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Stochastic Uncertainty Propagation in Power System Dynamics using

Measure-valued Proximal Recursions

Abhishek Halder, Senior Member, IEEE, Kenneth F. Caluya, Pegah Ojaghi, and Xinbo Geng, Member, IEEE

Abstract—We present a proximal algorithm that performs a
variational recursion on the space of joint probability measures to
propagate the stochastic uncertainties in power system dynamics
over high dimensional state space. The proposed algorithm
takes advantage of the exact nonlinearity structures in the
trajectory-level dynamics of the networked power systems, and
is nonparametric. Lifting the dynamics to the space of prob-
ability measures allows us to design a scalable algorithm that
obviates gridding the underlying high dimensional state space
which is computationally prohibitive. The proximal recursion
implements a generalized infinite dimensional gradient flow, and
evolves probability-weighted scattered point clouds. We clarify
the theoretical nuances and algorithmic details specific to the
power system nonlinearities, and provide illustrative numerical
examples.

Index Terms—Uncertainty propagation, power system dynam-
ics, kinetic Fokker-Planck equation, proximal operator.

I. INTRODUCTION

S
TOCHASTIC variabilities in power grid have increased

significantly in recent years both in the generation side

(e.g., due to growing penetration of renewables) as well

as in the load side (e.g., due to widespread adoption of

plug-in electric vehicles). Several studies [4], [7]–[10] have

reported that even small stochastic effects can significantly

alter the assessment of transient stability, or the performance of

automatic generation control. However, the lack of a rigorous

yet scalable stochastic computational framework continues to

impede [1] our ability to perform transient analysis involving

time-varying joint probability density functions (PDFs) over

the states of a large power system network. In this paper, we

present a new algorithm to address this computational need.

Given a networked power system, one can envisage at least

three types of uncertainties affecting the dynamics: initial

condition uncertainties in the state variables (e.g., rotor phase

angles and angular velocities), parametric uncertainties (e.g.,

inertia and damping coefficients of the generators, reactance

associated with different transmission lines), and stochastic

forcing (e.g., intermittencies in renewable power generation,

load and ambient temperature fluctuations). Fig. 1 depicts

a representative scenario. In addition, one could consider

uncertainties due to random change in transmission topology

resulting from unexpected outage, and uncertainties due to

unmodeled dynamics. Given a statistical description of these
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Fig. 1. A schematic of the IEEE 14 bus test system with stochastic
uncertainties. The Uncertainty sources may include stochastic forcing
and parametric uncertainties at some generators, random variabilities
at some loads, and parametric uncertainties along some transmission
lines. For depiction purposes, we indicated the parametric uncertain-
ties as PDFs, and stochastic forcing as intermittent signals.
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Fig. 2. Block diagram for joint state PDF propagation.

uncertainties, our approach is to directly solve the macroscopic

flow of the joint PDFs governing the probabilistic evolution of

the state as summarized in Fig. 2.

1) Related works: Even though the need for quantifying

uncertainties in power systems simulations has been long-

recognized [2], [3], early studies were limited to statistical

reliability assessment. Dynamic simulations with stochastic

uncertainties for purposes such as transient stability analysis

have been investigated via Monte Carlo simulations [4]–[7].

As is well known, the Monte Carlo techniques are easy to

apply but the computational cost scales exponentially with the

number of dimensions, thus making it prohibitive for realistic

power systems dynamic simulation. As an alternative, proba-

bilistic small signal analysis [10]–[13] have appeared in the

power systems literature, albeit at the expense of the additional

assumption that the random perturbations remain “small”.

Polynomial chaos and related stochastic collocation methods

[14], [15] can do away with the “small stochastic perturbation”

assumption but due to the finite dimensional approximation of
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the probability space, computational performance degrades if

the long-term statistics are desired. Furthermore, to cope with

the stochasticity, these techniques require simulating a higher-

dimensional system than the dimension of the physical state

space, which further limits the scalability for nonlinear simula-

tion. More recently, approximation methods such as stochastic

averaging [16], [17] based on certain energy function [18]–

[20] have appeared. In [21], an algorithm for propagating first

few statistical moments was proposed. However, this leads to

moment closure problems since the dimensions of the time-

varying sufficient statistics associated with the corresponding

transient joint state PDFs are not known in general. We also

note the usage of stochastic differential algebraic equations

(DAEs) for power system dynamic simulation [22], [23].

These studies, however, simulate the sample paths and do not

directly propagate the joint state PDFs.

In a different vein, deterministic bounded uncertainty mod-

els for power flow simulations have been used [24]–[28] for

set-valued analysis. These, however, require approximating the

underlying nonlinear (deterministic) DAEs appearing in power

system dynamic simulation, and thus lead to conservative

analysis. For example, the method in [27] requires converting

the nonlinear DAEs to linear DAEs in such a way that guar-

antees set-valued over-approximation of the reachable sets.

Likewise, the convex optimization-based bounded uncertainty

propagation methods in [29], [30] require second order ap-

proximation of the power flow state variables as a function of

the uncertainties.

2) Technical challenges: Several technical challenges need

to be overcome to achieve scalable computation enabling the

prediction of the joint PDFs over a time horizon of interest.

First, the trajectory level dynamic models for power systems

are inherently nonlinear, which do not preserve Gaussian-

ity, thereby requiring nonparametric prediction of the joint

PDFs. Second, the joint PDFs for realistic power systems

dynamic simulation must evolve over a high dimensional

state space, i.e., the joint PDF at any given time has high

dimensional support. This necessitates spatial discretization-

free algorithms since standard function approximation or in-

terpolation approaches would, in general, be met with “curse-

of-dimensionality” [31]. The numerical challenges aside, one

cannot theoretically guarantee to find a suite of basis functions

for the manifold of nonparametric PDFs. Third, prediction

based on first few statistical moments is challenging since

it is not possible to a priori guarantee a fixed or even

finite dimensional sufficient statistic. For instance, propagating

only the mean and covariance could be misleading when the

underlying joint PDFs are multi-modal.

3) Contributions of this paper: Our main contribution is

to demonstrate that by harnessing recent developments in

generalized gradient flows [48] and proximal algorithms [32],

it is possible to perform nonparametric propagation of the

joint state PDFs subject to the stochastic nonlinear dynamics

of a networked power system, and that the computation can

be performed in a gridless and scalable manner. In doing so,

the paper also makes theoretical contribution by introducing

a change of coordinates that transforms the joint PDF evo-

lution equations in a way that is amenable for the aforesaid

generalized proximal recursions.

From a methodological perspective, while proximal algo-

rithms are well-studied [32]–[34] in finite dimensional opti-

mization context, the utility of generalized proximal recursions

to compute the transient solutions of partial differential equa-

tions (PDEs) is relatively less known. This paper highlights

this connection by solving the PDE induced by the stochastic

power system dynamics.

Our technical approach juxtaposes with the existing power

systems literature discussed above, in that we approximate

neither the dynamical nonlinearity nor the statistics. Instead

of treating the exact nonlinearity as a bane, we exploit the ge-

ometry induced by the power system’s dynamical nonlinearity

over the manifold of time-varying joint state PDFs, thereby

enabling a new proximal algorithm to compute the transient

joint PDFs.

4) Notation and organization: The set of natural numbers,

real numbers, and complex numbers are denoted as N, R,

and C, respectively. The symbol ∇x denotes the Euclidean

gradient operator with respect to (w.r.t.) the vector x. Thus,

∇x· stands for the divergence, and ∆x stands for the Laplacian

w.r.t. vector x. We use 〈·, ·〉 to denote the standard Euclidean

inner product. The real and imaginary parts of a complex

number z are denoted via <(z) and =(z), respectively. We

use the superscript ∗ to denote the complex conjugate, and

the superscript > to denote the matrix transpose. The uniform

probability distribution over an interval [a, b] is denoted as

Unif ([a, b]). Likewise, the n dimensional uniform probability

distribution over [a, b]n is denoted as Unif ([a, b]n). The

symbol ∝ denotes proportionality, | · | denotes the absolute

magnitude, ‖ · ‖2 denotes the standard Euclidean 2-norm, ⊗
denotes the Kronecker product, � and � respectively denote

the elementwise (Hadamard) product and division, det(·)
stands for the determinant, and the subscript ] denotes the

pushforward of a PDF via a map. The n×n identity and zero

matrices are denoted as In and 0n×n, respectively.

The rest of this paper is structured as follows. Section II

details the power system dynamics models at the microscopic

or trajectory level (Sec. II-A) as well as at the macroscopic

or statistical ensemble level (Sec. II-B). The proposed idea

of realizing the flow of the joint state PDFs subject to the

macroscopic power system dynamics via infinite dimensional

proximal recursions, is explained in Section III. Section IV

elucidates the corresponding proximal algorithm that enables

the computation of the transient joint state PDFs via weighted

point cloud evolution. Numerical simulations illustrating the

proposed framework are reported in Section V. Section VI

concludes the paper.

II. MODELS

A. Sample Path Dynamics

In this work, we consider the coupled stochastic differen-

tial equations (SDEs) associated with the networked-reduced

power systems model [20, Ch. 7]. Specifically, for a power
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network with n generators, the stochastic dynamics for the

i-th generator is given by the Itô SDEs

dθi = ωi dt, (1a)

mi dωi =


Pi − γiωi −

n∑

j=1

kij sin (θi − θj − ϕij)


 dt

+ σi dwi, (1b)

where the state variables are the rotor angles θi ∈ [0, 2π)
and the rotor angular velocities ωi ∈ R, for i ∈ {1, . . . , n}.
The stochastic forcing is modeled through the standard Wiener

process wi(t), and the diffusion coefficient σi > 0 denotes the

intensity of stochastic forcing at the ith generator.

Remark 1. We emphasize here that the network-reduced

model (1) is obtained from the so-called structure preserving

power network model [7] after applying the Kron reduction

[58], and therefore, has all-to-all connection topology. The

derivation of the Kron-reduced parameters is outlined below.

With the ith generator, we associate its inertia mi > 0
and damping coefficient γi > 0. The other parameters: the

effective power input Pi, the phase shift ϕij ∈ [0, π
2 ), and

the coupling coefficients kij ≥ 0, depend on the network

reduced admittance matrix Y ≡ [Yij ]
n
i,j=1 ∈ C

n×n, Y = Y >.

Specifically,

Pi = Pmech
i − P load

i − |Ei|
2< (Yii) + < (Ei · I

∗
i ) , (2a)

ϕij =




− arctan

(
< (Yij)

= (Yij)

)
, if i 6= j,

0, otherwise,
(2b)

kij =

{
|Ei||Ej ||Yij |, if i 6= j,

0, otherwise,
(2c)

where Pmech
i is the mechanical power input, P load

i is the real

load, Ei is the internal voltage, and Ii ∈ C is the current for

generator i.
Suppose that the unreduced power network has n gener-

ators and m buses. Then the unreduced admittance matrix

Yunreduced ∈ C
(n+m)×(n+m) can be partitioned as

Yunreduced =

[
Ybnd Ybnd-int

Y >
bnd-int Yint

]
, (3)

where Ybnd ∈ C
n×n, Yint ∈ C

m×m, Ybnd-int ∈ C
n×m. The

matrix (3) relates the unreduced current vector Iunreduced ∈
C

n+m with the unreduced voltage vector Eunreduced ∈ C
n+m

via the Kirchhoff equations

Iunreduced = YunreducedEunreduced, (4)

or equivalently, via its partitioned version associated with the

interior and the boundary nodes:
[
Ibnd
Iint

]
= Yunreduced

[
Ebnd

Eint

]
, (5)

where Ibnd, Ebnd ∈ C
n and Iint, Eint ∈ C

m.
The network reduced admittance matrix Y ∈ C

n×n in (2)

is the Schur complement of (3) w.r.t. the block Yint, i.e.,

Y = Yunreduced/Yint := Ybnd − Ybnd-intY
−1
int Y

>
bnd-int.

The network reduced current vector I ∈ C
n in (2a) is obtained

as

I = Y Ebnd − Ibnd.

One can view (1) as the noisy version of the second order

nonuniform Kuramoto oscillator model [35], [36], given by

miθ̈i + γiθ̇i = Pi −
n∑

j=1

kij sin (θi − θj − ϕij)

+ σi × stochastic forcing, (6)

where the stochastic forcing is standard Gaussian white noise.

We define the positive diagonal matrices

M := diag (m1, . . . ,mn) ,

Γ := diag (γ1, . . . , γn) ,

Σ := diag (σ1, . . . , σn) ,

and rewrite (1) as a mixed conservative-dissipative SDE in

state vector x := (θ,ω)> ∈ T
n × R

n as
(
dθ
dω

)
=

(
ω

−M−1∇θV (θ)−M−1
Γω

)
dt+

(
0n×n

M−1
Σ

)
dw,

(7)

where w ∈ R
n is the standard vector Wiener process, T

n

denotes the n-torus [0, 2π)n, and the potential function V :
T
n 7→ R is given by

V (θ) := −

n∑

i=1

Piθi +

n∑

i,j=1
i<j

kij (1− cos(θi − θj − ϕij)) . (8)

The potential (8) has a natural energy function interpretation

and can also be motivated by a mechanical mass-spring-

damper analogy [37], [38].

B. Macroscopic Dynamics

Given the sample path dynamics (1) or equivalently (7), a

prescribed initial joint state PDF

ρ0(x) ≡ ρ(t = t0,θ(t0),ω(t0)) (9)

denoting initial condition uncertainties at time t = t0, and

prescribed parametric uncertainties given by the joint param-

eter PDF ρparam, the uncertainty propagation problem calls for

computing the transient joint state PDFs ρ(t,x) ≡ ρ(t,θ,ω)
for any desired time t ≥ t0, which is a nonnegative function

supported on the state space T
n × R

n satisfying
∫
ρ = 1 for

all t ≥ t0.

The corresponding macroscopic dynamics governing the

flow of the joint state PDF ρ(t,θ,ω) is given by a kinetic

Fokker-Planck [39] PDE

∂ρ

∂t
= −〈ω,∇θρ〉+∇ω ·

(
ρ
(
M−1

Γω +M−1∇θV (θ)

+
1

2
M−1

ΣΣ
>M−1∇ω log ρ

))
, (10)

subject to the initial condition (9) and the joint parameter

PDF ρparam. Of course, this subsumes special cases such

as when either the initial condition or the parameter vector

is deterministic. A direct numerical solution of this PDE

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3217267

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 31,2022 at 21:43:17 UTC from IEEE Xplore.  Restrictions apply. 



4

initial value problem using conventional discretization (e.g.,

finite difference) or function approximation techniques will

not be scalable in general, as explained in Sec. I-2. In the

next Section, we discuss how a measure-valued variational

recursion proposed in our recent works [40]–[44] can be

employed to address this challenge.

We mention here that (7) has been used in [16], [17]

for uncertainty propagation via stochastic averaging approx-

imation where the univariate energy PDF was proposed as

a “proxy” for the entire joint PDF. Most relevant to our

approach in the power systems literature is the work in [45],

which indeed voiced the need for computing the transient

joint PDFs but only dealt with the single-machine-infinite-

bus case – simplest (n = 1) instance of (7). The resulting

bivariate Fokker-Planck PDE in [45] was solved via finite

element discretization, and revealed rich stochastic dynamics

and nontrivial transient stability aspects even in this simple

case. However, it is unreasonable to expect that a finite element

discretization, or in fact any spatial discretization scheme to

solve (10) for moderately large n in seconds of computational

time, thereby limiting our current ability for realistic power

systems simulation with stochastic variability. This calls for

fundamentally re-thinking what does it mean to solve the PDE

(10) for dynamics (7).

III. MEASURE-VALUED PROXIMAL RECURSION

A. Generalized Gradient Descent

Let P2 (T
n × R

n) denote the manifold of joint PDFs sup-

ported over the state space T
n × R

n, with finite second raw

moments. Symbolically,

P2 (T
n × R

n) :=

{
ρ : Tn × R

n 7→ R≥0 |

∫
ρ = 1,

∫
x>x ρ(x) dx <∞ for all x ≡ (θ,ω)> ∈ T

n × R
n

}
.

(11)

We propose to solve the initial value problem for the PDE (10)

by viewing its flow ρ(t,θ,ω) as the gradient descent of some

functional Φ : P2 (T
n × R

n) 7→ R≥0 w.r.t. some distance

dist : P2 (T
n × R

n)× P2 (T
n × R

n) 7→ R≥0.

We now explain this idea in detail.

For k ∈ N, and for some chosen step size h > 0, we

discretize time as tk := kh, and define the infinite dimensional

proximal operator of the functional hΦ w.r.t. the distance

dist(·, ·), given by

proxdisthΦ (%k−1) := arg inf
%∈P2

1

2
dist2 (%, %k−1) + h Φ(%). (12)

Now consider a proximal recursion over the manifold P2 as

%k = proxdist
hΦ (%k−1), k ∈ N, %0(x) := ρ0(x). (13)

Given the PDE (10), we would like to design the functional

pair (Φ, dist) such that the sequence of functions {%k}k∈N

generated by the proximal recursion (13), in the small time

ϱ
k

Fig. 3. A schematic of approximating the flow of the joint PDF tra-
jectory ρ(t,x) via the sequence {%k}k∈N generated by a variational
recursion over P2 (T

n × R
n). The curve ρ(t,x) solves a kinetic

Fokker-Planck PDE initial value problem. Points on this curve (shown
as three filled circled markers at three specific instances t0, t1, t2)
are joint PDFs. While the joint PDFs are supported over the finite
dimensional base manifold T

n ×R
n, the proximal updates {%k}k∈N

(shown as circled markers with no face-color) evolve over the infinite
dimensional manifold P2 (T

n × R
n).

step limit, converges to the flow ρ(t = kh,θ,ω) generated by

the PDE initial value problem of interest. In particular∗,

%k(θ,ω)
h↓0
−−→ ρ(t = kh,θ,ω) in L1 (Tn × R

n) . (14)

We remark here that (11), (12), (13), (14) can be written

more generally in terms of the joint probability measures

instead of PDFs, i.e., even when the underlying measures

are not absolutely continuous. Fig. 3 illustrates the idea of

approximating the joint PDF trajectory ρ(t,x) through the

sequence {%k}k∈N computed from a variational recursion over

P2 (T
n × R

n).
We can interpret the proximal operator (12) as a generalized

gradient step for the functional Φ in the manifold P2. The

proximal recursions (13) define an infinite dimensional gradi-

ent descent of the functional hΦ over P2 w.r.t. the distance

dist. This is reminiscent of the finite dimensional gradient

descent, where a gradient flow generated by an ordinary

differential equation initial value problem can be recovered as

the small time step limit of the sequence of vectors generated

by a standard Euclidean proximal recursion; see e.g., [41, Sec.

I].

That the flow generated by a Fokker-Planck PDE initial

value problem can be recovered from a variational recursion

of the form (13) was first proposed in [46], showing that when

the drift in the sample path dynamics is a gradient vector field

and the diffusion is a scalar multiple of identity matrix, then

dist(·, ·) can be taken as the Wasserstein-2 metric arising in the

∗L1 denotes the Lebesgue space of absolutely integrable functions.
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theory of optimal transport [47] with Φ(·) as the free energy

functional. In particular, the functional Φ serves as a Lyapunov

functional in the sense d
dtΦ < 0 along the transient solution

of the Fokker-Planck PDE initial value problem. This idea

has since been generalized to many other types of PDE initial

value problems, see e.g., [48], [49].

The algorithmic appeal of the proximal recursion (13) is

that it opens up the possibility to compute the solution of the

PDE initial value problem via recursive convex minimization.

A point cloud-based proximal algorithm was proposed in [40],

[41] which was reported to have very fast runtime. The main

idea in these references was to co-evolve the time-varying state

samples (via SDE discretization schemes such as the Euler-

Maruyama scheme) as well as the joint PDF values (via (13))

evaluated at those samples. The resulting computation is an

online propagation of the joint PDFs as opposed to the offline

computation in Monte Carlo or density estimation methods

[50]. The latter methods only propagate the state samples and

then approximate the joint PDFs as post-processing.

Notice that even though the drift in (7) is not a gradient

vector field, the algorithm in [41, Sec. V.B] constructed a pair

(Φ, dist) such that (13) provably approximates the transient

solution of the corresponding kinetic Fokker-Planck PDE with

guarantee (14). However, that algorithm cannot be applied to

(10) as is. The reasons are explained next.

B. Statistical Mechanics Perspective

A new difficulty for our SDE (7) is that we have anisotropic

degenerate diffusion, i.e., the strengths of the noise acting in

the last n components of (7) are nonuniform since M−1
Σ is

not identity. This complicates the matter because the construc-

tion of the functional Φ in (13) is usually motivated via free

energy considerations utilizing the structure of the stationary

PDF ρ∞(θ,ω) for (10). The ρ∞ is, in turn, guaranteed to be

a unique Boltzmann distribution of the form†

ρ∞ (θ,ω) =
1

Z
exp (−βH) , for some β > 0, (15a)

H(θ,ω) := V (θ) +
1

2
〈ω,Mω〉, (15b)

if and only if the so-called Einstein relation [51], [52] holds:

ΣΣ
> = β−1

(
Γ+ Γ

>
)
. (16)

In our case, Σ,Γ are positive diagonal, and (16) is equivalent

to the proportionality constraint: σ2
i ∝ γi for all i = 1, . . . , n.

In the power systems context, we cannot relate the damping

coefficients γi with the squared intensities of stochastic forcing

σ2
i for the generators. Thus, (16) will not hold in practice,

meaning either we cannot guarantee existence-uniqueness for

ρ∞, or even if ρ∞ exists, it will not be of the form (15).

On one hand, this implies that our construction of Φ may

not be guided by free energy considerations. On the other

hand, since we are only interested in computing the transient

joint PDFs, i.e., non-equilibrium statistical mechanics, the lack

of a fluctuation-dissipation relation like (16) should not be a

fundamental impediment in setting up a recursion such as (13).

†here Z is a normalizing constant known as the “partition function”.

We next show that a simple change of variable can indeed

circumvent this issue.

C. From Anisotropic to Isotropic Degenerate Diffusion

Consider the 2n× 2n matrix

Ψ := I2 ⊗
(
MΣ

−1
)
, (17)

and define the invertible linear map
(
θ

ω

)
7→

(
ξ

η

)
:= Ψ

(
θ

ω

)
. (18)

Applying Itô’s lemma [53, Ch. 4.2] to the map (18), and using

(7), we find that the transformed state vector (ξ,η)> solves

the Itô SDE
(
dξ
dη

)
=

(
η

−Υ∇ξU(ξ)−∇ηF (η)

)
dt+

(
0n×n

In

)
dw, (19)

where the diagonal matrix Υ :=
(∏n

i=1 σ
2
im

−2
i

)
MΣ

−2 has
positive entries along the main diagonal, and the potentials

U(ξ) :=

(

∑

i<j

kij

(

1−cos

(

σi

mi

ξi −
σj

mj

ξj − ϕij

))

−

n
∑

i=1

σi

mi

Piξi

)(

n
∏

i=1

m2

i

σ2

i

)

, (20a)

F (η) :=
1

2
〈η,Σ−1

Γη〉. (20b)

Notice that (19) is a mixed conservative-dissipative SDE

with isotropic degenerate diffusion. In particular, the pushfor-

ward of the known initial joint PDF (9) via Ψ, is given by

ρ̃0(ξ,η) := Ψ]ρ0 =

ρ0

(
Ψ

−1

(
ξ

η

))

| det (Ψ) |

=
ρ0
(
ΣM−1ξ,ΣM−1η

)
(

n∏

i=1

mi/σi

)2 , (21)

where we used the standard properties of the Kronecker

product. The transient joint state PDF ρ̃(t, ξ,η) corresponding

to (19) solves the PDE initial value problem

∂ρ̃

∂t
= −〈η,∇ξρ̃〉+∇η · (ρ̃ (Υ∇ξU(ξ) +∇ηF (η)))

+
1

2
∆ηρ̃, (22a)

ρ̃(t = t0, ξ,η) = ρ̃0(ξ,η)︸ ︷︷ ︸
from (21)

. (22b)

In other words, (22) is the macroscopic dynamics correspond-

ing to the sample path dynamics (19).

Since (22a) is a kinetic Fokker-Planck PDE with isotropic

degenerate diffusion, our strategy is to perform a proximal

recursion of the form (13) for (22) in (ξ,η) coordinates, and

then to pushforward the resulting joint PDFs via Ψ
−1 to the

original state space. This is what we detail next.
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mapping xk−1 xk,

Fig. 4. Schematic of the proposed proximal algorithm for propagating
the joint state PDF as probability-weighted scattered point cloud
{x̃i

k, %̃
i
k}

N
i=1. The states {x̃i

k}
N
i=1 are updated by the Euler-Maruyama

scheme applied to (7); the corresponding probability weights {%̃ik}
N
i=1

are updated via discrete version of the proximal recursion (27) as
detailed in Sec. IV.

D. Proximal Update

Looking at (20) and (22a), it is natural to consider an energy

functional of the form

Φ(ρ̃) :=

∫

(
∏n

i=1
[0,2πmi/σi))×Rn

(
U(ξ) + F (η) +

1

2
log ρ̃

)

ρ̃ dξ dη, (23)

which is the sum of a potential energy (expected value of

U ), a weighted kinetic energy (expected value of F ), and

an internal energy (scaled negative entropy, the entropy being

−
∫
ρ̃ log ρ̃). However, unlike the gradient drift case mentioned

in Sec. III-A, it is not possible to express the right hand side

of (22a) as the Wasserstein gradient of the functional (23).

This can be verified via direct computation by recalling that

the Wasserstein gradient is defined as [48, Ch. 8]

∇WassersteinΦ := −∇ ·

(
ρ∇

δΦ

δρ

)
,

where ∇ denotes the standard Euclidean gradient w.r.t. the

vector (ξ,η)>, and δ
δρ denotes the functional derivative.

Thus, we cannot interpret the flow generated by (22) as the

Wasserstein gradient flow of the functional (23). Consequently,

in (12), we cannot construct (Φ, dist) by pairing (23) with the

Wasserstein metric.

To set up a variational recursion of the form (12) for (22),

we set (Φ, dist) ≡
(
Φ̃, W̃h,Υ

)
where

Φ̃(ρ̃) :=

∫

(
∏n

i=1
[0,2πmi/σi))×Rn

(
F (η) +

1

2
log ρ̃

)
ρ̃ dξdη,

(24)

and

W̃ 2
h,Υ (%̃, %̃k−1) := inf

π∈Π(%̃,%̃k−1)

∫

(
∏n

i=1
[0,2πmi/σi))

2
×R2n

sh,Υ
(
ξ,η, ξ̄, η̄

)
dπ
(
ξ,η, ξ̄, η̄

)
, (25)

wherein h > 0 denotes the step-size in proximal recursion,

and Π(%̃, %̃k−1) denotes the set of joint probability measures

over the product space (
∏n

i=1[0, 2πmi/σi))
2
×R

2n that have

finite second moments with the first marginal %̃, and the second

marginal %̃k−1. The “ground cost” sh,Υ in (25) is given by

sh,Υ
(
ξ,η, ξ̄, η̄

)
:=〈

(η̄ − η + hΥ∇ξU(ξ)) ,Υ−1(η̄ − η + hΥ∇ξU(ξ))

〉

+ 12

〈(
ξ̄ − ξ

h
−

η̄ − η

h

)
,Υ−1

(
ξ̄ − ξ

h
−

η̄ − η

h

)〉
. (26)

That the sequence of functions {%̃k} for k ∈ N, generated

by the proximal recursion

%̃k = proxW̃
hΦ̃

(%̃k−1)

≡ arg inf
%̃∈P2

1

2
W̃ 2 (%̃, %̃k−1) + h Φ̃(%̃), %̃0 := ρ̃0, (27)

converges to the flow generated by (22), i.e.,

%̃k(ξ,η)
h↓0
−−→ ρ̃(t = kh, ξ,η) in L1 (Tn × R

n) ,

can be established following the arguments in [55]. To nu-

merically perform the recursion (27), we employ the proximal

algorithm proposed in [41] with finite number of samples, as

explained next.

IV. PROXIMAL ALGORITHM

We solve (27) by recursively updating the probability-

weighted scattered point clouds {x̃i
k, %̃

i
k}

N
i=1 where

x̃i
k :=

(
ξik,η

i
k

)>
, i = 1, . . . , N, k ∈ N.

Thus, %̃ik is the joint PDF value obtained from (27) at x̃i
k, the

ith (transformed) state sample at the kth time step. The high

level schematic of the algorithm is shown in Fig. 4.

In the numerical simulations reported in Sec. V, the states

{x̃i
k}

N
i=1 are updated by the Euler-Maruyama scheme applied

to (7). If one wishes so, the Euler-Maruyama scheme in Fig. 4

may be replaced by other SDE integrators, see e.g., [41, Sec.

III.B.2, Remark 1].

To numerically perform the proximal updates {%̃ik−1}
N
i=1 7→

{%̃ik}
N
i=1 for k ∈ N, we implement an instance of the

Algorithm 1 in [41]. The algorithm involves a dualization

along with an entropic regularization of the variational update

(27), and then solving the same using a fixed point recursion

that is provably contractive; we refer the interested readers

to [41, Sec. V.B] for details. This enables a nonparametric

computation of %̃ik ≡ %̃k
(
ξik,η

i
k

)
for i = 1, . . . , N .
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Algorithm 1 Proposed proximal algorithm for %̃k−1 7→ %̃k

1: procedure PROX(%̃k−1, x̃k−1, x̃k,Υ, h, ε,N, δ, `max)

2: for i = 1 to N do

3: ζk−1(i)← exp
(
−F

(
ηi
k−1

)
− 1
)

4: for j = 1 to N do

5: Ck(i, j)← sh,Υ

(
ξik−1,η

i
k−1, ξ

j
k,η

j
k

)

6: end for

7: end for

8: Γk ← exp (−Ck/2ε) . elementwise exponential

9: z0 ← randN×1 . random vector of size N × 1
10: z ←

[
z0,0N×(L−1)

]
. initialize

11: y ←
[
%̃k−1 � (Γkz0) ,0N×(L−1)

]
. initialize

12: ` = 1
13: while ` ≤ `max do

14: z(:, `+ 1)←
(
ζk−1 �

(
Γ
>
k y(:, `)

)) 1
1+2ε/h

15: y(:, `+ 1)← %̃k−1 � (Γkz(:, `+ 1))
16: if ‖y(:, `+1)−y(:, `)‖2 < δ & ‖z(:, `+1)− z(:

, `)‖2 < δ then . error within tolerance

17: break

18: else

19: `← `+ 1
20: end if

21: end while

22: return %̃k ← z(:, `)�
(
Γ
>
k y(:, `)

)
. proximal update

23: end procedure

Finally, we transform the proximal updates back to the x ≡
(θ,ω)

>
state space via the pushforward Ψ

−1 as

%k
(
θi
k,ω

i
k

)
= Ψ

−1
] %̃k

(
ξik,η

i
k

)

=




n∏

j=1

mj/σj



2

%̃k
(
MΣ

−1θi
k,MΣ

−1ωi
k

)
, (28)

for all i = 1, . . . , N . The %k (θ,ω) from (28) approximates

ρ(t,θ,ω) (the transient solution of (10)) in the sense (14).

For completeness, the algorithm PROX for updating

{%̃ik−1}
N
i=1 7→ {%̃

i
k}

N
i=1 is outlined in Algorithm 1. As shown

in Fig. 4, this algorithm, at a conceptual level, takes the pre

and post-update state samples

{x̃i
k−1}

N
i=1 ≡ {

(
ξik−1,η

i
k−1

)
}Ni=1, {x̃

i
k}

N
i=1 ≡ {

(
ξik,η

i
k

)
}Ni=1,

and {%̃ik−1}
N
i=1 as inputs, and outputs the proximal updates

{%̃ik}
N
i=1. For each k ∈ N, the updated probability-weighted

point clouds {x̃i
k, %̃

i
k}

N
i=1 are then brought back to the original

state space via Ψ
−1 as {xi

k, %
i
k}

N
i=1, as explained earlier.

Algorithm 1 also needs input parameters h, ε,N, δ, L.

Specifically, h is the time-step size, ε is an entropic regu-

larization weight internal to the PROX algorithm, and N is

the number of samples. The parameters δ and `max codify

the numerical tolerance and maximum number of iterations,

respectively, for the while loop in Algorithm 1. Its convergence

guarantees can be found in [41, Sec. III.C].

Remark 2. The proposed computational framework is also ap-

plicable when Pmech
i , P load

i , and thus Pi in (2a), are bounded

time-varying functions. This can be the case, for instance, with

rapid fluctuations from renewables or from loads in the short

term.

V. NUMERICAL SIMULATIONS

To illustrate the proposed computational framework, we

next provide two numerical simulation case studies. In Sec.

V-A, we consider the prediction of transient stochastic states

for the IEEE 14 bus system for the nominal case as well as for

the case when a line failure occurs. In Sec. V-B, we propagate

the joint PDFs over the 100 dimensional state space of a

synthetic power network with randomly generated parameters–

our intent there is to highlight the scalability of the proposed

method. All simulations were performed in MATLAB R2019b

on an iMac with 3.4 GHz Quad-Core Intel Core i5 processor

and 8 GB memory.

A. IEEE 14 Bus System

We consider the Kron-reduced dynamics (1) for the IEEE

14 bus system shown in Fig. 1. In this case, we have n = 5
nodes which correspond to the buses 1, 2, 3, 6 and 8 in

Fig. 1. We obtained the parameters of the 14-bus system

from MATPOWER [62]. The calculation of Kron-reduced

admittance matrix and current vector in (2) followed Sec. II-A;

see also [58]. The parameters mi, γi were obtained from the

open-source Python-based library ANDES [63].

Our numerical simulations for the IEEE 14 bus system

consider the following two cases:

Case I. Nominal case where the Pmech
i and P load

i are from the

steady state power flow solutions without the process noise,

and are assumed to remain constant over the simulation time

horizon. The transient stochastic simulations (i.e., with process

noise) are then performed using the proposed framework.

Case II. Post-contingency case where the line 13 (see Fig.

1) fails at time t = 0, and starting with the parameters and

initial conditions of Case I, we simulate the post-contingency

stochastic state evolution with process noise.

For both the cases mentioned above, we used the randomly

generated noise coefficients σi ∈ [1, 5] as

(σ1, . . . , σ5) = (2.4628, 4.9266, 4.8724, 1.4215, 3.8681) .

To account the pertinent geometry of Tn×R
n, we take the

initial joint PDF as

ρ0 ≡ ρ(t = 0,θ(0),ω(0)) = ϑ0 (θ(0))Ω0 (ω(0))

=

(
n=5∏

i=1

exp
(
κi cos

(
2θi(0)− µθi(0)

))

2πI0(κi)

)

︸ ︷︷ ︸
=:ϑ0(θ(0))

×Unif
(
([−0.1, 0.1] rad/s)

5
)

︸ ︷︷ ︸
=:Ω0(ω(0))

, (29)
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Fig. 5. Time evolution of the (θi, ωi) bivariate marginal PDFs of the generator i = 1, . . . , 5, for the Kron-reduced IEEE 14 bus simulation
setup Case I described in Sec. V-A. The five rows above correspond to the five generator nodes; these are buses 1, 2, 3, 6 and 8 in Fig. 1.
The columns correspond to the time snapshots. The colorbar at the bottom shows the marginal PDF values. The θi are in rad, the ωi are in
rad/s.

whose θ marginal ϑ0 (θ(0)) is a product von Mises PDF‡ [59],

[60] supported over T5 with mean angles (in rad)

(µθ1(0), . . . , µθ5(0)) = (0, 6.1963, 6.0612, 6.0350, 6.0500) ,
(30)

and concentration parameter κi ≥ 0 set as

(κ1, . . . , κ5) = (5, 6, 7, 4, 5) .

In (29), I0(·) denotes the modified Bessel function of the first

kind with order zero, given by I0(κ) =
∑∞

r=0
(κ2/4)

r

(r!)2 , and

can be evaluated via MATLAB command besseli(0,·).

The mean angles (30) were obtained from steady state AC

power flow solutions. Larger κi entails a higher concentration

around the mean angle µθi(0) (setting κi = 0 implies that

θi(0) follows uniform distribution over [0, 2π)).
In (29), the ω marginal Ω0 (ω(0)) is a uniform PDF over

the hypercube ([−0.1, 0.1] rad/s)
5
. Thus, the PDF ρ0 in (29)

is supported over T5 × [−0.1, 0.1]5.

With step size h = 10−3, we discretized time t ∈ [0, 1].
Using the algorithm detailed in Sec. IV, for both cases, we

propagated N = 1000 random state samples from (29), and

corresponding joint PDF values evaluated at (29), to update

‡the factor 2 inside the cosine ensures the range [0, 2π); it can be dispensed
if we instead use the range [−π, π) for the angular variables, as common in
the directional statistics literature [61].

the scattered weighted point clouds {xi
k, %

i
k}

N
i=1 over T

5 ×
R

5 at times tk := kh, k ∈ N. In Algorithm 1, we used the

algorithmic parameters ε = 0.05, δ = 10−3, `max = 300.

Fig. 5 and Fig. 6 show the time snapshots of the (θi, ωi)
bivariate marginal PDFs for Case I and Case II respectively,

associated with the generator i = 1, . . . , n = 5. These

marginals are computed using the corresponding weighted

point clouds {xi
k, %

i
k}

N
i=1.

Fig. 7 shows the corresponding univariate ωi-marginal

PDFs. In particular, Fig. 7(c) helps compare the ω4 marginal

evolution for bus 6 in the nominal (Case I) and post-fault

(Case II) scenarios. Since Case II considers the failure of

line 13, from Fig. 1 we intuitively expect that the transient

effects of this fault will be prominent for bus 6 (generator

4). Indeed, Fig. 7(c) shows that although the ω4 marginals in

both Case I and II, at all times have the highest probability

around 0 rad/s, the post-fault marginals show larger spread

or dispersion of the probability mass, as expected. That the

generator 4 states in Case II have larger uncertainties than in

Case I, is also visible in the bivariate marginal plots if we

compare the fourth row in Fig. 5 with the same in Fig. 6. The

statistical uncertainties in the rotor angles are shown in Fig. 8

for both Case I and Case II.

Fig. 9 shows the computational times needed to update

{xi
k, %

i
k}

N
i=1 via the algorithm in Sec. IV, for both Cases I
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Fig. 6. Time evolution of the (θi, ωi) bivariate marginal PDFs of the generator i = 1, . . . , 5, for the Kron-reduced IEEE 14 bus simulation
setup Case II described in Sec. V-A. The five rows above correspond to the five generator nodes; these are buses 1, 2, 3, 6 and 8 in Fig. 1.
The columns correspond to the time snapshots. The colorbar at the bottom shows the marginal PDF values. The θi are in rad, the ωi are in
rad/s.

(a) (b) (c)

Fig. 7. For i = 1, . . . , 5, the ωi marginals (a) for Case I, and (b) for Case II, resulting from the IEEE 14 bus simulation described in Sec.
V-A. (c) Comparison of the ω4 marginals for bus 6 in the nominal (Case I) and post-fault (Case II) scenarios.

and II. While the depiction of the computational times in

Fig. 9 appears unconventional, we next explain why that is

meaningful in our framework.

At each fixed physical time tk = kh, k ∈ N, where h is the

fixed step-size, we perform the proximal update %k−1 7→ %k
via Algorithm 1. This proximal update has no analytical

solution and instead requires execution of a contractive fixed

point recursion. The physical time tk is “frozen” (zero-order-

hold) during the fixed point recursions underlying this one-step

proximal update. For the proposed method to be practical,

we therefore, need to demonstrate that the computational

timescale is at least statistically comparable (in the order of

magnitude sense) to the physical dynamics timescale. In other

words, the computational times needed to complete the zero-

order-hold fixed point recursions are, with high probability, the

same orders-of-magnitude as h, the step-size of physical time.

The precise computational time is probabilistic, not just due

to random sampling, but also due to randomness in latency,

power and memory footprint of the hardware platform.

In Fig 9, h = 10−3 and the computational time needed to

perform a single proximal update, with high probability, is

O(10−3) in the sense most time-steps incur O(10−3) time.

For the Case I in Fig 9, few instances when computational

times are O(10−2) do occur but are statistically rare.

Fig. 10 (circle markers for the Case I, diamond markers

for the Case II) shows the total computational times needed

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3217267

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 31,2022 at 21:43:17 UTC from IEEE Xplore.  Restrictions apply. 



10

(a) Case I (b) Case II

Fig. 8. Boxplots for the rotor angles θi(t), i = 1, . . . , 5, for the IEEE 14 bus system simulation in Sec. V-A in the (a) nominal Case I, and
in the (b) post-fault Case II scenarios, respectively. As usual, the boxes show the respective interquartile ranges, and the whiskers show the
respective minimum and maximum values. In each box plot, we have superimposed the respective mean rotor angle sample path.

Fig. 9. The computational times for propagating the transient joint
state PDFs over T5 × R

5 for the simulation set up in Sec. V-A.

Parameter description Values

nominal frequency f0 = 60 Hz

inertia mi ∈ Unif ([2, 12]) /2πf0

damping coefficient γi ∈ Unif ([20, 30]) /2πf0

diffusion coefficient σi ∈ Unif ([1, 5])

tangent of phase shift tanϕij

{

= 0 for i = j

∈ Unif ([0, 0.25]) for i 6= j

effective power input Pi ∈ Unif ([0, 10])

coupling coefficient kij

{

= 0 for i = j

∈ Unif ([0.7, 1.2]) for i 6= j

TABLE I
PARAMETERS USED FOR THE NUMERICAL SIMULATION IN SEC. V-B. THE

INDICES i, j ∈ {1, . . . , n} WHERE THE NUMBER OF GENERATORS n = 50
IN SEC. V-B.

for propagating the transient joint state PDFs over a longer

horizon [0, 1 min] for 100 different simulation instances.

Fig. 10. The total computational times for propagating the transient
joint state PDFs over [0, 1 min] for the simulation set up in Sec. V-A
and Sec. V-B. In each case, we show the total computational time
for 100 different simulation instances.

B. Synthetic Test System

To highlight the scalability of the proposed method, we

next consider a power network with n = 50 generators, and

propagate the transient joint state PDFs supported over the 100

dimensional state space T
50 × R

50. We take the initial joint

state PDF at t = 0 as

ρ0 ≡ ρ(t = 0,θ(0),ω(0)) = Unif (([0, 2π) rad)
n
)

×Unif (([−0.1, 0.1] rad/s)
n
) , (31)

and following [35, Sec. 5], randomly generate the parameters

as in Table I. These parameter ranges are consistent with the

same found in [20], [56], [57].

With N = 2000 random samples from the initial joint PDF

(31), and with the aforesaid randomly generated parameters,

we employed the procedure detailed in Sec. IV for propagating
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Fig. 11. The computational time for propagating the transient joint
state PDFs over T50 × R

50 for the simulation set up in Sec. V-B.

Fig. 12. The relative error between the empirical mean (i.e., Monte
Carlo estimate) µMC

k ∈ T
50 ×R

50, and the mean µProx
k ∈ T

50 ×R
50

obtained using the proximal updates of the joint state PDFs, for the
simulation set up in Sec. V-B.

{xi
k, %

i
k}

N
i=1. As in Sec. V-A, we used h = 10−3, ε = 0.05,

δ = 10−3, `max = 300 in Algorithm 1.

Fig. 11 highlights that for computing high dimensional

transient joint state PDFs as in here, the proposed variational

framework enjoys remarkably fast computational time. Notice

that constructing histograms or other conventional density

estimators for the joint state PDF by making a grid over the

100 dimensional state space, is computationally prohibitive

in a general purpose computer. Fig. 10 (square markers)

shows the total computational times needed for propagating

the transient joint state PDFs over the time horizon [0, 1 min]
for 100 different simulation instances.

To depict the numerical accuracy, Fig. 12 plots the (time-

varying) relative error between the empirical (i.e., Monte Carlo

estimate) mean vector µMC
k ∈ T

50 × R
50, and the “proximal

mean” vector µProx
k ∈ T

50 × R
50. The latter was computed

using the proximal updates {xi
k, %

i
k}

N
i=1. Likewise, Fig. 13

plots the time-varying normalized Bures-Wasserstein distance

dBW(·, ·) between the empirical covariance matrix (i.e., Monte

Carlo estimate) CovMC ∈ R
100×100, and the ensemble covari-

ance matrix CovProx ∈ R
100×100 obtained using the proximal

updates. The unnormalized Bures-Wasserstein distance [64]

Fig. 13. The normalized Bures-Wasserstein distance dBW(·, ·) be-
tween the empirical covariance (i.e., Monte Carlo estimate) CovMC ∈
R

100×100, and the ensemble covariance CovProx ∈ R
100×100

obtained using the proximal updates of the joint state PDFs, for
the simulation set up in Sec. V-B. The normalization is w.r.t.
√

trace
(

CovMC
)

.

Fig. 14. The 2-Wasserstein distance between the empirical joint
PDF (i.e., Monte Carlo estimate) ρMC, and the proximal update %k

obtained using the proposed proximal algorithm, for the simulation
set up in Sec. V-B.

given by

dBW(CovMC,CovProx) :=
[
trace

(
CovMC +CovProx

)

−2 trace

((√
CovMC CovProx

√
CovMC

) 1
2

)] 1
2

,

is a metric on the cone of symmetric positive definite matrices

such as the covariance matrices, and can be seen as an absolute

error between the covariances. Thus, Fig. 13 can be viewed

as a relative error curve between the covariances. In summary,

Figs. 12 and 13 show that the time-varying statistics between

the Monte Carlo and the proposed proximal computation

remain close at all times.

Since it is not possible to a priori determine the dimension

of the sufficient statistic of the transient joint state PDFs,

Fig. 14 shows the 2-Wasserstein metric between the empirical

joint PDF (i.e., Monte Carlo estimate) ρMC, and the proximal

update %k. In other words, Fig. 14 can be viewed as a

nonparametric absolute error curve between ρMC and %k.

Each snapshot value in Fig. 14 is computed by solving the

well-known optimal transport linear program (see e.g., [65,

Sec. 4.2-4.3], [66, Ch. 3]) using the corresponding time-

varying weighted point clouds. The dynamics helps guide the
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concentration of the time-varying point clouds in regions of

high and low likelihoods in the state space, and hence as time

progresses, the empirical Monte Carlo approximants get closer

to the proximal updates. Consequently, Figs. 12, 13 and 14

show that after initial transients, the distances between the

Monte Carlo and the proximal statistics decrease with time.

VI. CONCLUSION

We proposed a nonparametric algorithm to propagate the

joint state PDFs subject to networked power system dynam-

ics with stochastic initial conditions, parameters and process

noise. Our development is built on recent advances in general-

ized gradient flows on the space of PDFs, and new analytical

results specific to the power system’s stochastic dynamics

that are presented in this paper. The novelty of the proposed

proximal algorithm is that it does not approximate the dynam-

ical or statistical nonlinearities. Instead, the algorithm allows

gridless computation by actually exploiting the structure of

the PDE governing the evolution of the joint state PDF that

is induced by the underlying nonlinear sample path dynamics

of a networked power system. Numerical case studies reveal

that the computational framework can be a scalable way to

propagate stochastic uncertainties in realistic power networks.

Possible future directions include generalizing the proposed

method for more complex generator dynamics, and to use

this framework to actively steer the uncertainties via optimal

control on the space of joint PDFs.
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