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Reflected Schrodinger Bridge: Density Control with Path Constraints

Kenneth F. Caluya, and Abhishek Halder

Abstract— How to steer a given joint state probability density
function to another over finite horizon subject to a controlled
stochastic dynamics with hard state (sample path) constraints?
In applications, state constraints may encode safety require-
ments such as obstacle avoidance. In this paper, we perform
the feedback synthesis for minimum control effort density
steering (a.k.a. Schrodinger bridge) problem subject to state
constraints. We extend the theory of Schrodinger bridges to
account the reflecting boundary conditions for the sample
paths, and provide a computational framework building on
our previous work on proximal recursions, to solve the same.

I. INTRODUCTION

We consider finite horizon feedback steering of an en-
semble of trajectories subject to a controlled stochastic dif-
ferential equation (SDE) with endpoint joint state probability
density function (PDF) constraints — a topic of growing inter-
est in the systems-control literature. Motivating applications
include belief space motion planning for vehicular auton-
omy, and the steering of robotic or biological swarms via
decentralized feedback. While early contributions focused
on the covariance control [1]-[3], more recent papers [4]—
[6] addressed the optimal feedback synthesis for steering
an arbitrary prescribed initial joint state PDF to another
prescribed terminal joint state PDF subject to controlled
linear dynamics, and revealed the connections between the
associated stochastic optimal control problem, the theory of
optimal mass transport [7], and the Schrodinger bridge [8],
[9]. Follow up works have accounted terminal cost [10],
input constraints [11], [12], output feedback [13], and some
nonlinear dynamics [14]-[16]. The research front is fast mov-
ing and the mentioned references are only a representative
sampler, far from comprehensive. As for the state or path
constraints, prior work [17] incorporated the same in soft
probabilistic sense. The contribution of the present paper is
to account hard deterministic path constraints in the problem
of minimum effort finite horizon PDF steering via feedback
synthesis. This can be intuitively phrased as the “hard safety
with soft endpoint” problem.

The proposed idea underlying the ensuing development is
to modify the unconstrained It6 SDEs to the “reflected It
SDEs” [18]-[21], i.e., the controlled sample paths in the state
space (in addition to the control-affine deterministic drift) are
driven by two stochastic processes: a Wiener process, and a
local time stochastic process. The latter enforces the sample
paths in the state space to satisfy the deterministic non-
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strict' path containment constraints at all times. These con-
siderations engender a Schrodinger bridge-like formulation—
referred hereafter as the Reflected Schrodinger Bridge Prob-
lem (RSBP)-which unlike its classical counterpart, has extra
boundary conditions involving the gradients of the so-called
Schrodinger factors. We show how recent developments in
contraction mapping w.r.t. the Hilbert metric, and the proxi-
mal recursion over the Schrédinger factors can be harnessed
to solve the RSBP.

II. REFLECTED SCHRODINGER BRIDGE PROBLEM
A. Formulation

Considgr a connected, smooth? and bounded domain X C
R™. Let X := X U O0X denote the closure of X. For time
t € [0,1], consider the stochastic control problem

: 'l u
o B{ [ St (1)
subject to  day = f(¢, ) dt + w(t, xy) dt

+ V260 dw; + n(x?)dy;, (1b)

xy =y (t=0) ~po, V' =z (t=1)~p1, (lo)

where w; is the standard Wiener process in R", the con-
trolled state z* € X, and the endpoint joint state PDFs
po, p1 are prescribed’ such that their supports are in X, both
are everywhere nonnegative, have finite second moments,
and [py = [p1 = 1. The parameter § > 0 is referred
to as the thermodynamic temperature, and the expectation
operator E{-} in (la) is w.r.t. the law of the controlled
state x;*. The set U consists of all admissible feedback
policies u(t,xz%), given by U := {u : [0,1] x X — R" |
[ul3 < oo,u(t,-) € Lipschitz (X) for all ¢ € [0,1]}. We
assume that the prior drift vector field f is bounded Borel
measurable in (¢, z}) € [0, 1] x X, and Lipschitz continuous
wrt. ¥ € X. The vector field n is set to be the inward
unit normal to the boundary OX, and gives the direction
of reflection. Furthermore, for ¢ € [0, 1], ~; is minimal local
time: a continuous, nonnegative and nondecreasing stochastic
process [22]-[24] that restricts x;' to the domain &', with
7o = 0. Specifically, letting 1} denote the indicator function
of the subscripted set, we have

t 1
Ve = / Tizucoxy dvs, / Ligugoxy dve =0, (2)
0 0

There is no loss of generality in allowing the sample paths to satisfy
non-strict path containment in given X C R™ since strict containment can
be enforced by reflecting them from e-inner boundary layer of 0X for €
small enough.

More precisely, there exists £ € CZ (R™) such that X = {x € R" |
&(x) > 0} with boundary 0X = {x € R" | {(x) = 0}.

3The notation & ~ p means that the random vector x has joint PDF p.
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which is to say that the process ~; only increases at times
t € [0,1] when x}* hits the boundary, i.e., when x}* € 0X.
Thus, (1b) is a controlled reflected SDE, and the tuple
(x¥, ) solves the Skorokhod problem [25]-[27]. We point
the readers to [20, Sec. 3] for proofs of existence-uniqueness
of solutions to (1b) under the stated regularity assumptions.

To formalize the probabilistic setting of the problem at
hand, let 2 be the space of continuous functions w : [0, 1] —
X. We view € as a complete separable metric space endowed
with the topology of uniform convergence on compact time
intervals. With 2, we associate the o-algebra # = o{w(s) |
0 < s < 1}. Consider the complete filtered probability space
(Q,.#,P) with filtration .%; = o{w(s) | 0 < s < ¢ <1}
wherein “complete” means that .%, contains all P-null sets,
and %, is right continuous. The processes w;, xj* (for a
given feedback policy u) and ~; are .%;-adapted (i.e., non-
anticipating) for ¢ € [0,1]. In (1c), the random vectors z
and x} are respectively .%p-measurable and .%;-measurable.

Denote the Euclidean gradient operator as V, the inner
product as (-, -), and the Laplacian as A. Letting

L:=0A+(f+u,V),

the law of the sample path of (1b) can be characterized [28]
as follows: for each & € X, there is a unique probability
measure P% on  such that (i) P4 (z}(t = 0) = x) = 1, (ii)
for any ¢ € C}?([0,1]; X') whose inner normal derivative
on OX is nonnegative,

otteat) — [ (52+20) o) as

is P#-submartingale, and (iii) there is a continuous, nonneg-
ative, nondecreasing stochastic process -, satisfying (2). As
a consequence [28, p. 196] of this characterization it follows
that the process ;" is Feller continuous and strongly Markov.
In particular, the measure-valued trajectory ng) comprises
of absolutely continuous measures w.r.t. Lebesgue measure.

The objective in problem (1) is to perform the minimum
control effort steering of the given initial state PDF pg at
t = 0 to the given terminal state PDF p; at ¢ = 1 subject
to the controlled sample path dynamics (1b). In other words,
the data of the problem consists of the domain X, the prior
dynamics data f, 6, and the two endpoint PDFs pg, p;.

Formally, we can transcribe (1) into the following varia-
tional problem [29]:

inf // (e, 212 o(t, @) dadt (a)

(p,u) EP2(X) xU
subject to a +V-(p(u+ f)) =60Ap, (3b)
(—(u+ fp+6Vp,n)|,, =0, (o)
p(Oamg) = pPo; p(lam?) = P1, (Sd)

where a PDF-valued curve p(t,-) € Po(X) if for each
t € [0,1], the PDF p is supported on X, and has finite
second moment. In this paper, we will not focus on the rather
technical direction of establishing the existence of minimizer
for (3), which can be pursued along the lines of [7, p.

243-245]. Instead, we will formally derive the conditions of
optimality, convert them to the so-called Schrodinger system,
and argue the existence-uniqueness of solutions for the same.

B. Necessary Conditions of Optimality

The following result (see [30, Appendix A] for proof)
summarizes how the optimal pair (p°P*, u°Pt) for problem
(3) can be obtained.

Theorem 1 (Optimal control and optimal state PDF ):

A pair (p°P*, u°P?) solving the variational problem (3) must
satisfy the system of coupled nonlinear PDEs:

apopt
5tV (Ve ) =087, (da)
O SIVUIE+ (Ve ) = —0np, @)
where
ut(t, ) = Vit ), 5)
subject to the boundary conditions
(V¢,n)|,, =0, forall tel0,1], (6a)
PO, = po, (L) = pu, (6b)
(PP (Vp + f) — OVp°P' m)|, =0, forall tel0,1].
(6¢)

The PDE (4a) is a controlled Fokker-Planck-Kolmogorov
(FPK) equation, and (4b) is a Hamilton-Jacobi-Bellman
(HJB) equation. Because the equations (4a)-(4b) have one
way coupling, and the boundary conditions (6a)-(6c) are
atypical, solving (4) is a challenging task in general. In
the following, we show that it is possible to transform
the coupled nonlinear system (4) into a boundary coupled
linear system of PDEs which we refer to as the Schrodinger
system. We will see that the resulting system paves way
to a computational pipeline for solving the density steering
problem with path constraints.

Remark 1: Obviously, it is possible to derive (4) by per-
forming a change of variable u := f + wu for the drift
in (1b), and modifying (la) accordingly. This does not
trivialize the development because it will turn out that the
optimal feedback computation will require us to propagate
the uncontrolled version of the nonlinear SDE (1b) with f
as well as the minimal local time term unaltered. Since our
proposed gridless computation in Sec. IV-B will be based on
performing proximal recursion on weighted point clouds, it is
nontrivial how to numerically enforce the reflecting boundary
conditions for these sample paths. See Remark 4.

C. Schrodinger System

We now apply the Hopf-Cole transform [31], [32] to the
system of nonlinear PDEs (4).

Theorem 2 (Schrodinger system): (see [30, Appendix B]
for proof) Given X, f. 8, po, p1 for problem (3), consider the
Hopf-Cole transform (p°P, 1)) — (i, p) given by

(p(t, ) 1= exp (1/’(757 )/29) )
()b(t7 ) = popt<t7 ) exp (_'(/J(t

(7a)

P )/29) ) (7b)
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/Withb.c. (fo— 9V¢7n>|ax =0

Po(x) b1(x)

pi(x) @ 1 ()

eo(x) e1(x)
/ withb.c. (Vo,n)|,, =0
Fig. 1: Schematic of the fixed point recursion for the Schrodinger

system (8)-(9). The abbreviation “b.c.” stands for boundary condi-
tion, the symbol @ denotes the Hadamard division.

applied to (4) where t € [0, 1]. For k € {0, 1}, introduce the
notation ¢y, := @(k,-), ¢ := $(k, ). Then the pair (p, Q)
satisfies the system of linear PDEs

0]
_90 = _<V(Pa f> - GASOa

51 (8a)
2=V (79)+ 000, (8b)

subject to the boundary conditions
YoPo = po,  P1$1 = p1, (9a)
(Ven)|yy = (F&=0VE N[, =0 (9b)

For all t € [0, 1], the pair (p°P*, u°P') can be recovered as

popt(t’ ) = (p(t, ')@(ta ')7 uopt(t’ ) =20V log @(ta ) (10)
Remark 2: From (7), both ¢, ¢ are nonnegative by defini-
tion, and strictly positive if 1/ is bounded and p°P* is positive.
Remark 3: Under the regularity assumptions on f and
X stated in Section II-A, the process x; satisfying the
uncontrolled reflected 1t6 SDE

dey = f(t,x:) dt + V20 dw; + n(x:) dy, t €10,1], (11)

is a Feller continuous strongly Markov process. Therefore,
the theory of semigroups applies and the transition density of
(11) satisfies Kolmogorov’s equations. Notice that the transi-
tion density or Green’s function will depend on the domain
X. In particular, we point out that (8a) is the backward
Kolmogorov equation in unkonwn ¢ with the corresponding
Neumann boundary condition (Vgp,n>|aX = 0 in (9b). On
the other hand, (8b) is the forward Kolmogorov equation
in unkonwn ¢ with the corresponding Robin boundary
condition (f$— 0V, n)|,, =0 in (9b). These “backward
Kolmogorov with Neumann” and “forward Kolmogorov with
Robin” system of PDE boundary value problems are coupled
via the atypical boundary conditions (9a).

Theorem 2 reduces finding the optimal pair (p°P%, u°P*)
for the RSBP to that of finding the pair* (o(t, ), p(t, z;))
associated with the uncontrolled SDE (11). To do so, we need
to compute the terminal-initial condition pair (1, ¢o), which

4We refer to @(t, @), p(t, x1) as the Schrodinger factors.

can be obtained by first making an initial guess for (1, ®o)
and then performing time update by integrating the system
(8)-(9b). Using (9a), this then sets up a fixed point recursion
over the pair (¢1, %o) (see Fig. 1). If this recursion converges
to a unique pair, then the converged pair (p1,@p) can be
used to compute the transient factors (p(t,x), P(t, x¢)),
and we can recover (p°P*, u°P') via (10). This computational
pipeline will be pursued in this paper.

Since the PDEs in (8) are linear, and the boundary cou-
plings in (9a) are in product form, the nonnegative function
pair (p1,%0) can only be unique in the projective sense,
i.e., if (¢1,¥0) is a solution then so is (a1, Po/«) for any
a > 0. In [33], it was shown that the aforesaid fixed point
recursion is in fact contractive on a suitable cone in Hilbert’s
projective metric, and hence guaranteed to converge to a
unique pair (¢1, Po), provided that the transition density for
(11) is positive and continuous’® on X' x X for all ¢ € [0, 1],
and pg, p; are supported on compact subsets of X.

III. CASE STUDY: RSBP IN 1D WITHOUT PRIOR DRIFT

To illustrate the ideas presented thus far, we now consider
a simple instance of problem (3) over the state space X =
[a,b] C R, and with the prior drift f = 0. That is to say,
we consider the finite horizon density steering subject to the
controlled two-sided reflected Brownian motion. Using some
properties of the associated Markov kernel, we will show
that the Schrodinger system (8)-(9) corresponding to this
particular RSBP has a unique solution which can be obtained
by the kind of fixed point recursion mentioned toward the
end of Section II-C.

In this case, the Schrodinger system (8)-(9) reduces to

Jp 0%

-, = V75 12
ot 922’ (122)
0P 0%p

=, — V535 12b
ot~ Vo2 (12b)
woPo = po, P11 = p1, (12¢)
Oy dp

a = =0. 12d
Ox r=a,b Ox r=a,b ( )

Notice that (12a)-(12b) are the backward and forward heat
PDEs, respectively, which subject to (12d), have solutions

o(z,t) = - Ko(z,y,1 —t)p1(y)dy, t<1, (13a)
pla,t) = - Ko(y, ,t)¢o(y) dy, t>0, (13b)
where
Ky(x,y,t) = 5 i " + 5 E . mi:l exp (Mt>
X CcoS (W) cos <W) (14)

SUnder the regularity assumptions on f and X stated in Section II-A,
the transition density for (11) indeed satisfies these conditions.
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is the Markov kernel or transition density [34, Sec. 4.1], [35,
p- 410-411] associated with the uncontrolled reflected SDE

dz; = V20 dw; + dL, — dU,, te[0,1]. (15

In (15), L, U; are the two local time stochastic processes
[22], [23] at the lower and upper boundaries respectively,
which restrict z; to the interval [a, b]; see [30, Fig. 2].
Combining (13) and (12c), we get a system of coupled
nonlinear integral equations in unknowns (1, ¢g), given by

po(x) = po(z) Ko(z,y,1)p1(y) dy, (16a)

[a,0]
[ ]Ke(%l” 1)éo(y) dy. (16b)
a,b

p1(x) = ¢p1()

Clearly, solving (16) is equivalent to solving (12). The pair
(¢1,%0) can be solved from (16) iteratively as a fixed point
recursion with guaranteed convergence established through
contraction mapping in Hilbert’s projective metric; see [33].
The Lemma 1 stated next will be used in the Proposition
1 that follows, showing the existence and uniqueness of the
pair (1, @o) in (16) as well as the fact that the aforesaid
fixed point recursion is guaranteed to converge to that pair.

Lemma 1: (see [30, Appendix C] for proof) For 0 < 6,
a < b, consider the transition probability density Ky(z,y,t)
in (14). Then,

(i) Ko(z,y,t =1) is continuous on the set [a, b] x [a, b].
(i) Ko(z,y,t =1) >0 for all (x,y) € [a,b] X [a,].

Proposition 1: (see [30, Appendix D] for proof) Given
0 < 0, a < b, and the endpoint PDFs pg, p1 having compact
supports C [a, b]. There exists a unique pair (1, Qo) that
solves (16), and equivalently (12). This unique pair can be
computed by the fixed point recursion shown in Fig. 1.

To illustrate how the above results can be used for practical
computation, consider solving the RSBP (1) with f = 0,
0 =05, X = [a,b] = [~4,4], and po, p; as (see Fig. 2)

po(x) o< 14 (22 — 16)% exp(—x/2), (17a)
p1(x) x 1.2 — cos(m(x + 4)/2), (17b)

where the supports of (17) are restricted to [—4,4], and
the proportionality constants are determined accordingly. For
state feedback synthesis enabling this unimodal to bimodal
steering over ¢t € [0,1], we performed the fixed point
recursion over the pair (¢1, Qo) using (16) with pg, p1 as in
(17), and Ky given by (14). For numerical implementation,
we truncated the infinite sum in (14) after the first 100 terms.
The converged pair (1, Pg) is used to compute the transient
Schrodinger factors (p(t, ), p(t, :)) via (13), and then
the pair (p°P'(t,z¥), uPt(t,z)) via (10). Fig. 3 depicts
the evolution of the optimal controlled transient joint state
PDFs p°Pt(t,x}) as well as 100 sample paths z{ of the
optimal closed-loop reflected SDE. These sample paths were
computed by applying the Euler-Maruyama scheme with
time-step size 1073, Notice from Fig. 3 that (i) the closed-
loop sample paths satisfy —4 < z}* < 4 for all ¢ € [0, 1],
and (ii) in the absence of feedback, the terminal constraint
p(1,2%) = p1 (given by (17b)) cannot be satisfied.

0.25

0.20

0.15

0.10

0.05

0.00

: The endpoint PDFs pg, p1 shown above are supported on
[—4,4], and are given by (17).
pi(x)

po(x)

0.20
0.15
0.10
0.05

0.00
1.0

0.2

400

Fig. 3: Shown as the black curves are the optimal controlled
transient joint state PDFs p°P(¢,x}) for steering the two-sided
reflecting Brownian motion with endpoint PDFs pg, p1 as in Fig.
2. The red curve pi"° is the uncontrolled state PDF at t = 1,
i.e., obtained by setting © = 0. Also depicted are the 100 sample
paths of the optimally controlled (i.e., closed-loop) reflected SDE.
This simulation corresponds to the RSBP (1) with problem data
f=0,[a,b] =[—4,4],0 = 0.5, and po, p1 given by (17).

IV. RSBP wITH PRIOR DRIFT

For generic f, X, there is no closed-form expression of
the Markov Kernel associated with (8)-(9b). Hence, unlike
the situation in Section III, we cannot explicitly set up
coupled integral equations of the form (16), thus preventing
the numerical implementation of the fixed point recursion
(Fig. 1) via direct matrix-vector recursion. In this Section,
we will show that if f is gradient of a potential, then we
can reformulate (8)-(9) in a way that leads to a variational
recursion which in turn enables us to implement the fixed
point recursion (Fig. 1) in an implicit manner.

A. Reformulation of the Schrodinger System

Let f be a gradient vector field, i.e., f = —VV for some
potential V' € C?(X). The associated Schrodinger system
(8)-(9) becomes

L (182)

ot
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9%

o =V (V@) +0A, (18b)
YoPo = po, P1P1 = p1, (18¢)
(Vo,n)|yp = (VV@ +0Ve,n)|,, =0. (18d)

The idea now is to exploit the structural nonlinearities in (18)
to design an algorithm that allows computing the Schrédinger
factors (¢, ¢). To that end, the following result (proof in [30,
Appendix E]) is a crucial step.

Theorem 3: Given V € C?(X),0 > 0, and t € [0,1],
consider ¢(t, ;) in (18). Let s := 1 — ¢, and define the
mappings ¢ — g — p given by q(s,xs) = o(t,x) =
(1 = s,@1-5), p(s, T;5) := q(s,@s) exp(=V (x;)/0). Then
p(s,xs) solves the PDE initial boundary value problem:

% =V (VV)+0Ap, (19a)
p(0, @) = p1(z) exp(=V(x)/0), (19b)
(VVp+06Vp,n)|,, =0. (19¢)
Thanks to Theorem 3, solving (18) is equivalent to solving
% =V - (pVV)+ 6Ap, (20a)
op R R
5= V- (VV@) + A, (20b)
p(s = Lz) exp(V(2)/0)po(x) = po,
p(s =0,2)exp(V(x)/0)p1(x) = p1, (20¢)
(VVp+0Vp,n)|,, = (VVE+0Vp,n)|,, =0. (20d)

From (20a)-(20b), ¢ and p satisfy the exact same FPK PDE
with different initial conditions and integrated in different
time coordinates ¢ and s. From (20d), ¢ and p satisfy the
same Robin boundary condition. Therefore, a single FPK
initial boundary value problem solver can be used to set up
the fixed point recursion to solve for (p1, o), and hence
(p(s,xs), ¢(t,x¢)). From p, we can recover ¢ as

p(t, i) = p(1 = s,@1-5) = p(s, ) exp(=V (z5)/6).

B. Computation via Wasserstein Proximal Recursion

Building on our previous works [16], [36], [37], we
propose proximal recursions to numerically time march the
solutions of the PDE initial boundary value problems (20)
by exploiting certain infinite dimensional gradient descent
structure. This enables us to perform the computation asso-
ciated with the horizontal arrows in Fig. 1, and hence the
fixed point recursions to solve for (p, ), and consequently
for (¢, ). We give here a brief outline of the ideas behind
these proximal recursions.

It is well-known [38], [39] that the flows generated by
(20a),(20b),(20d) can be viewed as the gradient descent of
the Lyapunov functional

Flo) = [ Vi@ole)de +0 [ o@)og(e)de @D

w.r.t. the distance metric W referred to as the (quadratic)
Wassertein metric [7] on P2(X). For chosen time-steps 7, o,

this allows us to set up a variational recursion over the
discrete time pair (tg—1,55—1) := ((k—1)7,(k — 1)o) as

<étk) _ <proxr§(<l§tk1)> . keN, (22)

W, prox% (@s_y)

wherein the Wasserstein proximal operator

1
proxhw;(~) = arginf ~W?(-,0) + hF(0), h>0. (23)
QE'Pz(?)
The sequence of functions generated by the proximal re-
cursions (22) approximate the flows (p(s,xs), ¢(t, x:)) for
(20a),(20b),(20d) in the small time step limit, i.e.,

b1, = @t =(k—1)7,@;) in L'(X)as7]0,
we._, = p(s = (k—1)o,z,) in L'(X) as o | 0.

In the numerical example provided next, we solved (22)
using the algorithm developed in [37].

Remark 4: An additional novelty in implementing (23)
compared to our prior works [16], [37] is that a Skorokhod
map such as [27] is needed to update the scattered samples
in the state space. Specifically, to time march the supports
of the functional updates (22), we composed the Euler-
Maruyama updates in [37, Fig. 2] with the Skorokhod map
corresponding to the reflection constraints.

C. Numerical Example

We consider an instance of the RSBP with X' = [—4, 4]?,
f=-VV, V(zy,z9) := (22 +23)/5. For

po(T1,T2) H (1+ (z7 —16)*exp(—2;/2)), (24a)
i=1,2

pr(z1,m2) o [ (1.2 = cos(m(z; +4)/2)),

i=1,2

(24b)

the optimal controlled joint state PDFs p°Pt(¢, ) are shown
in Fig. 4. The corresponding uncontrolled joint state PDFs
p"¢(t, x;) are shown in Fig. 5. These results were obtained
by solving (22) via [37, Sec. IIL.B] with 7 = ¢ = 1073 to
perform the fixed point recursion (Fig. 1) applied to (20).
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