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Dynamic Control of Soft Robotic Arm: A
Simulation Study
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Abstract—In this article, the control problem of one section
pneumatically actuated soft robotic arm is investigated in detail.
To date, extensive prior work has been done in soft robotics
kinematics and dynamics modeling. Proper controller designs can
complement the modeling part since they are able to compensate
other effects that have not been considered in the modeling,
such as the model uncertainties, system parameter identification
error, hysteresis, etc. In this paper, we explored different con-
trol approaches (kinematic control, PD+feedback linearization,
passivity control, adaptive passivity control) and summarized
the advantages and disadvantages of each controller. We further
investigated the robot control problem in the practical scenarios
when the sensor noise exists, actuator velocity measurement
is not available, and the hysteresis effect is non-neglectable.
Our simulation results indicated that the adaptive passivity
control with sigma modification terms, along with a high-gain
observer presents a better performance in comparison with other
approaches. Although this paper mainly presented the simulation
results of various controllers, the work will pave the way for
practical implementation of soft robot control.

Index Terms—Soft Robot, Modeling, Control

I. INTRODUCTION

SOFT robots for their continuum structure and intrinsic
safety in human-robot interaction have attracted increasing

attention in recent years [1]. These robots are mainly made of
soft and elastic materials such as silicone-rubber [2], which
makes them compliant to unstructured environments [3]. The
actuation approaches for soft robots can be different, and these
robots can be actuated using shape memory alloy [4], magnetic
[5], pneumatic-driven [6], fluid-driven [7], tendon-drive [8],
and many other approaches [2]. Out of numerous actuation
technologies, pneumatics remains the most popular due to
their ease of adoption, high power-to-weight ratio, low cost,
customizability, high bandwidth, and rapid producibility. Soft
robotic arms are typically constructed by serially connecting
two or more soft bending units (i.e., sections). Each section is
powered by multiple variable-length soft actuators. Differential
length of these actuators – due to the difference in input
pressures – results in a circular arc-shape deformation, which
is usually parameterized by arc parameters. These soft robots
have been used in many emerging areas such as rehabilitation
[9], surgery [8], harvesting [10], etc.
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Despite their advantages and potentials, soft robots’ control
remains a challenging task. This challenge consists of several
aspects. First of all, the model implemented into the controller
should be derived in a way to take into account the continuous
nature, coupled-nonlinear dynamics, and external forces of the
system. In addition, there are other factors such as hysteresis,
nonlinear/unmodelled dynamics, parametric uncertainty that
made it even more challenging.

Cosserat rod theory [11] and Finite elements methods
(FEM) [12] can describe the system dynamics with great
accuracy. The real-time implementation thereof challenging
has only been possible for simpler robots with a few degrees
of freedom (DoF) due to coupled, computationally expensive
equations governing the dynamics. Thus, their utility in real-
time dynamic controller design is challenging. In addition,
the format of their dynamic equations makes the designing of
nonlinear robust adaptive controllers difficult [13]. Alqumsan
et al. [13] have addressed this problem by proposing a sliding
mode control based on the α-method which is an implicit
numerical method. Further, controlling the robot with Cosserat
rod model or FEM is computationally expensive and thus
was only evaluated numerically or performed in quasi-static
applications.

In contrast, piece-wise constant curvature (PCC) modeling
approach employs simplifying assumptions [14] – which are
valid for the vast majority of manipulation applications – to
reduce the computational burden. It should be noted that the
assumptions should be always valid, otherwise, the model
would not be accurate enough to describe the system dynam-
ics [15]. Thus, lumped approaches circumvent the modeling
complexities inherent in soft robotic arms to achieve efficient
results [16]. However, the need for many discrete units to
model smooth bending results in inefficient models, unsuitable
for real-time control implementation. Based on the modal kine-
matics – that combines the accuracy, efficiency, and stability
– the spatial dynamic model reported in [17] demonstrated
real-time simulations for a 3-section soft robotic arm. In addi-
tion, the center-of-gravity-based model [18] further improved
the numerical efficiency and resulted in sub-real-time spatial
dynamic models rendering such model suitable for real-time
closed-loop controller design. Despite the recent advances in
dynamic modeling, research progress in controllers still lags.

The work reported in [19] is one of the early attempts to
derive controllers for a planar soft manipulator. A controller
for a tendon-driven manipulator presented in [20] reported
tracking of simple spatial trajectories. Given the slower track-
ing trajectories, absence of nonlinear effects (friction, hys-
teresis), and lack of details regarding the dynamic stability
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thereof available, limits the viability of the model to control
faster soft manipulators. In other studies [3], [21], feedback
linearization with proportional derivative (PD) controller has
have been implemented based on the accurate modeling of
the robot. However, the effect of uncertainty and hysteresis is
not addressed in the control. The dynamic control design for
a soft pneumatic actuator in the presence of hysteresis effect
is addressed in [22]. In addition, the model-based control of
continuum soft robots in the presence of uncertainty in the
system are addressed in [23], [24].

In this paper, we aim to present a new control approach that
not only takes into account the known dominant dynamics of
the robot but also maintain the superior trajectory tracking
in the presence of parametric uncertainty, hysteresis, sensor
noise, unavailability of actuators’ velocity measurements, and
unmodeled dynamics. The rest of the paper is organized as
follows. In section II, the kinematic and dynamic models
of the robot were briefly introduced. In section III, different
control strategies were introduced and their performances to
track a desired path were presented in section III. Based on
these comparative studies, we discussed the adaptive passivity
control with sigma modification to address the limitations
during the practical scenarios in section IV. Finally, section
VI presented the conclusion of this paper.

II. SOFT ROBOT MODELING: KINEMATIC AND DYNAMIC

To implement a model-based control scheme, the kinematic
and dynamic model of the soft robotic system should be
derived. Note that the kinematics and dynamics model of the
soft robot have been developed in our prior work [17]. In this
section, we will give a brief overview of the derivation of these
models.

A. Kinematics Modeling

In this paper, we only focus on the single segment soft
robot arm with three identical extending actuators separated
by 120◦ (see Figure 1 for the robot schematic diagram). The
extending actuator has the nominal length of L0, and the length
of each actuator under actuator space input could be described
as follows:

Li(t) = L0 + li(t) (1)

where i ∈ [1, 2, 3] represent each actuator and li(t) is the
variable length of each actuator caused by actuator space input.

To derive the forward kinematics, the mapping between
actuator space to configuration space, as well as the mapping
between configuration space to Cartesian space should be
derived. The actuator space is defined as the variable length
of each actuator q = [l1, l2, l3]T ∈ R3. The configuration of
the system is defined via following three parameters:
• Radius of curvature, λ ∈ (0,∞)
• Bending angle of the arc, φ ∈ [0, 2π)
• Angle of the bending plane with respect to X-axis,
θ ∈ [−π, π] (refer to Figure 1 for the coordinate frame
definition)

Fig. 1: The one segment soft robotic arm consists of three
extending actuators. The moving frame in the soft robot is
shown with a green disk which is located at the ξ position of
the neutral axis. The thin slice of sδξ is used to derive the
dynamic parameter of the system using integration along the
robot

The mapping between actuator space and configuration
space, which could be derived using the geometrical shape
of the robot, is described as follows:

λ(q) =
3L0 + l1 + l2 + l3

2
√
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2 + l2
2 + l3

2 − l1l2 − l2l3 − l1l3

φ =
2
√
l1

2 + l2
2 + l3

2 − l1l2 − l2l3 − l1l3
3r

θ = arctan

( √
3(l3 − l2)

l2 + l3 − 2l1

) (2)

With the mapping between actuator space to configuration
space, the robot position and orientation in Cartesian space
should be calculated with an additional mapping. A scalar
parameter ξ ∈ [0, 1] is introduced to describe the virtual
moving disk location along the robot from its base ξ = 0,
to its tip ξ = 1. The moving disk is also shown in Figure 1.
The position and orientation of the robot are described via a
homogeneous transformation T (ξ, q):

T (ξ, q) =

[
R(ξ, q) P (ξ, q)

0 1

]
(3)

where R(ξ, q) ∈ R3 defines the orientation, and P (ξ, q) ∈ R
defines the position of the robot. The element of the transfor-
mation matrix can be derived as follows:

T (ξ, q) = Rotz(θ)Transx(λ)Roty(ξφ)Transx(−λ)Rotz(−θ)
(4)

B. Dynamic Modeling

The dynamic modeling of the soft robot is derived via the
Lagrangian Formulation. The complete dynamic equation of
the robot which also includes the non-conservative terms is
described as follows:

Mq̈ + Cq̇ +Dq̇ +Kq +G = τ (5)
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where M ∈ R3×3 denotes the inertial matrix of the system,
C ∈ R3×3 defines the centrifugal and Coriolis force matrix,
D ∈ R3×3 represent the damping coefficient matrix, K ∈
R3×3 is the stiffness coefficient matrix of the system, and
G ∈ R3 is the gravitational force vector. The parameters are
derived based on our prior work [17]. In what follows, we will
derive the formulation of each dynamic parameter.

1) Inertial Matrix, M: The Inertial Matrix is defined as
follows:

M = Mw +Mv (6)

where Mw and Mv are associated with angular and linear
dynamics of the robot. It has been assumed that the robot is
consists of infinitesimally thin slices with a constant mass and
uniform linear density, which has been shown in Figure 1. The
Mw, and Mv is defined as follows:

Mw[j, k] = Ixx

∫
ξ

T2(
∂R

∂q(j)
)(

∂R

∂q(k)
)

Mv[j, k] = m

∫
ξ

(
∂P

∂q(j)
)(

∂P

∂q(k)
)

(7)

where T2 is defined as the operator which calculates the sum
of the first two elements of the principal diagonal of 3 × 3
Matrix. Ixx is the moment of Inertia along the X-axis of the
slice, m is the mass of the system, and j, k ∈ [1, 2, 3].

2) Centrifugal and Coriolis force Matrix, C:

C[k, j] =

3∑
i=1

Γijk(M)q̇(i)

Γijk(M) =
1

2

(
∂M [k, j]

∂q(i)
+
∂M [k, i]

∂q(j)
− ∂M [i, j]

∂q(k)

) (8)

3) Gravitational Vector, G: To derive the gravitational vec-
tor, the Jacobian of linear velocity in moving frame Jv ∈ R3×3

for i-th column is derived as follows:

Jv(i) = RT
∂P

∂q(i)
(9)

where i ∈ [1, 2, 3]. Now that the Jacobian of linear velocities
is defined, the i-th element of gravitational vector could be
derived as follows:

G(i) = m

∫
ξ

JvT (i)RTGv (10)

where i and Gv is defined as i ∈ [1, 2, 3] and Gv = [0, 0, g]T

respectively.
4) Stiffness Matrix, K: At this stage, the stiffness of each

actuator has been considered linear and independent of each
other. Additionally, rotational stiffness for this system was not
considered. Therefore, the stiffness matrix can be written in
a diagonal matrix as K = diag([K1,K2,K3]), where each
element can be experimentally calibrated prior to the controller
implementation.

5) Damping Coefficient Matrix, D: Similar to the stiffness
matrix, damping coefficient matrix can also be defined as a
diagonal matrix, D = diag([D1, D2, D3]), with each element
pre-calibrated prior to the experiment.

6) Hysteresis effect: Pneumatically actuated actuators
demonstrate an inherent hysteresis nature in their dynamics
[22]. This indicates that the system presents a different profile
in loading and unloading phases. The hysteresis phenomenon
can be modeled via Preisach, Prandtl-Ishlinskii, or Max-well-
slip model [25]. In this paper, we consider the Bouc-Wen
model for its unique differential modeling that could decrease
the complexity in both implementation and computation [25].
The Bouc-Wen model can be written as

ḣ(i) = q(i) [αh − {βhsgn(q̇(i)h(i)) + γh} |h(i)|] (11)

With the hysteresis effect in the practical scenarios, the
system dynamic model (5) can be updated as follows:

Mq̈ + Cq̇ +Dq̇ +Kq +G+H = τ (12)

where H = [h(1), h(2), h(3)]T is the hysteresis effect of each
actuator. Now that the dynamic model of the system has been
briefly reviewed. In the next part, we focus on the control of
the soft robotic arm under various operation scenarios.

III. SOFT ROBOT CONTROL

Soft robots are considered as complex dynamical systems
for their continuum and nonlinear nature. In these systems,
deriving the exact dynamic model is a time-consuming and
challenging procedure, and at best could result in a sufficiently
accurate model but cannot handle the practical applications
caused by parametric uncertainties or any potential unmod-
elled terms. To overcome the aforementioned challenges, a
proper controller should be implemented to compensate model
inaccuracy and uncertainties while maintaining the closed-loop
stability of the system. In this section, we investigate several
conventional robot controllers to achieve the desired task space
control. The performance of each controller is discussed, and
their shortcomings are presented via simulation studies.

A. Kinematic Control

Kinematic controller is the simplest form of the control
scheme. The kinematic controller is described as follows:

τ = Kkinek, ek = qd − q (13)

where Kkin ∈ R3×3 is a proportional diagonal matrix, and ek
is defined as a difference between the desired actuator space
vector qd and the current actuator space vector q of the robot.
However, kinematic control is unable to capture the dynamic
behavior of the robot, especially during the transient state.
Moreover, the kinematic model control completely relies on
the perfect identification of Kkin, which might not be accurate
in real-world applications.

B. PD + Feedback Linearization

To overcome the shortcoming of the kinematic controller,
especially the transient state performance, a dynamic propor-
tional and derivative (PD) Feedback linearization (FL) con-
troller [26] can be used for soft robot control. This controller
is designed based on the exact cancellation of the dynamic part
to transform the system into a linear system. Then, by using
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proportional and derivative gains, the controller is designed in
a way to achieve the desired transient response of the robot.
The PD Feedback linearization controller is defined as follows:

τ = ατ ′ + β, τ ′ = q̈d −Kd
˙̃q −Kpq̃

α = M, β = Cq̇ +Dq̇ +Kq +G
(14)

where β is the feedback linearization term that cancels out the
nonlinear dynamics of the system, and τ ′ would be designed
in a way to make the system follow the desired trajectory
with prescribed performance defined by the PD controller. q̃
is defined as the difference between the current state and the
desired state of the robot q̃ = q − qd. Now, substituting (14)
into the dynamic equation of the robot (5), the closed-loop
system would become as follows:

¨̃q +Kd
˙̃q +Kpq̃ = 0 (15)

By choosing Kp and Kd as diagonal matrices as Kp(i) =
(ωi)

2 and Kd(i) = 2ωi, the system transforms to a decoupled
closed-loop system with a critically damped linear response
in each actuator. The natural frequency of each actuator is
defined as ωi, which determines the decay rate of the error, as
well as the response time. Based on [26] and Lassalle theorem
we can conclude that the system is asymptotically stable.

The PD+FL approach has its own shortcomings. For in-
stance, if the system dynamics are not derived carefully,
or the identification parameters are not accurate, the model
would have uncertainty in its parameters. Thus, the asymptotic
tracking might not be possible and the system could have
steady-state error. To compensate these uncertainties, robust
or adaptive terms should be included in the control scheme
design.

C. Passivity Based Control

Now in this section, we are considering modeling uncer-
tainties, which mainly come from an inaccurate experimental
calibration, or the wear of materials due to usage of the
system. The feedback linearization methods rely on the exact
cancellation of all the system’s nonlinearities. The passivity
control scheme relies on the passivity or the skew-symmetry
property of Euler-Lagrange equations. The great advantage of
passivity control comes in a situation where the robot has
uncertainties in the model [26]. The passivity controller itself
has an additional term that works as a gain for a filtered
error, which helps the controller to compensate unmodeled
dynamics. In the passivity based control, the controller is
defined as

v = q̇d − Λq̃, a = v̇ = q̈d − Λ ˙̃q, r = q̇ − v = ˙̃q + Λq̃

τ = M(q)a+ C(q, q̇)v +G(q) +Kq +Dv −KGr
(16)

where Λ ∈ R3×3, KG ∈ R3×3 are diagonal positive constant
matrices, which are defined in Table. I during the simulation.

D. Passivity Based Adaptive Control

As discussed before, the system model parameters could
be uncertain or even cannot be accurately identified. For
example, the stiffness and damping coefficient matrices are

typically experimentally identified to minimize the least square
error. However, these parameters could potentially change
with respect to time and temperature. In this section, we aim
to overcome this uncertainty by using the passivity based
adaptive control, which can be defined as follows:

τ = M̂(q)a+ Ĉ(q, q̇)v + Ĝ(q)−KGr + K̂q + D̂v (17)

where ˆ[ ] indicates the estimated parameters. The general
control signal could also be described in the regressor form as
follows:

τ = Y (q, q̇, a, v)θ̂p −KGr (18)

where Y is the regressor matrix and θp is the estimated. Based
on [26], the adaptive rule could be designed as follows:

˙̂
θp = −Γ−1Y T (q, q̇, a, v)r (19)

It should be noted that in our experiment, only the stiffness
and damping were assumed to have uncertainty, and other
terms implemented in the control signal using Eq. (17). In the
following equation, the regressor and the estimated parameter
are defined.
Y = [diag([q(1), q(2), q(3)]), diag([v(1), v(2), v(3)])]

θ̂p = [K̂1, K̂2, K̂3, D̂1, D̂2, D̂3]T ,
(20)

E. Hysteresis Compensation

To compensate the hysteresis effect, a feasible solution
is to add the identified hysteresis dynamics to the feedback
linearization loop. For instance, if the hysteresis of the system
could be identified with good accuracy, the related terms would
be able to compensate those effects, which is true in our prior
studies [22]. Thus, the feedback linearization term can be re-
written as

βm = Cq̇ +Dq̇ +Kq +G+H (21)

IV. CONTROLLER IMPLEMENTATION AND COMPARISON

In this section, the control approaches in the prior section
will be implemented to track the desired trajectory and their
performance will be compared with each other. First, the
dynamic controllers are compared with the kinematic control
approach. In the next part, the effect of parametric uncertainty
will be investigated. Then, hysteresis is added to the model,
and the performance of controllers for compensating the effect
of hysteresis is studied in detail. The system parameters are
shown in Table. I, which are chosen based on our previous
works [17], [22]. The desired path is described as follows:

Xd = 0.1sin(3t), Yd = 0.1cos(3t), Zd = 0.147 (22)

Parameter [Unit] K(i)
[
N
m

]
D(i)

[
N.s
m

]
m [kg] L0 [m]

Value 1700 110 0.13 0.15

g
[
m
s2

]
r [m] αh(i) βh(i) γh(i)

-9.81 0.0125 23.705 1.7267 -42.593
KG(i) Kp(i) Kd(i) Λ(i) Γ−1(i)

10 104 200 102 105

TABLE I: The Parameters for Simulation
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A. Kinematic vs Dynamic Controllers Without Uncertainties

The tracking results of both kinematic and dynamic con-
trollers are presented in Figure 2. It should be noted that
in this section we assume that the model is accurate and
there are no uncertainties. The kinematic controller has shown
an obvious overshoot and increase in the error magnitude at
the beginning of the tracking task, while PD+FL controller
reaches the steady-state error with a smooth damped response.
The passivity-based controller demonstrated comparable per-
formance with respect to PD+FL controller. It should be noted
that PD+FL controller was designed to achieve a critically-
damped response in actuator space. However, the actuator
space critical damping behavior can not guarantee the critical
damping in the task space. To achieve the critical damping in
the task space control, the robot dynamics parameter should
be described in Cartesian space, and the controller parameters
should be redesigned accordingly.

0.1
0.1

0.12

0.1

0.14

0

0.16

0
­0.1­0.1

Fig. 2: Path tracking performance comparison of kine-
matic vs dynamic controllers in task space. The initial
position of the robot end-effector in Cartesian space is
[−0.0990,−0.0017, 0.1067]T .

The magnitude of the calculated control signal, which
is depicted in Figure 3, in the kinematic controller at the
beginning of the simulation is significantly higher than the
dynamic approaches, despite it has been saturated during
simulation. Since the robot could not withstand significantly
high pressures in the practical scenarios, the saturation block
should be implemented on control output. As can be seen in
Figure 3, almost every actuator has been saturated in kinematic
control. This result comes from a fact that the kinematic
control scheme doesn’t take into account the dynamic effects
of the system. The dynamic controllers demonstrated better
control command in the transient state.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Fig. 3: Control effort comparison between kinematic and
dynamic controllers.

B. Robot Control with Model Uncertainties

As we discussed earlier, the soft robot model parameters
could be uncertain due to the inaccurate system identification
or wear in the system. The control scheme should be designed
in a way to compensate these uncertainties. In this section,
the conventional dynamic controllers (PD+FL and Passivity)
are compared with the adaptive passivity-based controller.
We only consider the uncertainties in stiffness and damping
coefficient matrices since both parameters require identifica-
tion prior to the practical control [22]. These uncertainties
are defined as Ke = diag([1020, 1020, 1020]) and De =
diag([77, 77, 77]) in the simulations, respectively.

As can be seen in Figure 4a, 4b, and 4c, the adaptive
passivity controller could track the desire path, while PD+FL
didn’t even get close to the desired trajectory because its
performance highly depends on exact cancellation of the
nonlinear dynamics. Since the parameters are uncertain, the
controller may not be able to achieve the desired performance.
In comparison, the passivity-based controller performed better
compared to PD+FL controller since it does not completely
rely on perfect cancellation of the nonlinear dynamics. In
steady-state responses, which are shown in Figure 4d, 4e, and
4f, we can see that the adaptive passivity controller present
the smallest error, and the passivity-based controller performed
better than the PD+FL.

Although the adaptive-passivity controller presents a higher
magnitude force at the transient response of the simulation,
which is depicted in transient part of Figure 5, this should
not be a problem because we can implement saturation at the
input channel to the robot. Moreover, the duration of high
magnitude input is only near 0.07s. In addition, the adaptive-
passivity controller could be designed with lower adaptation
gain, which could result in more smooth control output with
the limitation of slower reach time. In the steady-state response
part, which is shown in Figure 5, we can see that the adaptive-
passivity controller generates a higher magnitude force in
comparison with other methods. This result is associated
with the adaptive terms that have tried to compensate the
parametric uncertainties in the system. The PD+FL has the
worst performance and the generated signal is not even valid
in the non-positive section. This would result in even worse
performance in tracking a trajectory when the pressure should
decrease.

With the above-mentioned arguments, the task space tra-
jectory following of different controllers is shown in Figure
6. As can be seen, the passivity controller showed a smooth
movement, while the PD+FL have a higher error in tracking
the desired path. The movement of the adaptive-passivity at
the beginning of a simulation is not smooth, however, after
some transient time, it could track the desired path with the
best accuracy than other approaches.

C. Hysteresis Compensation

In this section, we want to validate the controller perfor-
mance in soft robot hysteresis compensation for trajectory
tracking based on Eq. (22). We have assumed that the pa-
rameters have been modeled and identified accurately, and the
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Fig. 4: Tracking performance comparison of PD+FL, passivity control, and adaptive passivity control in the presence of
parametric uncertainty. Steady-state response is depicted in (a) X-direction, (b) Y-direction, and (c) Z-direction. The transient
response is also shown in sub-figure (d), (e), and (f) for X, Y, Z direction respectively.

0 0.2 0.4 0.6 0.8 1
0

50
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Fig. 5: Control effort comparison between adaptive and con-
ventional dynamic controllers (PD+FL and Passivity) in the
presence of parametric uncertainty.
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0.10.05
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Fig. 6: The tracking performance of different controllers in the
presence of parametric uncertainty in Cartesian’s space.

only uncertainty/unmodelled dynamics is hysteresis effects. To
address hysteresis effects we have compared the performance
of mentioned approaches with the ideal controller that com-
pensates the hysteresis effect with the term introduced in Eq.
(21).

As we can see in Figure 7, the PD+FL has the worst
performance in tracking the desired path in comparison with
other approaches. The passivity-based controller and adaptive
passivity, have maintained their performance in the presence

of hysteresis; however, it does not compensate the hysteresis
completely. As can be inferred from Figure 7, if we can
estimate the model accurately, the simple controller (PD+FL+
hysteresis compensation) can achieve the best tracking re-
sponse. However, if this is not the case, the adaptive-passivity
controller demonstrated good performance despite of the pa-
rameter uncertainty and the presence of hysteresis effects.

0.1
0.1

0.12

0.1

0.14

0

0.16

0
­0.1­0.1

Fig. 7: The tracking performance of different controllers in the
presence of hysteresis in the system.

V. CONSIDERATIONS FOR PRACTICAL IMPLEMENTATION

In the previous section, the advantage and disadvantages
of various control approaches have been discussed, and it
has been shown that the adaptive-passivity based control
outperforms the other approaches when uncertainties exist in
the system. In this section, we consider additional challenges
that will occur in the practical scenario, such as sensor noise,
and the absence of velocity measurement of linear actuator.
Moreover, the prior modeling uncertainties and hysteresis are
considered in the simulation as well.

A. High Gain Observer

To address the lack of velocity measurement, we propose to
develop a high gain observer here [27]. By defining x1 = q,
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x2 = q̇, and x =
[
x1
T , x2

T
]T

the dynamic equation of the
robot can be described as follows:

ẋ1 = x2, ẋ2 = Θ(x, τ)

Θ(x, τ) = inv(M)[τ − Cẋ2 −Dẋ2 −Kx1 −G(x1)]
(23)

In the situations where only the measurement of x1 is
available, the high gain observer can be used to estimate x2
as follows:

˙̂x1 = x̂2 + gh1(y− x̂1), ˙̂x2 = Θ0(x̂, τ) + gh2(y− x̂1) (24)

where y = x1 = q, and Θ0 is the nominal plant. With that
in mind, the estimation error is described as x̃ = x − x̂. The
estimation error derivative can be calculated as follows:

˙̃x1 = −gh1x̃1 + x̃2, ˙̃x2 = −gh2x̃1 + δ(x, τ) (25)

where δ(x, τ) = Θ(x, τ) − Θ0(x̂, τ) is the disturbance term.
To reject the disturbance term, the observer gains should
be designed in way that limt→∞x̃(t) = 0. This could not
be achieved when the disturbance is present; However, by
defining the observer gains as gh2(i) � gh1(i) � 1, and
the effects of the disturbance would be minimized [27].

B. Robust Adaptive Term - Sigma Modification

When the bounded disturbance is present in the system, the
adaptive law should be modified to compensate those effects.
Implementing robust adaptive terms could decrease the effects
of noise and disturbances in the system. By using sigma-
modification, the adaptation would be performed robustly and
the parameters would not drift [28]. In addition, the higher
adaptation gain could be used, while minimizing the effect of
sensor noise in the control output. The robust adaptation rule
with sigma modification terms [28] is described as follows:

˙̂
θp = −Γ−1Y T (q, q̇, a, v)r − diag([σ1, σ2, σ3])θ̂p (26)

Where σi represent the sigma-modification constants.

C. Simulation Results Considering Practical Scenarios

In this section, our proposed approach along with other
mentioned control approaches are implemented in the sim-
ulation. The high-gain observer is designed based on the
inaccurate model. In addition, the damping and stiffness pa-
rameters are assumed to be uncertain, the hysteresis effect is
not considered in the observer, and white noise is added to
the measurements of each actuator. As can be seen in Figure
8, the ideal case where the model is identified exactly, the
PD+FL with hysteresis compensation controller, has shown the
best accuracy, which demonstrates the benefits of having an
accurate model. It should be noted since the model is accurate,
smaller gains are chosen for the high-gain observer. However,
having an accurate model is typically not available in most
soft robotic systems since the soft robot hardware is inherently
complex and can be nonlinear.

As can be seen in Figure 9, the PD+FL controller in the
real-world scenario generated a control signal that includes a
high chattering phenomenon since PD+FL controller doesn’t
have any filtered effect to reduce the sensor measurements in

the control signal. For instance, the passivity based controllers
have shown smoother control signals for their error filtering
structure. Nevertheless in the adaptive passivity control case,
since the controller is relying on the measurements rather
than the model, the effect of sensor noise would be increased.
Therefore, a smaller adaptation gain is chosen for this simula-
tion Γ(i) = 1000. Based on Figure 10 the smaller adaptation
gain version didn’t improve the accuracy in comparison with
the simple passivity controller. This can be associated with
smaller adaptation gain and parameter drift.

The adaptive-passivity control with sigma modification
could solve the above-mentioned challenges and it not only
could help us to choose a bigger adaptation gain Γ(i) = 106

along with a sigma modification constant σ(i) = 103, but
also eliminates the effect caused by the sensor noise in the
generated control signal. As can be seen in Figure 8, and
Figure 10 (time-varying L2 norm error between the target
trajectory and robot tip trajectory) the accuracy of tracking
has been increased. The chattering phenomenon is smaller
than the PD+FL controller, as depicted in Figure 9. It should
be noted that by tuning the value of adaptation and sigma-
modification terms, the balance between accuracy and smooth
control output can be achieved.
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Fig. 8: Trajectory tracking in practical scenarios. For a better
visibility, the true position of the robot without the noise is
shown in the picture
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Fig. 9: Control output comparison of different controllers in
practical scenario

VI. CONCLUSION

In this paper, we addressed the control problem of the one-
segment soft robotic arm. The importance of implementing an
adaptive controller is shown based on the simulation results
under different operation scenarios. The performance of con-
ventional control approaches is explained and the advantage
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Fig. 10: The L2 norm comparison of different controllers in
the Cartesian space in practical scenarios where hysteresis is
present. The measurement of velocity is not available and
white noise is present in sensor measurements.

and disadvantages of each approach are discussed in detail. It
has been shown that the adaptive-passivity based controller
outperforms other approaches and tracks the desired path
with the best accuracy. Then, the practical scenario, which
takes into account the hysteresis effect, parametric uncertainty,
unavailability of the velocity measurements, and sensor noise,
is considered in the simulation study. The adaptive-passivity
based controller is modified to compensate those effects with
a robustification (sigma-modification) term in the adaptation
rule, along with a high-gain observer that can not only
compensate the noise of the measurements but also estimate
the unavailable states of the system. In our future work, we will
implement the controller in practical robot hardware and multi-
section soft robotic arm setup to perform more complicated
tasks such as grasping [29] or locomotion [30].
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