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Abstract

Though dynamic operation of chemical processes has been extensively explored theoretically in

contexts such as economic model predictive control or even considering the potential for cyberattacks

on control systems creating non-standard operating policies, important practical questions remain

regarding dynamic operation. In this work, we look at two of these with particular relevance to

process safety: 1) evaluating dynamic operating policies with respect to process equipment fidelity

and 2) evaluating procedures for determining the parameters of an advanced control law that can

promote both dynamic operation as well as safety if appropriately designed. Regarding the first

topic, we utilize computational fluid dynamics and finite element analysis simulations to analyze

how cyberattacks on control systems could impact a metric for stress in equipment (maximum Von

Mises stress) over time. Subsequently, we develop reduced-order models showing how both a process

variable and maximum Von Mises stress vary over time in response to temperature variations at the

boundary of the equipment, to use in evaluating how advanced control frameworks might impact

and consider the stress. We close by investigating options for obtaining parameters of an economic

model predictive control design that would need to meet a variety of theoretical requirements for

safety guarantees to hold. This provides insights on practical safety aspects of control theory, and

also indicates relationships between control and design from a safety perspective that highlight

further relationships between design and control under dynamic operation to deepen perspectives

from the computational fluid dynamics and finite element analysis discussions.
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1. Introduction

Dynamic operation of chemical processes has been a topic of interest for control for decades.

For example, periodic operation of reactors has been considered Silveston (1987); Dermitzakis and

Kravaris (2009), and dynamic operation can also be of importance in power plants Kim and Lima

(2022). In the last decade or so, economic model predictive control (EMPC) Diehl et al. (2010); Ellis

et al. (2014a) has been a control design of interest, as it is able to operate processes in a dynamic

fashion. Specifically, it is an optimization-based control design that can explicitly optimize process

economics. If a steady-state operating condition is not economically optimal, EMPC may not op-

erate a process at steady-state. This may be particularly appealing in cases where constraints or

economic metrics are time-varying Ellis and Christofides (2014); Gopalakrishnan and Biegler (2013),

as then the control design is able to account for these changes with time and drive the closed-loop

state along an optimal trajectory with respect to such objectives and constraints, rather than in-

sisting on a steady-state tracking policy. Though many theoretical studies have demonstrated that

EMPC is capable of maintaining closed-loop stability according to different notions (e.g., Heidarine-

jad et al. (2012); Griffith et al. (2017); Müller and Grüne (2016)), important practical considerations

regarding its impacts on process equipment and design require further attention.

Equipment fidelity is critical and has motivated operations which avoid the degradation of

equipment Wiebe et al. (2018). Prior work in our group Durand (2019a) has begun preliminary

investigations into how EMPC could impact process equipment; however, even with consideration

of integrating the design and control of processes under EMPC Oyama and Durand (2020b), our

understanding of how EMPC interacts with equipment and process design remains incomplete.

While dynamic process operation can be set up by advanced control policies, another type of

event which could cause dynamic operating policies for a system is cyberattacks. Cyberattacks

represent an increasing threat to interconnected process systems. These threats are varied (in

targeting strategy, level of sophistication, and motive) and can interact with control systems in

many ways. Since the control systems are directly tied to the process itself, control actions (and

thus cyberattacks) can directly affect process equipment. Such control actions can be manipulated
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to a variety of ends, including covertly damaging process equipment to cause delays or to create an

accident (as cyberattacks Cormier and Ng (2020) and dynamic operating policies have potential to

damage process equipment Wang et al. (2019); Durand (2019b)). The potential severity of these

consequences merit investigation into ways of detecting, preventing, and mitigating the consequences

of cyberattacks.

Goals for cyberattacks on industrial systems may include, but not be limited to, sabotage of

equipment, data alteration, and intellectual property theft motivated by financial gain Mahoney

(2017), seeking to target vulnerabilities in manufacturing systems Tuptuk and Hailes (2018). Ma-

honey (2017) notes that cyberattack policies may change over time to take advantage of an increas-

ingly digitized and data-driven manufacturing sector based on wired/wireless network connections.

The integration of physical processes, control designs, embedded systems and communication net-

works in a cyber-physical system (CPS) framework Ding et al. (2018), though it advances process

operation and enhances the capability to control the process, makes these connected systems vul-

nerable to cyberattacks which can cause changes to the CPS components (sensor measurements,

signals to actuators, controller code) consequently affecting the system dynamics.

Several approaches to analyzing a system to identify and understand cyberattacks have been

developed. These include information technology approaches where specific computer system lay-

outs are combined with risk detection or analysis methods Candell et al. (2014); Perales Gomez

et al. (2021); Wu et al. (2018). Industry typically addresses cybersecurity in similar terms, while

also applying best-practices or standards to develop an organizational strategy to ensure cyber-

security Byres and Lowe (2004). Industry is interested in securing cyber-physical systems be-

cause attacks can potentially, unbeknownst to operators, affect the structural integrity of produced

parts Wells et al. (2014) and process control systems Khorrami et al. (2016).

Prior work in our group has focused on a variety of issues surrounding cybersecurity, including

investigating the modeling of equipment in controller design, which could yield benefits that include

safer plants Durand and Wegener (2020); Nieman et al. (2020), and developing control theory that

enables characterization of control designs which could guarantee that certain conditions on safety of

a process hold even in the presence of cyberattacks. However, these topics have not been investigated
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thoroughly from a practical perspective to work toward understanding the industrial relevance of

this research, and whether it would add any layers of security to plant attack-handling strategies

or not. For example, our prior work addressing process and equipment design in a cybersecurity

context has been limited, focusing on several small-scale simulations of processes described by

ordinary differential equations and a high-level discussion of how a more rigorous computational fluid

dynamics and finite-element analysis simulation might be used in exploring cyberattack impacts on

processes. Furthermore, though our work has developed theory for cyberattack-resilient control

design, an appropriate method for obtaining the parameters of the control laws which enable these

theoretical guarantees is unclear. As noted in Oyama et al. (2021), developing a controller intended

to provide resilience against cyberattacks without checking that the theoretical conditions are met

may not be beneficial, because it may not actually have cyberattack-resilience guarantees and

therefore there may be vulnerabilities which an attacker could exploit.

Motivated by these gaps in the practical use of cyberattack-handling strategies for chemical pro-

cess systems to prevent accidents at chemical plants, and gaps in our understanding of how other

dynamic operating policies might impact process equipment, this work first develops a detailed

discussion of how the impacts of cyberattacks and other potentially dynamic operating policies on

process equipment might be evaluated using computational fluid dynamics and finite element anal-

ysis through demonstration using a steam methane reforming reactor. Subsequently, we compare

concepts for developing simulation studies for an advanced control strategy when it is desired to

demonstrate the controller’s safety properties. The advanced control strategy for which we will

perform this analysis has been modified to integrate it with cyberattack detection policies so that,

if certain theoretical guarantees hold with respect to the modified control law, certain types of

undetected attacks cannot pose a safety hazard (e.g., Oyama and Durand (2020a)). In future work,

we would like to be able to demonstrate the operation of such cyberattack-resilient control and de-

tection strategies with simulation studies. We consider the investigation of simulation strategies for

the control law that the cyberattack-resilient forms are derived from to be a step toward simulating

the cyberattack-resilient controllers.
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2. Computational Fluid Dynamics and Finite Element Analysis: A Framework for

Comprehensive Testing of Dynamic Operation Impacts

We previously suggested that computational fluid dynamics (CFD) and finite element analysis

(FEA) simulations could be used as a cyberattack test bed Nieman et al. (2020). Such simulations

could be useful because the equations involved are complicated, and simulations may demonstrate

how a system and controller will respond to different conditions. There is a limited amount of

research focusing on using CFD and FEA methods to analyze cyberattacks. However, CFD and

FEA simulation methods are widely used to analyze components of a variety of systems in both

industry and research settings Anderson and Wendt (1995) including, for example, piezoelectric

disks Meesala et al. (2020) and smart tires Behroozinia et al. (2019). Therefore, these modeling

strategies are appropriate to model process equipment as well. This section presents an exploration

of utilizing CFD/FEA for modeling and examining the equipment-control interface in depth.

Specifically, this section uses computational fluid dynamics and finite element analysis to study

a steam methane reforming (SMR) reactor under a cyberattack. This builds on previous work Lao

et al. (2016); Tran et al. (2017a), which simulated fluid flow through the reactor, to also include a

structural analysis of the pipe wall material. Here, we specifically consider an attack that targets

a sensor and alters the sensor measurements to be different values in an effort to damage process

equipment. The simulation was created using ANSYS Workbench, which includes leading industry

CFD/FEA software capable of simulating a wide variety of phenomena. Both FEA and CFD involve

subdividing a region into elements, which are then used to numerically integrate the coupled partial

differential equations involved in fluid dynamics (in the case of CFD) and solid mechanics (in the

case of FEA).

We close with an extension of the simulation of the SMR under a cyberattack, which specifically

explores how advanced control policies (which have a potential to create dynamic effects) could

impact process equipment. To do this, the simulation results are used to create reduced-order data-

driven autoregressive with exogenous terms (ARX) models to relate control inputs to equipment

stress in a computationally tractable way. These models are then applied in an IPOPT code Wächter

and Biegler (2006) with ADOL-C Walther and Griewank (2009) (using code from Walther (2010)
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for integrating them in C++) to simulate the process under model predictive control (MPC), which

is a control algorithm that optimizes the future trajectory of the process using estimates from

a process model. These simulations indicate that closed-loop MPC simulations, combined with

efficient reduced-order models, can give a useful test bed environment for predicting the response

of a process to cyberattacks and other dynamic operating policies.

2.1. CFD/FEA Evaluation Preliminaries

2.1.1. Steam Methane Reforming (SMR) Reactors

One method of the production of hydrogen is through using a specially designed reactor called a

steam methane reformer (SMR), which consists of a number of packed tubes located in a chamber

containing burners to apply heat to the endothermic reaction. A simplified schematic of an SMR

reactor is shown in figure 1. There is no mixing of the reaction and combustion streams and they

interact through heat conduction through the tube walls. In this work it is assumed that the tubes

are packed with nickel oxide catalyst particles over an alpha alumina support (Ni/α − Al2O3),

which is necessary to enable the reaction to form hydrogen.

The main reactions occurring in the tube-side reaction are as follows Xu and Froment (1989):

CH4(g) +H2O(g) ⇌ CO(g) + 3H2(g) (1a)

CO(g) +H2O(g) ⇌ CO2(g) +H2(g) (1b)

CH4(g) + 2H2O(g) ⇌ CO2(g) + 4H2(g) (1c)

2.1.2. Von Mises (Equivalent) Stress

In the mechanics of solids, stress (typically denoted as σ) is a quantity that represents the

amount of force F applied over a given area A. In a single dimension, this can be represented

simply as σ = F/A; however, in three dimensions stress is denoted as a tensor with nine terms, as

in figure 2. These components, denoted as σij, represent the stress on plane i in the direction j.

For example, σxy represents the stress on the x-plane in the y-direction. If i = j, the component is

known as normal stress, and if i ̸= j, the component is known as shear stress.

The von Mises stress σVM is a scalar quantity that can be used as a yield criterion and is

applicable to ductile and isotropic materials ANSYS (2022). It is a function of the stress state of
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Figure 1: Simplified schematic of a steam methane reforming reactor (note that a real SMR would have many more
tubes than what is shown, and the figure is not to scale).

���

 

!

"

�##

�$#

�$$

�$�

�#$
�#�

��#

��#

� =

�$$ �$� �$#
��$ ��� ��#
�#$ �#� �##

�%& → ()*+,, -. )ℎ+ 012.+ 3

3. )ℎ+ 43*+5)3-. 6

Figure 2: The stress tensor, consisting of nine components.
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the material but enables the multi-dimensional nature of stress shown in Fig. 2 to be represented

in a single value.

2.1.3. Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)

Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) are both continuum

mechanics methods, which have the goal to represent the behavior of continuous materials. Specif-

ically, CFD is used to simulate fluid flow and FEA is used to simulate solids. Both methods rely

on dividing the considered geometry into elements and forming a mesh, which is necessary to solve

the complex set of partial differential equations involved.

2.1.4. Autoregressive with Exogenous Terms (ARX) Models

The objective of the ARX modeling strategy is to find appropriate weights (a1, a2, . . . , an and

b1, b2, . . . , bm) to create a representative model of a dynamic process. The general form of the ARX

model is as follows Billings (2013):

y(k) = −

n
∑

i=1

aiy(k − i) +
m
∑

j=1

bju(k − j) (2)

where y(k) and u(k) represent the discrete time output and input (respectively) at a time step k.

In this equation, y(k) represents the output at the current time step. Outputs from the previous n

time steps are designated as y(k − 1), y(k − 2), . . . , y(k − n) and inputs from the previous m time

steps are represented as u(k − 1), u(k − 2), . . . , u(k −m). The number of previous outputs n and

inputs m considered for the model can be adjusted to increase how well the model represents the

data. We define p = max(n+ 1,m+ 1).

To find the weights, a set of N data points is used. The data takes the form of a series of values

taken at time steps 1, 2, . . . , N . The input data can then be represented as u(1), u(2), u(3), . . . , u(N)

and the output data as y(1), y(2), y(3), . . . , y(N). This data is used to define a vector Y =

[y(p), y(p + 1), . . . , y(N)]T and a matrix X (which is created using the input-output data) and
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is defined in the following manner:

X =



















−y(p− 1) −y(p− 2) · · · −y(p− n− 1) u(p− 1) u(p− 2) · · · u(p−m− 1)
−y(p) −y(p− 1) · · · −y(p− n) u(p) u(p− 1) · · · u(p−m)

−y(p+ 1) −y(p) · · · −y(p− n+ 1) u(p+ 1) u(p) · · · u(p−m+ 1)
...

... · · ·
...

...
... · · ·

...
−y(N − 2) −y(N − 3) · · · −y(N − n− 2) u(N − 2) u(N − 3) · · · u(N −m− 2)
−y(N − 1) −y(N − 2) · · · −y(N − n− 1) u(N − 1) u(N − 2) · · · u(N −m− 1)



















X and Y are then used to solve for a vector of the weights θ = [a1, a2, . . . , an, b1, b2, . . . , bm]
T as

follows:

θ =
(

XTX
)−1

XTY (3)

After θ has been determined with one set of data, several other data sets of input-output data (from

the same process) should be used to verify the model.

2.2. CFD/FEA Simulation Methods

2.2.1. Fluid Mechanics Simulation

A fully three-dimensional one meter long segment of a single steam methane reforming tube

was simulated using ANSYS simulation software v20.1 and is based on the work done in Lao et al.

(2016). The gaseous fluid phase flowing through the pipe consists of CH4, CO, CO2, H2O, and

H2, and was simulated using the ANSYS Fluent application. The simulation incorporates Fluent

user-defined functions (UDFs) to include custom functionality including the reaction mechanism

from Xu and Froment (1989) and an adjustable temperature profile along the outer tube wall (the

wall temperature can be adjusted to impact the H2 concentration at the outlet). The resulting

Fluent simulation was coupled with an ANSYS structural simulation to analyze the impacts of

temperature and pressure on stress of the tube wall material.

The Fluent simulation assumes viscous flow and the standard k − ϵ flow model with enhanced

wall treatment, which is needed to represent the turbulent flow in the process. This flow model

accounts for the complex flow iterations that occur near a solid wall during turbulent flow by

including transport equations for the kinetic energy (k) and the rate of dissipation of the kinetic

energy (ϵ) to the fluid mechanics simulation. The enhanced wall treatment option creates a layered

model near the wall to more accurately represent experimental observations during the simulation of
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turbulent flow. These layers consist of a viscous sublayer nearest the wall where the flow is laminar

(with a linear velocity profile), a buffer region between the laminar and turbulent flow regions, and

fully-turbulent outer region where the flow is logarithmic. Pressure gradient, full buoyancy effects,

thermal, and viscous heating effects are active and modify aspects of the k− ϵ equations to account

for the associated phenomena ANSYS (2020a).

The pressure-based solver was used instead of the density-based solver as in Lao et al. (2016).

In addition, the porous zone formulation is used to simulate flow through the catalyst Lao et al.

(2016). The physical velocity formulation was selected over the superficial velocity formulation

because it allows for a prediction of velocity, thus leading to a more accurate model. The porous

zone approximation estimates the effects of porous media on the flow by introducing terms that

act as a momentum sink through the use of empirically derived parameters ANSYS (2020b). The

selected parameters include a viscous resistance inverse absolute permability of 8,782,800 1/m2 and

an inertial resistance of 1,782 1/m. The fluid porosity was set to be 0.609 Lao et al. (2016).

The density of the gaseous reaction mixture is assumed to be ideal, the specific heat is determined

using a mixing law, the ideal-gas mixing laws are assumed to determine the thermal conductivity and

viscosity, and kinetic theory is used for determination of mass diffusivity and the thermal diffusion

coefficient. The diffusion of material was accounted for by enabling the diffusion energy source,

full multi-component diffusion, and thermal diffusion options. The process-side inlet conditions are

identical to those in Lao et al. (2016) and include a gauge pressure of 3038.5 kPa, a temperature of

887 K, and a flow rate of 0.1161 kg/s. Inlet mole fractions for each entering species are as follows:

0.2487 for CH4, 0.0001 for CO, 0.0117 for CO2, 0.7377 for H2O, and 0.0018 for H2. The outlet

conditions were given reasonable values from Latham et al. (2011) including a gauge pressure of

2804.0 kPa, and mole fractions of 0.0526 for CH4, 0.0845 for CO, 0.0575 for CO2, and 0.4631 for

H2, with the remainder being H2O. The catalyst material was given a density of 3960 kg/m3, a

specific heat of 880 J/kg-K and a thermal conductivity of 33 W/m-K Lao et al. (2016). The tube

wall was assumed to be HP-grade stainless steel, which is a material that has been used for SMR

reactors Webb and Taylor (2007). The thermal properties of the tube wall include a density of

7861.10 kg/m3, a specific heat of 460.18 J/kg-K, and a thermal conductivity of 29.40 W/m-K Steel
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Founders’ Society of America (2004). Tables 1-2 summarize simulation parameters for reference.

Table 1: Specified conditions for the inlet boundary conditions (identical to Lao et al. (2016)) and a guess for the
outlet conditions (from Latham et al. (2011)) for the SMR simulation.

Inlet Conditions Outlet Conditions (Initial Guess)

Temperature (K) 887 1143.15
Gauge Pressure (kPa) 3038.5 2804.0
Flow Rate (kg/s) 0.1161 0.1161
CH4 Mole Fraction 0.2487 0.0526
CO Mole Fraction 0.0001 0.0845
CO2 Mole Fraction 0.0117 0.0575
H2O Mole Fraction 0.7377 0.3423
H2 Mole Fraction 0.0018 0.4631

Table 2: Simulation parameters: Catalyst and fluid phase properties (taken from Lao et al. (2016)), tube wall
HP-grade stainless steel material properties (Steel Founders’ Society of America (2004)), empirically derived porous
phase parameters (ANSYS (2020b)), and dimensions of geometry (radii are the same as in Lao et al. (2016)).

Catalyst Density 3960 kg/m3

Catalyst Specific Heat 880 J/kg-K
Catalyst Thermal Conductivity 33 W/m-K

Fluid Phase Porosity 0.609
Wall Density 7861.10 kg/m3

Wall Specific Heat 460.18 J/kg-K
Wall Thermal Conductivity 29.40 W/m-K

Wall Young’s Modulus 2.7× 107 psi
Wall Poisson’s Ratio 0.3

Wall Thermal Expansion 1.312× 10−5 1/F
Viscous Resistance (Inverse Absolute Permability) 8,782,800 1/m2

Inertial Resistance 1,782 1/m
Tube Length 1 m

Tube Outer Radius 0.073 m
Tube Inner Radius 0.063 m

The furnace-side reaction was not simulated. Instead, the following equation from Lao et al.

(2016) was applied along the outer tube wall via a UDF:

T (z) = −0.0221z4 + 0.8003z3 − 10.734z2 + 64.416z + (Tmax
wall − 151.83) (4)

where z represents the length coordinate along the pipe length and Tmax
wall represents the highest

temperature applied by the heat source in Kelvin. As in Lao et al. (2016), a UDF is used to
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modify the value of Tmax
wall . Finally, under-relaxation factors of 0.3 (which are used in the pressure-

based solver for controlling how variables are updated at each iteration ANSYS (2020b)), double

precision, a coupled pressure-velocity formulation, and second order upwind spatial discretization

were utilized.

Remark 1. The reforming tube model is only a 1 m segment of what was a longer (12.5 m) tube

in Lao et al. (2016). In addition, the reforming tube model is a simplified model, as reflected by the

fact that it includes a heat profile along the wall that is being adjusted by the control strategy. In a

full reformer, the temperatures along the walls of the reforming tubes are not adjusted explicitly, but

instead the flow rates of fuel through burners can be adjusted. The geometry can create temperature

profiles on the outer tube walls that are not the same for all reforming tubes in a full reformer Tran

et al. (2017b). The direct control of the temperature of the tube wall will affect the results for the

stress on the walls, as it enables sudden jumps in the temperature at the walls which would not be

possible in a physical system due to the need to change the temperature of the tube walls through first

manipulating the burner flow rates. These differences between a physical system and the simulated

system do not, however, detract from the main message of this section, which is that CFD and FEA

analysis provides a useful modeling framework for analyzing impacts of dynamic operating policies

on equipment, either directly in the software or through using the software to develop reduced-order

models that can then be used for modeling the impacts of the dynamic operating policies on equipment

in software such as MATLAB or Ipopt.

2.2.2. Structural Simulation

The results of the fluid flow simulation were imported into ANSYS Transient Structural to

perform a transient solid mechanics simulation. This includes the temperature profile in the solid

and the pressure profile along the inner surface of the tube. This form of coupling Fluent to

Transient Structural is one-directional, as the entire Fluent simulation is completed before starting

the structural simulation. This reflects the assumption that the deformation of the solid does not

have an impact on the fluid flow simulation, which is reasonable as the deformation of the pipe

would be expected to remain relatively small. It is also assumed that the pipe material remains

entirely in the elastic region.
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In the Transient Structural simulation, one end of the tube was set to have a fixed boundary

condition, which prevents displacements in all directions. In addition, atmospheric pressure of

101,325 Pa was applied along the outer surface of the tube, and a gravitational force was included.

The direction of gravity was set to be in the same direction as the fluid flow, as the SMR reactor

being simulated is top-fired. The ambient temperature is assumed to be at room temperature.

Finally, the HP steel tube wall was assigned a value of Young’s Modulus of 2.7×107 psi, a Poisson’s

Ratio value of 0.3, and a thermal expansion coefficient of 1.312×10−5 1/F Steel Founders’ Society of

America (2004). In addition, to consider only elastic deformation, the yield and ultimate strengths

were set to arbitrarily high values of 1× 1030 Pa.

2.3. Considerations Regarding CFD/FEA Simulation Consistency and Precision

2.3.1. Simulation Convergence

Given that both the Fluent and Transient Structural simulations are iterative calculations, it is

important to ensure that the results converge to a value after a sufficient number of iterations have

been completed. In this paper, convergence of the Fluent simulations was ensured by monitoring

the residuals and heat flux balance during the simulation.

Fluent residuals are values that are calculated at the end of each iteration and consist of a

weighted sum of the conservation of each variable across all elements in the mesh. As the simulation

approaches convergence, the residuals approach zero ANSYS (2020b). For simulations completed

in this work, the residuals were ran until they leveled off and were on the order of magnitude of, at

most, 10−7.

The heat flux balance is a scalar value that represents the sum of energy (in Joules) entering

and leaving the overall system. For steady-state simulations, the total heat flux should approach a

value of zero. This may not be true for the transient simulations where the system is no longer at

equilibrium. For simulations completed in this work, it was ensured that the total heat flux values

fell below an order of at least 10−3 W for the steady-state simulations and leveled off between each

time step of a transient simulation.
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Table 3: Meshes used for mesh independence testing (1m tube).

Elements in Elements in Elements in Number of Number of

r direction* θ direction z direction Fluid Elements Solid Elements

7 52 125 101,184 41,664
10 72 180 222,139 121,720
14 100 250 478,080 334,656
23 168 411 1,630,570 1,546,520

*In the solid

2.3.2. Mesh Independence

The method of solving both CFD and FEA problems involves discretizing the domain into

a grid called a mesh. The mesh consists of discrete points called nodes, which are connected

together to form elements. In general, smaller elements will lead to a more accurate CFD result;

however, computation time becomes a limiting factor. Therefore, it is necessary to select a mesh

that balances computation time and solution accuracy. To do this, a mesh independence test is

applied that involves repeatedly solving the problem with progressively finer meshes and comparing

results, such as temperature or stress. The mesh was considered to be sufficiently fine when the

change in results between a coarser and finer mesh was within a certain threshold. In this study,

ANSYS ICEM CFD was used to generate geometry and meshes.

In the meshes used in this test, the ratio of the dimensions of the elements in the solid was

maintained when decreasing the element size. The selected ratio of 14:100:250 was approximately

enforced (rounding when needed), which represents the number of elements in the r, θ, and z

directions respectively. This was accomplished through changing the number of divisions in the

mesh along the edges of the geometry. This also fixes the number of elements in the fluid, as both

the fluid and solid meshes are created simultaneously. The number of divisions in the r direction in

the fluid is set at 15 and remains constant for all meshes tested. The number of elements applied

in the meshes for the fluid and solid domain are displayed in Table 3.

Figure 4 plots the equivalent stress for four different meshes following the inputs given in Figure 3.

These meshes are identified by the number of divisions in the r direction (r=7, r=10, r=14, and

r=23). The legend also contains other labeling (such as original and simplified, the time step size,

14



and whether the loads were ramped or stepped), which will be discussed in the following sections.

Looking at Figure 4, the largest change occurs when increasing the number of elements from the

r=7 to the r=10 mesh. Further refinements to r=14 and r=23 are relatively small. Given this,

the r=10 mesh is considered sufficiently independent for the purposes of demonstrating the use

of CFD/FEA simulations in analyzing control and equipment interactions in this work and will

be used in the final simulations. We note that because no steady-state structural simulation was

performed, in all structural simulations in this work, the model is initially run at a steady-state to

enable the structural simulations to reach a result that appears to represent an initial equilibrium

condition in the plots.

Figure 3: Value of Tmax

wall
over time.

2.3.3. Stepped and Ramped Loads

In Transient Structural, it is possible to apply the temperature and pressure loads as either

stepped (i.e., the load is fully applied at the beginning of each time step) or ramped (i.e., the load

is applied gradually over the course of calculating the results of a time step) when performing the

calculation. To ensure that the method selected would not impact the FEA results, we compared

the results of these two methods by checking the values determined at the end of each time step. To

determine the significance of the difference between stepped and ramped loads, Tmax
wall inputs were
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Figure 4: Comparison of structural results based on different meshes.

supplied to the system (Figure 3) and the resulting von Mises stresses were determined (Figure 5).

Displayed are the von Mises stress results for the r=7 and r=10 meshes with both ramped and

stepped loading. The values in between each time step (the values calculated at each sub time

step) vary slightly, but the results are similar. Therefore, in this work, ramped loads will be favored

because they give more natural and smooth looking results.

2.3.4. Fluent Simplifications

Through the examination of results of the fluid flow simulation, it was found that several features

could be disabled to speed up the simulations without significantly affecting the structural results.

To demonstrate this, transient Fluent simulations were created with the following options disabled:

pressure and thermal gradient, buoyancy, and viscous heating effects in the k − ϵ wall model, and

the diffusion energy source, full multi-component diffusion, and thermal diffusion options. These

changes allow for the under-relaxation factors to be increased from 0.3 to 0.5 which allows for faster

convergence. The results of this analysis are shown in Figure 6, in which the same set of inputs

were applied as in previous sections (Figure 3). The simplified Fluent simulation results do not

meaningfully change the transient structural equivalent stress results for both the r=7 and r=10

meshes. Therefore, the final simulations will use the simplified setup.
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Figure 5: Comparison of maximum equivalent stress when structural loads (temperatures and pressures) are applied
in a stepped and ramped manner.

Figure 6: Comparison of structural results based on imported loads from the original Fluent simulation (with all
options enabled) compared to imported loads from a simplified Fluent simulation.

2.3.5. Time Step Independence

Another consideration is the need for the simulation results to be independent of time step

size. In general, smaller time steps will lead to more accurate results. However, this also increases
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computation time. Therefore, a series of simulations was completed with progressively smaller time

steps and the results are compared. The results should converge to a solution that is independent

of the time step, and the largest of the converged time steps should be selected. In this study, four

different time step sizes were simulated with the r=10 mesh. These include time steps of 0.005

seconds, 0.05 seconds, 0.01 seconds, and 0.02 seconds. The results of this analysis are shown in

Figure 7, in which the same set of inputs were applied as in previous sections (Figure 3). The von

Mises stress results demonstrate that decreasing the time step size below 0.01 seconds creates a

relatively small difference in the maximum equivalent stress. The final simulations will thus use

this time step size.

Figure 7: Comparison of structural results based on different time steps.

2.4. Cyberattack Simulation Results

The purpose of this section is to demonstrate the use of coupled CFD/FEA simulations in

analyzing equipment response to a cyberattack on the actuator of the steam methane reforming

tube described in sections 2.2.1 and 2.2.2 with the r = 10 mesh. In these simulations, the value

of Tmax
wall was set to certain values to represent a cyberattack that targets the sensor measurements.

In the first simulation (see figures 8 and 9), the simulation begins at a steady-state of Tmax
wall = 987

K. After a short period of time, a cyberattack is applied where Tmax
wall is set to 1050 K. This causes

18



both the area-weighted hydrogen mole fraction at the outlet and the maximum equivalent stress to

increase. The second attack (see figures 10 and 11) represent a more complicated attack. Here, after

a steady-state period at Tmax
wall = 1148.83 K, the value of Tmax

wall is attacked to cycle from the upper

and lower bounds on Tmax
wall every 0.2 seconds. The outlet hydrogen mole fraction remains relatively

steady, but begins to decrease after about a second. The maximum equivalent stress, however,

increases and decreases rapidly along with the temperature changes (the time axis in Fig. 11 is

shorter than that in Fig. 10).

In the second simulation where the value of Tmax
wall oscillates (figures 10 and 11), it is worth noting

that the outlet hydrogen mole fraction decreases because the attack is unbalanced around the initial

steady-state. That is, the distance Tmax
wall falls is greater than the distance when it increases. If Tmax

wall

oscillated evenly around the steady-state (for example, by repeatedly increasing and decreasing

by 100 K), the hydrogen mole fraction would be expected to change negligibly. This means that

a hydrogen concentration sensor at the outlet would not be able to detect the attack, but the

tube wall would experience significantly more stress. This demonstrates how simulation can reveal

consequences of cyberattacks. In this case, adding another sensor (such as a temperature sensor to

detect the tube wall temperature, or a flow rate sensor to detect the change in combustion feed)

would help ensure this attack could be detected.

These simulations could be modified to represent a wide variety of attacks if desired and indicate

that a potential utility of CFD/FEA could be in evaluating safety hazards due to control system

cyberattacks while also exploring the impacts of attacks on, for example, profitability. Though this

example considers a relatively small system (a portion of a single tube), CFD/FEA simulation of

systems under control system cyberattacks has the potential to be helpful in cases where outcomes

of those problems are more complex or difficult to predict.

2.5. Other Dynamic Operating Policies: Advanced Control Simulation Results

This section discusses how CFD/FEA simulations might be used to analyze relationships be-

tween control and equipment. Here, we first use the CFD/FEA simulations to develop reduced-order

models of the SMR process. Two linear single-input-single-output models were made using the au-

toregressive with exogenous terms (ARX) model to relate Tmax
wall to (1) the outlet hydrogen mole
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Figure 8: Top: T
max

wall
attack profile for a stepped attack. Bottom: Resulting area-weighted H2 mole fraction at the

outlet of the 1 m tube.
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Figure 9: Top: Tmax

wall
attack profile for a stepped attack. Bottom: Resulting maximum equivalent stress.

fraction and (2) the maximum overall value of equivalent stress in the tube. Then we develop

several model predictive control (MPC) simulations with different constraints. The first MPC max-

imizes the hydrogen outlet concentration without knowledge of the impacts on equivalent stress for
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Figure 10: Top: Tmax

wall
attack profile for an oscillating attack. Bottom: Resulting area-weighted H2 mole fraction at

the outlet of the 1 m tube.
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Figure 11: Top: Tmax

wall
attack profile for an oscillating attack. Bottom: Resulting maximum equivalent stress.

a given initial condition. The second controller optimizes the hydrogen mole fraction and contains

a constraint to constrain the von Mises stress to be below a specified value. The third MPC applies

a material constraint which is designed to ensure that the average feed fuel rate is maintained at a
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specified value while optimizing hydrogen outlet concentration (more details are included below).

Finally, the fourth MPC applies both the equivalent stress and material constraints. In all cases,

the hydrogen mole fraction ARX model is used in the objective function for computing control

actions. Here, we explore the possibility that reduced-order models of hydrogen concentration and

stress developed from the CFD/FEA simulation data may provide a means for quickly postulating

effects of different control cyberattacks on equipment fidelity as well as process profitability.

2.5.1. Outlet Hydrogen Mole Fraction Model

In Fig. 7, a time step size for solving the coupled Fluent/Structural simulation was selected

based on time independence studies. The same time step size was used for both the CFD and FEA

studies in that case due to the manner in which the Structural results depend on the Fluent results.

However, the timescale at which the transport phenomena evolve in Fluent is slower than that in

the structural studies. Therefore, for developing the reduced-order model, we will explore using

larger time steps in the ARX model for the outlet hydrogen mole fraction compared to the time

step that would be needed for the ARX model for the maximum equivalent stress. To ascertain the

step size to use for the outlet hydrogen mole fraction, three different open-loop input trajectories

were utilized that had similar aggregate characteristics (the top figure in Fig. 12). Specifically, for

all three trajectories, three average values of Tmax
wall were achieved, but with added noise consisting of

a randomly-selected value of ±10 K added to the input trajectory at every time step (because the

time steps were different, this caused different trajectories of the inputs around the three different

average temperatures). The goal of including both larger-scale and smaller-scale variations in the

inputs when comparing the hydrogen mole fraction results with different time steps was to explore

to what extent the various types of changes impacted the hydrogen mole fraction profiles. As shown

in Fig. 12, when three time steps of 0.01, 0.05, and 0.1 seconds were used, the results over 8 seconds

of simulation were similar with both types of changes to the inputs. Due to this, we considered

that the step size of 0.1 seconds was adequate compared to the 0.01 and 0.05 second time steps.

To investigate whether the time step size for the outlet hydrogen mole fraction model could be

further increased, another simulation with aggregate and small-scale variations in Tmax
wall was used to

compare time steps of 0.1 seconds and 0.5 seconds (see figure 13). Because this second comparison
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was between two models with longer time steps, it could be used to analyze a longer time period of

operation (in this case, variations in the inputs occurred for over 35 s) without the computational

challenge of simulating the 0.01 and 0.05 second models over such a long time period. Again the

difference between the outlet hydrogen mole fraction trajectories appeared to be small over the time

period simulated, so that the time step of 0.5 seconds was selected for the hydrogen mole fraction

ARX model and for generating data specifically for identifying this model. Based on Fig. 7, the

time step of 0.01 seconds continued to be used for the equivalent stress ARX model and for the

data sets used in identifying it.
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Figure 12: Top: Open-loop input T
max

wall
data for three different simulated time steps (0.01, 0.05, and 0.1 seconds).

Bottom: The resulting outlet H2 mole fraction profiles.

The outlet hydrogen mole fraction ARX model was developed using the simulation shown in

figure 14 and validated using four other sets of data (two of which are shown in figures 15 and 16).

All of these sets of data were created using simulations with 0.5 second time steps. These simulations

consist of ANSYS Fluent simulations that were run in an open-loop manner with different sets of

inputs. ARX models were created with 5 through 11 terms, and the resulting mean errors were

determined using the following equation, which is the square root of the average of the sum of
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Figure 13: Top: Open-loop input Tmax

wall
data for two different simulated time steps (0.1 and 0.5 seconds). Bottom:

The resulting outlet H2 mole fraction profiles.

squared deviations Rhinehart (2016):

Error =

√

∑N
i=1(yi − ỹi)2

N
(5)

where N is the number of data points, yi is the i-th data point from the CFD/FEA simulation

results, and ỹi is the i-th value from the fitted ARX model.

Based on these metrics, the simplest model (i.e., the model with the fewest input and output

terms) with small error values for the considered validation data was selected. The error values tend

to decrease as the number of terms increases from 5 to 9, but some of the error values increased

substantially when increasing the number of terms to 10 or 11. In addition, it was also ensured

that the error is several orders of magnitude lower than the data itself. Based on these results, the

an ARX model with 9 terms was selected.

2.5.2. Equivalent Stress Model

The selection of the maximum equivalent (von-Mises) stress model followed a similar procedure

as the outlet hydrogen mole fraction model. This time, models with 1 through 6 terms were created.

The error values decrease significantly going from the 1 to 3-term models, and then they decrease
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Figure 14: Data set used for fitting the outlet H2 mole fraction ARX model.
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Figure 15: A set of data used to validate the outlet H2 mole fraction ARX model.

more gradually for 4 or more terms. Given this, a 4-term model was selected. The data set used

to determine the paramteters for the ARX model is shown in figure 17, and two sets of validation

data are shown in figures 18 and 19.

Remark 2. These studies used only a limited amount of data to develop the ARX models for the

reformer and the equipment due to the computation time needed for solving the CFD/FEA system
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Figure 16: A set of data used to validate the outlet H2 mole fraction ARX model.
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Figure 17: Data set used for fitting the maximum equivalent stress ARX model.

and the fact that the models obtained provided results that were in line with what was expected when

used in the model predictive controllers described in the following sections. If CFD or FEA modeling

was to be used in industry for analyzing impacts of equipment stress, a more thorough benchmarking

strategy may be used, with additional data, to fully validate the models, and other model structures
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Figure 18: A set of data used to validate the maximum equivalent stress ARX model.
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Figure 19: A set of data used to validate the maximum equivalent stress ARX model.

that can capture nonlinearities (e.g., neural networks) might also be considered.

2.5.3. Material Constraints

In order to enforce time-varying operation, a constraint (similar to one applied in Ellis et al.

(2014b)) on the material consumption of fuel was included. The purpose of the constraint is to
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ensure that the average amount of material used (in this case, fuel supplied by the burner) remains

constant. To achieve this, the total time of operation is divided into “operating periods,” each

consisting of M sampling periods. Within each, the following constraints are applied:

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≤ max(M −N − k, 0)Ffuel,max

(6)

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≥ max(M −N − k, 0)Ffuel,min

(7)

where M represents the number of sampling periods in an operating period, N represents the

number of sampling periods in the prediction horizon (note that N < M is assumed), Ffuel,ave is

the desired average fuel consumption, τ1, τ2, ... represents the numbering of the sampling periods

within each operating period (the number is set to one at the beginning of each operating period),

Ffuel represents the fuel usage to be estimated in the prediction horizon by the controller, F ∗

fuel

represents previously determined fuel usages, and the upper and lower allowable fuel usage are

Ffuel,max and Ffuel,min respectively.

The overall idea with these constraints is that MFfuel,ave represents the amount of fuel available

in each operating period to ensure that the average fuel usage remains at Ffuel,ave. During previous

sampling periods, the controller applied control actions that consumed an amount of fuel represented

by −
∑k−1

i=0 F
∗

fuel(τj). In the current prediction horizon and operating period, the controller will

select optimal actions that consume an amount of fuel represented by −
∑min(k+N,M−1)

j=k Ffuel(τj).

The sum of these three terms is bounded by the minimum and maximum amount of fuel that

could be consumed during the remaining sampling periods in an operating period, represented

as max(M − N − k, 0)Ffuel,min and max(M − N − k, 0)Ffuel,max respectively. The purpose in

implementing the constraints in this way is that it ensures that an average fuel usage is maintained

without needing to optimize over the entire time of operation.

For the controller to decide on optimal Ffuel values, a relationship was developed between Ffuel

and Tmax
wall . An overview of this process is included in the following paragraphs.
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The energy generated by the burner (Eflame in units of energy/time) that supplies heat to the

reaction tube can be estimated using the flow rate of fuel to the burner (Ffuel in units of moles/time),

the heat of combustion (∆Hcomb in units of energy/mol), and an efficiency (η):

Eflame = ηFfuel∆Hcomb (8)

where η considers the combined effects of incomplete conversion during the reaction and energy lost

due to the outflow of the combustion mixture and through the reactor walls to the environment,

and is considered to be η = 0.64. Equation 8 assumes that the flow rate of fuel is proportional to

the energy the flame produces (i.e., increasing or decreasing the flow rate does not lead to increased

or decreased efficiency). The value of the heat of combustion ∆Hcomb was estimated using heats

of formation data Elliott et al. (2012) and Hess’s Law to be approximately −58 kJ/mol. In this

calculation, it was assumed that combustion occurs for CH4, CO, and H2, and that there is excess

oxygen to react. In addition, the effects of pressure were neglected, and temperature was considered

to have a negligible effect on the heat of combustion.

Since the primary heat transfer method within the combustion chamber is radiation, conduction

and convection can be neglected Lao et al. (2016). For radiative heat transfer, the fraction of the

energy that is transferred from the source to target can be estimated using the surface area of a

sphere extending out around the source. For the SMR simulation, it was assumed that the entire

tube is at a constant distance L from the burner. The value of 0.7 m was selected for L based on

an examination of the geometry used to simulate a full reforming furnace in Tran et al. (2017a). In

addition, it is assumed that the energy is spread out over a half-sphere extending from the reactor

wall, as the wall prevents transfer to the opposite half-sphere. The surface area of this half-sphere

can be represented as 1
2
4πL2. The tube target is assumed to be in a direct line-of-sight of the burner

with an incident area of 2rh, where r = 0.073 m is the tube outer radius and h = 1 m is the height

of the simulated tube segment. The influence of the angle of the absorbing surface is neglected.

This means that the energy that reaches the tube Etube can be represented in the following way:

Etube = Eflame
2rh

1
2
4πL2 (9)
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It is assumed that the absorbance of the tube surface is large (near 1) as any reflected heat is

subsequently absorbed by nearby tubes, and energy reflected from nearby tubes is absorbed by the

considered tube. In addition, it is assumed that there are evenly spaced burners around the pipe

each emitting an energy of Eflame so that, at any vertical position on the pipe, the energy received

by the pipe is constant around the entire circumference. At the same time, it is assumed that, at

any given point on the surface of the tube, only one burner is contributing heat.

Next, we assume that the system is in a pseudo steady-state, even during transient operation.

Then, based on a balance of energy about the pipe surface, it is assumed that the amount of

energy absorbed due to radiation must equal the amount of energy conducted through the pipe

wall. Fourier’s law is used describe conduction through the pipe wall:

Etube = −kA
T outer − T inner

δt
(10)

where T inner and T outer are the average temperatures along the inner and outer surfaces of the tube,

respectively, δt = 0.010 m is the thickness of the tube wall, k is the thermal conductivity of the wall,

and A is the area of heat conduction in the wall (assuming A = 2rh so the area of heat radiation

and conduction are equal). A value of k = 29.40 W/m-k was selected Steel Founders’ Society of

America (2004), which is identical to the value used in the Fluent simulation.

Five steady-state simulations of the SMR tube were completed using different values of Tmax
wall ,

and values of T inner and T outer were determined from these simulations. Plots of Tmax
wall versus T inner

and T outer were then created to find the following linear relations:

Tmax
wall = T outer + 123.08 (11)

Tmax
wall = 1.3195 T inner − 127.96 (12)

Finally, equations 8, 9, 10, 11, and 12 can be combined to give a relation between Ffuel and

Tmax
wall :

Tmax
wall =

−ηδt∆Hcomb

0.4843πL2k
Ffuel + 908.8077 (13)

2.5.4. Controller Design

The simplified ARX models were applied in an IPOPT code to simulate the SMR process in

four different configurations. In the first configuration, the MPC was designed to adjust Tmax
wall with
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the following objective function and constraint:

min
Tmax

wall
(k);k=1,2,...,N

N
∑

i=1

−xH2(k + i− 1)

s.t. 987K ≤ Tmax
wall ≤ 1200 K

(14)

where N is the MPC prediction horizon (selected to contain 60 sampling periods for all four MPC

configurations) and xH2 is the outlet hydrogen mole fraction for a 1 m tube. The process was

initialized from a steady-state simulated with Tmax
wall = 1100 K. At these conditions, the outlet

hydrogen mole fraction is 0.427 and the maximum equivalent stress is estimated to be 5.619 ×109

Pa. The different time steps for the stress and hydrogen mole faction ARX models need to be

reconciled; therefore, it was necessary to apply the stress model 50 times per time step of the

hydrogen model. This is necessary because the stress model was developed using data containing

time steps of 0.01 seconds and the hydrogen mole fraction model used time steps of 0.5 seconds. The

result of this simulation is shown in Figure 20. Since the objective function (in equation 14) seeks

to maximize the outlet hydrogen mole fraction, the MPC drives the temperature of the reforming

tube wall to the maximum upper bound (where Tmax
wall is 1200 K). This results in a new steady-state

with an increased maximum equivalent stress.

The second configuration adds a constraint on the maximum value of the equivalent (von Mises)

stress σVM :

min
Tmax

wall
(k);k=1,2,...,N

N
∑

i=1

−xH2(k + i− 1)

s.t. 987K ≤ Tmax
wall ≤ 1200 K

σVM ≤ 6× 109 Pa

(15)

The results of this simulation are shown in Figure 21. Similar to the first configuration, the system

is driven to a new steady-state. This time, however, the equivalent stress is maintained below the

value specified in the constraints as the controller selects a lower value of Tmax
wall .
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The third configuration applies the material constraint from equations 6, 7, and 13:

min
Tmax

wall
(k);k=1,2,...,N

N
∑

i=1

−xH2(k + i− 1)

s.t. 987K ≤ Tmax
wall ≤ 1200 K

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≤ max(M −N − k, 0)Ffuel,max

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≥ max(M −N − k, 0)Ffuel,min

Tmax
wall =

−ηδt∆Hcomb

0.4843πL2k
Ffuel + 908.8077

(16)

The results of this simulation are shown in Figure 22. It is shown that the controller no longer

drives the system to a steady-state. Instead, the controller optimizes the outlet hydrogen mole

fraction by first, at the beginning of each operating period, driving the value of Tmax
wall to the upper

bound of 1200 K. Then nearing the end of each operating period, the controller selects lower values

to ultimately achieve the desired average fuel consumption of Ffuel,ave = 30 mol/s.

The fourth configuration applies both the maximum stress upper bound constraint and the

material constraint:

min
Tmax

wall
(k);k=1,2,...,N

N
∑

i=1

−xH2(k + i− 1)

s.t. 987K ≤ Tmax
wall ≤ 1200 K

σVM ≤ 6× 109 Pa

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≤ max(M −N − k, 0)Ffuel,max

MFfuel,ave −

min(k+N,M−1)
∑

j=k

Ffuel(τj)−
k−1
∑

i=0

F ∗

fuel(τj)

≥ max(M −N − k, 0)Ffuel,min

Tmax
wall =

−ηδt∆Hcomb

0.4843πL2k
Ffuel + 908.8077

(17)

The results of this simulation are shown in Figure 23 and are similar to the previous case, where
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the hydrogen mole fraction will decrease near the end of each operating period. The difference is

the maximum stress will be at most 6× 109 Pa.
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Figure 20: Results of IPOPT code for MPC with a constraint that bounds Tmax

wall
.
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Figure 21: Results of IPOPT code for MPC with constraints on T
max

wall
and the maximum equivalent (von Mises)

stress.

There is potential for fluid and solid mechanics simulations to act as a test bed to offer the abil-
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Figure 22: Results of IPOPT code for MPC with a constraint that bounds T
max

wall
and a material constraint that

ensures the average fuel consumption remains constant.
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Figure 23: Results of IPOPT code for MPC with a constraint that bounds Tmax

wall
, a constraint limiting the maximum

equivalent (von Mises) stress, and a material constraint that ensures the average fuel consumption remains constant.

ity to gain a deeper understanding of how cyberattacks can affect a process and a control system.

Through applying test attacks through simulation, one can probe for weaknesses in process equip-

ment and control systems. In addition, such simulations could be simplified using reduced-order
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models and still yield important information about the process under control from an equipment

perspective. Though the case studies presented are simplified, they suggest that this methodology

could be helpful in the process systems engineering and control community in cases where more

complex equipment is present and the impacts of the control actions on the equipment is unclear,

or where it is desired to use this type of methodology as part of a safety study.

Remark 3. In the MPC simulations, the data-driven models are assumed to fully represent the plant

(i.e., plant/model mismatch and sensor noise are not considered). If an MPC strategy based on a

reduced-order model was implemented at a real plant, however (or even potentially on the CFD/FEA

system), plant/model mismatch would be expected. However, if the plant/model mismatch is suf-

ficiently small, MPC would still be expected to produce reasonably accurate state predictions for

maximizing the objective function and seeking to meet constraints, but hard constraints may become

infeasible due to the mismatch so that slack variables or a soft constraint may be needed.

3. Control-Theoretic Safety: Meeting Theoretical Requirements

The discussion above focused on dynamic operation for safety when equipment is considered.

This section considers dynamic operation for safety when theory is considered. In our prior work

(e.g., Rangan et al. (2021); Oyama and Durand (2020a)) we have developed control-theoretic guar-

antees for safety (at least for some time period) after a cyberattack on a specific control design

known as Lyapunov-based economic model predictive control (LEMPC) Heidarinejad et al. (2012).

However, the control-theoretic guarantees rely on many parameters which are not necessarily sim-

ple to obtain for a system. For the purpose of evaluating cyberattack detection policies integrated

with control, it is desirable to develop strategies for providing confidence that the parameters and

functions used in a simulation study related to such a topic meet the required theoretical properties

(i.e., do not have vulnerabilities), or that at least they meet the theoretical requirements for many

conditions that might occur in the simulation (i.e., there is a rationale for using them in seeking

to understand properties of strategies for detecting cyberattacks in a simulation). Currently, an

appropriate strategy for achieving this has not been developed.

In Oyama et al. (2022), we provided an initial study for evaluating whether the parameters of an
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LEMPC that meet the theory that guarantees safety might be obtained. We did this in the context

of the baseline LEMPC design (not cyberattack-resilient) from Heidarinejad et al. (2012) as a first

step toward moving toward obtaining parameters for a form integrated with cyberattack detection.

This prior study was limited in that it looked at only a single Lyapunov-based control design,

focusing on obtaining the parameters through worst-case analyses and a guess-and-check policy for

selecting functions of the control design. Despite these limitations, it indicated that for the selected

control law and other functions, LEMPC may be difficult to implement practically (e.g., it may

require a sampling period ∆ on the order of 10−10 h or less for the example considered in Oyama

et al. (2022)). However, it remains unclear from these initial studies how to systematically locate

the parameters and functions required for meeting all of the theoretical requirements of an LEMPC,

and it remains unclear whether there would exist other combinations of functions and parameters

that might do better than what was previously reported (in the sense that it might enable a more

realistic sampling period to be used). For example, it is reasonable to ask whether the “guess-and-

check” policy for selecting functions to be used in finding the parameters of the control law that

meet the theory is the best that can be done, or if there is an alternative computational way to

“find” such functions. This section seeks first to further analyze the benefits and limitations of

a “guess-and-check” policy and subsequently to propose and evaluate an alternative optimization-

based concept for searching for appropriate parameters and functions for the LEMPC. Though the

focus is on LEMPC without the additional complications of extending the analysis to consider cases

involving cyberattacks, we view this analysis as a first step toward identifying a route for simulating

versions of LEMPC that have been designed in tandem with cyberattack detection policies.

This section begins with a description of the theory of LEMPC, which sets the stage for a

motivating example that demonstrates that despite the ability to perform analyses of approximate

best-case values of ∆ for a variety of Lyapunov functions and Lyapunov-based controllers with an

approach following that in Oyama et al. (2022), guessing and checking functions for an LEMPC

can leave it unclear whether there exist any combinations of functions and parameters that can

outperform those located through a guess. This leads to the analysis in the subsequent section of

the potential of setting up an optimization problem to “find” parameters and functions meeting
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the stability theory requirements while seeking to maximize the sampling period length. How to

formulate a version of such an optimization problem is not obvious, as there are many considera-

tions that must be taken into account, including how to deal with computation time, how to add

constraints to the optimization problem that prevent undesirable behavior of the unknown func-

tions and parameters, and how to evaluate solutions to the complex problem (particularly if they

may not be global minima due to the use of a local nonlinear optimizer and a coarse state and

input space discretization used in the optimization problem). We discuss concepts for formulating

such an optimization problem, and present results and discussion to evaluate their performance and

compare the optimization-based approach with the “guess-and-check” approach.

3.1. Meeting Control-Theoretic Safety Requirements: Preliminaries

3.1.1. Notation

The vector Euclidean norm is represented by | · |. A function is of class K if it is a strictly

increasing function α : [0, a) → [0,∞) with α(0) = 0. The transpose of a vector x is denoted by xT .

The notation “ / ” signifies set subtraction x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}). A level set of

a positive definite function V is represented by Ωρ := {x ∈ Rn : V (x) ≤ ρ}. We define a sampling

time as tk := k∆, k = 0, 1, . . ., where ∆ is a sampling period.

3.1.2. Class of Systems

This work considers nonlinear systems of the form:

ẋ(t) = f(x(t), u(t), w(t)) (18)

where the state, input, and disturbance vectors are denoted by x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

(u = [u1, . . . , um]
T ), and w ∈ W ⊂ Rz, respectively, where W := {w ∈ Rz : |w| ≤ θ, θ > 0}.

When w ≡ 0, Eq. 18 is referred to as the nominal system. f is considered to be a locally Lipschitz

function of its arguments with f(0, 0, 0) = 0.

In this work, we consider the nominal system (w ≡ 0) which is stabilizable through the appli-

cation of an asymptotically stabilizing feedback control law h(x), a sufficiently smooth Lyapunov

function V (x), and class K functions αi(·), i = 1, 2, 3, 4, where, ∀x ∈ D ⊂ R
n (D is an open
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neighborhood of the origin):

α1(|x|) ≤ V (x) ≤ α2(|x|) (19a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (19b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|) (19c)

h(x) ∈ U (19d)

Ωρ ⊂ D is defined as the stability region of the nominal closed-loop system under the Lyapunov-

based controller h(x) and is chosen so that x ∈ X, ∀x ∈ Ωρ.

Because V is a sufficiently smooth function and f is locally Lipschitz, we can say the following

∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U, and w ∈ W :

|f(x1, u1, w)− f(x2, u2, 0)| ≤ Lx|x1 − x2|+ Lu|u1 − u2|+ Lw|w| (20a)
∣

∣

∣

∣

∂V (x1)

∂x
f(x1, u1, w)−

∂V (x2)

∂x
f(x2, u2, 0)

∣

∣

∣

∣

≤ L
′

x|x1 − x2|+ L
′

u|u1 − u2|+ L
′

w|w| (20b)

|f(x, u, w)| ≤ M (21)

where Lx, L
′

x, Lu, L
′

u, Lw, L
′

w, and M are positive constants.

3.1.3. Lyapunov-based Economic Model Predictive Control (LEMPC)

This work considers a control law known as LEMPC Heidarinejad et al. (2012) defined by:

min
u(t)∈S(∆)

∫ tk+N

tk

[Le(x̃(τ), u(τ))]dτ (22a)

s.t. ˙̃x = f(x̃(t), u(t), 0) (22b)

x̃(tk) = x(tk) (22c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (22d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (22e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρe (22f)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤

∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0)

if x(tk) /∈ Ωρe (22g)
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where Le(·, ·) is the LEMPC stage cost (Eq. 22a), u ∈ S(∆) signifies that u is a piecewise-constant

input trajectory with period ∆, and the prediction horizon is denoted by N . Eqs. 22d and 22e rep-

resent state and input constraints, respectively, whereas Eqs. 22f-22g are Lyapunov-based stability

constraints.

3.1.4. Closed-Loop Stability Under LEMPC

The theoretical conditions required for LEMPC to guarantee safety from Heidarinejad et al.

(2012) are noted in Theorem 1 below, which utilizes notation presented in the two following propo-

sitions.

Proposition 1. Mhaskar et al. (2012); Heidarinejad et al. (2012) Consider the following two

systems:

ẋa = f(xa(t), u(t), w(t)) (23a)

ẋb = f(xb(t), u(t), 0) (23b)

with initial states of xa(t0) ∈ Ωρ and xb(t0) ∈ Ωρ (xa(t0) = xb(t0)). There exists a class K function

fW (·) that satisfies the following equations ∀ xa, xb ∈ Ωρ and ∀ w ∈ W :

|xa(t)− xb(t)| ≤ fW (t− t0) (24a)

where fW (τ) :=
Lwθ

Lx

(eLxτ − 1) (24b)

Proposition 2. Mhaskar et al. (2012); Heidarinejad et al. (2012) For the Lyapunov function V (·)

of the nominal system in equation Eq. 18, we can find a function fV (·) which satisfies:

V (x) ≤ V (x̂) + fV (|x− x̂|) (25a)

where fV (s) := α4(α
−1
1 (ρ))s+Mvs

2 (25b)

∀ x, x̂ ∈ Ωρ, where Mv is a positive constant.

Theorem 1. Heidarinejad et al. (2012) Consider the system of Eq. 18 in closed-loop under the

LEMPC design of Eq. 22 based on a controller h(x) that satisfies the conditions of Eq. 19. Let

ϵw > 0, ∆ > 0, and ρ > ρe > ρmin > ρs > 0 satisfy:

ρe ≤ ρ− fV (fW (∆)) (26)
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and

−α3(α
−1
2 (ρs)) + L′

xM∆+ L′

wθ ≤ −ϵw/∆ (27)

If x(t0) ∈ Ωρ and N ≥ 1 where

ρmin = max{V (x(t)) : t ∈ [tk, tk+1), V (x(tk)) ≤ ρs, u ∈ U, w ∈ W} (28)

then the state x(t) of the closed-loop system is always bounded in Ωρ and is ultimately bounded in

Ωρmin
.

In the following section, we probe a process example to showcase challenges with obtaining the

parameters and functions in the theory above.

Remark 4. The control theory discussed above is for a case that considers bounded plant/model

mismatch, but no measurement noise. However, extensions can be made to also include measure-

ment noise (for example, the work on cyberattack detection for a process under LEMPC in Oyama

and Durand (2020a) considers measurement noise). No measurement noise will be considered in

this work.

3.2. Motivation for Searching for Parameters and Functions of LEMPC Through Optimization

In this section, we discuss an example that motivates our subsequent investigation of an optimization-

based procedure for attempting to obtain parameters for an LEMPC satisfying the conditions of

Propositions 1-2 and Theorem 1 for a CSTR, as a step moving toward systematically obtaining

such parameters for process systems motivated by safety considerations.

A non-isothermal, well-mixed continuous stirred-tank reactor (CSTR) is considered in this sim-

ulation, which has an inlet and outlet stream and is equipped with a jacket to add or remove heat.

An irreversible, exothermic, second-order reaction of A → B occurs in the reactor. Reactant A is

fed to the reactor at a volumetric flow rate of F = 5.0 m3/h with a temperature of T0 = 300 K in

an inert solvent with concentration CA0. The reactor holds a liquid volume of Vt = 1.0 m3, which is

assumed constant, and the jacket provides/removes heat at a rate of Q. The liquid has a density of

ρL = 1000 kg/m3 and a heat capacity of Cp = 0.231 kJ/kg K, which are assumed to be constant.
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The dynamic model of the CSTR is represented using the following equations developed from mass

and energy balances:

dCA

dt
=

F

Vt

(CA0 − CA)− k0e
−E/RTC2

A (29a)

dT

dt
=

F

Vt

(T0 − T )−
∆Hk0
ρLCp

e−E/RTC2
A +

Q

ρLCpVt

(29b)

where reactor temperature and concentration of A are represented using T and CA, respectively.

Values of k0 = 8.46×106 m3/h kmol, E = 5.0×104 kJ/kmol, and ∆H = −1.15×104 kJ/kmol are

used for the pre-exponential factor, activation energy, and the enthalpy of the reaction, respectively.

The parameters are summarized in Table 4.

Table 4: Parameters for the CSTR model.

Parameter Value Unit

Vt 1 m3

T0 300 K
Cp 0.231 kJ/kg·K
k0 8.46× 106 m3/h·kmol
F 5 m3/h
ρL 1000 kg/m3

E 5× 104 kJ/kmol
R 8.314 kJ/kmol·K
∆H −1.15× 104 kJ/kmol

For the simulation of the CSTR, CA0 and Q are treated as manipulated inputs to the process,

with bounds of 0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5.0 × 105 ≤ Q ≤ 5.0 × 105 kJ/hr, and T

and CA are the process states. An open-loop asymptotically stable steady-state occurs at CAs =

1.2 kmol/m3 and Ts = 438.2 K, where the subscript s indicates the steady-state values. In the

control formulation, the state and input vectors are represented using deviation variables as xT =

[CA − CAs T − Ts] and uT = [CA0 − CA0s Q−Qs], respectively.

In our prior work Oyama et al. (2022), we provided an initial attempt at locating parameters of an

LEMPC for this process that might meet the conditions required for the theoretical guarantees. This

initial approach involved selecting a Lyapunov function, Lyapunov-based controller, and specific

forms of α1, α2, α3, and α4, and then obtaining approximations of parameters in Propositions 1-2
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and Theorem 1 using a brute force method in which the state-space was discretized and values

of the parameters consistent with the points tested in state-space were obtained. This does not

guarantee that values of the parameters that meet all of the theoretical requirements (including at

points outside of the discretization) were selected, but it does provide a maximum potential order

of magnitude of ∆ that meets Eq. 27 if there are no disturbances for a given set of functions V ,

h, and αj, j = 1, 2, 3, 4. The benefit of this is that if this approximate “best-case” value of ∆ is

already too small to be reasonable for a given application, then this provides an indication that

the selected V , h, and αj, j = 1, 2, 3, 4 may not be selected if it is desired for the LEMPC to have

its theoretical guarantees (and there is no guarantee that there is any LEMPC design that would

satisfy a certain requirement on ∆). However, there is still some approximation in this method if

parameters are rounded up or down once found, so that the “best-case” approximation depends on

this degree of rounding.

For several values of ρ tested in Oyama et al. (2022), the order of magnitude of ∆ would have

been 10−10 h or less. This could pose challenges for practical implementation of LEMPC (i.e.,

finding sensors with such a small sampling period may be challenging, and this represents only a

“best case” value of ∆ so that it is possible that a smaller value might be required). The work

in Oyama et al. (2022) was limited to a case study with only a few permutations of the large set

of possible functions and parameters available in seeking to design an LEMPC; therefore, it is not

clear if there may be a way to adjust other aspects of an LEMPC besides those performed in Oyama

et al. (2022) to provide a more attractive upper bound on ∆ (for example, V or h could be changed

compared to what was tested in Oyama et al. (2022)). In this section, we seek to investigate how

changes to various aspects of an LEMPC might be made in seeking to (loosely) “optimize” the

value of ∆, and discuss benefits and challenges of this method to motivate the investigation of a

more formal optimization-based approach in the subsequent section.

We first want to investigate the role of the choice of V (x) in the size of the parameters of the

LEMPC, and whether different choices of V (x) have an impact on the apparent maximum value of

∆. Therefore, whereas in Oyama et al. (2022), we used V (x) = xTPx where P = [2000 −10; −10 3],

in this section, we will first try P = [20 − 10; − 10 50]. The shape of this new stability region in
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state-space in this case is shown in Fig. 24. This figure also reflects whether V̇ is negative at the

points tested in state-space in the plot (h(x) was designed such that the component corresponding

to u1 is set to 0 kmol/m3 and the component corresponding to u2 is set via Sontag’s control law Lin

and Sontag (1991)). The points tested are those in a discretized state-space where CA varies in

increments of 0.1 kmol/m3 between 0 and 4 kmol/m3, while T varies in increments of 0.1 K between

435 and 441 K. The ellipse corresponds to ρ = 20. It is contained within the gray region, which

is where V̇ is negative. The white region is a region where V̇ is not negative. The impact of this

choice of V on the parameters of an LEMPC, compared to what was obtained in Oyama et al.

(2022) with a different V , will now be investigated.

Figure 24: Stability region shape for V (x) = x
T
Px with P = [20 − 10; − 10 50].

We utilize the same procedure as in Oyama et al. (2022) to obtain the parameters for the
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LEMPC in Table 5. Specifically, we set α1(|x|) = a1|x|
2 and α2(|x|) = a2|x|

2, where a1 < λmin(P )

and a2 > λmax(P ), with λmin(P ) and λmax(P ) as the maximum and minimum eigenvalues of P , which

for this case are 16.9722 and 53.0278, respectively. Then, for points in the same discretization as

shown in Fig. 24, the value of a3 was found by setting it to be less than the value of a3 obtained

when α3(|x|) = a3|x|
2 and a3 was decreased from 100 to be set equal to −V̇ /|x|2 at any point in the

discretization where V̇ was greater than −α3(|x|). This reduced a3 to 80.0529, so that the value of

a3 to be used according to Table 5 was selected to be 80.

Table 5: First set of parameters for CSTR model.

Parameter Value

ρ 20
a1 16.5
a2 53.5
a3 80
a4 1810
M 3735
Lx 2010
Lw 0
L′

x 374710
L′

w 0
Mv 10−5

θ 0

Next, α4 was selected to take the form a4|x|
2. With the same state-space discretization as in

Fig. 24, a4 was initially set to -100 and then changed to
∣

∣

∂V
∂x

∣

∣ /|x|2 whenever
∣

∣

∂V
∂x

∣

∣ > α4(|x|). This

gave a value of a4 of 1808.125 among the points tested, so a value of 1810 was selected in Table 5.

Next, M was determined using the discretization in Fig. 24 for the states, units of 0.5 kmol/m3 for

the range of CA0 and units of 105 kJ/h for the range of Q. This gave a value of M of 3733.33, so

that a value of 3735 was selected in Table 5. Then, Lx and Lw were determined individually by

changing only the state in Eq. 20a (for Lx) and then checking that Eq. 20a holds, and setting Lw

to 0 since no disturbances are considered. L′

x and L′

w were determined in a similar fashion, but to

satisfy Eq. 20b. Finally, Mv was determined to satisfy Eq. 25b.

In Oyama et al. (2022), Eq. 22g was implemented as−a3
ρs
a2
+L′

xM∆+L′

wθ+ϵ̄w ≤ 0, in accordance

44



with Eqs. 24b, 25b, 26, and 27, for determining a best-case order of magnitude of ∆. A best-case

here would give that ∆ can be no larger than about 2.14× 10−8 h in this case (if ρs = ρ and ϵ̄w is

small (10−5)). At first this seems to be an improvement compared to Oyama et al. (2022) by about

two orders of magnitude, but it is difficult to tell as this result is dependent on the (incomplete)

discretization and any approximation in parameters in Table 5 or Oyama et al. (2022) and therefore

is only an approximate best case (e.g., it is possible that in one or both cases, ∆ may need to be

smaller, so that which is “better” cannot be seen from this analysis).

Here again we see that L′

x and M are large, which causes the term −a3ρs
a2

to be required to be

very large in order to overcome those terms. While this term depends on V and h, as does L′

x,

the terms also depend on the input bounds (including M , which can be made arbitrarily small by

requiring that the system operate almost exactly at the steady-state). We could therefore consider

the impact of changing the input bounds on this problem.

The analysis above shows the impacts of different design decisions on the best-case sampling

period of an LEMPC, where even the best-case values are not guaranteed to be reflective of the true

bound on ∆ if the discretizations used in computing the values of the parameters in Table 5 were

modified. One could argue that perhaps global optimization might aid in finding these parameters

in an improved fashion (e.g., finding the maximum bound on f when x ∈ Ωρ, u ∈ U , and w ∈ W

for Eq. 21). However, even if more exact values were obtained, this would not solve the issue at

hand; specifically, it would not provide clarity on whether a different V , h, or αj, j = 1, 2, 3, 4, could

provide a larger value of ∆. If, for example, we had a target magnitude of ∆ of approximately 10−6

h, this does not aid in identifying whether there exist any functions that can give this (even for the

best case); it makes the question one which must be answered by repeated guessing and checking,

which is an inefficient approach and may not even turn out to be fruitful as the existence of the

function and parameters for hitting the target ∆ is not established.

In the discussion above and in Oyama et al. (2022), the same Lyapunov-based controller was

used. We now evaluate whether adjusting this controller could have any benefits for adjusting ∆

toward a target value. Specifically, we select to use a linear quadratic regulator (LQR) Griffith

(2018), where the Lyapunov function V and stabilizing controller h = −Kx are designed around
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a linearized process model and controller parameters chosen in a spirit similar to Oyama et al.

(2022). The process model used in the LQR is as follows:

ẋ = Ax+Bu (30)

where A = ∂f(0,0)
∂x

and B = ∂f(0,0)
∂u

(i.e., the linearizations of the process model at the origin with

respect to the states and inputs). The LQR seeks to minimize a quadratic cost function that

is a time integral of xTQx + uTRu, where Q and R are weighting matrices used to balance the

cost of off-steady state operation and control action, respectively. The weight matrix P for the

quadratic Lyapunov function V = xTPx is found as the solution to the Riccati equation, where

ATP + PA − PBR−1BTP + Q = 0. The LQR controller is formulated as a feedback controller

where the gain matrix is computed as K = R−1BTP . In our simulations, Q = [20 − 10; − 10 70]

and R = [200 − 10; − 10 60], and the lqr function in MATLAB is used.

In finding the best-case value of ∆ when the LEMPC uses the LQR, we again neglect distur-

bances and use a similar procedure to that performed for the other stabilizing control law above.

Specifically, class K functions α are taken to be the product of a coefficient with the squared norm

of the states. The coefficients for a1 and a2 are taken to be the minimum and maximum eigenvalues

of the Lyapunov matrix P , respectively. a3 is initialized at 106 and decreased, following the pro-

cedure described above. M is the maximum value of the right-hand side of the nonlinear system

within the stability region and under the control actions in the discretization (expanded so that

the temperature goes from 430 to 450 K). The Lipschitz constant L′

x is calculated according to the

procedure described above. This gives the values in Table 6.

With these new parameters, we again evaluate ∆ using the equation −a3
ρs
a2

+ L′

xM∆+ ϵ̄w ≤ 0,

with ϵ̄w considered to be a small number (for a best-case ∆, we will consider it to be 0), and ρs = ρ

(and disturbances have been neglected). This gives that ∆ will be approximately 5.74× 10−9 h or

less. Whether this is an improvement compared to other possibilities is difficult to say as the values

of the parameters are obtained using different discretizations in state-space, and this is only an

approximate best-case based on the incomplete discretization used and any other approximations

or roundings used in obtaining the parameters.
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Table 6: Second set of parameters for CSTR model.

Parameter Value

ρ 20
a1 0.74
a2 568
a3 68
M 2464
L′

x 169,264
θ 0

The analysis above indicates that the method for locating a “best-case” ∆ that was presented

in Oyama et al. (2022) and then summarized and further probed above has benefits and disad-

vantages. It can serve well as a quick screening method for whether certain functions and the

parameters associated with these developed from brute-force checking of functions along an (even

potentially coarse) discretization of the state-space would lead to values of ∆ that are too small to

be used with a sensor that is available for the process. However, they do not make clear how to

solve the inverse problem of specifying a sensor’s possible sampling rate and then seeking to find the

functions with satisfy this requirement. It does not appear intuitive from the analysis above how to

modify functions such as V or h to achieve a specific target; the guess-and-check policy used above

can be employed, but this is not guaranteed to find solutions. This motivates the investigation

in the next section of developing an optimization problem for attempting to locate functions and

parameters that can meet the “constraints” of the theory of LEMPC.

Remark 5. The discussion regarding obtaining ∆ indicates that its value is highly impacted by the

process dynamics. For example, a process with a larger value of M (i.e., |f | is larger) will require ∆

to be smaller for the same magnitude of L′

xM∆. This indicates that process design can impact the

feasibility of obtaining safety guarantees (and control-theoretic guarantees on cyberattack-resilience)

using Lyapunov-based economic model predictive control. Furthermore, the sensing devices chosen

(which may have certain sampling rates possible) also impact whether the guarantees can be developed

for a given design. This indicates the importance of considering safety in a control-theoretic sense

at the design stage of a process, complementing the work on computational fluid dynamics and finite
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element analysis that indicated that the impacts of control on equipment could also be an important

part of the design protocols for a system at the HAZOP stage.

Remark 6. It should be noted that even if LEMPC is not able to provide a sufficiently large sampling

period for the use of a given sensor, this does not necessarily mean that another control law can. For

example, instead of considering only the region of attraction (which we define to be the set of points

in state-space from which there exist input trajectories with the inputs in the input bounds which

could drive the closed-loop state to the origin under continuous implementation of the controller),

one could consider the region of attraction for sample-and-hold controller implementation (i.e.,

the set of states from which there exist sample-and-hold input trajectories with the inputs in the

input bounds which could drive the closed-loop state toward the origin). Depending on the process

dynamics and sampling period selected, it is possible that this set is empty or very small, indicating

that control objectives could not be achieved with the given process dynamics and desired sampling

period, regardless of whether LEMPC was used or not. A test of the conservativeness of LEMPC

is to see, for a given controller parameterization, how large the stability region of the LEMPC is

compared to the region of attraction for sample-and-hold control law implementation.

3.3. Searching for Parameters and Functions of LEMPC Through Optimization: Investigation
Through a Chemical Process Example

In this section, we utilize the same chemical process example as in the prior section to develop

and analyze an optimization-based strategy for obtaining parameters and functions of LEMPC

that have a relationship to the theoretical conditions. The discussion above indicates that it can

be difficult to find functions/parameters of an LEMPC that provide theoretical guarantees while

also enabling reasonable values of ∆ to be used. Therefore, we are interested in developing an

optimization problem that can maximize the value of ∆ that would satisfy the various constraints.

How to develop an optimization problem for seeking to achieve all of the goals of the theory

requires consideration. Therefore, we will now describe principles behind its construction to provide

insight into tradeoffs and opportunities in creating such a formulation. We would like to find a

suitable V (x) and h(x) combination simultaneously by designing an optimization problem according

to the constraints of Section 3.1.4. Specifically, we would like to propose potential forms for key
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functions in Section 3.1.4 (V , h, and αj, j = 1, 2, 3, 4) and use the optimization problem to find

coefficients of the terms in the functional forms that we select that cause the requirements of Section

3.1.4 to be met. However, as discussed above, we would like to meet these requirements without

requiring ∆ to be too small.

The first step in developing this method is to choose the potential components of the key

functions, namely the class K functions (α1, α2, α3, and α4) and the functions V (x) and h(x),

where the coefficients multiplying the terms in these functions will be decision variables of the

problem, with the intent of enabling the optimization problem to locate viable forms of V , and h,

or the various αj (inspired by the procedure for obtaining terms in a data-driven model in Brunton

et al. (2016)). Special consideration is made in the selection of the possible forms of the functions to

ensure the intended form of each equation is found. For example, the α functions must be designed

to be strictly increasing with α(0) = 0. Therefore, we consider α1(s) = a1s + a2s
2 + a3s

4, which

does not include terms that may not meet the class K conditions such as sin(s). In addition,

α2(s) = b1s + b2s
2 + b3s

4, α3(s) = c1s + c2s
2 + c3s

4, and α4(s) = d1s + d2s
2 + d3s

4, for the same

reasons. To ensure that V has a form that could be positive definite, it is guessed to have the

form V (x) = v1x
2
1 + v2x

2
2 + v3x

4
1 + v4x

2
1x

2
2 + v5x

4
2. Finally, h(x) is given two components (h1(x)

and h2(x)) which are assumed to have the following forms to give some flexibility in control law

selection: hi(x) = hi1x1+hi2x2+hi3x1x2+hi4x
2
1+hi5x

2
2+hi6x1x

2
2+hi7x

2
1x2+hi8x

3
1+hi9x

3
2, i = 1, 2.

The parameters ai, bi, ci, and di (i = 1, 2, 3, 4), h1i and h2i, i = 1, . . . , 9, and vi, i = 1, . . . , 5,

will be decision variables of the optimization problem to be used in selecting parameters for these

equations that attempt to meet the theory while satisfying control-theoretic constraints. The vector

containing all of these parameters is denoted by p̄. The sampling period ∆, level set bounds ρ, ρe,

ρs, and ρmin, and Lipshitz constant L′

x are set as decision variables. The objective function is

selected as 106∆ and is maximized to attempt to find a sampling period ∆ which is large enough

to be physically feasible.

The constraints will be based on the requirements in Section 3.1.4; however, these requirements

involve various parameters such as M that so far in this work have been determined by evaluating

functions at certain points in a discretization of state-space. For this initial algorithm, we will
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continue in this fashion. Therefore, some of the constraints will need to be developed such that

they hold at certain grid points, and before the optimization problem begins, any parameters used

in other constraints that do not depend on the decision variables in the optimization problem (such

as M) can be determined using the discretization that will be used in the optimization problem.

We will perform this initial algorithm in the absence of disturbances, and M will then be selected

before the optimization problem is initiated by checking the value for many different values of x

and u and taking the maximum. The discretization used in selecting M was initially taken to be in

a relatively small neighborhood of the steady-state, where the range of CA between 0.75 and 1.75

kmol/m3 (in increments of 0.5 kmol/m3) and of T between 435 K and 441 K (in increments of 1 K)

were used, with the range of u1 discretized in units of 1 kmol/m3 and the range of u2 discretized in

units of 5 × 105 kJ/h. This discretization is coarse; making it finer increases the time to solve the

optimization problem. In general in this method, one could attempt to use a tighter discretization

for the optimization problem, or to solve the optimization problem with a coarser discretization and

then check the results with some finer discretizations to explore whether the parameters identified

by the optimization problem seem to be sufficient even with the finer discretization. One of the

limitations of this method is that it still relies on making discretizations and checking values at

many points, so that if only checks are done of some finite number of points and the theoretical

conditions are seen to hold at these, that does not guarantee the absence of any safety vulnerabilities

at points not checked.

The constraints that must be added are then broken down into six groups: 1) a constraint set

where Eqs. 19a-19d are enforced at each point in the discretization used for obtaining M and with

the assumed forms of αj, j = 1, . . . , 4, h (with saturation at the input bounds), and V (leading to a

known form of ∂V
∂x
); 2) a second set of constraints that enforce Eq. 20b using the grids for M , with

L′

x as a decision variable; 3) a third set of constraints which require that the value of the decision

variable ρ be less than the Lyapunov function value at the boundary points of the grid; 4) a fourth

set of constraints focused on the conditions in Theorem 1; 5) a fifth set of constraints preventing V

or αj, j = 1, 2, 3, 4, from becoming zero; and 6) a sixth set of constraints corresponding to bounds

on the decision variables.
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We will now provide more details regarding the fourth set of constraints. The first is:

ρe − ρ ≤ 0 (31)

and is Eq. 26 when θ = 0 (the no-disturbance case under consideration). The next constraint is

Eq. 27 when θ = 0, and assuming −ϵw/∆ = −10−8; however, this equation requires −α3(α
−1
2 (ρs)),

when ρs and the parameters defining α3 and α2 are decision variables. A decision variable |x̄| is

defined to represent α−1
2 (ρs), which is defined by the following equality constraint:

b1|x̄|+ b2(|x̄|)
2 + b3(|x̄|)

4 − ρs = 0 (32)

The resulting value of |x̄| is then used in developing the representation of Eq. 27 that is used as a

constraint of the optimization problem as follows:

−c1|x̄| − c2|x̄|
2 − c3|x̄|

4 + L′

xM∆+ 10−8 ≤ 0 (33)

The next constraint to be enforced is

ρs + L′

xM∆2 − ρmin ≤ 0 (34)

which is used to separate ρs and ρmin according to Eq. 28 Oyama et al. (2022). Finally, to account

for the required hierarchies of level sets (ρ > ρe > ρmin), a constraint requiring that ρmin ≤ ρe is

also enforced.

The fifth set of constraints seeks to prevent the optimization problem from setting important

functions that should not be zero to zero. Specifically, because V and αj, j = 1, 2, 3, 4, should be

positive definite, there are constraints that the sum of the absolute values of the coefficients for

each function should be at least 10−5. Regarding bounds on the decision variables, this problem

has 42 decision variables corresponding to ∆, ρ, ρe, the coefficients of α1, α2, α3, α4, V , h1, and h2,

and L′

x, ρs, ρmin, and |x̄|. The bounds on every decision variable are set between 0 and 1017, except

for the decision variables corresponding to the parameters of h1 and h2, which had lower bounds

of −10−17 and upper bounds of 1017, and the values of ∆ (which was restricted to be in the range

10−6 and 1) and ρ (which was restricted to be in the range 10−6 to 1017).
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This optimization problem was solved using Ipopt with ADOL-C, and the problem may not have

solved to global optimality. The initial guesses for the decision variables are presented in Table 7.

The constraints were scaled by factors presented in Table 8. The results are presented in Table 9.

It is significant that Ipopt was able to find a value of ∆ on the order of 10−5 h in this case that met

the other constraints at the same time, indicating that it may be possible to find a way to set up

the problem that puts ∆ on a desirable order of magnitude for this problem.

Table 7: Decision Variable Guesses.

Parameter Guess Parameter Guess

∆ 1.55083162028051× 10−14 h11 -16919.7681573979
ρ 0.00100000000882223 h12 7321.9748676489
ρe 0.000988488677936539 h13 4218.46579549029
a1 1.53800929247839× 10−5 h14 8028.15761721977
a2 4.53010147324655× 10−5 h15 -507.949104979065
a3 1.84354586277442× 10−6 h16 -590.931651961331
b1 0.00800437054717969 h17 -2190.67179605869
b2 62.2475533226796 h18 -2985.77115185349
b3 0.00497969280330501 h19 1988.39442155344
c1 2.11162515322774× 10−5 h21 21985.9180169341
c2 6.79219640525747× 10−9 h22 -22507.31871886
c3 6.89032786977831× 10−9 h23 29867.1870814213
d1 0.00418019308985226 h24 3705.38368144527
d2 7.08510412365131× 10−5 h25 88381.9586639903
d3 46127.6083797397 h26 33895.3546418904
v1 0.00443314020645772 h27 -1896.06843146131
v2 0.000131237335333051 h28 6811.45428158675
v3 4.15242120294597× 10−9 h29 -116284.529184278
v4 3.99459102873933× 10−12 L′

x 1.36151111986363
v5 2.98396599046021× 10−8 ρs 0.000944774396498493

ρmin 0.000973690090808806
|x̄| 0.00382965502467688

Several comments on the solution strategy of the optimization problem should be made. It

should be noted that the problem in Ipopt was not set up in an ideal fashion for this initial study

(for example, there are constraints in which decision variables multiply one another and no attempt

has been made to reformulate these to separate them). Future studies could further investigate how

to appropriately formulate the problem numerically, but some initial results from this initial setup
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Table 8: Constraints with scaling factors.

Constraint Scaling Factor

α1(|x|) ≤ V (x) 106

V (x) ≤ α2(|x|) 10−2

V̇ ≤ −α3(|x|) 1
∣

∣

∂V
∂x

∣

∣ ≤ α4(|x|) 10−6
∣

∣

∣

∂V (x)
∂x

f(x, u, 0)− ∂V (x′)
∂x

f(x′, u, 0)
∣

∣

∣
≤ L

′

x|x−x′|, for x and

x′ in the state-space discretization and u in the input
discretization

1

ρe ≤ ρ 105

−c1|x̄| − c2|x̄|
2 − c3|x̄|

4 + L′

xM∆ ≤ −10−8 108

ρs + L′

xM∆2 ≤ ρmin 105

ρmin ≤ ρe 105

10−5 ≤ |a1|+ |a2|+ |a3| 10−1

10−5 ≤ |b1|+ |b2|+ |b3| 10−1

10−5 ≤ |c1|+ |c2|+ |c3| 105

10−5 ≤ |d1|+ |d2|+ |d3| 10−4

10−5 ≤ |v1|+ |v2|+ |v3|+ |v4|+ |v5| 103

ρ ≤ V (x), for x evaluated at corners of discretization 104

b1|x̄|+ b2(|x̄|)
2 + b3(|x̄|)

4 − ρs = 0 106

of the problem still enable insights to be gained. Furthermore, it is noted that the formulation

that gives the results in Table 9 that seems to be promising for the application of this method was

not the initial formulation tried. A number of adjustments were made to the problem to arrive at

this final form that gave a non-zero value of ∆ as the final answer (for example, adjustments to

the bounds on ∆ or on the value of the sum of the absolute values of the coefficients of V and αj,

j = 1, 2, 3, 4). Therefore, it should be understood that some of these aspects of the optimization

problem are tunable for attempting to try to find a solution that is desirable, and also that a

desirable solution may not be easy to obtain even with this optimization problem method. Despite

this, we consider the ability of this optimization problem to find a solution that appears to satisfy

many of the theoretical conditions of an LEMPC for some discretizations of the state-space with

a value of ∆ that is on a desirable order of magnitude to be a move toward developing better

algorithms for simulating an LEMPC with safety guarantees (and, ideally with modifications in

future research, safety guarantees in the presence of cyberattacks).
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Table 9: Result of optimization problem method.

Parameter Value Parameter Value

∆ 0.00004918924267 h11 -16919.76815739789890
ρ 1544.44280315388846 h12 7321.97486764892983
ρe 1544.44279068871106 h13 4218.46579549028957
a1 42.56134909552156 h14 8028.15761721977015
a2 36.20947653353708 h15 -507.94910497906494
a3 4.81813169648454 h16 -590.93165196133100
b1 0.00208551911091 h17 -2190.67179605868978
b2 0.00587598357892 h18 -2985.77115185349021
b3 19081.03953105145774 h19 1988.39442155344000
c1 884489.10394334455486 h21 257809.49617722025141
c2 0.00120706296049 h22 -4669419.83828037418425
c3 0.00012536153193 h23 -59704.79336714102828
d1 43372348.62285971641541 h24 11834552.60541500523686
d2 39844692.87630474567413 h25 665396.80664730246644
d3 73802038.86971308290958 h26 17889.32867738550704
v1 6810.28698984776020 h27 -2935808.84039304591715
v2 336.95169942715870 h28 660437.80361377366353
v3 0.00078855478332 h29 -727484.69599351705983
v4 0.00000224460841 L′

x 3183363.34428080823272
v5 0.00000007394288 ρs 1521.32385671573297

ρmin 1544.44277822353365
|x̄| 0.53137939940765

After obtaining a solution to the optimization problem, it is desirable to check via MATLAB

whether it satisfies the constraints using the state-space and input space discretizations from the

optimization problem. The solution was checked with the discretization of the optimization problem

and met the constraints of the optimization problem. This does not provide conclusive evidence

that the solution of the optimization problem would continue to meet the theoretical requirements

as the discretization was made arbitrarily small, but suggests that the optimization problem may

have found a solution that could be used in simulating a process under an LEMPC in a manner

that might meet theoretical requirements.

We can compare this optimization-based approach to that in the prior section that involved a

priori selecting the functions to utilize in the LEMPC and then performing a type of best-case

analysis for determining a maximum allowable value of ∆. Either method may give parameters
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and functions that, when checked for multiple discretizations of the state and input space, seem

to be viable parameters for an LEMPC. The benefit of the optimization strategy compared to the

guess-and-check strategy, if the guess-and-check strategy does not yield immediate results, is that it

enables a systematic search even for functions that can aid in meeting theoretical requirements for

LEMPC with (potentially) industrially-relevant sampling periods. However, it still retains many

tuning parameters in the optimization problem for attempting to locate a desirable set of parameters.

The focus of this section was on setting up an optimization problem incorporating many theoret-

ical conditions of LEMPC and seeing whether parameters could be obtained from this method that

met a desired operating goal. While it appears that such parameters could be found for this problem

(for the discretization used), the study above does not address the performance of an LEMPC under

the parameters obtained. When the parameters obtained are utilized in a closed-loop simulation, it

is possible that additional behavior will be observed which would have been desirable to constrain

in finding the system parameters, or that attempting to utilize the same method for another system

may prove challenging. Exploring the translation of this methodology into the full simulation of

closed-loop systems can be a subject of future research.

Remark 7. The computational challenges with searching for the parameters and functions satisfying

this control law are not unexpected. In particular, it would be expected that for nonlinear systems,

extensive testing of how the control designs may work for robust control is needed (e.g., Mayne et al.

(2011)).

Remark 8. If it was desired to explore whether ρ could be made larger, one might consider expanding

the bounds of the state-space grid and re-running the optimization problem to see if this gives larger

values for ρ. One limitation of this method is that it applies the constraints throughout all of the

discretization, including those which require, for example, a decrease in V̇ , which is not in general

required everywhere outside of Ωρ.

Remark 9. One could consider that in addition to maximizing ∆, if many terms are suggested

for h, V , or αj, j = 1, 2, 3, 4, it may be desirable to prevent the optimization problem from giving

coefficients to all of these if possible (in the spirit of sparse regression inspired by Brunton et al.
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(2016)). Therefore, in the objective function, one could also consider penalizing a weighted norm

of the vector of the coefficients of these terms, leading to a multiobjective optimization problem for

locating various parameters and functions of LEMPC that can trade off between selecting a larger

∆ and preventing the functions being selected from including every possible term. However, one of

the challenges is that in general ∆ may be very small for satisfying all of the theoretical conditions;

trading its maximization off with other terms therefore must be done with care to ensure that the

other terms do not receive so much weight in the objective function that undesirable values of ∆ are

selected by the optimizer.

4. Conclusion

This work explored two concepts related to dynamic process operation and safety. The first

was an exploration of the use of computational fluid dynamics (CFD) combined with finite element

analysis (FEA) simulation to investigate impacts of process control on design and equipment in the

presence of cyberattacks or economic model predictive control. These results showcased the use of

such software in evaluating the process as a whole under advanced control and cyberattacks, and

showcased how the CFD/FEA data might be used to develop data-driven models that aid in more

rapidly screening various dynamic operation scenarios, or in developing control laws that take into

account equipment stress models. In the second, we expanded on work performed in Oyama et al.

(2022) related to beginning steps toward obtaining parameters of an advanced control law that has

been explored in safety and cybersecurity contexts (LEMPC) to seek to better understand how

parameters and functions for this control law that meet theoretical conditions might be obtained.

Specifically, we indicated the potential difficulty of a guess-and-check approach to obtaining reason-

able parameters of an LEMPC such as the sampling period that might meet the theory, and explore

the use of optimization as an alternative strategy. Though both strategies may involve degrees of

tuning to attempt to locate LEMPC parameters, the optimization technique allows some flexibil-

ity in searching for functions and parameters when an initial screening with the guess-and-check

approach does not seem to provide desired results.
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