
Managing Collaborative Tasks within Heterogeneous
Robotic Swarms using Swarm Contracts

Sanjaya Mallikarachchi
College of Computing and Digital Media

DePaul University
Chicago, IL, USA

Email: smallika@depaul.edu

Can Dai
College of Computing and Digital Media

DePaul University
Chicago, IL, USA

Email: cdai2@depaul.edu

Oshani Seneviratne
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, NY, USA

Email: senevo@rpi.edu

Isuru Godage
College of Computing and Digital Media

DePaul University
Chicago, IL, USA

Email: igodage@depaul.edu

Abstract—The growing number of applications in Cyber-
Physical Systems (CPS) involving different types of robots while
maintaining interoperability and trust is an ongoing challenge
faced by traditional centralized systems. This paper presents
what is, to the best of our knowledge, the first integration
of the Robotic Operating System (ROS) with the Ethereum
blockchain using physical robots. We implement a specialized
smart contract framework called “Swarm Contracts” that rely
on blockchain technology in real-world applications for robotic
agents with human interaction to perform collaborative tasks
while ensuring trust by motivating the agents with incentives
using a token economy with a self-governing structure. The use
of open-source technologies, including robot hardware platforms
such as TurtleBot3, Universal Robot arm, and ROS, enables the
ability to connect a wide range of robot types to the framework
we propose. Going beyond simulations, we demonstrate the
robustness of the proposed system in real-world conditions with
actual hardware robots.

Index Terms—Robotic Operating System, Cyber-Physical Sys-
tems, Simultaneous Localisation and Mapping, Swarm Robotics.
Smart Contracts

I. INTRODUCTION

In conventional homogeneous swarm robotic applications,
it is possible to replace a robot if it malfunctions since the
robots utilized are assumed to be interchangeable. However,
with the rising complex real-world applications from search
and rescue missions [1] to household robotic appliances [2]
to industrial robotic applications [3], heterogeneous robots
will need to collaborate with the other robots and human
agents to accomplish specific tasks assigned to them. In order
to achieve these tasks, a scalable, secure, and efficient way
of standardized communication between the robots and the
human agents have become increasingly essential. Fig. 1
shows an example of a collaborative task involving different
types of robots that are moving a payload from one location
to another but have mobility restrictions. A sophisticated
communication, managing and governing system is required
to perform collaborative tasks between heterogeneous robotics
agents.

Fig. 1. A robotic arm and two mobile agents performing a collaborative task,
moving a payload from one location to another

With the vision of designing more secure and trustwor-
thy robotic systems, researchers have been testing out var-
ious distributed ledger (blockchain) technologies from pri-
vate permission-based blockchains like Hyperledger Fabric
Blockchain [4], [5] to smart contracts that run on Ethereum
Virtual Machine [6]. In contrast to using a centralized system,
the use of blockchain technologies in multi-robot systems
has proven effective and reliable [7], [8] by nature of the
blockchain, ensuring the security and the integrity of knowl-
edge sharing based collaboration between robots.

A. Prior Work

With the rise of secure and practical blockchain technologies
like Smart Contracts, researchers in various industries have
been searching for ways to implement these technologies to
enhance the efficiency and security of their systems. Smirnov
et al. [9] propose an approach to utilizing smart contracts in
agriculture, and Teslya et al. [10] introduce the use cases of



smart contracts for dynamic planning and coalition of robots.
Salimi et al. [11] present the concept of using smart contracts
to manage industrial robotic fleets in warehouses. Due to its
high performance and low requirements for end devices, many
industrial applications, such as those mentioned above, utilize
the Hyperledger Fabric Blockchain, a private permission-based
blockchain.

In addition, Strobel et al. [12] present the concept of
developing trust in the system by identifying and excluding
byzantine swarm agents. This work has enabled swarm con-
tracts to build trust over time to avoid adversarial agents and
increase the efficiency of transactions by eliminating byzantine
agents from participating in the system. Kapitonov et al.
[13] propose a protocol of autonomous business activities
for unmanned aerial vehicles using an integration of ROS
and Ethereum blockchain. The authors’ suggestion and im-
plementation of this architecture opened ways for innovation
in multiple industries like defense and agriculture. Further,
Li et al. [14] introduce a blockchain-based collaborative edge
knowledge inference framework for edge-assisted multi-robot
systems to ensure the trust of knowledge sharing and con-
duct. Kaewkamnerdpong et al. [15] propose the concept of
using swarm robotics intelligence to model nanorobot con-
trols, which highlights another industry where swarm robotic
collaboration can be effective. The idea of a framework that
is possible to bring together robotic swarm applications and
blockchain technology has been introduced by Ferrer [16].

Grey et al. propose and implement a Swarm Contract frame-
work [3], based on the blockchain technology that utilizes
a token economy for robotic agents with human interaction
to perform collaborative tasks while ensuring the trust by
motivating the agents with incentives in completing a given
task. Swarm contracts are custom smart contracts for robots to
facilitate complete and uncompromising communication and
collaboration to achieve tasks securely and in a decentralized
manner among mutually distrusting and heterogeneous parties.
Further, the Swarm Contracts incorporated a subcontracting
framework [3] within the blockchain environment to allow the
robotic agents to efficiently and cost-effectively perform com-
plex jobs requiring multiple agents with various capabilities.

The purpose of using Swarm Contracts [17] is to maximize
efficiency, minimize the possibility of exploitation, and guar-
antee the trustworthiness of all parties involved. In addition,
the Swarm Contracts were created to solve the limitations of
centralized robotic planning applications with a reward system
and adjudication. However, the swarm contracts deployed were
limited to moving payloads using one type of robot (mobile).
In practice, different types of robots perform various and more
complex tasks; therefore, a framework that can support various
robot types is essential.

Moreover, unlike the simulation environments, implement-
ing these systems in the real world is a challenging task in
applications such as autonomous vehicles [18]. By performing
real-world experiments, the whole system can be evaluated
under situations where it is impossible to test in simulation
environments, such as robot malfunctioning, running out of

battery power, sensor feedback errors, communication losses
and delays, and mechanical and electrical failures, etc.

B. Contributions

This research aims to show a smart contract-based robotic
collaboration system’s robustness even under challenging real-
world situations and evaluate how well the system behaves
while ensuring trust using blockchain technology. A decentral-
ized system architecture such as the proposed Swarm Contract
framework by Grey et al. [17], in which all the activities
are assigned, checked, and reevaluated by the framework,
establishes a dynamic execution environment that can maintain
the trust between robotic agents while assessing and ensuring
the completion of the tasks.

In this paper, we introduce three types of Swarm Contracts
for three specific types of tasks:

• Collaborative Handling Task: where two mobile robots
and a robotic manipulator perform a collaborative object
handling task.

• Navigation Task: where two mobile robots navigate
through an area with obstacles to generate a map.

• Warehouse Handling Task: where two mobile robots
handle the payloads.

These tasks allow the utilization of different types of robots,
such as robotic manipulators (arms) and mobile robots. Be-
yond the work of Grey et. al. [17], we use prototype robotic
agents and models thereof with the Swarm Contract frame-
work. This capability broadens the utility of the swarm con-
tracts framework in applications such as disaster relief, search
and rescue missions, and agriculture. Furthermore, compared
to centralized trust-free systems that cannot guarantee des-
ignated task completion by workers, Swarm Contracts make
decentralized applications a viable alternative to centralized
command and control applications that are pervasive in multi-
agent robotics applications today.

The core contribution of this research is integrating
Ethereum Blockchain Smart Contracts technology with ROS
[19]. This integration is an improvement over [3] – which was
limited to simulations – to allow interfacing of various robot
hardware, including industrial robot manipulators and mobile
platforms beyond the simulations of the same robots in the
Gazebo [20] simulation framework built into ROS. Also, we
introduce a pipeline to integrate any robot into the proposed
system framework and test the system’s robustness in real
life when there are instances where robots create troublesome
situations such as WiFi connection loss/delay and battery
outage.

The remainder of this paper is organized as follows: Sec.
II: System Framework gives an overview of Smart Contract
framework integration to ROS, robotic agents, and the trust
system used in the framework. Sec. III: Evaluation Tasks
presents the experiments conducted in detail. Sec. IV: Results
illustrate the experimental results and interpretation. Finally,
the conclusion and future work are described in Sec. V:
Conclusion and Future Directions.



Fig. 2. System Overview: Robotic agents - integration of industrial robots; Control Programs: modules written to control the robots for accepted contract
tasks

II. SYSTEM FRAMEWORK

This section discusses the robotic agents used in the re-
search, integration between ROS and the Blockchain, and the
swarm contracts and trust model. In addition, we discuss the
implementation of the control program modules to drive the
robots in the simulation environment as well as the actual
robots in the field, as shown in the Fig. 2.

A. Robot Operating System (ROS)

Autonomous mobile robots perform complicated tasks that
require successful navigation from any point A to point
B in static and dynamic environments. ROS facilitates the
communication between robotic agents in these navigational
settings. ROS is widely used in the robotics community and
has strong support from open-source robotics developers. Also,
the ease of interfacing with various types of robots such
as TurtleBot3 [21] Universal Robot [22] and the algorithm
packages availability such as GMapping Simultaneous Local-
ization and Mapping (SLAM) [23] for Light Detection, and
Ranging (LiDAR) sensors motivated us to use ROS as the
robot communication and control layer in this work. ROS also
supports subscriber and publisher protocols similar to Message
Queuing Telemetry Transport (MQTT) protocol [24]. ROS
nodes are executable files within the ROS package that use
the ROS client library to communicate between other nodes
in the system. ROS nodes can publish and subscribe to topics
to send and receive data. For instance, if a program node needs
to receive odometer data, the program should subscribe to the
”odom” topic. ROS master coordinates all the nodes within
the system. Another significant advantage is the possibility of
benefiting from the mature codebase intended for simulations
with actual robots without making any changes. It provides

a broader space to test the entire framework effectively and
efficiently for simulation to physical-world experiments.

B. Robotic Agents

In this research, two types of robotic agents were used,
including a robotic arm, i.e., the Universal Robot (UR) arm,
and a mobile robot (TurtleBot3). Typical workshops and
warehouses employ mobile robots and robotic manipulators
for payload handling or other various complex tasks. Although
engaged in collaborative tasks between robots, individual
robots are independent agents and make independent deci-
sions. Moreover, robots can perform independent tasks by
accepting individual work contracts. However, these decisions
are context-dependent and differ over time with the knowledge
accumulated within the system that feeds the trust model
explained in Sec. II-D.

C. ROS and Blockchain Integration

In this work, the ROS integration with the Swarm contract
system framework gives us greater flexibility to integrate
industrial robotic agents such as Universal Robot (UR) arms
[22], and any other supported third-party robots. Furthermore,
integrating open-source packages such as SLAM [23] and
other algorithms makes the entire framework more practical
in various robotic applications, from disaster-rescue missions
to agriculture.

For the blockchain ecosystem to test the proposed
framework, a locally hosted personal Ethereum blockchain,
Ganache [25] is used. The communication between Ganache
and the robot control programs was established via web3
(Ganache library for python) [26]. Typical contract deployment
takes 1-3 seconds including the compilation of the contracts. In
this work, contracts are not required to deploy at a faster rate.



But with a large number of agents, this will be a bottleneck
since more contracts are completed simultaneously and new
contracts need to be deployed more frequently. One can deploy
the contracts for a collaborative robotic task to the blockchain,
allowing robotic agents to decide whether they want to partic-
ipate in collaborative tasks while accepting “collab-contracts.”
These “collab-contracts” make optimal and fair decisions in
unpredictable (i.e., mechanical troubles, sensor malfunctions,
etc.) real-world scenarios. One example is the action to be
performed when one mobile robot is running out of battery.
In such a case, the control program written for a particular
mobile robot can detect the battery level since the power levels
are continuously monitored by subscribing to the battery status
topic. The control module then withdraws from the accepted
contract and allows the contract to be accepted and carried
by another worker. The workers, however, are penalized for
withdrawing from the contract for any reason.

The earnings for mobile robots are calculated based on the
amount of work performed (i.e., energy spent) in each task.
For instance, robotic manipulators utilize the energy spent
on movements via robot joint angular displacement, whereas
mobile robots compute the energy spent via distance traveled.
Upon successful task completion, robotic agents earn Ether
tokens (denoted by Ξ).

The framework with new contracts proposed in this work
can be implemented in the real world without a hassle by
introducing task-specific smart contracts such as Collabora-
tive Task Swarm Contracts using ROS and the Ethereum
blockchain integration. The physical experiments using the
proposed framework are further explained in Sec. III.

D. Swarm Contracts and Trust Model

Swarm contracts [17], tailored Smart Contracts [6] for
swarm robots. They were introduced to expedite secure, stable
communication and collaboration between robots to achieve
tasks assigned using Smart Contracts technology. The swarm
contracts are designed to ensure the trustworthiness of all
parties involved in the system. Grey et al. [17] introduced
the concept of having a “board” of mutually trustworthy
parties that include the Chief, which deploys contracts, and
Adjudicators, that are assigned to judge the completion of a
given task with public accountability. Fig. 2 depicts the various
agent types including both robotics and the no-robotics agents.
All the robotic agents and the field are shown in Fig. 3. In the
warehouse area (where the payload boxes are located) mobile
robots who handles boxes are defined as Cowboy (TB1) and
Driver (TB2) while in the collaborative area the three robots
(two mobile robots and one robots arm) who do collaborative
handling are defined as Handler1 (TB3), Handler2 (TB4) and
UR (Manipulator1). Another two mobile robots, Navigator1
(TB5) and Navigator2 (TB6) work in the mapping area.

In a real-world scenario, the employees/workers go through
selection, interview, and offer stages before starting work for
a company. However, in a trust-free decentralized system,
the number of new employees, in this case, the robotic
agents that must guarantee to perform the work assigned,

is constantly changing and in large numbers. To ensure the
guarantee to perform work in the system, Grey et al. [17]
proposed a “collateral” method. The collateral is collected
from the robotic agent, which accepts the swarm contract
with the promise to complete the job. In addition, the robotic
agents are rewarded after being judged by the Adjudicator
on the successful completion of the given task. The reward
mechanism, along with the collateral method, promotes all
participating agents to ensure trust and motivation in the
system.

The architecture of the smart contracts and the agent defini-
tions are the same as in Grey et al. [3] which the Chief s deploy
the contracts to the blockchain with Adjudicators, and robotic
agents can accept the contracts. Once the agents state that the
task is completed, Adjudicators will judge the task. By com-
paring with the ground truth, the completion of tasks by the
workers and the judgments of the Adjudicators are evaluated.
Over time, the adversarial agents will be neglected from the
system (less likely to get a chance to accept a contract) based
on the trust model. This behavior with comparisons in agents’
earnings can be observed in Sec. IV below. In comparison
to the real world, we can consider these adversarial workers
as fake nodes who pretend to be robotic workers who try to
accept the contracts and gain profits without performing the
accepted contract tasks.

III. EVALUATION TASKS

As mentioned in the Sec. I-B, under the introduction, real-
world tasks have been performed to test the system under
troublesome real-world situations such as WiFi connection
loss/delay and battery outage. Therefore we performed around
10% of tests with actual robots and the rest in the simulation
environment. Limited actual tests are to prevent the hardware
from being overused. For the simulation environment, Gazebo
simulation software was used to utilize the Open Dynamics
Engine (ODE) [27] with the support of ROS. The experiments
are performed for three robotics tasks shown in the TABLE I.

For the tests performed in this paper, the following assump-
tions were made:

• No sensor errors from odometer and LiDAR: Valid in
Gazebo simulation environment. The LiDAR and odome-
ter sensors [28] used in the Turtlebot3 have an accuracy
error of 3%. It is acceptable for completing the local
navigation tasks in hardware evaluations related to Task
2.

• No WiFi communication disruptions or delays: Valid
in Gazebo simulation framework. Since the real-world
experiments conducted are conducted in a closed space
research lab with a stable WiFi connection, the assump-
tion remains valid in testing in the real world.

• There is no wheel slipping: Valid in Gazebo simulation
environment. In addition, it is valid for the tests with the
actual robots since the ground surfaces the robots were
driven on had sufficient friction with the robot wheels.

• LiDAR sensor has infinite range: Valid in the Gazebo
simulation framework. The LiDAR sensor [28] used in



Fig. 3. Simulation Environment a) Navigation area where mobile robots avoid the obstacles and generate the territory map. b) Collaborative handling area:
one UR arm and two TurtleBots c) Warehouse handling: two TurtleBots Cowboy and the Driver

the Turtlebot3 has a maximum range of 8 m, which is
more than the dimensions of the hardware testing area
(5 m x 5 m). Thus, the sensor can detect any object or
wall without any difficulties, and the assumption remains
valid in testing in hardware.

These assumptions were considered otherwise it brings com-
plex scenarios that cannot be handled within the proposed
system. None of these robots are robust for dynamic envi-
ronmental conditions, only suited for controlled environments
which align with the capabilities of the robots.

TABLE I
TYPES OF TASKS

Task Description Robot arms Mobile Robots
1 Collaborative handling 1 2
2 Navigation 0 1 or n
3 Warehouse Handling 0 2

A. Task Descriptions

Task 1 is a Collaborative handling task in which three robotic
workers (one robot arm and two mobile robots) are needed.
The robots will start working after the swarm contract is
accepted by all three members. In the contract, the tasks for
each robotic agent are specified. For example, the picking
position and the placing position for the robot arm task are
stored in the swarm contract. The destinations of the mobile
robots are also specified in the Collaborative handling task
contract.
Task 2 is the navigation task, which is performed by a single
or multiple mobile robot. In the swarm contract, the area
to navigate is specified by two points. One or many mobile

robots can participate in the navigation task. However, only
the robot that accepts the contract can deploy subcontracts
by dividing the area to be covered. We use only two robots
for this task in the simulations to keep the real-time-factor
parameter close to 1.0 in the Gazebo simulation environment.
This is a limitation within the simulation environment when
it uses a higher processing power of the ROS master node
to perform a task. When the number of robots increases, the
real-time-factor parameter tends to go below 1.0, making the
system simulation slower. If one wants to run more robots
to perform these navigation tasks, it is recommended to use
multiple simulation nodes which runs on multiple computers.

Task 3 is the Warehouse handling task. In this task, two mobile
robots Cowboy and Driver are available. Cowboy collects the
specified boxes from the Cowboy area and delivers them to an
intermediate staging location specified in the contract. Driver
moves the objects from the staging area to delivery locations
specified in the smart contracts. Table II shows the agent
composition of each trial. Adversarial workers, who accept the
contracts and do nothing. There are three types of Adjudicators
Fair, Owner-biased, and Worker-biased within the society. Fair
Adjudicators judge the completion of tasks without any bias
while Owner-biased and Worker-biased Adjudicators judge in
favor of the Owner and Worker respectively. Trial 1 and Trial
4 have the same agent composition for both workers and the
adjudicators. In between the two trials, the Trial 2 and the
Trial 3 composition was arranged to feed the trust model
with randomness. We cannot expect the same composition
throughout every trial in the real world. After performing
all of these trials, we can compare Trial 1, which is before
accumulating the knowledge for the trust model, and Trial 4,



Fig. 4. Robotic agent performing a navigation task using SLAM. Left image
showing robotic agent navigating through environment with obstacles. Right
image showing the mapped area by robotic agent’s LiDAR sensor.

which is after accumulating the knowledge for the trust model.

TABLE II
TRIAL COMPOSITION

Trial Adversarial
Workers

Fair
Adjudicators

Owner-biased
Adjudicators

Worker-biased
Adjudicators

1 6 4 1 1
2 5 3 2 2
3 5 3 0 0
4 6 4 1 1

There are seven fair workers in all trials. The number of
robotic workers appearing in the simulation environment or
real-world tests is the same throughout trials. It is possible
to add more fair workers, but we had to limit it because of
the real-time-factor parameter in the Gazebo simulation, as
mentioned previously. All the adversarial workers are virtual.

B. Simulated Experiments

We used the Gazebo simulation environment to perform
longer-range and considerably time-consuming tasks such as
Task 1 and 3. Fig. 3 shows the various simulation environment
setup for the tasks discussed, navigation area, collaborative
handling area, and warehouse handling area. Therein, to ac-
complish the objectives of Task 1, we used the UR robot
arm as the manipulator and TurtleBot3 to move objects,
respectively. In addition, we utilized SLAM [23] with the help
of the in-built LiDAR sensors to navigate the robots in the
evaluation space (see Fig. 4). The SLAM algorithm uses the
Gmapping algorithm [23]. We rely on the odometer sensor
data for the local navigation of mobile robots to the specified
locations. Once a contract is accepted, the navigator knows
the two points(starting and ending point). So it can navigate
through the mapping area and collect the corresponding map
data. Here the map data is stored in an array that is directly
read by subscribing to the ”/map” topic of each navigator robot
node. Once the task is completed, they send the map data array
to the contract and notifies that they have completed the task.

In addition to the evaluations in simulation environments,
we implemented a selected set of tasks in corresponding real
robotic hardware, i.e., Turtlebot3, and UR arm, to demonstrate
the feasibility of the proposed swarm contracts framework
under practical constraints such as running out of battery
situations.

C. Real World Experiments

We interface and control the hardware TurtleBot3 mobile
robots and the UR manipulator robot via the ROS communi-
cation layer. Here, we leverage the seamless interoperability
of the ROS-powered Gazebo simulation environment, which
facilitated the hardware testing on Task 2 through a mere
change of the agent IP address. This feature is also desirable
for integrating other types of hardware and software robotic
agents. Fig. 4 displays a mobile robotic agent performing a
navigation task using SLAM. On the left, the robotic agent
navigates through the obstacles and maps the position of the
environmental obstacles (boxes) using LiDAR sensors. We see
the resulting SLAM image created using the sensor data on
the right. The black lines show the obstacles LiDAR sensors
sense. In addition, it is essential to note that the robotic agent is
only able to map the environment at a certain distance between
160 - 8,000 mm, specified by the ROBOTIS e-Manuel [28] for
TurtleBot agents. The grey area shown on the right is the area
that LiDAR sensors can sense. As the agent navigates through
the environment, the grey area and the obstacle positions
will update and display the complete representation of the
environment.

IV. RESULTS

The results generated from both simulation environment and
real-world experiments were taken into account to evaluate
the entire system’s behavior. The average earnings and the
transactions that happened for the experiments Trial 1, Trial
2, Trial 3, and Trial 4 are reported in Table III. Fig. 5 shows
how the earnings changed throughout the trials for workers.

Throughout the trial iterations, it can be observed that the
earnings of all adversarial workers get reduced over time
(see Fig. 5). Adversarial agents either posted losses or failed
to profit like their fair peers. The earnings of fair workers
sharply increased in all tests and across all trials. These
data prove that the system is both self-governing and self-
improving through the power of incentives. While the system
does suffer initial “growing pains” while establishing trust,
it eventually becomes resilient to attacks, even though the
contract issuers and acceptors do not recognize or track each
other’s identities, making them effectively anonymous. The
first trial starts with six to seven adversarial to fair-worker
ratio. It shows that adversarial workers earned more in this
case since the system has not achieved self-governance yet.
This result is undesirable, and we performed Trial 2 and Trial
3 with different combinations to accumulate knowledge within
the system expecting the system’s self-governance.

It is significant to highlight that the fair worker data shown
in the second trial (see Table III) exhibits a reduction in the
overall earnings of all fair workers (see Fig. 5). This result is
due to the increase in the number of owner-biased and worker-
biased Adjudicators and the reduction in fair Adjudicators.
There is a 50% increase of biased Adjudicators compared to
Trial 1 (see Table III). This change results in fewer completed
contracts compared to the ground truth. For instance, in the
first trial (see Table III) Cowboy and Driver workers earned



TABLE III
TRIAL RESULTS

Task Worker Type Trial 1 Trial 2 Trial 3 Trial 4
Avg. profit Trans. Avg. profit Trans. Avg. profit Trans. Avg. profit Trans.

Adversarial 27.1 73 5.25 39 0.58 11 0 0

Warehouse handling TB1 (Cowboy) 12.5 115 9.27 66 16.44 138 24 122
TB2 (Driver) 14 134 8.2 94 19.83 156 21.08 117

Navigation TB5 (Navigator 1) 5.02 47 4.2 41 8.1 80 1.8 84
TB6 (Navigator 2) 4 39 3.58 33 7.8 71 1.64 91

Collaborative handling
TB3 (Handler 1) 7.66 87 5.26 47 12.07 119 16.5 112

TB34 (Handler 2) 7.66 79 4.94 53 14.61 99 17.9 105
UR (Manipulator 1) 15.2 102 7.73 52 21.39 144 26 127

Fig. 5. Earnings of the workers over trials.

12.5Ξ and 14Ξ; however, the earnings in Trial 2 (see Table
III) got reduced to 9.27Ξ and 8.2Ξ respectively. It gives us an
idea of how the system behaves with the non-availability of
few fair workers. In the third trial, the adversarial worker and
the fair adjudicator amounts kept the same and observed higher
earnings for all workers. That shows more completions of the
contracts since more correctly judged contracts are compared
to the ground truth. In addition, the system is gaining an
equilibrium and increasingly neglecting all untrusted parties.

Trial 3 (see Table III) shows an increase in all earnings
for fair workers and a significant decrease for adversarial
workers. We can assume a scenario where adversarial judges
have been engaged with another system where they can no
longer judge the completion of task contracts. This behavior
is credited to more completion of contracts due to reduced

unbiased Adjudicators, and now the system is learned from the
previous iterations to neglect adversarial attacks. The earnings
exhibit this behavior clearly in Trial 3,Fig. 5.

Trial 4 earnings, shown in Table III, consists of the physical
world robot testing. Trial 4 also consists of the same trial
composition as Trial 1, returning to the same society again
to compare the society without the accumulated knowledge
(Trial 1) and society with the accumulated knowledge (Trial
4). It is essential to highlight that the adversarial workers could
not earn any token even with the same agent composition.
The self-governance trust feature neglected all untrustworthy
adversarial workers. After three trials of trust training, the sys-
tem behaves like an ideal system without adversarial workers
where they ended up earning 0Ξ during Trial 4. While this
shows the system’s robustness and capability in self-handling
adversarial agents organically, it is likely a theoretical result
as no changes in the economy participants. Nevertheless, in
a dynamic ecosystem where the market participants change,
there can be exploitation with newer adversarial agents. To
handle this exploitation issue, additional trust metrics can be
used, such as rating agents’ behavior with a proper mechanism.

The navigation task is performed multiple times to ex-
perience out-of-battery situations. In most cases, the mobile
robots were granted to function until their battery degraded
and charged again by a small amount before putting into the
experiment. We iterated the same process without charging the
mobile robots full charge to experience more frequent out-of-
battery situations. As a result, the workers in the navigation
task withdrew from their accepted smart contracts more fre-
quently, resulting in lower earnings for them, as shown in Fig.
5. Most of the contracts deployed for navigation tasks were
left incomplete. The exact withdrawal mechanism can be used
for sensor malfunctioning and communication loss scenarios
as well.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work introduced the integration of ROS and Ethereum
Blockchain Smart Contracts technology and highlighted the
system’s robustness in real-world experiments. In addition,
the pipeline to integrate any robot into the proposed system
framework introduced makes it a reliable option to be used
in warehouses or work environments in which heterogeneous
robotic swarm technologies are utilized. Tests and results



proved that the proposed system framework can be used for
real-world robotic operations, even for complex collaboration
tasks requiring cooperation between multiple robotic agents.
The scalability of the system can be increased further using
multiple ROS master nodes using more remote computers. But
still, the system has a bottleneck due to a slower contract
deployment rate and less number of transactions per second
(TPS) on the Ethereum blockchain. The Ethereum 2.0 upgrade
[29] is promising to provide 100,000 TPS which will eventu-
ally be capable to build more scalable applications on it. The
objective of achieving the system equilibrium for the entire
system with the real-world experiments was successful with
the obtained results. The system was able to create trust within
the system framework that learned from the behavior of the
robotic agents.

In addition, adding more decision-making ability to the
system will lead to more successful governance by the agents
within their agent society. One powerful feature that will
be possible to equip is reinforcement learning on agents to
make more successful decisions on more complex adversarial
attacks. The adversarial behavior is only included when agents
compete to accept and judge the contracts. In the physical
world where the robotic tasks are performed, adversarial
behaviors can be expected during the execution of specific
tasks. For example, a robot can always do the opposite of what
it is asked to do. In such scenarios, reinforcement learning
will be utilized to block destructive behaviors with the swarm
contracts being used to reward good behavior and penalize
bad behavior. This reinforcement learning feature is part of
ongoing work and will be published in the future.

ACKNOWLEDGEMENT

This work is supported in part by the National Sci-
ence Foundation (NSF) Grants IIS–1718755, IIS–2008797,
CMMI–2048142, and CMMI–2132994.

REFERENCES

[1] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N.
Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund,
“Collaborative multi-robot search and rescue: Planning, coordination,
perception, and active vision,” Ieee Access, vol. 8, pp. 191 617–191 643,
2020.

[2] P. Fiorini and E. Prassler, “Cleaning and household robots: A technology
survey,” Autonomous robots, vol. 9, no. 3, pp. 227–235, 2000.

[3] J. Grey, I. Godage, and O. Seneviratne, “Blockchain-Based Mechanism
for Robotic Cooperation Through Incentives: Prototype Application in
Warehouse Automation,” in Proceedings of the 2021 IEEE Blockchain
Conference. IEEE, 2021.

[4] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: A distributed operating system for
permissioned blockchains,” CoRR, vol. abs/1801.10228, 2018. [Online].
Available: http://arxiv.org/abs/1801.10228

[5] S. Dalla Palma, R. Pareschi, and F. Zappone, “What is your distributed
(hyper) ledger?” in 2021 IEEE/ACM 4th International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2021, pp. 27–33.

[6] V. Buterin, “Ethereum white paper: A next generation smart contract
& decentralized application platform,” 2013. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[7] J. Li, J. Wu, J. Li, A. K. Bashir, M. J. Piran, and A. Anjum, “Blockchain-
based trust edge knowledge inference of multi-robot systems for col-
laborative tasks,” IEEE Communications Magazine, vol. 59, no. 7, pp.
94–100, 2021.

[8] T. T. Nguyen, A. Hatua, and A. H. Sung, “Blockchain approach to
solve collective decision making problems for swarm robotics,” in
International Congress on Blockchain and Applications. Springer, 2019,
pp. 118–125.

[9] A. Smirnov and N. Teslya, “Robot coalition coordination in precision
agriculture by smart contracts in blockchain,” in Agriculture Digitaliza-
tion and Organic Production, A. Ronzhin, K. Berns, and A. Kostyaev,
Eds. Springer Singapore, 2022, pp. 271–283.

[10] N. Teslya and S. Potryasaev, “Execution plan control in dynamic
coalition of robots with smart contracts and blockchain,” Information,
vol. 11, p. 28, 01 2020.

[11] S. Salimi, J. P. Queralta, and T. Westerlund, “Towards managing
industrial robot fleets with hyperledger fabric blockchain and ros 2,”
2022. [Online]. Available: https://arxiv.org/abs/2203.03426

[12] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Managing byzantine
robots via blockchain technology in a swarm robotics collective decision
making scenario,” in Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2018, pp. 541–
549.

[13] A. Kapitonov, S. Lonshakov, A. Krupenkin, and I. Berman, “Blockchain-
based protocol of autonomous business activity for multi-agent systems
consisting of uavs,” in 2017 Workshop on Research, Education and
Development of Unmanned Aerial Systems (RED-UAS), 2017, pp. 84–
89.

[14] J. Li, J. Wu, J. Li, A. K. Bashir, M. J. Piran, and A. Anjum, “Blockchain-
based trust edge knowledge inference of multi-robot systems for col-
laborative tasks,” IEEE Communications Magazine, vol. 59, no. 7, pp.
94–100, 2021.

[15] B. Kaewkamnerdpong and P. J. Bentley, “Modelling nanorobot control
using swarm intelligence: A pilot study,” in Innovations in Swarm
Intelligence, ser. Studies in Computational Intelligence, C. P. Lim,
L. C. Jain, and S. Dehuri, Eds. Springer, 2009, vol. 248, pp. 175–214.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04225-6 10

[16] E. C. Ferrer, “The blockchain: a new framework for robotic swarm sys-
tems,” in Proceedings of the future technologies conference. Springer,
2018, pp. 1037–1058.

[17] J. Grey, I. Godage, and O. Seneviratne, “Swarm Contracts: Smart Con-
tracts in Robotic Swarms with Varying Agent Behavior,” in Proceedings
of the 2020 IEEE Blockchain Conference. IEEE, 2020.

[18] S. Jain, N. J. Ahuja, P. Srikanth, K. V. Bhadane, B. Nagaiah, A. Kumar,
and C. Konstantinou, “Blockchain and autonomous vehicles: Recent
advances and future directions,” IEEE Access, 2021.

[19] ROS Developers. Robotic Operating System. [Online]. Available:
https://www.ros.org

[20] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[21] turtlebot3 Developers. turtlebot3. [Online]. Available: https://emanual.
robotis.com/

[22] Universal Robots GmbH. universal-robots. [Online]. Available: https:
//www.universal-robots.com/

[23] X. Zhang, J. Lai, D. Xu, H. Li, and M. Fu, “2d lidar-based slam and path
planning for indoor rescue using mobile robots,” Journal of Advanced
Transportation, vol. 2020, 2020.

[24] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s — a
publish/subscribe protocol for wireless sensor networks,” in 2008 3rd
International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE ’08), 2008, pp. 791–798.

[25] ConsenSys Software Inc. 2021. Ganache – One Click Blockchain.
[Online]. Available: https://www.trufflesuite.com/ganache

[26] P. Merriam and J. Carver, “Web3. py,” 2018.
[27] Russell L. Smith. Open Dynamics Engine. [Online]. Available:

https://www.ode.org/
[28] (2022) Robotis e-manuel @ONLINE. [Online]. Available: https:

//emanual.robotis.com/docs/en/platform/turtlebot3/appendix lds 02/
[29] S. E. Foundation. Ethereum 2.0 specifications. [Online]. Available:

https://github.com/ethereum/eth2.0-specs


