
PHYSICAL REVIEW RESEARCH 4, 033125 (2022)

Rheology of growing axons
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The growth of axons is a key process in neural system development, which relies upon a subtle balance

between external mechanical forces and remodeling of cellular constituents. A key problem in the biophysics

of axons is therefore to understand the overall response of the axon under stretch, which is often modeled

phenomenologically using morphoelastic or viscoelastic models. Here, we develop a microscopic mixture model

of growth and remodeling based on protein turnover and damage to obtain the macroscopic rheology of axonal

shafts. First, we provide an estimate for the instantaneous elastic response of axons. Second, we predict that under

moderate traction velocities, the axonal core behaves like a viscoelastic Maxwell material whose rheological

parameters can be expressed in terms of the microscopic properties. Third, for larger velocities, we show that

failure takes place due to extensive damage.
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I. INTRODUCTION

Neurological functions rely on the exchange of elec-

trochemical signals between neurons via slender cellular

processes called axons [1,2]. During early neurodevelopment,

neuronal cell bodies project axons that extend through the ex-

tracellular environment to connect with other target cells [3,4].

Then, once connected via synapses, axons passively elongate

to accommodate the growth of the embedding medium [5,6].

During this so-called stretch growth phase, growth kinematics

is fully dictated by the animal’s body expansion. In normal

growth conditions, axonal elongation is supported by the ad-

dition of cell material, allowing the axon to sustain stretch

and maintain structural homeostasis [7–10]. However, upon

faster stretch, this mechanism may fail, triggering a cascade

of pathophysiological responses that, ultimately, converge to

irreversible axonal damage [11–16]. A question is then: How

does the axon respond mechanically and structurally to vari-

ous stretch rates?

Typically, macroscopic—viscoelastic or morphoelastic—

models are used to capture the mechanical response of

growing axons [7,12,17–25]. These simple models can be

easily treated mathematically and compared with experi-

ments [26]; however, they are phenomenological and are

not explicitly linked to the microstructural changes occur-

ring in the axoplasm during growth. Alternatively, detailed

computational models have been proposed to study the

role of individual proteins within the cytoplasm [13,27–39];

typically, a core of parallel microtubules cross linked by

microtubule-associated tau proteins [Fig. 1(a)]. This approach
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captures the subtle mechanical interactions between key

molecular actors and the emergent rheology; however, it is rel-

atively complex and does not produce macroscopic models.

FIG. 1. (a) Electron microscopy image of porcine brain micro-

tubules cross linked with tau proteins shown by arrows. Scale bar =
100 nm. Adapted from [41] with permission from Rockefeller

University Press. (b) Neuronal axon subject to an imposed strain

x(t ). The cytoskeleton is modeled as a well-mixed phase com-

posed of microtubules and tau proteins that may attach, and then

detach depending on their individual tension F (t ). The individ-

ual protein tension results at a global scale in a macroscopic

tension T (t ).
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Here, we start with the key structural constituents of an

axon, i.e., microtubules and tau proteins, to derive a macro-

scopic, homogenized rheological model of axonal stretch

growth. We show that under moderate pulling velocities, the

axon behaves like a viscoelastic Maxwell material [24,40],

and the model captures the stress-strain response predicted

by a previous computational approach [32]. Conversely, for

higher stretch rates, remodeling is not fast enough and cross

linking becomes deficient.

II. MODEL

Our model contains two main structural elements: the mi-

crotubules and the cross-linking tau proteins. We consider a

homogeneous cylindrical axon of initial length �0 containing

M0 parallel microtubules of length a cross linked by N0 tau

proteins [Fig. 1(b)]. We consider a steady traction scenario in

which the axon is towed at a constant stretch rate ξ , so that its

current length is given by �(t ) = �0(1 + ξ t ), where t denotes

the time elapsed since the beginning of traction. Assuming

that the cytoplasmic constituents form a well-mixed phase,

and neglecting inertial effects, the strain x = ξ t is uniform

along the axon (as seen in the kymograph shown in [31]).

As the axon elongates, microtubules slide with respect to one

another, which stretches the cross links and promotes their

detachment. Following [13,32,36,42], we assume that the tau

dissociation kinetics follows a Bell-type model [43] in which a

population of N (t ) cross links subject to a force F (t ) detaches

according to

dN

dt
= −koffe

F/F0 N, (1)

where koff is the load-free dissociation rate, and F0 is a charac-

teristic bond force. We model each protein as a linear spring

with constant κ and deformation d , which provides the force

F = κd . Since microtubules are orders of magnitude stiffer

than tau proteins [44–47], we further postulate that they re-

main rigid.

A difficulty is that cross links attach to different micro-

tubules, which may slide with respect to one another with

different velocities (Appendix A). In addition, in a remodel-

ing axon, different cross links are formed at different times.

These specificities require modeling the axoplasm as a mix-

ture of cross links with different mechanical states. Assuming

a protein is attached at strain x′, its deformation at x � x′ is

modeled as

d (x, x′) = d0

x − x′

1 + x′ , (2)

where d0 = a/
√

6 is obtained by a strain-energy-based ho-

mogenization argument (Appendix A). The total population

of cross links at strain x is then given by the mixture [42]

N (x) = N0G(x, 0) +
∫ x

0

S(x′)G(x, x′) dx′, (3)

where S is the binding rate (per unit strain x), detailed later;

and where the kernel

G(x, x′) = exp

{
q

ν
(1 + x′)

[
1 − exp

(
1

q

x − x′

1 + x′

)]}
(4)

is obtained by solving Eq. (1) in terms of x for some ini-

tial strain x′ (Appendix B). The dimensionless parameters

q := F0/κd0 and ν := ξ/koff characterize the bond dissocia-

tion force and the pulling speed, respectively. The first term

in Eq. (3) represents the decaying population of initial cross

links. The second term accounts for the cross links formed at

all strains x′ ∈ [0, x] during traction, and disconnecting pro-

gressively as x increases. To simplify notations, we introduce

a mixture operator M that can be applied to any extensive

property P (x, x′) of the cross links as

M[P](x) = N0P (x, 0)G(x, 0)+
∫ x

0

S(x′)P (x, x′)G(x, x′) dx′,

(5)

so that, e.g., Eq. (3) becomes N = M[1].

The mechanical response of the axon under applied stretch

can be deduced from the individual cross-link strain energies,

W (x, x′) = 1
2
κd (x, x′)

2
, (6)

from which we obtain the total energy of the system, W =
M[W]. By the principle of virtual work for an axon under

tension T (x), we have T δ� = T �0δx = δW, where the virtual

work δW is the sum of all virtual works due to the cross links,

δW = M[δW] = M

[
∂W

∂x

]
δx. (7)

Thus,

T = M

[
∂W

∂x

]
,

∂W

∂x
(x, x′) =

κd2
0

�0

x − x′

(1 + x′)2
. (8)

The state of the mixture depends on the attachment of new

cross links with rate S(x) from either new free tau proteins

supplied by the cell or detached proteins that can form new

connections [32,37]. Assuming a pool of Ñ available proteins

with uniform concentration Ñ/� along the axon (nonlimiting

transport), a simple model for S is Sdx = konÑdt , where kon is

an effective on-rate constant [48]. The number of free proteins

then follows

dÑ

dt
= I + βkoffR − konÑ, (9)

where I is a source term, koffR is the number of cross links

disconnected per unit time [Eqs. (1) and (2)],

R = M[R], R(x, x′) := exp

(
1

q

x − x′

1 + x′

)
, (10)

and β is the probability of a protein being available for reat-

tachment after disconnection. We hypothesize that the cell

aims to maintain a target lineal density Ñ0/�0 (i.e., number

of free proteins per unit longitudinal length), and therefore we

posit I = I0[Ñ0(1 + x) − Ñ], with I0 � 0 a constant.

The case β > 0 is solved numerically (Appendix D).

Figure 2(a) shows the effect of reattachment on the primary

cross-link population—the population initially present in the

axon—in the absence of synthesis (I0 = 0). As expected, for

β < 1, the cross links are eliminated faster than exponentially;

larger β promotes slower elimination, as cross links can oper-

ate longer. For β = 1, however, the cross links disconnect and
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FIG. 2. (a) Effect of protein reattachment β for a initial population of cross links [Eqs. (9) and (10)] simulated numerically for different

values of β, and with I0 = 0 (no synthesis), koff = 0.1, K = 1, q = 1, and ν = 0.1. Blue and yellow lines show, respectively, the two extreme

cases β = 1 (full reintroduction) and β = 0 (no reintroduction). Blue dashed lines show intermediate cases with 0 < β < 1. (b) Log-log plot

of the normalized tension T/E0 vs strain x (q = 0.1, ν = 0.01). Yellow and blue solid lines, respectively, show the Maxwell model Eq. (12)

and the mixture model. Blue dashed lines show the contributions of the initial and new cross links. (c) Density N (x)/�(x) (normalized by

N0/�0) vs strain x and parameter ν (logarithmic scale, q = 0.1). Solid lines show the characteristic strain scales of the initial (xI, top) and newly

formed (xII, bottom) populations of cross links.

reattach endlessly and N → N0K/(1 + K ), with K := kon/koff

the binding constant.

We henceforth consider the ideal case where detached

cross links do not reattach, β ≈ 0. Assuming I0 � kon, a so-

lution to Eq. (9) is Ñ (x) ≈ Ñ0(1 + x) (constant lineal density

Ñ0/�0), giving

S(x) ≈
KÑ0

ν
(1 + x). (11)

Assuming chemical equilibrium initially, we have N0 = KÑ0,

and the dynamics is fully governed by q and ν.

Initially, for small strain x, the response under tension due

to the primary cross links is Hookean, namely, T (x) ≈ E0x

with stiffness modulus E0 := N0κd2
0 /�0 [Fig. 2(b)]. Tension

then peaks when x = qW0(ν/q) (where W0 is the Lambert

function). This peak strain provides a typical strain-scale xI

for the primary cross-links persistence [Fig. 2(c)]. Past the

peak, primary cross-links tension quickly vanishes as the cross

links disconnect faster than exponentially [Eqs. (3) and (4)].

The secondary newly formed cross links initially contribute

only to ∼E0x2/2ν to the tension; they do not participate in

the linear elastic response, as they are not yet connected and

under tension. For large strains, however, the total tension is

only due to the new cross links and, as the local strain rate

decreases [Eq. (2)], the tension vanishes slowly as T (x) ∼
E0ν/x [Fig. 2(b), Appendix C 1]. Simultaneously, the cross-

link density reaches a homeostatic level N0I0/�0(I0 + kon) ≈
N0/�0 with strain scale xII = ν [Fig. 2(c)].

Depending on whether stretch is applied in a physiological,

experimental, or traumatic context, the parameter ν may be

either very small or very large. For rapid stretch, ν � 1, we

see that xI 	 xII: The primary cross links disconnect before

the secondary cross-link density reaches a sufficient level

to maintain integrity, and the core ruptures [Figs. 2(a) and

2(b)]. Note that, in this regime where density decreases, the

well-mixedness assumption fails as random heterogeneities

and inertial effects dominate, and the number of load paths

along the axon also decreases [13,31]. Conversely, for slow

towing, ν 	 1, we have xI ≈ xII: New cross links replace

the disconnected ones and rescue the axon core. The crit-

ical tau deficit, at which the axon is most vulnerable, is

given by D = maxx{1 − N (x)/N0(1 + x)} and, for ν small,

we have D ≈ (1 + q−1)ν. Remarkably, in this regime, the

model reduces to a viscoelastic Maxwell-like material, with

extensional stiffness E0 and effective viscosity η0 := E0/koff

(Appendix C 2), namely,

1

E0

dT

dt
+

T (t )

η0

=
1

�(t )

d�

dt
. (12)

Note that this is not the standard form for a Maxwell ma-

terial, which has nonzero tension at infinity [24,40]. Here,

our Maxwell-like material has the property that tension goes

to zero at infinity. This is due to the fact that growth takes

place along the entire axon shaft, with a local stretch rate that

decreases as ∼1/�.

For an axon of diameter ≈0.5 μm [32], with N0/�0 ≈
100 μm−1 [32], κ = 0.01–0.1 pN nm−1 [37], and a = 10 μm

[32], we estimate a Young’s modulus (E0 normalized by

cross section) of the order of ∼10–100 kPa, which compares

with the value reported by [19]. Combining this estimate

with the measured axon viscosity η0 = 106–107 Pa s [21],

we estimate koff ∼ 10−3–10−1 s−1; however, considering reat-

tachment should, in principle, yield larger estimates for koff.

The force F0 can be expressed as F0 = kBT/χ , with χ the

typical bond separation distance, and kBT ≈ 4 pN nm. Then,

estimating χ ≈ 1 nm, we obtain F0 ∼ 1–10 pN [31] and q ∼
10−3–10−1.

III. DISCRETE SIMULATIONS

Last, we compare our homogenized model against the

discrete finite-element model detailed in [32]. We consider

a bundle of M0 ≈ 50 randomly placed parallel microtubules,

connected via N0 ≈ 5000 dynamically breaking cross links,

and we test three different pulling velocities, ν = 0.01, 0.04,

and 0.1. For simplicity, here we ignore remodeling (β = 0,

S = 0) (see [32] and Appendix E for details). We see in
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FIG. 3. Comparison of our homogenized model with the discrete

finite-element model of [32]. Tension-strain curves T/N0 vs x, for

ν = 0.01, 0.04, 0.07, and 0.1. Solid lines correspond to the homoge-

nized model. Colored streaks show the mean and standard deviation

for 14 simulations of the discrete model for each value of ν.

Fig. 3 that for moderate velocities, the homogenized model

faithfully reproduces the stress-strain curves from the discrete

simulations; in particular, note the excellent approximation in

the initial Hookean regime (x 	 1), obtained with no fitting

parameter. For higher stretch rates, however, as expected,

localized heterogeneities in the discrete model dominate the

yielding process, which results in the homogenized model

overestimating the tension.

IV. DISCUSSION

Healthy growth relies on a subtle balance between mechan-

ics, transport, and synthesis of proteins, and cell remodeling

[24]. Using mixture theory combined with a Bell-type model

for tau disconnection [13,32,36,42,43], we propose a mech-

anistic macroscopic model for the mechanical response of

stretched axons. In contrast to more realistic, but mathe-

matically intractable, computational models [13,27–37], this

coarse-grained approach establishes a direct mathematical

link between cellular parameters and the emergent rheology

of axons. First, we derived an expression of the axon’s exten-

sional stiffness: E0 ≈ N0κa2/6�0. Denoting ρ and ρ̃ the lineal

densities of cross linking and microtubules, respectively, we

obtain the scaling law E0 ∝ ρρ̃2a4, which explicitly relates

the microstructural geometry to the overall elastic response

[39]. Second, we showed that rate-dependent effects emerge

from the energy-dissipating disconnection of linearly elastic

cross links embedded in a dynamically evolving mixture,

as also shown in [31]. For small strain rates, we proved

that the system behaves like a Maxwell viscoelastic mate-

rial, with extensional stiffness E0 and viscosity η0 = E0/koff.

This prediction recovers the observed fluidlike behavior of

axons [12,18,19,21,22] and corroborates previous computa-

tional study [31]. For higher strain rates, however, a critical

regime appears where the axon fails to maintain a sufficient

level of cross linking due to insufficient remodeling, with a

critical tau deficit attained around the characteristic strain xI =
qW0(ν/q) ≈ ν. Note, however, that subtler rate-dependent

effects could potentially emerge from more sophisticated vis-

coelastic models of individual tau and microtubules [36,37],

or by taking into account the actomyosin sheath of the axon

that generates active forces [22,33,49]. Neuronal injury in-

volves many other mechanisms such as microtubule breakage

and collapse [15,16,36,37,50]. Here, we have ignored these

effects of extreme axonal mechanics to focus our attention on

the evolution of microtubule cross linking during slow growth.

By definition, growth is limited by mass uptake [24], and,

in singularly large and fast growing cells such as neurons,

an important question is what mechanisms regulate mate-

rial availability [5,9]. Here, we found that a linear coupling

between axonal length � and protein synthesis rate I was

adequate to maintain sufficient material supply. Biologically,

this modeling assumption implies a hypothetical level of regu-

lation to control the production of new proteins, e.g., a length

detection [10,51], or a direct sensing of the free cross-links

concentration.

Axonal growth is the central component of neurodevelop-

ment. It obeys intricate rules with multiple interplays between

mechanics, kinematics, biological feedback, remodeling, and

protein supply. The detailed response of axons to stimuli

and loads remains elusive, yet, based on universal micro-

scopic principles related to attachment and detachment of

cross links, their macroscopic response can be obtained and

systematically compared with experiments by targeting spe-

cific microscopic properties. This type of approach opens the

door to more refined multiscale theories of axonal growth.
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APPENDIX A: DETAILS OF THE MODEL

Here, we provide details on the assumptions underlying

the mixture model previously developed. We consider the two

main structural elements of the axon, i.e., rigid microtubules

cross linked by stretchable tau proteins. Microtubules are long

filamentlike polymers that, in the axon, are mostly aligned

longitudinally and parallel to one another. We assume that

they are fully aligned to the longitudinal axis of the axon and

that they can only move by translation along that axis. Hence,

our model is one dimensional and we are interested in the

longitudinal mechanical response of the axon as a result of

the interaction between microtubules and tau proteins [13,27–

33,39].

1. Kinematics of tau protein deformation

Here, we study how a given cross link deforms when the

whole axon undergoes a strain x. In a deformation of the
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FIG. 4. Deformation of cross links connecting two microtubules

i and j. The rate of deformation depends on the distance between the

two microtubules, whose respective centers of mass undergo affine

displacement.

axon, microtubules slide with respect to one another, which

in turn stretches the connecting cross links. For simplicity,

we neglect the growth and shrinkage of microtubules that

might result in net migration of the microtubules along the

axon. Thus, we assume that all microtubules have identical

and constant length a. Considering that microtubule cross

links are homogeneously distributed along the axon, we also

assume that each microtubule’s center of mass (midpoint)

moves according to an affine transformation, i.e., its center

of mass is passively advected with the embedding medium,

so that the longitudinal motions of microtubules are imposed

geometrically. Namely, if p is the longitudinal position of a

microtubule’s midpoint, then, for any strains x and x′ of the

axon, we have

p(x)

1 + x
=

p(x′)

1 + x′ . (A1)

Now, consider a cross link created at strain x′ and con-

nected to two different microtubules i and j with respective

positions pi and p j . Neglecting the nonlinear effects due to

the small lateral distance between the two microtubules, the

gradient of tau displacement with respect to the global strain

x is given by

∂di j

∂x
=

∣∣∣∣
∂ p j

∂x
−

∂ pi

∂x

∣∣∣∣ =
|p j (x

′) − pi(x
′)|

1 + x′ , (A2)

which can be integrated to obtain

di j (x, x′) = |p j (x
′) − pi(x

′)| ×
x − x′

1 + x′ . (A3)

Hence, different cross links attached at the same strain x′

will undergo different deformations, depending on the relative

positions of their microtubules (Fig. 4).

2. Elastic response

Here we focus on the initial Hookean elastic response, with

x′ = 0 and x 	 1, and we assume that the cross links do not

attach or dissociate. The total strain energy of the system

can be obtained from Eq. (A3) by integrating the individual

protein energies with spring constant κ ,

Wi j (x) = 1
2
κdi j (x, 0)2 = 1

2
κ (X j − Xi )

2x2, (A4)

over all possible initial longitudinal positions Xi = pi(0) ∈
[a/2, �0 − a/2] of the M0 microtubules, taken to be uniformly

distributed along the axon:

W (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, X j )Wi j (x) dXi dX j . (A5)

Here, n(Xi, X j ) is the number of cross links connecting two

overlapping microtubules located at positions Xi and X j . We

assume that n(Xi, X j ) is proportional to the overlapping dis-

tance, i.e., n(Xi, X j ) = ρ(a − |Xi − X j |)+, where (·)+ is the

ramp function and ρ is a lineal density of cross linking that is

linked to N0, the number of cross links, via

N0 =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, X j ) dXi dX j . (A6)

From Eq. (A5), we also obtain the extensional stiffness,

E0 =
κ

�0

( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, X j )(X j − Xi )
2 dXi dX j . (A7)

Assuming a 	 �0 (long initial axon), Eq. (A6) simplifies to

N0 =
ρM2

0 (3a2�0 − 4a3)

3(�0 − a)2
≈

ρM2
0 a2

�0

. (A8)

Then we integrate Eqs. (A5) and (A7) using Eq. (A8), to

obtain

W (x) ≈ 1
12

N0κa2x2 (A9)

and

E0 ≈
N0κa2

6�0

. (A10)

3. Protein dissociation and model simplification

To model the dissociation of proteins, we need to track

all pairs of microtubules as shown above. Using the kernel

provided in Eq. (4), Eqs. (A5) and (A6) become

N (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

n(Xi, X j ) exp

{
F0

κν|Xi − X j |

[
1 − exp

(
κx|Xi − X j |

F0

)]}
dXi dX j (A11)

and

W (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

n(Xi, X j )Wi j (x) exp

{
F0

κν|Xi − X j |

[
1 − exp

(
κx|Xi − X j |

F0

)]}
dXi dX j . (A12)
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Next, to take into account added proteins, we track all tau as-

sociations and microtubule additions occurring at strain x′ � x

[Eq. (3)], which, ultimately, will result in a triple integration

(over x, X j , and Xi).

To make progress, we instead adopt a coarse-grained ap-

proach and we next posit a characteristic length scale d0 and

substitute all protein deformations in Eq. (A3) with a unique

deformation,

d (x) ≈ d0x, (A13)

where d0 is chosen so as to obtain the same strain energy given

by Eq. (A9). The new energy can be easily computed [Eq. (6)]

and we see that

d0 =
a

√
6
. (A14)

Note that d0 is much larger than the typical size of the in-

dividual tau proteins (i.e., ∼50 nm, while a ≈ 10 μm; see

[32]), which implies that tau proteins stretch individually

much faster than the entire axon does.

We extend this approach to growing axons by assuming

that the density of microtubules does not vary much during the

growth process, i.e., M(x) ≈ M0(1 + x), and we postulate that

we can use Eqs. (A13) and (A14) to represent every internal

state of the mixture during the elongation process:

d (x, x′) = d0

x − x′

1 + x′ . (A15)

Note that this approach is justified by the fact that d0 is

independent of �0, and thus Eq. (A14) applies, in principle,

to axons of arbitrary size �.

Figure 5 shows a comparison of the tension T (x) and

number of cross links N (x) obtained from Eqs. (A11) and

(A12), and from the model simplification [Eqs. (A13) and

(A14)], respectively. We see that for relatively slow pulling

speeds, the approximation is in good agreement with the more

detailed integral model. Indeed, we note that the tension in the

homogenized model (in the absence of cross-link addition, for

simplicity) peaks when x = xI = qW (ν/q) and is given by

Tmax ≈
N0d2

0 κν

�0e
(A16)

when ν 	 1. Conversely, for ν 	 1 and for a 	 �0, the

tension derived from Eq. (A12), evaluated at x = xI, can be

simplified as

T (xI) ≈
N0a2κν

6�0e
. (A17)

From Eq. (A14), we see immediately that T (xI) ≈ Tmax. Thus,

in the limit of short microtubules and slow towing, the two

models are equivalent to leading order, which characterizes

the convergence of our homogenization method.

APPENDIX B: DERIVATION OF THE KERNEL

Here we derive the kernel G given in Eq. (4). Combining

Eqs. (A14) and (A15) with the approximate force F (x, x′) ≈
κd (x, x′) applied at strain x to a cross link attached at strain

(a)

(b)

FIG. 5. (a) Axonal tension T (x)/N0 and (b) number of cross

links, N (x)/N0, obtained by the integral model [Eqs. (A11)

and (A12)] (dashed line), and by the single-length-scale model

[Eqs. (A13) and (A14)] (solid line). Parameters given in Appendix E.

We use ν = 0.005, 0.01, and 0.02; and S = 0 (T expressed in pN).

x′, we rewrite Eq. (1) as

dN

dt
= −koff exp

(
κd0

F0

x(t ) − x′

1 + x′

)
N. (B1)
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Using the change of variable x = ξ t , and introducing ν =
ξ/koff and q = F0/κd0, we obtain

dN

dx
= −

1

ν
exp

(
1

q

x − x′

1 + x′

)
N. (B2)

The fundamental solution for this equation, obtained by direct

integration between x′ and x, is

G(x, x′) = exp

[
−

1

ν

∫ x

x′
exp

(
1

q

z − x′

1 + x′

)
dz

]

= exp

{
q

ν
(1 + x′)

[
1 − exp

(
1

q

x − x′

1 + x′

)]}
. (B3)

APPENDIX C: ASYMPTOTICS

We provide details of the asymptotic results given in the

main text. We first study the case of small and large strains

x 	 1 and x � 1 (Appendix C 1), then we show that for slow

stretch ν 	 1, the tension obtained with our mixture model

is given asymptotically by the tension of a Maxwell material

(Appendix C 2).

1. Cases x → 0 and x → ∞

The case x → 0 is straightforward and can be obtained via

a Taylor expansion of the various quantities of interest around

x = 0. The case x → ∞ can be studied using integration by

part. By way of illustration, we derive the asymptotic behavior

of the population N (x) of attached cross links as x → ∞. For

clarity of notations, we can set N0 = 1 and E0 = 1, without

loss of generality.

We first perform a change of variable u = x′/x to fix the

integration domain,

N (x) ∼
∫ x

0

S(x′)G(x, x′) dx′

= x

∫ 1

0

S(ux)G(x, ux) du

= x

∫ 1

0

S(ux)eg(u) du, (C1)

with

g(u) =
q

ν
(1 + ux)

[
1 − exp

(
x

q

1 − u

1 + xu

)]
. (C2)

We then extract the leading order through integration by part,

N (x) ∼ x

∫ 1

0

S(ux)eg(u) du

= x

∫ 1

0

S(ux)

g′(u)
d (eg(u))

= νS(x) − x

∫ 1

0

eg(u) d

(
S(ux)

g′(u)

)

︸ ︷︷ ︸
h.o.t.

∼ x. (C3)

Similarly, for the tension T , we integrate by parts twice to

obtain

T (x) ∼
ν

x
. (C4)

2. Case ν � 1: Maxwell model

We show that for slow growth ν 	 1 and fixed x, the model

reduces asymptotically to the Maxwell model. For clarity of

notation, here we note ε = ν, the small parameter for the

asymptotic analysis. In the case of a constant-speed traction

that is considered, the Maxwell model, with extensional stiff-

ness E0 and viscosity E0/koff, is defined via the tension T̃ that

obeys Eq. (12),

T̃ ′(x) +
1

ε
T̃ (x) =

1

1 + x
, T̃ (0) = 0, (C5)

where (·)′ denotes the derivative with respect to x. The solu-

tion to Eq. (C5) is

T̃ (x) = exp

(
−

1 + x

ε

)[
Ei

(
1 + x

ε

)
− Ei

(
1

ε

)]
, (C6)

where Ei is the exponential integral function. For small ε, the

solution can be expanded to obtain

T̃ (x) =
ε

1 + x
− εe−x/ε + O(ε2). (C7)

Next, we address the asymptotic behavior of the mixture

model for ε 	 1. In this case, the tension is given in terms of

the integral,

I (x) =
∫ x

0

x − x′

1 + x′G(x, x′) dx′, (C8)

such that

T (x) = xG(x, 0) +
1

ε
I (x). (C9)

This integral is of the form

I (x) =
∫ x

0

f (x′)eλg(x′ ) dx′, (C10)

with λ = ε−1 � 1; and with f (x′) = (x − x′)/(1 + x′) and

g(x′) = q(1 + x′)(1 − e f (x′ )/q). The argument in the exponen-

tial is maximal for x′ = x, thus we adapt Laplace’s method of

integration by expanding g(x′) and f (x′) to first order around

x′ = x, noting that f (x) = g(x) = 0:

I (x) ≈ − f ′(x)

∫ x

0

(x − x′) exp [−λg′(x)(x − x′)] dx′

=
1

1 + x

∫ x

0

(x − x′)e−λ(x−x′ ) dx′

=
1 − (1 + λx)e−λx

λ2(1 + x)

=
ε2 − ε(ε + x)e−x/ε

1 + x
. (C11)

From Eqs. (C9) and (C11), we obtain

T (x) =
ε

1 + x
−

x + ε

1 + x
e−x/ε

+ x exp
[q

ε
(1 − ex/q)

]
+ O(ε2), (C12)

which can be put under the form T (x) = T̃ (x)(1 + δ(x) +
O(ε)), with

δ(x) = −
x
(
(x + 1) exp

(
q+x

ε
− q

ε
ex/q

)
+ ε − 1

)

ε(ex/ε − x − 1)
. (C13)
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(a)

(b)

FIG. 6. (a) Tension-strain curve for the Maxwell model (dashed

line) and the mixture models (solid line), for ε = 0.01, 0.02, 0.03,

and 0.04 and q = 2. (b) Logarithmic plot of the remainder r(X ),

defined in Eq. (C15) vs X = εx for various values of ε and q = 2.

We verify that r(X ) = O(1) as ε → 0.

Clearly, δ(x) is biggest for x = O(ε), and therefore, using

X := x/ε = O(1), we have

δ(X ) ≈ −
εX (X 2/2q − X − 1)

eX − 1
= O(ε), (C14)

namely, T (x) = T̃ (x)(1 + O(ε)), which proves that to first

order, the tension is given by the Maxwell model; see

Fig. 6(a). We can also verify numerically that

r(x) =
1

ε

(
1 −

T (x)

T̃ (x)

)
(C15)

is indeed O(1); see Fig. 6(b).

APPENDIX D: REINTRODUCTION OF CROSS LINKS

Next, we develop a numerical method to solve the integro-

differential problem given by Eq. (9). From Sdx = konÑdt

and x = ξ t , we obtain Ñ = Sξ/kon = Sν/K . Thus the govern-

ing equation for Ñ can be recast so that it only involves S, as

dS

dx
+

S(x)

ν

(
K +

I0

koff

)
=

I0N0

ν2koff

(1 + x) +
βK

ν2
R(x), (D1)

where R(x) is defined in Eq. (10). In the case where no new

proteins are introduced (I0 = 0), by virtue of the balance of

mass, S is bounded and converges to S∞ � 0, which can be

determined by setting dS/dx to zero in Eq. (D1):

S∞ = lim
x→∞

β

ν

∫ x

0

S(x′) exp

(
1

q

x − x′

1 + x′

)
G(x, x′) dx′. (D2)

Using integration by part as in Appendix C 1, we also have

lim
x→∞

∫ x

0

S(x′) exp

(
1

q

x − x′

1 + x′

)
G(x, x′) dx′ = νS∞. (D3)

Thus, unsurprisingly, S∞ = 0 if β < 1, as the probability of

a protein being recycled n times is βn → 0. Conversely, if

β = 1, proteins are endlessly disconnected and reintroduced,

and the number of cross links stabilizes at N∞ = S∞ν =
N0K/(K + 1).

The general time-dependent problem in Eq. (D1) is solved

numerically by discretizing the domain as a sequence xi =
(i − 1)h, ∀i ∈ [1, n], with h a constant step size and n the

desired number of evaluation points. We discretize Eq. (D1)

using the backward Euler scheme,

Si − Si−1

h
+ α1Si = α2(1 + (i − 1)h) + α3Ri, (D4)

with Si and Ri the estimated values of S(xi ) and R(xi ), respec-

tively; and where

α1 =
1

ν

(
K +

I0

koff

)
, α2 =

I0N0

ν2koff

, α3 =
Kβ

ν2
(D5)

are dimensionless parameters. The integral part Ri is com-

puted using the trapezoidal method with step size h:

Ri = Ci,1 +
h

2

i−1∑

j=1

(Ci, j+1S j+1 + Ci, jS j )

= Ci,1 +
h

2
(Ci,1S1 + Ci,iSi ) + h

i−1∑

j=2

Ci, jS j, (D6)

where

Ci, j = G(xi, x j ) exp

(
1

q

xi − x j

1 + x j

)
(D7)

are precomputed coefficients defined for 0 � j � i � n.
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FIG. 7. Reintroduction of disconnected cross links. Binding rate

S(x) vs x for various values of β. Here we consider the case where

no new proteins are introduced (I0 = 0).

Finally, combining Eqs. (D6) and (D4), we obtain the iter-

ative integration algorithm,

Si = Ai +
i−1∑

k=1

Bi,kSk, (D8)

where, for all i ∈ [1, n],

Ai =
hα3Ci,1 + hα2(1 + (i − 1)h)

1 + hα1 − h2α3Ci,i/2
, (D9)

and, for all k ∈ [1, i − 1],

Bi,k =

⎧
⎪⎪⎨
⎪⎪⎩

h2α3Ci,1/2

1+hα1−h2α3Ci,i/2
if k = 1,

1+h2α3Ci,i−1

1+hα1−h2α3Ci,i/2
if k = i − 1,

h2α3Ci,k

1+hα1−h2α3Ci,i/2
otherwise.

(D10)

Figure 7 shows computed profiles for S(x), for various values

of β ∈ [0, 1], and in the case where no new proteins are

introduced (I0 = 0).

APPENDIX E: COMPARISON WITH DISCRETE MODEL

In this section, we adapt our parameters to the particular

setting developed in [32]. In the cited work, the cross links

are modeled as Hookean rods with Young’s modulus 10 MPa

and cross-sectional area 1 nm2. The cross-link lengths can

vary depending on the relative positions of the two anchoring

points in the simulation; here, we select the average value

150 nm as the reference cross-link length. We deduce the

spring constant 0.03 pN nm−1. Note, however, that in the

computational model, cross links are attached with an average

angle β ≈ 45◦ with respect to the microtubule axis. Thus

the equivalent longitudinal spring constant is actually κ =
κ∗ cos2 β = κ∗/2. All other relevant parameters are identical

to those used in [32].
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