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Abstract

Misfolded tau proteins are a classical hallmark of Alzheimer’s disease. Increasing evidence indicates that tau—and not
amyloid—is the main agent in driving neurodegeneration and tissue atrophy in Alzheimer’s brains. However, the precise cor-
relation between tau and atrophy remains insufficiently understood. Here we explore tau-atrophy interactions by integrating
a multiphysics brain network model and longitudinal neuroimaging data for n = 61 subjects from the Alzheimer’s Disease
Neuroimaging Initiative. Using Bayesian inference with a hierarchical prior structure, we personalize subject-level param-
eter distributions for each individual subject and infer group-level parameter distributions for amyloid positive and negative
groups. Our results show that the group-level tau growth for amyloid positive subjects of 0.0161/year is significantly larger
(p = 0.0036) than for amyloid negative subjects of —0.2042/year. Similarly, the group-level tau-induced atrophy for amy-
loid positive subjects of 0.0165/year is significantly larger (p = 0.0048) than for amyloid negative subjects of 0.0111/year.
These findings support the hypothesis that amyloid pathology has a magnifying effect on tau pathology and tissue atrophy.
Our model may serve as a descriptive tool to quantify the correlation between tau and atrophy, as well as a predictive tool
to estimate personalized tau pathology, atrophy, and cognitive impairment timelines from a sequence of medical images.
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studies now suggest that hyperphosphorylated tau is more

closely related to cognitive impairment and propose tau as
the major driver of neurodegeneration [5-9].

1 Introduction

Alzheimer’s disease is characterized by two proteopathies

that take place in patients’ brains a decade or more before
clinical diagnosis. Plaques of extracellular amyloid-f pro-
teins and neurofibrillary tangles of misfolded tau proteins
are typically found upon autopsy of affected brain tissue
[1]. Positron emission tomography is currently emerging
as a promising, non-invasive technology to visualize and
quantify amyloid-g and tau proteins in vivo [2, 3]. While
amyloid has long been thought of as the earliest initiator of
the pathological cascade in Alzheimer’s disease [4], multiple
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Macroscopically, the degeneration and loss of neurons
manifests itself in a loss of gray matter tissue, thinning of
the cortex, widening of cortical sulci, and expansion of
the lateral ventricles [10-13]. A multitude of clinical stud-
ies have investigated the characteristics of brain atrophy
in comparison to healthy aging and longitudinally across
advancing stages of Alzheimer’s disease. Three main find-
ings are ubiquitous in the literature: brain atrophy rates are
higher in Alzheimer’s patients than in healthy age-matched
controls [14—16], atrophy rates increase over time and with
advancing disease [17-20] but may decrease at late disease
stages [14, 19, 21], and regional atrophy is strongly related
to regional intensity of tau pathology as indicated by autopsy
or on tau positron emission tomography images [7, 8, 22].
In fact, tau pathology and cortical atrophy seem to follow
the same stereotypical spatiotemporal progression [11,
23-25]: changes are first observed in the medial temporal
lobe, with the hippocampus and entorhinal cortex represent-
ing the first affected regions [26]. With advancing disease,
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an increasing number of neocortical regions are affected by
tau neurofibrillary tangles and atrophy, initially the lateral
temporal lobe, followed by frontal and parietal lobes. The
sensorimotor and visual cortices are typically the only areas
spared from tau pathology and atrophy up until late disease
stages [24].

Computational models are a promising approach for
examining the interplay of different disease mechanisms,
like tau pathology and atrophy, in a quantitative manner.
Due to the close correlation between tau, atrophy, and the
impairment of cognitive function, coupled models of tau
and atrophy have high potential for predicting personal-
ized timelines of disease progression. Several studies have
explored computational models for tau pathology, mostly
using cross-sectional positron emission tomography or atro-
phy data for validation [27-29]. We have previously shown
that a network reaction-diffusion model for misfolded tau
protein can be personalized to individual patient pathologies
using Bayesian inference and longitudinal tau positron emis-
sion tomography data from 76 subjects [30]. While several
mathematical models can qualitatively explain the relation-
ship between tau pathology and atrophy dynamics [31-34],
these models have yet to be quantified and validated against
longitudinal and multimodal neuroimaging data.

We have recently introduced a coupled tau atrophy model
informed by clinical observations of atrophy characteristics
and dynamics [35]. We have personalized the model param-
eters to a preliminary set of longitudinal tau positron emis-
sion tomography and structural magnetic resonance images
for n = 4 subjects and shown that the model predicts realis-
tic atrophy rates that are in line with clinical findings. Our
results suggest that the model parameter that characterizes
tau-induced atrophy is similar across the entire data set,
while other model parameters display notable inter-individ-
ual differences. Here we apply the same tau-atrophy model
to a cohort of n = 61 subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [36] database, of which
n = 38 subjects have previously been identified as amy-
loid positive and n = 23 as amyloid negative [37]. Clinical
diagnoses range from cognitively normal to mild cognitive

Fig. 1 Imaging data. Regional
tau concentrations and atrophy
values averaged across all
subjects and visits for amyloid
positive and negative groups
illustrated on a template brain

@ Springer

amyloid -

impairment in both amyloid groups. The expanded cohort
allows us to adopt a hierarchical model structure during
parameter inference and gain insight into group differences
depending on amyloid status. Since amyloid is a known pre-
cursor for tau pathology and an indicator for progression to
Alzheimer’s disease, we hypothesize that tau and atrophy
dynamics differ between amyloid positive and amyloid nega-
tive individuals.

2 Results
2.1 Subject data

Figure 1 illustrates regional misfolded tau concentrations
and amounts of atrophy after averaging across all subjects
and longitudinal scans in each amyloid group. The processed
image data confirm several expected trends: We observe
higher tau and atrophy values in the n = 38 amyloid positive
subjects, who are more likely to be prospective Alzheimer’s
patients, than in the n = 23 amyloid negative subjects. Espe-
cially in the amyloid positive group, we also notice a strong
topographic relationship between elevated concentrations of
misfolded tau and elevated atrophy.

Figure 2 shows the subject-wise trajectory of atrophy over
a maximum span of 14 years. Each trajectory starts with
an atrophy value of zero at the baseline scan, from which
we determine reference regional volumes. When averaging
volume changes at follow-up visits globally, across all brain
regions, we observe only a slight overall increase in atro-
phy over time across amyloid positive subjects, and even
less incline across amyloid negative subjects. However, the
increase in atrophy over time becomes more apparent when
focusing on regions that are known to be affected by atrophy
early on in the disease. When averaging atrophy values over
the regions of the temporal lobe and the basal ganglia, we
observe a pronounced increase in atrophy values, especially
across amyloid positive subjects.

Figure 3 summarizes the regionally averaged atrophy
rates and highlights differences in atrophy dynamics between
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Fig.2 Atrophy data. Relative atrophy over time shown globally for all brain regions, the temporal lobe, the parietal lobe, and the basal ganglia,

for amyloid positive and negative groups

regions and amyloid status. The results show notably higher
atrophy rates in subjects with positive amyloid status than in
those with negative amyloid status, with a significant differ-
ence in the hippocampus (p = 0.015). The plot also illustrates
that the atrophy in our data roughly follows the spatiotempo-
ral evolution described in the literature for tau and atrophy.
Atrophy rates are highest in the basal ganglia regions and the
temporal lobe, with especially pronounced rates in the hip-
pocampus and entorhinal cortex. Consistent with the pattern

of spatiotemporal disease progression, regions of the frontal
lobe exhibit lower atrophy rates than temporal regions, closely
followed by parietal and occipital regions.

2.2 Posterior distributions
Our model contains three parameters: a transport coefficient

p characterizing the diffusion of misfolded tau seeds along
the connectome, a growth coefficient « characterizing the

Fig.3 Atrophy rates. Median
jcltrophy rates betwefen vis- 0.04 -
its separated by regions for
amyloid positive and negative -
groups. Asterisk indicates § 0.02 ~
L . 2
significant difference between =
. [
amyloid groups & 0.00 4
>
<
Q
e
© —0.02 -
amyloid status
[ Ab -
—0.041 mmm Ab+ ’
global bas. ganglia  temporal frontal parietal occipital entorhinal hippocampus

region

@ Springer



3870

Engineering with Computers (2022) 38:3867-3877

Fig.4 Posterior distributions.
Group- and subject-level
posterior distributions for the
transport coefficient for amyloid

CXY

pAd group level p?

transport coefficient p [mm?/year]

fﬁ‘ subject level p®

positive and negative groups — I amyloid +
s I amyloid -
2
»
c &
Q — —
N 0.0 01 02 03 04 05 0.6
b=
o
©
B
s | - , —
0.00 0.05 0.10 0.15 0.0 0.1 02 03 04 05 0.6
Fig.5 Posterior distributions. growth coefficient a [1Iyear]
Group- and subject-level poste-
. . . . %% o .
rior d1§tr1but10ns for .the grf)\.zvth A83 group level ‘ua ﬂ subject level aS
coefficient for amyloid positive
and negative groups — I amyloid + ﬂ
— I amyloid - N
2
«
c
o
2 -1.0 -0.5 0.0 0.5
2 i
©
o / il
S o
o /JX; 210 \ -
-04 -0.2 0.0 0.2 -1.0 -0.5 0.0 0.5
Fig.6 Posterior distributions. tau-induced atrophy coefficient G, [1/year]
Group- and subject-level
posterior distributions for the Aad group level HGC r;j subject level GCS
tau-induced atrophy coefficient mon
for amyloid positive and nega- - I amyloid +
tive groups -; I amyloid -
=
wn
c
[}
2 0.00 0.05 0.10 0.15 0.20
=
o
©
el
o
o
0.00 0.02 0.04 0.06 0.15 0.20

local production or clearance of misfolded tau protein, and
a tau-induced atrophy coefficient G, quantifying the effect of
local tau pathology on local atrophy. Our Bayesian approach
for parameter identification results in converged posterior
distributions for all three model parameters on the group and
subject levels. All hierarchical and individual posteriors have
a high effective sample size, 0.99 < 7 < 1.001 and significant
movement away from the weakly informative priors.
Figures 4, 5 and 6 and Table 1 summarize the resulting
posterior distributions. There are no significant differences
in the posterior distributions for the group mean transport
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coefficient u” between amyloid groups, with both distri-
butions being concentrated close to zero. This similarly
is reflected in the likeliness between the profiles of the
individual posterior distributions in Fig. 4. In contrast,
the posterior distributions for the group level growth
coefficient u* exhibit clear differences between amyloid
groups. Overall, amyloid positive subjects exhibit a sig-
nificantly (p = 0.0034) higher tau protein growth rate than
amyloid negative subjects, with a hyperdistribution mean
of 0.017/year and individual distribution means ranging
from —0.628/year to 0.444/year for the amyloid positive
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Table 1 Posterior summary

Posterior summary

Parameter Apt Ap~

Mean Std Mean Std
u? 0.0214 0.0168 0.0287 0.0226
u“ 0.0165 0.0446 -0.1922 0.0737
uGe 0.0151 0.0115 0.0108 0.0075

Mean values and standard deviations for model parameter hyperdistri-
butions and noise estimates for tau and atrophy data for amyloid posi-
tive and negative groups

group, and a hyperdistribution mean of —0.192/year and
individual distribution means ranging from —0.742/year
to 0.281/year for the amyloid negative group. While the
hyperdistributions for the tau-induced atrophy coefficient
G, show much overlap for both amyloid groups, there
are noticeably more subjects with higher atrophy coeffi-
cients in the amyloid positive group. In fact, a comparison
between individual distribution means in an independent ¢
test shows that atrophy coefficients are significantly higher
(p = 0.0033) for amyloid positive subjects than for amy-
loid negative subjects. The average subject-specific noise
estimates for tau PET data, E‘:, are lower than those for
MRI-derived atrophy data, E:, in both amyloid groups:
o, = 0.025, 5, = 0.043 for amyloid positive subjects, and

o, =0.019, EZ = 0.035 for amyloid negative subjects.

t

2.3 Posterior predictive simulations

Our cohort contains n = 24 subjects, n = 21 amyloid posi-
tive and n = 3 amyloid negative, for which both global tau
and atrophy data trajectories exhibit an increasing slope.
These subjects align with our model assumptions that tau
pathology and tissue atrophy should be increasing in Alz-
heimer’s disease patients.

Figures 7 and 8 show our model predictions for tau and
atrophy dynamics in the entorhinal cortex during the first
four years after baseline tau positron emission tomography
in direct comparison to the observed data. The entorhinal
cortex is one of the first regions affected by Alzheimer’s
pathology. Overall, the model performs well in captur-
ing the tau and atrophy dynamics in the selected subjects,
however, the credible intervals are relatively narrow and
do not always capture all data points. There are two possi-
ble explanations for this observation: (1) Our model, Eqgs.
(5) and (6), produces strictly monotonic trajectories and
is therefore not able to describe non-monotonic patient
data; (2) Shrinkage due to the hierarchical inference model
structure, which allows us to group information across
subjects and prevent over fitting to individuals.
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Fig. 7 Posterior predictive simulations. Model predictions for mis-
folded tau concentration in the entorhinal cortex compared to
observed data from longitudinal tau positron emission tomogra-
phy. Each subplot represents one subject with circles indicating data
points, solid red lines showing the median model prediction, and
shaded areas representing the 95% credible intervals

3 Methods
3.1 A coupled network model for tau and atrophy

We describe the spatiotemporal dynamics of tau protein
misfolding and propagating across the brain using the clas-
sical Fisher—-Kolmogorov—Petrovskii—Piskunov model [38]
with a source term and a diffusion term,

%:div(K-Vc)+ac[l—c]. (1

Equation (1) characterizes the concentration of misfolded
tau protein c¢ scaled between 0 and 1, depending on a diffu-
sion tensor K that determines the speed and directionality
of protein transport and a growth coefficient « that deter-
mines how much pathological protein is produced or cleared
locally. We assume a one-way coupling between the mis-
folded tau concentration and brain atrophy of the form
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Fig. 8 Posterior predictive simulations. Model predictions for atrophy
in the entorhinal cortex compared to observed data from longitudinal
structural magnetic resonance imaging. Each subplot represents one
subject with circles indicating data points, solid blue lines showing
the median model prediction, and shaded areas representing the 95%
credible intervals

dg

dr

S}

1-4q]G, c, 2)
where g denotes the local amount of tissue atrophy depend-
ing on the local amount of misfolded tau ¢ mitigated by a
global tau-induced atrophy coefficient G.. [35].

We solve Egs. (1) and (2) on a network model of the
brain represented by an undirected graph G = {E,N}. In
this graph, the nodes N describe 83 anatomical regions of
interest and the edges E represent neuronal connections
between these regions. The connection strength between
each pair of nodes is summarized in the weighted adja-
cency matrix W with entries W;; informed by diffusion
tensor images of n = 426 participants of the human con-
nectome project [39]. In line with previous studies [35,
40], we define the weights of the adjacency matrix as
W; =n;/ f;, where n;; denotes the average number of white
matter fibers detected between two regions of interest and
Z; denotes the average fiber length along the connection.
The files used to create the adjacency matrix are freely

@ Springer

available [41, 42] as is the final adjacency matrix [43]. To
discretize Eq. (1), we use the weighted graph Laplacian

L=D-W, 3)

where D is a diagonal matrix with entries
N
D= W, @)
j=1

J

This discretization of the diffusion operator preserves both
mass and the Fickian property that no transport takes place
when two regions have the same concentrations [44]. Then,
the discretization of Eq. (1) on the brain network is

dc; A .
E:—pZLijcj+aci[l—c[], i=1,...,N, 6))
=1

with ¢; denoting the normalized concentration of toxic tau
protein in regionsi = 1,2, ..., N, p acting as a transport coef-
ficient, a as a growth coefficient, and L, denoting the entries
of L. In addition, we define a local measure of tissue atrophy
g, for each region i

dg;

— =G, c[1-gl

i=1,...,N, 6
m i (6)

in terms of the local tau protein concentration c; and the
tau-induced atrophy coefficient G.. Combined, the cou-
pled model encompasses three model parameters that can
be tuned to match subject-specific disease trajectories: the
transport coefficient p, the growth rate a, and the tau-induced
atrophy coefficient G..

3.2 Subject data

We calibrate our coupled tau-atrophy model using longitu-
dinal tau positron emission tomography and structural mag-
netic resonance data from n = 61 subjects of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [36]. All
subjects have undergone between three and five consecutive
tau positron emission tomography scans and correspond-
ing structural imaging within six months of the tomography
scan. On average, longitudinal scans were separated by 1.15
years. Out of the full set, n = 38 subjects were previously
identified as amyloid positive and n = 23 as amyloid nega-
tive [37]. Table 2 summarizes the composition of cognitive
diagnoses for the full cohort and each amyloid group.

3.2.1 Tau data preparation
Tau AV1451-PET data were processed by ADNI accord-

ing to standard protocols [36, 45]. Each positron emission
tomography image was co-registered to a corresponding
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Table 2 Subject demographics

Demographics

Amyloid status CN SMC MCI Total
Positive n=16 n=9 n=13 n =38
Negative n= n= n=10 n=23
Total n =24 n=14 n=23 n =061

Demographics by cognitive diagnosis for whole cohort and each amy-
loid group

CN cognitively normal, SMC significant memory concern, MCI mild
cognitive impairment

high-resolution T1 weighted magnetic resonance image
and segmented into 68 cortical and 15 subcortical regions
according to the Desikan—Killiany atlas [46]. The result-
ing 83 regions align with the nodes of the brain network
described in Sect. 3.1. After normalizing with respect to
the inferior cerebellum, ADNI provides regional standard-
izes uptake value ratios for all considered subjects and time
points. Tau positron emission tomography measurements in
subcortical regions can be contaminated by off-target bind-
ing in the choroid plexus and nearby vascular structures
[47-49]. Therefore, we base our tau model calibration on the
tau positron emission tomography data from cortical regions
only. We map the standardized uptake value ratios into a
zero-to-one interval following previously described methods
[30]. This allows for direct comparison between our model
output c8im and the data, in the form of a regional normalized
tau concentration 0 < ¢P* < 1. For each subject, the initial
conditions for the protein field of our model are given by the
tau uptake values measured in the baseline positron emission
tomography scan ¢¥™(z = 0) = ¢P®(¢,).

3.2.2 Atrophy data preparation

We use Freesurfer [50] in combination with the Clinica
[51] t1-freesurfer-longitudinal pipeline to extract regional
volume information from the structural magnetic resonance
images. For every included subject and visit, we compute
volume measures for all 83 brain regions contained in our
network model. Many of the subjects included in this study
underwent a number of study visits at which only structural
image data was obtained, before ADNI started to routinely
include tau positron emission tomography. Therefore, we
include additional information about regional brain volumes
for up to twelve years before the first tau positron emission
tomography baseline scan. For each subject, we use the ear-
liest available structural scan to determine regional reference
volumes v to which we normalize the regional volumes
of all follow-up visits within each subject v = v'&" /v(*¥.
We define a measure of nodal atrophy as the relative reduc-
tion in volume, ¢™ = 1 — v™, with an initial atrophy

value at the baseline structural magnetic resonance image
of @™ = 1 — v, For each subject, we set the initial condi-
tions for the atrophy field of our model to the relative atro-
phy values measured at time of the first tau positron emis-

sion tomography.
3.3 Bayesian inference

For each subject, we personalize the parameters of our
model such that the model predictions best reflect the
image data. For inference, we define subject-specific model
parameters 3 = { p*, a*, Gj, als, cr; }fors =1,..., N subjects,
containing a transport coefficient p®, a growth coefficient
a®, and a tau-induced atrophy coefficient G5. We also use
hierarchical priors to group information across subjects,
with hyperparameters @ = {u”, 6?, u®, 6*, u%, c%}. Using
this model construction, we compute the posterior distribu-
tions for parameters, 4 and ¢, given tau PET data, ¢P*, and
structural MRI atrophy data, ™. We calculate the posterior,
(9, @|cP®, ™) using Bayes’ rule:

e, q™9, ¢) p(9, 9)
p(cpet, qmri) :

p(9, @lc”, q™) = 0)
Here, p(cP®, q™1|8, @) denotes the likelihood, p(3, @) are
the priors for our parameters and hyperparameters, and
p(ePet, @™ 1) are the evidence.

For the likelihood, we assume a Gaussian error model
with independent and identically distributed noise at each
PET and structural MRI measurement time,

&~ Me(3,. 1), 6°1), 8)

qaiy ~ Ma@,. 0,030, ©

fors =1,...,N subjects; t = 1, ..., T,, where T is the total
number of tau PET scans for subject s, p(9,, 1) and q(3,, 1)
are the solutions to the coupled ordinary differential Egs.
(5-6), and o; and &7 are the subject-specific standard devia-
tions for the Gaussian error model. We assume the hierarchi-
cal structure illustrated in Fig. 9 to inform the prior distribu-
tions for our model parameters ¢ and hyperparameters @.
This approach allows us to gain personalized posterior dis-
tributions while simultaneously accounting for commonali-
ties between subjects [52]. Specifically, we propose that the
hyperparameters of the subject-specific prior distributions
are drawn from one common set of hyperdistributions
{,uim, O'Zﬁ+, ”ZB+’ O-Zﬁ+’ yiiﬂ, agé }if the subject is amyloid
positive, or another common set of hyperdistributions
{ ygﬁ_, o-/’;ﬁ_, Hip_»Onp_ ’42:3—’ agé_ }if the subject is amyloid
negative.

This distinction allows us to account for potential differ-
ences in tau and atrophy dynamics between amyloid groups,
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Fig.9 Hierarchical model. Hierarchical structure for our prior distributions for the amyloid positive subject group. The same prior structure

applies to the amyloid negative cohort

as well as likely similarities within amyloid groups. We
select informative priors for our hyperparameters ¢ based
on previous results [30, 35]. The full list of priors is sum-
marized in Table 3. Note that the priors for both amyloid
groups are identical, such that any difference in posteriors
will result purely from differences in the data.

We personalize our model with respect to the imaging
data by evaluating Eq. (7) numerically using two frequently
used Julia packages. Specifically, we solve Egs. (5) and (6)
in time using the DifferentialEquations.jl library [53] and
perform inference using the Turing.jl probabilistic program-
ming library [54]. We use the a No-U-Turn-Sampler [55] to
sample four chains per subject with 1000 tuning samples and
2000 posterior samples per chain.

After inference, we simulate posterior predictive curves
for a subset of subjects. Specifically, we select those sub-
jects for which a linear regression on the globally averaged

Table 3 Prior distributions

Parameter Prior distribution
p p = =
Haps/ap- Truncated normal (0 < y” < 3, mean =0, std = 1)
P — —
O Ap+/Ap Truncated normal (0 < ¢ < 3, mean =0, std = 1)
p;ﬁ /AP Truncated normal (0 < p® < 5, mean = u”, std = ¢”)
a — p—
Hixpe/ap— Normal (mean =0, std = 1)
a p— p—
OAp+/Ap- Truncated normal (0 < 6% < 3, mean =0, std = 1)
S j— Q —
XA pt/Ap- Normal (0 < a® < 5, mean = u%, std = ¢%)
ﬂG« Truncated normal (0 < % < 3, mean =0, std = 1)
AB+/Ap-
o Truncated normal (0 < ¢% < 3, mean =0, std = 1)
Ap+/Ap-
GZ A+/AB— Truncated normal (0 < G < 5, mean = u%, std = 6%)
af, aj Inverse gamma (shape = 2, scale = 3)

Prior distributions for the personalized model parameters and cor-
responding hyperparameters, and the noise associated with tau and
atrophy data

@ Springer

tau and atrophy data indicates positive slopes for both tau
and atrophy dynamics. For these subjects, the data aligns
with our model assumptions of increasing tau and atrophy
over time, thus we expect optimal conditions for our model
performance. We propagate the uncertainty from the person-
alized posterior parameter distributions through the model
to create posterior predictions of global tau and atrophy
dynamics, including credible intervals, that can be compared
to the observed data.

4 Discussion

In this study, we presented an extension of our previous
work to develop a coupled tau-atrophy model informed
by clinical observations and personalized its model
parameters to multi-modal neuroimaging data of n = 61
subjects. We employed a hierarchical model to perform
Bayesian inference, which allowed us to find significant
differences between amyloid positive and negative groups
for two model parameters, the misfolded tau growth coef-
ficient & and the tau-induced atrophy coefficient G... For
the growth coefficient, we identified group-level mean
values of 0.0161/year and —0.2042/year for amyloid posi-
tive and negative groups, respectively. In the context of
the Fisher-Kolmogorov model we chose for describing tau
misfolding and propagation, a negative growth rate implies
that protein clearance dominates over production. For the
atrophy coefficient, we identified group-level mean values
of 0.0165/year and 0.0111/year for amyloid positive and
negative groups, respectively. These group level differ-
ences between amyloid positive and negative subjects sup-
port our hypothesis that the presence of amyloid plaques
in the brain has a magnifying influence on tau and atrophy
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dynamics. These findings are consistent with other stud-
ies observing that the presence of amyloid significantly
increases misfolded tau aggregation [56] and tau-induced
neuronal loss [57]. We identified a very low transport coef-
ficient independent of amyloid status, consistent with pre-
vious findings [30, 58].

When we previously personalized our computational
model to a small preliminary data set of n = 4 subjects,
we found the tau-induced atrophy coefficient G.to be in a
very similar range for all subjects, despite large variability
in tau and atrophy trajectories between subjects. When
extending our calibration to a larger cohort of subjects in
the current study, we discovered more variability in tau-
induced atrophy coefficients, indicating that the relation-
ship between tau pathology and induced neurodegenera-
tion may be fairly complex and entail biological factors
that are most likely subject-specific.

Our analysis of the volume data indicates that any cur-
rent or prospective Alzheimer’s patients in the cohort are
in very early stages of the disease, when atrophy is mostly
pronounced in the basal ganglia regions and parts of the
temporal lobe. The atrophy data confirm two main hypoth-
eses: Atrophy and atrophy rates are more pronounced in
amyloid positive than in amyloid negative subjects, and the
spatiotemporal progression of atrophy mirrors the known
topographic pattern of tau. The lack of representation of
more advanced disease stages in our cohort may prevent
us from testing our model performance and predictive
capacity on more advanced pathology. However, as more
longitudinal scans become available for our subjects, we
can naturally address this potential limitation.

The posterior predictive simulations for a subset of n = 24
subjects show overall good performance of the model in
capturing the observed data. By design, the model fails to
describe tau or atrophy trajectories that are non-monotonic.
Our model also performs weakly when there is a small
increase in tau pathology but steep increase in atrophy or
vice versa. The linear coupling between tau and atrophy
through the coefficient G, in our model fails to reflect sce-
narios in which tau pathology is increasing slowly and lin-
early, but atrophy is increasing fast and exponentially. This
limitation may be resolved by developing more complex
atrophy models that allow for non tau-related avenues of
atrophy. We chose a simplistic model here because there is
currently not enough longitudinal multi-modal imaging data
available to ensure parameter identifiability of more complex
models with more parameters during inference.

Limited data availability lead us to make simplifica-
tions in our inference methods. For example, we did not
include any potential noise in the initial conditions extracted
from the baseline images. This simplification reduces the
number of parameters to infer and makes our approach a

viable compromise between model expressiveness and
identifiability.

Naturally, the growing amount of subject data in the
future will allow us to improve our procedure and increase
statistical certainty in our conclusions. To this end, Bayes-
ian methods are the optimal tool to work with continu-
ously updated data, and explore more complex models and
assumptions in the future.

5 Conclusion

This study extends our previous work by personalizing a
familiar coupled tau-atrophy model to a larger data set.
The model intrinsically captures known features of atrophy
including the early acceleration, late deceleration of atrophy
rates and the regional heterogeneity of atrophy that closely
follows the spatiotemporal pattern of tau neurofibrillary
tangle invasion. Extending our data set for model valida-
tion to more subjects allows us to confirm our hypothesis
that amyloid status affects tau and atrophy dynamics. This
is manifested in the distinct group-level posterior distribu-
tions for two out of three model parameters. Our Bayesian
approach provides personalized model parameters, uncer-
tainties, and model predictions and allows us to characterize
the tau- and atrophy-related pathology in single individuals
and in groups of amyloid positive and negative subjects. A
better understanding of the interplay of amyloid-beta, tau,
and atrophy, fueled by the ability to measure these biomark-
ers in vivo and non-invasively in the living brain, could open
doors to advance diagnosis and early treatment in Alzhei-
mer’s disease.
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