth path from among
the generated configurations is then computed by casting the
problem as that of computing a shortest path in a graph
constructed based on the generated configurations and to
which a smoothness metric—introduced in this paper—is
used to differentiate candidate paths.

II. SYSTEM MODEL
A. Kinematic Model

Our model is a continuum arm consisting of 3-sections;
we will use index i, where i € {1,2,3}, to refer to the i-
th section of the continuum-arm, with index 1 indicating
the section closest to the base. Each section consists of
3 pneumatic muscle actuators (PMA) bound together with
radial symmetry. This model uses an inextensible backbone

that introduces an over-constrained system making the third
actuator kinematically redundant [6]. Thus, each section of
the arm can be determined using only two length changes.
Since the arm has 3 sections and each section can be
determined by 2 actuators, a configuration defining the state
of the full arm is a 6-tuple of length changes.

We follow the kinematic model introduced in [6]; see
[6] for more specific details about the prototype. Note that
this system model introduces curve parameters that are used
to develop a homogeneous transformation matrix (HTM).
Given a 6-tuple configuration space vector ¢, we can use
the HTM to find the coordinates of the tip. See [6] for more
information on the derivation of the kinematic model.

B. Dynamic Model

To validate the generated trajectories, we use the dy-
namic model of the continuum arm developed in [13]. The
dynamic model was implemented on the Matlab Simulink
environment. In order to assess the smoothness of trajectories
we will apply this dynamic model with joint-space control.
In the controller implementation, we employed joint value
saturation limits (0-6 to imitate the 6-bar input pressure
limitation), joint slew rate (from experimental data showing
+1 bar/sec), and transportation delay (25 ms) to the sensor
feedback. With these constraints in place, PI blocks were
tuned utilizing Matlab PI control tuner that yielded P=7 and
[=420 gains to ensure a 0.3 sec unit step response.

III. PRELIMINARIES
A. Graphs

The configurations space (C-space) of the continuum-arm
is the set of all configurations a robot may assume. The con-
figurations graph has as its vertex-set the set of configurations
w.r.t. a pre-specified discretization of the actuators’ lengths,
and in which there is an edge between any two configurations
that are within one step variation w.r.t. the aforementioned
discretization.

Each configuration corresponds to a 3-D point representing
the tip and, by extension, pose of the continuum arm. The
work space (W-space) of the continuum arm is the set of all
such 3-D points corresponding to the configurations in the
C-space.

If obstacles are present in the W-space, some of the
configurations may become invalid as they lead to collision
with the obstacles. In such cases, these configurations are
removed from the C-space.

B. The Workspace Graph

We discretize the W-space using a uniform grid, in which
each cell is a cube of dimension 1 unit. Each cube is
represented by its center. The cubes-graph is a geometric
graph whose vertex-set is the set of all grid cubes, and
in which two vertices are adjacent if their corresponding
cubes are adjacent in the grid; each edge is associated with
a weight that is the Euclidean distance between the cube
centers corresponding to the endpoints of the edge. A path
in the cubes-graph is a called a cube path.



C. Brute-Force Approach

Brute-Force Path Planning (BF) was used in [6] and
requires a mapping between the C-space and the W-space.
This is created by generating a set of configurations in the
C-space and calculating the corresponding points in the W-
space. These configurations and points are then stored into
a look-up table. Next, the cube graph is populated with
configurations such that every configuration in the C-space
is assigned a cube based on whether or not its corresponding
W-space point is inside the cube. Cubes that do not contain
any configurations are discarded.

BF then finds a shortest path, P, in the cube graph from
cs to ¢, where c¢; is the cube containing the starting point
and ¢; that containing the destination point. Using the look-
up table, all configurations whose corresponding points are
contained within the cubes of P are enumerated. A layered
graph is then formed, each of whose layers consists of all
configurations whose corresponding points are in the same
cube of P. Edges exist only between adjacent configurations
in adjacent cubes and are associated with weights equal to the
Euclidean distance between the configurations corresponding
to the endpoints of the edge. A shortest path is then found
in the layered graph from the starting configuration to a
configuration in the cube c¢,. The smoothness of a path is
defined as the sum of the weights between all consecutive
configurations on the path.

D. Inverse Kinematics

Inverse Kinematics (IK) map W-space points to corre-
sponding C-space configurations using numerical methods.
When supplied with a trajectory, IK can be a very effective
tool for finding a sequence of configurations corresponding
to W-space points that trace the trajectory. This is called
Inverse Kinematics-based Path Planning and is a standard
approach for path planning of rigid robots.

IV. INVERSE KINEMATICS FOR IMPROVED
CONFIGURATION GENERATION

Whereas Inverse Kinematics are the conventional approach
to path planning for rigid robots, the hyper-redundancy of the
continuum arms make path planning for such robots much
more complex. The standard IK-based planning approach—
discussed above—may lead to non-convergence (trap in local
minima) and self-knotting (loss of DoF available for plan-
ning). We propose an IK-based framework that addresses the
above issues. Instead of relying on a single IK solution, we
propose to use IK to generate a “rich” set of configurations
whose corresponding W-space points lie within the vicinity
of the W-space target point; by richness here, we mean sets
of configurations that have a wide variety of valid spatial
shapes. The proposed approach combines the configuration
generation of IK with the layered graph approach to compute
a suitable W-space path. We use an objective function that
takes in a starting configuration and then tries to minimize
the distance between the arm tip and the target point.

First, we generate a cube path as done by the BF approach
discussed in Sec. III-C. After generating the cube path, we

Brute-Force vs IK Cube

Fig. 2. A comparison for the cube (26,26,15) of the configurations stored
in the look-up table vs. the Cube Configuration Generation Method

will use IK to populate the cubes along this path with a
rich set of configurations on-the-fly. Afterwards, the layered
graph is constructed and path planning is performed as
discussed in [6] and described in Sec. III-C. The proposed
framework allows for greater flexibility in terms of the
number of generated configurations in a cube, the size of
the cube, and the required pre-computation necessary for
path planning. Additionally, it avoids the issues of knotting
and convergence—as a failing sequence of configurations can
be avoided altogether, and a diverse set of paths become
available from which a smooth path may be selected.

A. Cube Configuration Generation

In order to generate a dense set of configurations in a
cube Q, we rely on multiple invocations of IK at the point
located in the center of Q. We start by generating a large
number of random starting configurations. Afterwards, we
invoke IK with each of these starting configurations to find
a target configuration that places the tip within some small
distance from the center of Q. This allows us to generate
a dense set of configurations within Q. When we use this
method to populate a cube with configurations, we call it
Cube Configuration Generation. Fig. 2 shows a comparison
of the richness between a cube populated with the Cube
Configuration Generation method and the look-up table.

B. Our Approach

Using the Cube Configuration Generation method, we
propose a new approach for IK-based path planning that does
not rely on a pre-computed look-up table of configurations.
In [6], as discussed in Sec. III-C, to perform path planning,
a cube path was generated and populated with configurations
from a look-up table. In our approach, these cubes are pop-
ulated using IK. We consider two variants of this approach
that rely on two subroutines: The Global-IK subroutine and
the Sequential-IK subroutine.

The Global-IK subroutine populates the first cube using
the Cube Configuration Generation method. Each subsequent
cube is also populated using the Cube Configuration method
by using random starting points.

The Sequential-IK subroutine populates the first cube
using the Cube Configuration Generation method. Each
subsequent cube is populated with the configurations from
the previous cube used as starting points. This means that
only the first cube is generated using random starting points,



and each subsequent cube is populated using the output from
previous invocations.

After populating the cubes, a path can be generated using
the layered graph and weight metrics discussed in Sec. III.
These methods, when paired with the two subroutines, form
the Global-IK Path Planning Approach and Sequential-IK
Path Planning Approach respectively. See Algorithms 1 and
2 for the pseudocode of the two subroutines.

Algorithm 1: Global-IK Subroutine

Input: A cube path P

Output: A list of configuration sets L

foreach cube in P do

Create a set of configurations S = 0;

repeat n times

Generate a random starting configuration
start;

Use the cube’s center point as the rarget;

Use the Cube Configuration Generation
method as the objective function;

Use IK with parameters start, target, and
objective function to generate a (new)
configuration and add it to S;

end
Add S to L;

end
return L

V. TRAJECTORY GENERATION

Due to the compliant nature of continuum arms, their
resonance frequency is much lower than that of rigid robots.
As a result, path planning for continuum arms is much more
complicated than that of their rigid counterparts, as tracking
errors, coupled with feedback and actuation delays (low
bandwidth actuators), can easily drive the system towards
instability. Therefore, for path planning of continuum arms,
it becomes critical to generate “smooth” trajectories in order
to reduce the amount of instability.

In the kinematic sense, smooth paths are generally char-
acterized by gradual and small changes over time in the
corresponding arm’s configurations. Usually, the amount of
change in the configurations is inversely proportional to the
smoothness of the corresponding path. Paths satisfying this
property are easier and faster to track with feedback con-
trollers without causing any oscillation issues while tracking.
Thus, by maximizing trajectory smoothness, the speed of the
continuum arm can be increased without causing oscillations
as tracked by a controller.

We propose to incorporate the configurations space veloc-
ity of each actuator in path planning to compute a smooth
trajectory and to accurately relate the generated paths with
the actuated movement of the continuum arm. To that end,
first, we define the notion of a velocity threshold, Vj;, to be
the maximum PMA velocity. We also define below a change
limit, Vi, that determines the maximum allowable change in
velocity between two consecutive configurations on the path.

Algorithm 2: Sequential-IK Subroutine

Input: A cube path P

Output: A list of configuration sets L

for cube c in P do

Create a set of configurations S = 0;

if cube is first then

repeat n times

Generate a random starting configuration
start;

Use the cube’s center point as the rarget;

Use the Cube Configuration Generation
method as the objective function;

Use IK with parameters start, target, and
objective function to generate a (new)
configuration and add it to S;

end
else
foreach configuration c in the previous cube
do
start=c;
Use the cube’s center point as the target;
Use the Cube Configuration Generation
method as the objective function;
Use IK with parameters start, target, and
objective function to generate a (new)
configuration and add it to S;

end
end
Add S to L;

end
return L

In the path generation, we consider two consecutive con-
figurations g and ¢* and their corresponding lengths changes
l; j and l;jj, where i = 1,2,3 denotes the arm’s section and
j = 1,2 denotes the actuator within a section. For section
i € {1,2,3} and actuator j € {1,2}, the shortest movement

time, 1; ;, between /[; ; and I it is calculated as

*
|75 — i 5]
lij=—vy
Vin
Since no actuator can actuate in time less than ¢; ;, the
minimum time to actuate between ¢ and g%, fgores> 1S

calculated as
Lshortest = max{ti,j}a i=1,2,3, Jj= 1,2. 2

(D

After computing Zg,,es» the robot is actuated from ¢ to ¢*
in this shortest possible time. Note that, there are situations
where (1) does not hold. For example, if the velocity of
an actuator were to change from negative to positive, it is
possible that the magnitude of the change could be quite
large despite being within the velocity threshold. To mitigate
this, we propose the use of a maximum change Vg such that
Vs — Vi, > 0. If a sign change occurs, the new maximum
actuator velocity becomes Vs —V;;, to ensure that this large
change occurs slowly. Note that this velocity threshold is



used for normalizing the trajectory with a common actuator
velocity. Once a time trajectory is generated, the duration
of this trajectory is modified until a smooth trajectory is
obtained under desired constraints during empirical tests.

A. Time as a Metric

As discussed in Sec. III-C, the Euclidean distance be-
tween configurations was used in [6] as edge-weight when
constructing the layered graph. This metric prioritizes the
smallest overall change in configurations in the path. Here,
we propose to use time, as described above, as the edge-
weight in the layered graph so that the new metric prioritizes
the shortest time instead. That is, for consecutive configura-
tions qx—; and g, the weight between them is calculated
as weight (qx—_1,qx) = tshorres- Intuitively, the path that can
be traced by the continuum arm with a high velocity would
have less overall changes with respect to its configurations.

VI. RESULTS
A. Test Platform

Our algorithms were implemented and tested on a
Windows-10 computer, with a 64-bit Intel 17-9700K CPU,
8 core 3.60 GHz processor, and 32 GB RAM. We use the
Brute-Force approach as a basis for comparison with the
proposed approaches. It is implemented as proposed in [6].

B. Comparison of Approaches

To test the Brute-Force algorithm from [6], we used the
same method as discussed in [6] to generate 327,082,769
configurations. Both of the IK-based approaches and
the Brute-Force approach were implemented to be time
weighted, as discussed in Sec. V-A.

All approaches used a cube size/dimension of 1 cm for
a fair comparison, though the IK approaches are capable of
using any cube size without re-enumeration. When Brute-
Force was run with smaller cube sizes, there were many holes
in the graph that lead to jagged, nonsmooth paths. These
holes may be filled with a denser C-space, but that would
necessitate a re-enumeration of all of the configurations,
which was a stated shortcoming of this approach.

To test our approaches, we generated two sets of varied
target trajectories that the IK-based and Brute-Force ap-
proaches had to trace. These included lines with obstacles
and demonstrative geometric shapes. The first set of shapes
were small and placed mostly in the center of the W-space.
An additional, larger set of trajectories was created that
focused on cubes towards the edge of the W-space. On
both sets of trajectories, paths were generated that closely
traced the desired trajectory with the arm tip. Next, these
generated paths were validated using the dynamic model.
We stretched or compressed the time for these paths until
the Root Mean Square of the arm tip between the generated
path and the dynamic path, what we use as an acceptable
error, was less than 1 ¢m. Any error larger than that would
indicate oscillation and instability. In some cases, this may
not be possible, meaning that the path is unsuccessful.

TABLE I
SUMMARY OF TIME RESULTS FOR SMALL SHAPES (ABOVE LINE) AND
LARGE SHAPES (BELOW LINE)

Approach BF Time(s) IK-Global Time(s) IK-Seq Time(s)
Circle 1 24.46 16.08 23.67
Circle 2 13.81 11.01 12.90
Figure-8 20.82 17.03 18.02
Rotated Cube 110.14 86.45 83.53
Circle 1 148.96 64.59 64.52
Circle 2 DSF 68.37 67.19
Circle 3 Failure 57.71 57.01
Figure 8 81.61 53.71 56.47
Rotated Cube 245.34 116.78 131.64
Brute-Force

Sequential-IK

Brute-Force

g T “"‘"‘%

Sequential-IK

RPN R S

gy

I
N
i

Fig. 3. A top down view of the results from the Dynamic Simulator for
a circle, rotated cube, and figure-8 trajectory. The trajectory traced by the
dynamic simulator (red) is displayed over the calculated trajectory (blue).

C. Trajectory Smoothness without Obstacles

Circles, figure-8 (the shape resembling the infinity sym-
bol), and rotated cube trajectories were created for the arm to
trace. Circles and figure-8 trajectories were two dimensional
geometric shapes with a fixed Z coordinate. Rotated cubes
were generated as fully three dimensional trajectories.

Table I shows the time needed to complete the tracing of
the shapes. The small shapes are displayed above the double
lines, and the large shapes are displayed below it. BF is
the Brute-Force approach, while Global-IK and Seq-IK are
the Global-IK and Sequential-IK approaches, respectively.
“Failure” indicates that the trajectory could not be computed
with a given approach. The term DSF indicates that the
dynamic simulator could not find a tip error less than 1 cm.
A shorter time indicates that the dynamic simulator was able
to simulate the arm moving at a higher velocity. As discussed
before, shorter times are desirable, so assuming no oscillation
in our generated trajectories, a shorter time indicates a better
performance for the algorithm.

In Table I, we see that there are not substantial differences
in time between the Brute-Force, Globak-IK, and Sequential-
IK approaches for the small shapes. However, it seems that
IK-based approaches have a slight edge. Given that most of



Fig. 4. A 3D view of the Sequential-IK approach simulated on the circle,
rotated cube, and figure-8 trajectory. The traced path is shown in black and
the target trajectory is shown in blue.

the redundancy in the W-space occurs in the center, the cubes
towards the center of the W-space have quite rich and dense
sets of configurations. In the case of the smaller trajectories,
this means that the approaches are similar in the overall
number of configurations that can be used, hence the similar
times. For the large shapes in Table I, however, this is not the
case. The larger trajectories focus on cubes towards the edge
of the W-space where there is far less redundancy. Given
how extended the arm must be to reach these points, there
are fewer unique spatial shapes to assume towards the edge
of the W-space. In the case of the Brute-Force algorithm,
the restricted discretization of the C-space limits the number
of configuration in each one of the edge cubes. However
the IK-based approaches, with no offline configurations,
can find an acceptable rich set of configurations. When
applied to path planning, the IK-based approaches have far
more configurations to choose from, meaning that IK-based
approaches have a distinct advantage.

Fig. 3 compares the desired and achieved trajectories for a
circle, figure-8, and rotated cube as traced by the Brute-Force
and IK-based approaches. Both trajectories have a tip error
of less than 1 c¢m. Despite similar tip errors, the IK-based
results are smoother and had a lower time in each case. Fig. 4
shows the arm tracing large circle, figure-8, and rotated cube
trajectories in 3D for the Sequential-IK approach.

D. Trajectory Smoothness with Obstacles

We also performed tests with straight-line trajectories in
the presence of obstacles as a comparison to the results in [6].
A starting and ending point were given along with three
obstacles. These were spherical obstacles placed randomly
within the arm’s reach and had a random radius in the range

TABLE I
SUMMARY OF TIME RESULTS FOR TRAJECTORIES WITH OBSTACLES

Approach BF Time(s) IK-Global Time(s) IK-Seq Time(s)
Obstacle Trial 1 14.34 16.43 9.44
Obstacle Trial 2 12.89 14.22 7.11

of [4,15]. Table II shows the times for all three approaches.
The results here very closely mimic those without obstacles.

VII. CONCLUSION

This paper proposed a novel IK-based path planning
approach to address the limitations of previously-proposed
kinematics-based approaches. Our IK-based approach can
generate a rich set of configurations online and can find
valid configurations in sparse regions of the C-space. Using
this new approach, we implemented smooth path planning
for continuum arms. We validated the smoothness of the
generated paths by applying dynamics constraints in dynamic
simulation and showed that, when tracked by a controller,
the paths generated using the proposed approach are much
smoother and can be traced by the arm much faster than
previous approaches.

REFERENCES

[1]1 E. S. Boy, E. Burdet, C. L. Teo, and J. Colgate, “The learning cobot,”
01 2002.

[2] D. Trivedi, C. D. Rahn, W. M. Kier, and 1. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied
Bionics and Biomechanics, vol. 5, no. 3, pp. 99-117, 1 2008.

[3] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” Int. J. Rob. Res.,
vol. 29, no. 13, pp. 1661-1683, 2010.

[4] D. Palmer and D. Axinte, “Active uncoiling and feeding of a contin-
uum arm robot,” Robotics and Computer-Integrated Manufacturing,
vol. 56, pp. 107-116, 2019.

[5]1 J. L. C. Santiago, I. S. Godage, P. Gonthina, and 1. D. Walker,
“Soft robots and kangaroo tails: modulating compliance in continuum
structures through mechanical layer jamming,” Soft Robotics, vol. 3,
no. 2, pp. 54-63, 2016.

[6] J. Deng, B. H. Meng, I. Kanj, and I. S. Godage, “Near-optimal smooth
path planning for multisection continuum arms,” in /EEE International
Conference on Soft Robotics, 2019, pp. 416-421.

[7]1 C. Lépez-Franco, J. Herndndez-Barragdn, A. Y. Alanis, N. Arana-

Daniel, and M. Lépez-Franco, “Inverse kinematics of mobile ma-

nipulators based on differential evolution,” International Journal of

Advanced Robotic Systems, vol. 15, no. 1, 2018.

C. Lopez-Franco, J. Hernandez-Barragan, A. Y. Alanis, and N. Arana-

Daniel, “A soft computing approach for inverse kinematics of robot

manipulators,” Engineering Applications of Artificial Intelligence,

vol. 74, pp. 104 — 120, 2018.

S. Dereli and R. Koker, “A meta-heuristic proposal for inverse kine-

matics solution of 7-dof serial robotic manipulator: quantum behaved

particle swarm algorithm,” Artificial Intelligence Review, vol. 53, no. 2,

pp- 949-964, 2020.

[10] L. Zhao, J. Zhao, H. Liu, and D. Manocha, “Efficient inverse kinemat-
ics for redundant manipulators with collision avoidance in dynamic
scenes®,” in 2018 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2018, pp. 2502-2507.

[11] K. Leibrandt, C. Bergeles, and G. Yang, “Concentric tube robots:
Rapid, stable path-planning and guidance for surgical use,” IEEE
Robotics Automation Magazine, vol. 24, no. 2, pp. 42-53, 2017.

[12] M. Tarokh and M. Kim, “Inverse kinematics of 7-dof robots and
limbs by decomposition and approximation,” [EEE Transactions on
Robotics, vol. 23, no. 3, pp. 595-600, 2007.

[13] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Dynamics for variable length multisection
continuum arms,” The International Journal of Robotics Research,
vol. 35, no. 6, pp. 695-722, 2016.

[8

[t}

[9

—



