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Abstract—As embedded systems architectures become more
complex and distributed, checking the safety of feedback control
loops implemented on them becomes a crucial problem for
emerging autonomous systems. Towards this, a number of recent
papers have addressed the problem of checking stability in
the presence of deadline misses. In this paper, we argue that
analyzing quantitative properties like the maximum deviation
in system behavior (trajectory in the state space) between an
ideal implementation platform and that having timing uncer-
tainties is an equally important problem. We show that different
strategies for handling deadline misses (or system overruns),
all of which lead to a stable system, might differ considerably
when considering such quantitative safety properties. However,
analyzing such properties involves reachability analysis that is
computationally expensive and hence not scalable. We show that
suitable approximation strategies can address this computational
bottleneck and such quantitative safety properties can be checked
for realistic systems. As a result, we are able to identify best
combinations of control and deadline miss handling strategies
for individual systems and timing uncertainties.

Index Terms—Control, reachability, real-time, safety, weakly-
hard systems.

I. INTRODUCTION

THE ALGORITHMIC CORE of most autonomous sys-
tems, be it in automotive or robotics, is a feedback

control loop. Such controllers are largely created in a two-
step process [1]. In the first, a control strategy is designed by
resolving choices regarding control laws, sampling periods,
and the values of various controller parameters. The second
step involves implementing this strategy in software running
on an embedded platform. This design flow results in a clean
separation between control theorists and embedded systems
engineers. The former design controllers by assuming certain
properties of the implementation platform, like fixed sensor-to-
actuator delays. The latter must ensure that such assumptions
are guaranteed in an implementation in order to meet the
control performance expected in the design phase.
However, implementation platform architectures are rapidly

becoming more distributed and heterogeneous, concurrently
running a variety of applications [2]. Hence, such strict as-
sume/guarantee paradigms—where the platform characteris-
tics are known a priori—are increasingly becoming infeasible.
Therefore, some uncertainty in the implementation platform
is inevitable. This naturally raises the fundamental question:

Are control safety properties satisfied in the presence
of implementation platform uncertainties?
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Fig. 1. Different stable trajectories resulting from deadline misses.

Various forms of this question have been addressed in the
literature over the past decade [3]. These include how to design
controllers in the presence of (variable) delays, and how to co-
design controllers and their implementation platforms. These
approaches can largely be seen as an effort to close the model-
implementation semantic gap. However, a vast majority of
such work has focused on addressing stability [4]. In particular,
the question is generally of the form: Given a bound on the
number of deadline misses, is the closed-loop system stable?
Our work in this paper, while in the same space, deviates
considerably in the nature of this question. Instead of a
qualitative property like stability, we ask whether quantitative
safety properties over a bounded time horizon hold in the
presence of implementation platform timing uncertainties like
deadline misses. Specifically, we are given an ideal system
behavior (e.g., when all deadlines are met), and an uncertainty
or bound on the number of deadline misses, and would like to
estimate the maximum possible deviation in behavior in the
presence of such deadline misses from the ideal behavior.
Illustrative example: Figure 1 illustrates this problem. It
shows how a given closed-loop system evolves in time in the
(x1, x2) state space. The solid black line shows the nominal
trajectory, where the control task always meets its deadline.
The light blue envelope/spiral around it is a safety margin,
i.e., it is acceptable to deviate from the nominal behavior
because of deadline misses as long as the trajectory stays
within this safety envelope. 100 random trajectories—resulting
from deadline misses experienced by the control task—are
shown in green and red. Although the system is stable even
in the presence of deadline misses, the possible behaviors can
vary greatly, as can be seen in the figure. The red trajectories
violate the specified safety property since they go out of the
safety envelope, and where the violations occur have been
marked with “⇥”. The corresponding time instants have been
marked with a black ⇥ on the nominal trajectory, with the
distance between a black ⇥ and its corresponding red ⇥
exceeding the maximum allowed deviation. This figure was
obtained using an automotive electric steering system that is
evaluated in more detail in Section VII. Here, the goal was to
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evaluate if a safety violation occurs if the control task suffers
no more than 3 consecutive deadline misses. In other words,
at most 3 consecutive jobs of this control software fail to
compute the control input in time for the necessary actuation.
This clearly admits many deadline hit/miss patterns over any
reasonable time horizon of interest (e.g., 100 samples of the
plant state). It is computationally infeasible to compute the
system trajectories for all such deadline hit/miss patterns to
check whether or not a safety violation occurs, and how to do
this efficiently for realistic systems is one of the contributions
of this paper. The second contribution of this paper relates
to evaluating how deadline misses are handled—both from
the task scheduling perspective and from the control-theoretic
one. Using our proposed schemes it is possible to identify
the best combination of control and scheduling (or deadline
overrun management) strategies for any given system. From
the vantage point of quantitative safety properties, we are able
to make a fine-grained distinction between these strategies that
was not possible in previous studies that focused on stability
analysis. We discuss these below in more detail.

Relation to prior work: Our work is motivated by a recent
work [5] (and a number of preceding ones on the related
problem [6]–[10]) that studied how deadline misses may be
handled on an implementation platform and what impact it
has on control performance (specifically, stability). Various
strategies to handle deadline misses that were studied in this
paper include combinations of applying either a zero or the
previous control input to the plant in the case of a deadline
miss, and either killing the control task that missed its deadline
or letting it complete its execution beyond the deadline.
Killing or letting a task continue execution impacts the load
on the system and hence potential future deadline misses,
and whether a zero or a previous control input is applied
impacts the state space evolution of the closed-loop system.
The work in [5] only studies stability, and hence classifies
these combinations of strategies into only two classes, viz.,
whether or not the system is stable. We, on the other hand,
show that a much finer and quantitative distinction between
these strategies can be made when we consider the maximum
deviation from a nominal or ideal behavior.
Further, while stability is a necessary property, and the

deviation we compute will likely be unbounded if the system
is not stable, it by no means ensures safe operation in most
realistic systems. For example, stability might ensure that an
autonomous drone or robot eventually reaches its destination,
but would not guarantee that it does not collide with an
obstacle on the way. This may be easily visualized in Figure 1,
where the black line is the ideal trajectory and the blue safety
envelope is specified such that no obstacles lie on the path of
the robot; but they might lie just outside the envelope. Hence,
too much deviation from the ideal trajectory due to imple-
mentation platform timing uncertainties might not guarantee
a collision-free path for the robot. The safety property we
analyze in this paper helps provide such guarantees.
In addition to more work on checking stability, from a

computational perspective it is also easier to do so. This is by
relying on techniques like the existence of a Lyapunov function

and on results from stability analysis of switched systems [11].
Estimating the maximum deviation is computationally more
expensive and hence does not scale because it involves some
form of reachability analysis. To get around this, we propose
a set of safe approximation techniques for computing such
deviations from a nominal behavior in the presence of platform
uncertainties (specified by a bound on deadline misses).
We conclude this section by discussing some broader related

work. The issue of “implementing” a controller has tradition-
ally not been seen as a problem within control theory. But
how to design a controller with sensing-to-actuation delays
has been well-known for a number of years [12], [13] and
the area of networked control systems has studied different
aspects of controller design in the presence of delays [14]–
[17]. Since feedback controllers are inherently tolerant to some
model uncertainties, they can also tolerate delay variations
to a certain degree. However, if the delays become very
large, the controllers are distributed, or multiple control inputs
are missed because of deadline violations, then the problem
of controller design becomes much more complex and such
scenarios are only being looked at more recently [18]–[21].
Modeling the impact of implementation platform (or more
specifically network) uncertainties on control performance in
the form of time-varying or stochastic delays have been studied
in [14], [16], [22]. But again, the focus has been on stability.
Similarly, time-varying delays and the use of different feed-
back gains for different delays is closely related to the study
of switched systems [11], [23]. While these are abstractly
related to our work, both the goals and the techniques used
are different—as already outlined, instead of stability we study
quantitative properties and use approximation techniques for
reachability analysis. Finally, a number of recent papers have
addressed various aspects of the control/architecture co-design
problem [24]–[26]. In contrast to designing a controller to
mitigate the impact of sensor-to-actuator delays, as is done
in networked control systems, the co-design problem attempts
to jointly design controllers and network parameters like
schedules in order to maximize the “compatibility” between a
controller and its implementation platform.
Paper organization: The rest of this paper is organized as
follows. We propose our system model in Section II, and
describe how to encode implementation platform behaviors
(viz., deadline hit/miss patterns) in Section III. Section IV
provides the notations used in the rest of the paper. We
formally define the main problem in Section V and present
our solutions in Section VI. We implemented our algorithms
and evaluated them on standard benchmarks, presented in
Section VII. Finally, we conclude in Section VIII.

II. SYSTEM MODEL

This section outlines the basics of feedback controllers
as studied in this paper. We consider linear, multiple-input
multiple-output (MIMO) discrete-time models of the form

x[t+ 1] = Ax[t] +Bu[t], (1)
y[t] = Cx[t] +Du[t]. (2)

Here, x is the system state, y is the output, and A 2 Rn⇥n,
B 2 Rn⇥p, C 2 Rq⇥n, and D 2 Rq⇥p are coefficient
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matrices. The control input u is computed by a periodic real-
time task running on a processor, assumed to be of the form

u[t] = Kx[t� 1], (3)

where K 2 Rp⇥n. This follows the logical execution time
(LET) paradigm, in which the new control input is always
applied at the deadline of the control job (assumed to be one
sampling period), regardless of when it actually completes.
This can alternately be represented using an augmented state
space [13] z[t] = [x[t]T ua[t� 1]T ]T , giving the model

z[t+ 1] =


A B
0 0

�
z[t] +


0
I

�
ua[t], (4)

where ua[t] = Kaz[t]. This augmented form permits stan-
dard controller design techniques such as linear-quadratic
regulator (LQR). Note that when augmented in this way, the
feedback gain matrix Ka 2 Rp⇥(n+p), allows feedback from
both the plant state x[t] and the previous control input u[t�1].
This can be implemented by saving the previous control input
between jobs of the control task. We denote the two blocks
of Ka that provide feedback from each of these vectors
as Kx 2 Rp⇥n and Ku 2 Rp⇥p, respectively. Once a
controller has been designed, Eq. (4) can be simplified to

z[t+ 1] =


A B
Kx Ku

�
z[t], (5)

allowing the plant and controller to be represented as a single
dynamics matrix. The system output can also be defined as

y[t] = Ez[t], (6)

where E = [C D], giving a more compact representation.

III. MODELING IMPLEMENTATION PLATFORM BEHAVIORS

To model the behavior of the software task computing the
control law—that can potentially hit/meet or miss a deadline
at each sampling period (referred to as a step)—we propose
an automaton-based representation. The initial location of the
automaton represents the initial condition of the control task,
and a finite run of the automaton represents a possible behavior
of the system. This is a sequence of hits and misses from
its initial location. In this work we focus on bounded time
behaviors, viz., deviations from a nominal behavior over a
specified time interval. Hence, any run of this automaton
has finite length. Note that the dynamics matrix, capturing
the control input to be applied, also changes depending on
whether a deadline hit or miss occurs (because it determines
the availability of the control input). Therefore, we associate
a dynamics matrix with each transition of the automaton.
We formally define the transducer automaton that models all
possible behaviors of the system as follows.

Definition 1. A transducer automaton T is defined as a
tuple hL,A, T, µ, `0i, where each element is as follows:

L set of locations {`1, `2, . . . , `m};
A set of scheduler actions {hit,miss};
T transition function, where T : L⇥A ! L;
µ dynamics matrix label function for transitions, where

µ : L ⇥ A ! Rn⇥n and n is the dimension of the
system under consideration;

`0 `1 `2 `3

hit/AHH

miss/AHM miss/AMM miss/AMM

hit/AMH

hit/AMH

hit/AMH

Fig. 2. Transducer automaton capturing 3 maximum consecutive misses.
`0 initial location of the automaton in L.

As an example, the automaton in Fig. 2 captures all possible
deadline hit/miss patterns with at most three consecutive
misses. The edges are labeled as A/µ, i.e., the first part is the
scheduler action, and the second is the associated dynamics
matrix. Note that in this automaton, each location `k represents
the control task having just missed k consecutive deadlines.
A. Behavior under deadline misses
In order to model the system behavior under a sequence of

deadline hits and misses, we use standard techniques, similar
to those in [5], to provide the function µ associating dynamics
matrices with the transitions in the automaton. In this model,
the logical execution time (LET) paradigm is followed, i.e., a
sample of the system state at step t � 1 is used to compute
the control input at time t. A software job is released when
x[t� 1] is read, and has its deadline when x[t] is read. If the
job completes on time, the control input is computed as in
Eq. (3). If the job misses its deadline, several different actions
can be taken, both for how to handle the sequence of released
jobs, as well as what control input should be applied.
Two strategies are defined in [5] for how to compute a

control input when a deadline miss occurs at time t. These
strategies are called Zero and Hold. Our goal is to study
quantitative safety properties (viz., maximum deviation from
a nominal behavior) instead of stability that was studied
in [5]. But for the sake of comparison, we consider the
same strategies in this paper. The Zero strategy says that
the control input u[t] is set to 0. The Hold strategy instead
holds the control input u[t] = u[t� 1]. The study in [5] also
defined strategies for the system-level action on how to handle
deadline overruns. In our work, we consider two of these,
called Kill and Skip-Next. The Kill strategy simply kills the
job that missed its deadline. The Skip-Next strategy instead
allows the job to continue running, and prevents the release of
additional jobs until the job that missed its deadline finishes.
By combining a pair of control input strategy and system-

level action, we obtain a strategy for handling deadline misses.
Several such models were developed in [5]; we reproduce their
models for Zero&Kill and Hold&Kill next, reformulated in our
automata-theoretic setting, and permitting feedback from the
previous control input as in Eq. (4).

Definition 2 (Zero&Kill [5]). Given a discrete-time LTI model
as in Eq. (1), the Zero&Kill strategy is modeled using the aug-
mented state space z[k] = [x[k]T ua[k]T ]T . The automaton
follows the structure in Fig. 3a, with the following matrices:

AH =


A B
Kx Ku

�
AM =


A B
0 0

�

Every period, this model computes Eq. (1). When a deadline
hit occurs, the next control input is ua[k + 1] = Kaz[k], and
when a miss occurs, the control input is instead ua[k+1] = 0.
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`0

hit/AH

miss/AM

(a) Kill

`0 `1

hit/AHH

miss/AHM

hit/AMH

miss/AMM

(b) Skip-Next

Fig. 3. Transducer automata for different system-level actions.

Definition 3 (Hold&Kill [5]). Given a discrete-time LTI model
as in Eq. (1), the Hold&Kill strategy is modeled using the aug-
mented state space z[k] = [x[k]T ua[k]T ]T . The automaton
follows the structure in Fig. 3a, with the following matrices:

AH =


A B
Kx Ku

�
AM =


A B
0 I

�

Similar to the Zero&Killmodel, this model computes Eq. (1)
at every period. When a deadline is met, the next control input
is ua[k+1] = Kaz[k], but now when a miss occurs, the control
input is held constant (ua[k + 1] = ua[k]).
There are models described in [5] for the Zero&Skip-

Next and Hold&Skip-Next strategies, but these are limited by
requiring a maximum number of consecutive deadline misses.
Additionally, their augmented state vectors grow linearly in
the number of misses allowed. This leads to scalability issues
when computing long trajectories, especially if no limit to the
number of consecutive deadline misses is desired. To address
these limitations, we propose the following improved models
that use a constant-size augmented state vector, imposing no
constraints on the allowable sequences of scheduler actions.

Definition 4 (Zero&Skip-Next). Given a discrete-time LTI
model, the Zero&Skip-Next strategy is modeled using the
augmented state space z[k] = [x[k]T x[save]T ua[k]T ]T . The
automaton is that in Fig. 3b, with the following matrices:

AHH =

2

4
A 0 B
0 0 0
Kx 0 Ku

3

5 AHM =

2

4
A 0 B
I 0 0
0 0 0

3

5

AMH =

2

4
A 0 B
0 0 0
0 Kx Ku

3

5 AMM =

2

4
A 0 B
0 I 0
0 0 0

3

5

Definition 5 (Hold&Skip-Next). Given a discrete-time LTI
model, the Hold&Skip-Next strategy is modeled identically to
Definition 4, with AHM and AMM changed as follows:

AHM =

2

4
A 0 B
I 0 0
0 0 I

3

5 AMM =

2

4
A 0 B
0 I 0
0 0 I

3

5

We note that these models differ from one another only in
the control input applied when a deadline is missed, per the
definitions of Zero and Hold above. The models keep track
of the current plant state and control input, and one saved
state. Every period, regardless the matrix used, the system
dynamics are computed as x[t + 1] = Ax[t] + Bu[t], as
required by Eq. (1). In normal operation, the AHH matrix
(identical for both strategies) computes the next control input
as ua[t + 1] = Ka[x[t]T ua[t]T ]T , following the one-period
delay of the LET paradigm. When a deadline is missed

`0 `1 `2 `i `N

hit/AHH

miss/AHM miss/AMM miss/AMM miss/AMM

hit/AMH

hit/AMH

hit/AMH

hit/AMH

Fig. 4. Transducer automaton capturing N maximum consecutive misses.

following a hit, Skip-Next semantics let the job continue
running, applying its resulting control input upon completion.
To implement this, the AHM matrices save the system state
in x[save] for later use. The strategies differ in their handling
of the control input applied on deadline miss: Hold&Skip-
Next keeps the input constant, while Zero&Skip-Next sets the
input to zero. On further misses, the AMM matrices retain
the saved state, and either hold or clear the control input as
required. Once the job that overran its deadline completes, the
AMH matrix (again identical) is applied. This computes a new
control input ua[t+1] = Ka[x[save]T ua[t]T ]T , following the
semantics of Skip-Next. Upon further deadline hits, the system
returns to normal operation.

B. Constraints on Deadline Misses
As described above, in this work, the uncertainty in the

implementation platform’s timing stems from (or results in)
some control jobs occasionally missing their deadlines. To
give constraints on which deadlines can be missed, we con-
sider any control task to be running on a weakly-hard real
time system [27]. These systems provide precise bounds on
the patterns of deadline misses that can occur. Weakly-hard
constraints have been considered in relation to control systems
in prior work [5]–[10], [28], and have been found to be
a useful abstraction for the complex behavior of real-time
task schedulers. In particular, we assume that the scheduler
guarantees a maximum of N consecutive deadline misses, a
constraint often denoted as hNi in the literature.

Recalling Fig. 2, we can model such a constraint using
transducer automata. In this example, we allow at most three
deadline misses, using each location `k in the automaton to
represent having missed k consecutive deadlines. The lack of
a transition on deadline miss from `3 indicates that no further
misses are possible. This construction can be generalized
to handle any number of consecutive deadline misses N
using N + 1 locations, as shown in Fig. 4. With the ma-
trices from Definition 4 or 5, we can use this construction
to model Zero&Skip-Next or Hold&Skip-Next, respectively,
with a weakly-hard constraint. Similarly, by letting AHH =
AMH = AH and AMM = AHM = AM from Definition 2
or 3, we can model the Zero&Kill or Hold&Kill strategies with
a maximum number of consecutive deadline misses.

IV. QUANTITATIVE SAFETY PROPERTIES

In this section, we present the definitions needed to define
our main problem, and our approaches that follow. Let the
output y[t] (for any sampling period or time step t) of
the plant—as defined in Eq. (6)—be subsets of the metric
space (M, dis), where M = Rq and dis : M ⇥M ! R is a
metric on M . Note that we do not impose any assumption on
dis , as long as (M, dis) is a metric space. Note also that this
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metric applies only to the system output, not necessarily the
entire augmented state vector used by a transducer automaton.
Given a transducer automaton T , a possible behavior of

the system is defined as a run, which intuitively represents
a possible trajectory by encoding a sequence of deadline hits
and misses and the corresponding locations in the automaton.

Definition 6 (Run). A run ⌧ is defined as an alternating
sequence of transducer automaton locations and actions,

⌧ = {`0, a0, `1, . . . , aH�1, `H},

where ai 2 A, and H is the time bound. We denote the set of
all runs of T by ⌧̄ .

Given a run ⌧ and an initial set z[0], the evolution of the
run encodes the set of states reached by the plant over the
course of the run, and is defined as follows.

Definition 7 (Evolution of a Run). Given an initial set z[0] ⇢
Rn and a run ⌧ = {`0, a0, `1, . . . , aH�1, `H}, the evolution
of the run ⌧ in an automaton T is defined as

evol(T , ⌧, z[0]) =
�
z[i+ 1] = µ(`i, ai)z[i]

�� 0  i < H
 
.

Here, z[t] is the augmented state of the system reached at
time step t. We refer to evol(T , ⌧, z[0]) as evol(⌧) when T
and z[0] are clear from context. Given an evolution of a run
⌧ , evol(⌧), let the evol(⌧)[t] = z[t], where 1  t  H .

To measure the distance between two sets in the metric
space, we use the standard Hausdorff distance, which intu-
itively gives the longest distance from any point in one set to
the closest point in the other set.

Definition 8 (Hausdorff Distance). The Hausdorff distance
between S,U ⇢ Rn is given by

dH(S,U) = max
n
sup
s2S

inf
u2U

dis(s, u), sup
u2U

inf
s2S

dis(s, u)
o
.

Given two runs ⌧1, ⌧2 2 ⌧̄ , we define the deviation between
them as the maximum Hausdorff distance between their evo-
lutions at any time step.

Definition 9 (Deviation). Given two runs ⌧1, ⌧2 2 ⌧̄ , we define
their deviation as

dev(⌧1, ⌧2) = max
1tH

dH
�
E · evol(⌧1)[t], E · evol(⌧2)[t]

�
.

Our methods in Section VI make use of a convex hull, which
is a convex set enclosing a given set.

Definition 10 (Convex Hull). The convex hull of the
sets S1, S2, . . . , Sp ⇢ Rn is denoted by hull1ip{Si}.

V. PROBLEM STATEMENT

In this section, we define the problem formally as follows.

Problem 1 (Maximum Deviation). Given a transducer au-
tomaton T , an initial set z[0] ⇢ Rn, and a nominal run
⌧nom 2 ⌧̄ (corresponding to an ideal behavior of the platform,
e.g., with no deadline misses), find the maximum deviation d
between the nominal run and any other run,

d = max
⌧2⌧̄

dev(⌧, ⌧nom). (7)

Note that directly computing d, as in Problem 1, is compu-
tationally expensive. To compute an exact value of d for some
time horizon H , we need to explore all possible 2H runs of
the automaton, assuming two possibilities viz., deadline hit or
miss in each step. We must then compute the deviation of each
run from the nominal run ⌧nom. Clearly, such an approach,
though feasible for small H , becomes intractable very quickly.
Instead, we propose to compute a safe bound to d as follows.

Problem 2 (Deviation Bound). Given a transducer automa-
ton T with initial set z[0] ⇢ Rn, and a nominal run ⌧nom 2 ⌧̄ ,
find a safe upper bound d̄ to the maximum deviation between
the nominal run and any other run,

d̄ � d = max
⌧2⌧̄

dev(⌧, ⌧nom). (8)

It is worth pointing out that given an initial state z[0], if
a bound d̄ is known, it may be easily possible to compute
the maximum deviation for any initial state cz[0], where
c is a scalar. In particular, if the metric dis is absolutely
homogeneous, i.e., dis(cx, cy) = |c|dis(x, y) for x, y 2 M ,
then it follows from the definitions that the maximum deviation
for cx[0] is at most |c|d̄. Thus, there is no need to perform
a computationally expensive procedure to compute several
deviation bounds from initial states that are scalar multiples of
each other, as this could instead be done once, and the result
multiplied by scalars to obtain the other deviations.
In the next section, we propose several solutions to Prob-

lem 2 that perform efficiently in practice.

VI. COMPUTING UPPER-BOUNDS ON THE DEVIATION

In this section, we present three methods to compute a safe
deviation bound d̄ � d, as defined in Problem 2, given a trans-
ducer automaton. The first method uses reachability analysis of
uncertain linear systems (ULSs) to overapproximate any pos-
sible behavior of a given transducer automaton, and computes
an upper bound d̄ by computing the distance of the reachable
set from the nominal trajectory. The second method, given a
transducer automaton capturing at most N consecutive misses,
computes reachable sets using a set of recurrence relations.
Note that this method does not handle arbitrary automata,
but only ones following the hNi weakly-hard constraint. The
third method, given any transducer automaton, computes all
possible trajectories up to a small, bounded length. It then
computes a convex hull of the obtained trajectories, uses this
hull as the next set of initial states, and iterates until the desired
time bound. The first method is fundamentally different from
the others; the second method, though superficially unrelated
to the third, can in fact be viewed as a special case of it. While
the second suffices for some systems, the third offers flexibility
to produce tighter bounds at the expense of greater execution
time. Recommendations for how to use these methods are
provided following our experimental results in Section VII.

A. Using Reachable Sets of Uncertain Linear Systems

In this section, we compute an upper bound d̄, as in
Problem 2, using reachable sets of uncertain linear systems
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(ULSs) [29], [30]. Before presenting our solution, we first
introduce ULSs. Consider the following example from [29],

x[t+ 1] =


1 ↵
0 2

�
x[t],

where ↵ represents a parameter, 2  ↵  3. Intuitively, a ULS
of this form models uncertainty in the system by representing
all its possible dynamics matrices.

Definition 11 (Uncertain Linear Systems). An uncertain linear
dynamical system takes the form

x[t+ 1] = ⇤x[t], (9)

where x[t] 2 Rn is the system state at time t, and ⇤ ✓ Rn⇥n

is the uncertain dynamics matrix.

Note that the uncertain dynamics matrix is, therefore,
capable of representing a set of linear dynamics matrices.
Leveraging this modeling richness, we provide an efficient
method to compute an upper-bound on d, by modeling the
dynamics matrices associated with the transitions of a trans-
ducer automaton as an uncertain dynamics matrix. We model
all possible sequences of hits/miss of the system (represented
by the dynamics matrices of the transitions, i.e., the function µ
in Definition 1) using uncertain dynamics matrix. Note that
this method is capable of capturing any possible behavior of
the system. Formally, for a given transducer automaton T ,

⇤ =
�
µ(`, a)

�� ` 2 L, a 2 A
 
. (10)

Intuitively, ⇤ encodes all possible behaviors of the system
at any time step t. This method simply over-approximates the
behaviors of the transducer automaton by assuming that any
dynamics could occur at each time step.
The reachable set of a ULS, at a time step t, represents the

possible states of the system under any permissible sequence
of actions. In our case, Eq. (10) specifies that the reachable
set corresponds to an over-approximate set of evolutions of
all runs of length t. The Hausdorff distance between such a
set and the nominal run (as in Definition 9) provides an upper
bound on d. Let the one-step reachable set of a ULS, from an
initial set x[0], be given as forward(⇤, x[0]); i.e. x[1] = ⇤x[0],
where x[1] = forward(⇤, x[0]).
Representing Uncertain Dynamics Matrix: We represent the

uncertain dynamics using an interval matrix [31]. Therefore,
we over-approximate ⇤ in Eq. (10) as ⇤̃ as

⇤̃[i, j] =
⇥
min{⇤[i, j]},max{⇤[i, j]}

⇤
, (11)

for all 1  i, j  n, where n is the dimension of the system.
Clearly, ⇤̃ ◆ ⇤. Using this uncertain dynamics matrix, we
propose Algorithm 1 to compute an upper bound d̄ � d.

Algorithm 1 and its Safety Proof (Sketch): The algorithm
first computes the uncertain matrix in Line 2. It then computes
an upper bound d̄ to the possible deviation in the loop on
Lines 4 to 7. In each iteration, we perform the following:
1) Line 5 computes one-step reachability of the ULS. Note
that x[t] therefore contains the evolution of all possible runs
at time step t. 2) In Line 6, we compute the maximum
possible deviation between the nominal behavior and the
reachable set. 3) We then store the maximum deviation so

Algorithm 1: Computing upper-bound on the deviation
as defined in Problem 1.
input : A transducer automaton T , initial set x[0], nominal

run ⌧nom, time bound H

output: An upper bound d̄ � d
1 d̄  �1;
2 ⇤̃  Compute using Eq. (11); // Represent all possible behaviors

(vis-à-vis hits/misses) as an uncertain linear system.
3 xnom  evol(⌧nom); // Compute the nominal trajectory.
4 for 1  t  H do
5 x[t]  forward(⇤̃, x[t� 1]); // Compute reachable set,

containing all possible behaviors, at time step t.
6 dt  dH

�
xnom[t], x[t]

�
; // Compute the deviation from the

nominal trajectory at time step t.
7 d̄  max{d̄, dt}; // Keep track of the maximum deviation.

8 return d̄; // Return the maximum deviation.

far on Line 7. Finally, the computed bound d̄ is returned
on Line 8. Correctness can be proven by induction. If the
reachable set x[t] contains the true reachable set at time t, then
the forward(·) function on Line 5 computes a superset of the
union of Ax[t] for any matrix A in the transducer automaton.
Therefore, x[t+1] must also be safe, so the computed deviation
is at least the true maximum deviation.

B. Using Generalized Recurrence Relations
Consider the transducer automaton in Fig. 2 that captures

all possible behaviors with at most three consecutive misses.
Note that in this automaton, execution is in location `k if k
consecutive deadlines were missed since the last hit.
Let  t

`
denote the reachable set of all possible trajectories

corresponding to the location ` at time step t. That is,  t

`k

denotes the reachable set of all possible trajectories where k
consecutive deadlines were missed at time step t. Therefore, to
compute the reachable set  t

`
, we need to consider all possible

transitions that lead to the location `, starting from (i.e., initial
set) every possible state. Formally, using the policy described
in Definition 5, we get the following recurrence relations:

 t

`0
= hull

�
AHH · t�1

`0
, AMH · t�1

`1
,

AMH · t�1
`2

, AMH · t�1
`3

�
(12)

 t

`1
= AHM · t�1

`0
(13)

 t

`2
= AMM · t�1

`1
(14)

 t

`3
= AMM · t�1

`2
(15)

Where the matrices AHH, AHM, AMH, and AMM are
defined in Definition 5, with the following initial conditions:

 0
`0

= x[0];  0
`p

= ?, where 1  p  3 (16)

Note that although the above recurrence relations are fixed
for a given policy (Hold&Skip-Next in this case), this need not
be the case. We will provide a generalized set of recurrence re-
lations next, covering any strategy with at most N consecutive
misses. Consider the automaton in Fig. 4. Here, the automaton
is in location `k if k consecutive misses have just occurred.
As in our motivating example, let  t

`
denote the reachable set

of all possible trajectories in location ` at time t. We construct
the following recurrence relations for time step t � 1:

 t

`0
= hull `2L

�
µ(`, hit) · t�1

`

�
(17)
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 t

`p
= µ(`p�1,miss) · t�1

`p�1
, where 1  p  N (18)

The initial conditions are as follows:

 0
`0

= x[0];  0
`p

= ?, where 1  p  N (19)

Using the above recurrence relations, we propose Algo-
rithm 2 to compute an upper bound d, as in Problem 1.

Algorithm 2: Computing upper-bound on the deviation
as defined in Problem 1.
input : A transducer automaton T encoding maximum number of

allowed consecutive misses N , initial set ✓, nominal run
⌧nom, time bound H

output: An upper bound d̄ � d
/* Each location represents a class of behaviors (vis-à-vis

hits/misses) in this algorithm. */
1 d̄ = dH

�
evol(⌧nom)[0], ✓

�
;

2  0
`0

= ✓ ; // Initialize the initial location (a class of behaviors) with
the given initial set.

3 for 1  k  N do
4  0

`k
= ? ; // Initialize the rest of the locations with empty set.

5 for 1  t  H do
6  t

`0
 Compute using Eq. (17) ; // Compute the reachable set

for the initial location.
7 for 1  k  N do
8  t

`k
 Compute using Eq. (18); // Compute the reachable

set for rest of the locations.

9 dt  dH

�
evol(⌧nom)[t], hull0lN{ t

`l
}
�
; // Compute the

deviation from the nominal trajectory at time step t.
10 d̄  max{d̄, dt}; // Keep track of the maximum deviation.

11 return d̄; // Return the maximum deviation.

Algorithm 2 and its Safety Proof (Sketch): We initialize
the recurrence relations in Lines 2 to 4, using Eq. (19).
From Lines 5 to 10, we compute the deviation bound d̄.
In each iteration of the for loop, we perform the following:
1) In Lines 6 to 8, we compute all possible reachable sets
at time step t, using Eqs. (17) and (18). 2) In Line 9, we
compute the Hausdorff distance between the convex hull of the
reachable sets in all locations, and evolution of the nominal
run at the same time step. 3) Finally, we store the maximum
deviation seen in Line 10. After the loop terminates, the
computed upper bound d̄ is returned on Line 11. Correctness
can again be proven inductively. If the reachable set is safe at
time t, then Lines 6 to 8 compute the one-step evolution for
each automaton location. This is then overapproximated by a
convex hull before computing the Hausdorff distance to the
nominal trajectory, leaving a safe reachable set at time t+ 1,
so the computed deviation must be an upper bound.

C. Using Bounded Runs Method
As described in Section V, in the worst case, using a

naı̈ve approach to compute the maximum deviation d involves
enumerating all 2H runs for H time steps, and computing the
evolution for each such run of the system. Such a brute-force
approach is intractable for large H , so it cannot be directly
used to compute the exact deviation in most cases. However,
for a short run length r ⌧ H , this approach can be used quite
effectively. By computing a box hull of the reachable sets at
the end of each run, we can repeat this process to simulate
all H time steps while keeping the execution time low.

Several complexities arise in practice, however, making this
approach less straightforward than it may appear from the
previous description. If we simply used a single hull of the
final state for all runs, we would forget the automaton location
in which each run ended. The next tree would then begin all
runs from the initial location, making spurious transitions that
could potentially cause us to miss some possible evolutions of
the system. To avoid this, we instead group the runs by their
final location, and return one hull for each location in L.
Additionally, if we were to compute the evolution of each

run separately, their shared prefixes would create a large
amount of redundant work. Since a transducer automaton with
A = {hit,miss} has O(2r) runs of length r, this would require
O(r·2r) matrix-vector multiplications. This can be made more
efficient by instead performing a depth-first traversal of the trie
of all runs of length r, keeping partial results in a stack. This
reduces the number of matrix multiplications to O(2r), making
an asymptotic runtime improvement that is very impactful in
practice. The pseudocode for this is shown in Algorithm 3.

Algorithm 3: Computing reachable sets for one itera-
tion of the bounded runs method.
1 Function BoundedRuns(T , z[0], r)

input : Transducer automaton T , set of initial states z[0], run
length r

output: Mapping from locations to lists of reachable sets over
time

2 R  Mapping from locations to lists of reachable sets;
3 S  Array of r named triples hz, `, ai;
4 i  1;
5 S[i]  hz[0], `0, action 1i ; // Insert initial state, automaton

location and scheduler action.
6 while i > 0 do

/* This loop walks the trie of all runs of length r. */
7 if S[i] contains a leaf node then
8 R[S[i].`][:]  Compute the hulls of all states at all

time steps;
9 i  i� 1 ; // Ascend a level

10 else if the last action, S[i].a, has been tried then
11 i  i� 1; // Ascend a level
12 else if no transition T (S[i].`, S[i].a) then
13 S[i].a  S[i].a+ 1;
14 else
15 S[i+ 1]  hµ(S[i].`, S[i].a)S[i].z,

T (S[i].`, S[i].a), action 1i ; // Compute the next
augmented state as per S[i]

16 S[i].a  S[i].a+ 1 ; // Update current working state.
17 i  i+ 1; // Descend to the next level.

18 return R;

The function uses the array S as a stack of augmented states,
automaton locations, and scheduler actions, with i acting as
the stack pointer. It assumes the actions A can be referenced
by index, and begins by pushing the initial state, location, and
the first action onto S on Line 5. The loop on Line 6 walks the
trie of all runs of length r. Each iteration, one of four actions
is taken. At a leaf node, the hulls are computed on Line 8 and
the iteration ascends a level. If the last action for a location
has been tried, we ascend a level on Line 11. If the next action
to try is missing from the automaton, it is skipped on Line 13.
Otherwise, we compute the next augmented state and descend
to the next level of the trie. Once the loop finally exits, the list
of reachable sets over time for each final location is returned.
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We can then run this function iteratively, computing an
overapproximation of the reachable set over time. Using this,
we compute an upper bound d̄ to the maximum deviation d.
Algorithm 4 lists pseudocode that implements this.

Algorithm 4: Bounded runs method for computing
maximum deviation from a nominal trajectory.
input : A transducer automaton T , set of initial states z[0], nominal

run ⌧nom, per-tree run length r, number of iterations J
output: An upper-bound d̄ � d

1 S  list of rJ + 1 empty reachable sets;
2 R  BoundedRuns(T , z[0], r); // Compute all (bounded) runs

from the initial set z[0].
3 Q  |L|⇥ |L| array of lists of reachable sets over time;
4 S[0 : r]  hull`2L(R[`]);
5 for 2  i  J do
6 forall locations ` in T do
7 T 0  T with `0 = `;
8 Q[`, :]  BoundedRuns(T 0

, R[`][r], r); // Compute
reachable sets over time starting from each location.

9 forall locations ` in T do
10 R[`]  hull`2L(Q[:, `]); // Compute the reachable set for

a given location.

11 S[ir : ir + r]  hull`2L(R[`]); // Store reachable sets for the
next r steps.

12 return max1trJ

�
dr

�
evol(⌧nom)[t], S[t]

� 
;

Algorithm 4 and its Safety Proof (Sketch): This algorithm
begins by computing all runs from the initial set z[0] on Line 2.
This populates R with a mapping from locations to lists of
reachable sets for r time steps. Line 4 then computes a convex
hull over all locations for each time step, storing the resulting
reachable sets in S. The loop on Lines 5 to 11 then repeats
this procedure J � 1 times. First, each row of the matrix Q
is populated with reachable sets over time, starting from each
state, by calling BoundedRuns in the inner loop on Line 6.
Then, the second inner loop on Line 9 takes a hull of the
reachable sets in each column of Q, storing the result in R.
At the end of each iteration, the reachable sets for the next r
time steps are stored in S in Line 11. Finally, the algorithm
computes d̄ on Line 12 and returns. Correctness can be proven
similarly to Algorithm 2. Because the algorithm computes
the exact evolution of the reachable set from the previous
time steps, then takes convex hulls to over-approximate, the
reachable set remains safe. Therefore, the distance computed
on Line 12 is also an over-approximation of the true deviation.

VII. EXPERIMENTAL EVALUATION

With several algorithms for computing upper bounds on
maximum deviation (Problem 2) presented in Section VI, it is
important to give some comparison of these techniques. First,
we demonstrate the power given to control designers by being
able to prove safety properties about control systems under
timing uncertainties, rather than just qualitative properties such
as stability, in Section VII-B. Next, we describe how our
techniques can be used to find the best deadline miss handling
strategy for a given control system in Section VII-C. Third,
we compare our algorithms against each other, and show that
they can be used to solve realistic problems. To this end, we
examine both the scalability and degree of overapproximation
of our approaches in Section VII-D. In the case of Algorithm 4,

these factors are related: tighter approximation can be achieved
at the cost of longer running time. Ultimately, we find that
Algorithm 1 generally has too much overapproximation to be
practical, and Algorithm 4 never produces worse bounds than
Algorithm 2, though the latter can be faster in some cases.
Implementation and Environment: We implemented Algo-

rithms 1 and 2 using Python1, and Algorithm 4 using Julia2.
We use a minimum bounding box to compute hull(·), and the
2-norm for dis(·). We next introduce the plant models and
controllers, then present our experimental results.
A. Plant Models
In this section, we present four state-space models and

controllers that we will consider throughout the experimental
evaluation. Three of these, the RC Network, Electric Steering,
and F1Tenth Car systems, are two-dimensional; the Aircraft
Pitch model is a three-dimensional system.
RC Network: Our first model is an RC network [32],

represented in discrete time with a period of h = 100ms by

x[t+ 1] =


0.5495 0.07240
0.01448 0.9332

�
x[t] +


0.3781
0.05234

�
u[t].

Using a one-period delay, we use LQR to compute a controller
for this system given by

u[t] =
⇥
0.09772 0.2504 0.07805

⇤ x[t� 1]
u[t� 1]

�
.

Electric Steering: Our second model is an automotive elec-
tric steering system based on a permanent magnet synchronous
motor [5]. The plant model represented in discrete time, with
a control period of 10 µs, is given by

x[t+ 1] =


0.996 0.075
�0.052 0.996

�
x[t] +


0.100 0.003
�0.003 0.083

�
u[t].

This system is open-loop stable, having poles inside the
unit circle at 0.9957 ± 0.0626i. A proportional-integral (PI)
controller is designed for this system in [5], but the K matrix
given therein appears to make the system unstable. We thus
use a new controller given by

u[t] =


0.9067 0.07384 0 0
0.01041 0.9685 0 0

� 
x[t� 1]
u[t� 1]

�
.

Note that we have designed this controller assuming no
sensing-to-actuation delay, asKu is a zero matrix. This is done
to stress test our techniques with a non-optimal controller.
Aircraft Pitch: Our third model is an aircraft pitch

model [33], describing the effects of an airplane’s elevator
deflection angle on the pitch angle. This model is given in
discrete time with a period of h = 100ms by

x[t+1] =

2

4
0.9654 5.457 0

�0.001338 0.9545 0
�0.003842 5.544 1

3

5x[t]+

2

4
0.02842
0.001969
0.005641

3

5u[t].

The system’s output is simply the pitch angle, represented by
the state variable x3. Assuming a sensor-to-actuator delay of h,
we use LQR to compute a controller given by

u[t] =
⇥
�0.8551 179.2 5.999 0.3238

⇤ x[t� 1]
u[t� 1]

�
.

1https://github.com/bineet-coderep/Jittery-Scheduler
2https://github.com/Ratfink/ControlTimingSafety.jl
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F1Tenth Car: Our final model captures the motion of an
F1Tenth [34] model car. At its core, this uses a standard
bicycle dynamics model, which is a non-linear system. The
controller aims to keep the car driving straight in the positive x
direction on a plane. As our algorithms are not able to
handle non-linear dynamics, we linearize the model around
this condition, and discretize the resulting linear dynamics with
a period of 20ms, arriving at the model

x[t+ 1] =

2

4
1 0 0
0 1 0.13
0 0 1

3

5x[t] +

2

4
0

0.02559
0.3937

3

5u[t] +

2

4
0.13
0
0

3

5 .

Here, the state variables x1 and x2 represent the x and y
coordinates of the car, and x3 is the heading angle. Since x1

simply increases proportionally to time in the linearized model,
we can remove it for our analysis, leaving the dynamics

x[t+ 1] =


1 0.13
0 1

�
x[t] +


0.02559
0.3937

�
u[t].

The controller for this plant model computes the steering angle
of the front wheels. A linear controller for our control objective
is given in [35], which we adapt to our setup as

u[t] =
⇥
0.2935 0.4403

⇤
x[t� 1].

Having introduced our plant models, we next demonstrate
our algorithms’ ability to verify safety properties of control
systems in the presence of timing uncertainties via a case study
on the F1Tenth Car model.

B. Checking Safety Properties
In this section, we illustrate the power of checking deviation

using our techniques from Section VI, using a concrete exam-
ple with the F1Tenth Car model and controller. Consider the
scheduling of the controller on a processor, with a period of
20ms. Some other tasks on the system are provisioned for less
than the worst case, so the control task may sometimes miss a
deadline. When this occurs, it follows the Zero&Kill strategy,
i.e., the job is killed and a control input of 0 is applied. The
scheduler guarantees that the control task will never miss two
deadlines in a row, following the h1i weakly-hard constraint.

Given this information, we can apply the method of [5]
to compute an upper bound on the joint spectral radius to
check if the system is stable. The upper bound computed
is 0.944, which being less than 1, indicates that system is
stable. This is important for control designers to know, since
instability would mean the car is unable to follow the intended
path, and would certainly not be acceptable. However, this
says nothing of the car’s possible trajectories, which could
potentially include unsafe states. For instance, the car may
swerve about the intended path, colliding with an obstacle.
Thus, more information is required than stability alone.
Consider now that the initial state of the plant is x[0] =

[ 0.10 ], i.e., the car is initially 0.1m above the x axis, with a
heading angle of 0°. The controller will drive the state to [ 00 ],
ideally along a single nominal trajectory in the absence of
deadline misses. Following our assumption that timing uncer-
tainties may lead to deadline misses, but no more than one
consecutively, the actual trajectory may vary from nominal.

Fig. 5. Deviation bounds from Algorithm 4 with one consecutive deadline
miss for the example in Section VII-B.

Fig. 6. Deviation bounds from Algorithm 4 with two consecutive deadline
misses for the example in Section VII-B.

Let us assume that the designer must ensure that the car’s
y coordinate never deviates from the nominal trajectory by
more than 0.01m. We next use our algorithms from Section VI
to check if this constraint holds.
We begin by using the ULS method (Algorithm 1) to

calculate a bound on the maximum deviation. This algorithm
returns in 3.83 s, but the deviation bound diverges over time:
the maximum is 887 at time t = 150. Thus, the safety property
is not verified, but may still hold. We proceed to try the
recurrence relation method (Algorithm 2), but the deviation
bound again diverges. To compute a useful bound, we use the
bounded runs iteration method (Algorithm 4), with r = 16.
The resulting deviation bound at each sampling instant is
shown in Fig. 5. Observe that the deviation bound has periodic
“spikes” every 16 time steps, resulting from the box hulls taken
every iteration. The maximum deviation of 0.0070 occurs at
time t = 22. Thus, the safety property holds, and the designer
accepts the timing uncertainty from the scheduler.
Later, more functionality is added to the real-time system

via several new tasks. As a result, the control task may
now miss two consecutive deadlines. This increases the upper
bound on the joint spectral radius to 0.959, meaning that the
system is still stable. The deviation bounds for this case are
shown in Fig. 6. The bounded runs iteration method, run with
r = 16, now gives the bound 0.0169 at time t = 23. Thus,
we can no longer guarantee that the control system is safe,
so the engineer must either redesign the controller, or raise
the control task’s priority to reduce the number of consecutive
deadline misses that are possible. We stress, however, that this
does not imply existence of a run violating the safety bound.
This is because all our algorithms compute safe upper bounds
to the deviation, rather than the true maximum deviation.
This example illustrates the importance of analyzing safety

properties of control systems that may experience timing un-
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TABLE I
NUMBER OF POINTS WHERE EACH STRATEGY MINIMIZES DEVIATION

Miss Strategy RC Net Steering Aircraft F1Tenth

Hold&Kill 91 95 100 100
Zero&Kill 67 100 0 0

Hold&Skip-Next 0 0 0 0
Zero&Skip-Next 0 0 0 0

certainty. The system is stable in both cases, but this does not
guarantee that its deviation will be acceptable when deadline
misses are possible. In the following sections, we examine the
ability of our methods to solve realistic problems, in terms of
both deviation bounds and scalability.

C. Determining the Best Miss Handling Strategy

In the previous section, we demonstrated the value to control
designers of being able to compute a bound on the maximum
deviation of a control system under deadline misses. Our
techniques for solving Problem 2 allow us to determine these
bounds for a given initial state and deadline miss handling
strategy. Different choices of this strategy will have an impact
on deviation, and may impact the safety of the controller.
Designers may then wish to use the strategy giving the lowest
deviation. Unfortunately, the deviation also depends on the
initial state, making this choice less immediately clear.
As observed in Section V, using an absolutely homogeneous

metric function allows us to determine deviation bounds for a
unit vector initial state x[0] (i.e., kx[0]k2 = 1), then use this
to easily determine bounds for any state ax[0]. We can use
this observation to determine the best strategy for any initial
state as follows. First, we create a set of unit vector initial
states S ⇢ Rn. These vectors may be drawn uniformly, at
random, or in some directions of interest for the control system
under consideration. Next, for each state in S, we compute
deviation bounds for every deadline miss handling strategy
using our algorithms from Section VI. We then compare the
rankings of the miss handling strategies vis-à-vis deviation,
and determine the winner for the plurality of states in S.
We implemented this technique for the bounded runs iter-

ation method (Algorithm 4). With many initial states in the
set S, execution could take several days of computation time,
but since each run of Algorithm 4 is independent, it is easily
parallelized. We ran this implementation for each of our ex-
ample systems, with a maximum of two consecutive deadline
misses, using 100 initial points each. The results are shown in
Table I. Note that in some cases, two methods gave the same
minimum value of deviation, so the total of each column may
be greater than 100. For the RC Network, Aircraft Pitch, and
F1Tenth Car models, the Hold&Kill strategy gave the lowest
deviation bound for the most initial points, whereas Zero&Kill
was the best strategy found for the Electric Steering model.
The Skip-Next strategies never gave the lowest deviation bound
for any of our example systems. These strategies may prove
more useful in systems that are open-loop unstable, unlike our
examples. We must stress that these results are dependent on
the algorithm used to solve Problem 2, as well as the exact set
of initial states. If the exact maximum deviation was known for
each scenario under consideration, the results may be different

from those shown here. Despite this limitation, this approach
is likely still of value to control designers, as it offers new
insight into which deadline miss handling strategy works best
for an application that may experience timing uncertainties.

D. Scalability

To further illustrate the value of our methods, we next show
their scalability by evaluating them in a variety of situations.
We first show how the time taken varies between algorithms,
for each of our plant models and miss strategies. Next, we
address the runtime growth when varying time horizons, and
varying the number of behaviors allowable in the transducer
automaton. Finally, we closely examine the bounded runs
algorithm, considering how the per-tree run length parameter
affects runtime and tightness of the deviation bound.
Scalability to different systems and strategies: We con-

ducted a set of experiments to fairly compare our algorithms
across the plant models in Section VII-A. To evaluate this,
we held the initial state constant across systems as x1 = 10
and x2 = 10, with the remaining state variables set to 0.
In all cases, we considered the h3i constraint, and a time
horizon H = 150. The results are shown in Table II. Config-
urations where the deviation bound never decreased over the
time horizon, i.e., the analysis diverged, are shown by “——”.
The ULS method (Algorithm 1) only converged on a

useful bound for the RC Network model and the Zero&Kill
strategy. In all other cases, it diverged, though the longest
time taken was only 36.5 s. The generalized recurrence relation
method (Algorithm 2) did better, producing bounds for the
RC Network model with every strategy considered, but still
diverged for the other plant models. The only algorithm that
produced bounds for all models was the bounded runs iteration
method (Algorithm 4). This is thanks to its per-tree run length
parameter r, allowing a tradeoff between analysis precision
and computation time. We will examine this in more detail
later. For several configurations, this algorithm required such
a large r to avoid divergence that it exceeded a time limit
of 1 h. However, for all other cases, we were able to find a
bound, and the r value used is given in parentheses.
Runtime growth when varying time horizon: To show the

effects of the time horizon on the runtime of our algorithms,
we ran all systems with the RC Network model with at most
three consecutive misses for 100, 300, and 1000 time steps.
The results are shown in Table III. Both Algorithms 2 and 4
can be seen to scale linearly in the number of time steps, as
expected. However, the running time of Algorithm 1 appears
to grow exponentially due to the behavior of the forward
function. The algorithm did not complete for 1000 steps
under the Skip-Next strategies due to a floating-point overflow
resulting from divergent deviation bounds. The time required
for the other algorithms is much lower in all cases, making
these more attractive from an execution time perspective.
Number of behaviors allowable: The structure of a trans-

ducer automaton affects the number of behaviors that are
allowable for a scheduler, modeled as the language of input
strings recognized by the automaton. As the number of per-
missible behaviors grows, e.g., by allowing more consecutive
deadline misses, the runtime of Algorithms 2 and 4 is expected
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TABLE II
MAXIMUM DEVIATION BOUNDS, TIME STEP WHERE THEY OCCURRED, AND COMPUTATION TIME FOR THREE CONSECUTIVE MISSES AND 150 STEPS

Algorithm Miss Strategy RC Network Electric Steering Aircraft Pitch F1Tenth Car

Uncertain
Linear Systems
(Algorithm 1)

Hold&Kill ——, 4.07 s ——, 8.89 s ——, 7.00 s ——, 3.96 s
Zero&Kill 1.97, 4, 4.08 s ——, 8.32 s ——, 6.99 s ——, 3.76 s

Hold&Skip-Next ——, 16.8 s ——, 22.3 s ——, 36.5 s ——, 16.6 s
Zero&Skip-Next ——, 16.8 s ——, 28.0 s ——, 36.4 s ——, 16.6 s

Generalized
Recurrence
Relations

(Algorithm 2)

Hold&Kill 1.90, 4, 0.52 s ——, 0.78 s ——, 0.79 s ——, 0.50 s
Zero&Kill 1.90, 4, 0.50 s ——, 0.75 s ——, 0.77 s ——, 0.49 s

Hold&Skip-Next 1.90, 4, 0.95 s ——, 1.28 s ——, 1.61 s ——, 0.92 s
Zero&Skip-Next 1.90, 4, 0.93 s ——, 1.26 s ——, 1.59 s ——, 0.91 s

Bounded Runs
Iteration

(Algorithm 4)

Hold&Kill 1.90, 4, 0.68 s (4) 12.37, 4, 30.8 s (11) 82.37, 6, 528 s (19) 6.01, 27, 1569 s (20)
Zero&Kill 1.90, 4, 0.78 s (4) 13.63, 8, 685 s (16) 161.64, 10, 509 s (19) timed out (> 1 h)

Hold&Skip-Next 1.90, 4, 2.27 s (4) 12.38, 5, 2845 s (16) timed out (> 1 h) timed out (> 1 h)
Zero&Skip-Next 1.90, 4, 2.37 s (4) 13.75, 8, 2864 s (16) timed out (> 1 h) timed out (> 1 h)

TABLE III
RUNNING TIME OVER VARYING TIME HORIZON (100, 300, 1000 STEPS),

AT MOST THREE CONSECUTIVE MISSES

Miss Strategy Algorithm 1 Algorithm 2 Algorithm 4

Hold&Kill 1.9, 15.7, 172 0.36, 1.0, 3.6 0.096, 0.31, 1.1
Zero&Kill 2.0, 16.4, 178 0.35, 1.0, 3.5 0.101, 0.34, 1.1

Hold&Skip-Next 7.8, 72.0, —— 0.66, 1.9, 6.8 0.47, 1.4, 4.3
Zero&Skip-Next 8.1, 74.6, —— 0.65, 1.9, 6.5 0.47, 1.4, 4.6

TABLE IV
RUNNING TIME OVER VARYING MISSES FOR 150 TIME STEPS,

HOLD&SKIP-NEXT

Algorithm h2i h4i h8i h16i

Algorithm 2 0.72 s 1.20 s 2.12 s 3.92 s
Algorithm 4 0.43 s 0.87 s 1.7 s 3.4 s

to increase. Algorithm 1 is immune to this effect, since it
overapproximates the dynamics matrices of the transducer
automaton, ignoring its locations and transitions. To quantify
the effect of the number of behaviors on our algorithms’
runtime, we ran Algorithms 2 and 4 on the RC Network model
using the Hold&Skip-Next strategy for 150 time steps, with the
weakly hard constraints h2i, h4i, h8i, and h16i. As indicated in
Table IV, the two algorithms scale similarly in this parameter.
Varying run length: The bounded runs iteration method

(Algorithm 4) offers a parameter r that controls the number
of time steps between bounding box overapproximations of
reachable sets. Since the subroutine Algorithm 3 is exponential
in this parameter, there is a tradeoff between accuracy of
the deviation bound, and required execution time. It is thus
pertinent to discuss the choice of this parameter’s value.
Because the runtime is exponential in r, it may be best

to simply use the smallest value possible. This approach was
used for the Electric Steering, Aircraft Pitch, and F1Tenth Car
models in Table II. A simple linear search determines this
minimum r value without wasting much computation time.
It can also be noted that there is a limit to the highest value

of r that produces any benefit. Since the goal of Problem 2 is to
find a bound on the maximum deviation, no better bound could
be found by setting r greater than the time step at which the
bound d̄ occurs. This approach was used for the RC Network
in Table II, and can be quite effective for systems where the
maximum deviation occurs early. This observation does not
imply, however, that there is never a reason to use a larger r
than this time step. Take for instance the Electric Steering and

Aircraft Pitch models, reported in Table II. It was necessary
to increase r to the values listed in parentheses to prevent the
reachable set from diverging. However, once this bound was
computed, there is no need to use a larger value of r, as this
would only take longer to give the same d̄.
In some cases however, neither of these strategies may be

satisfactory, and so the control designer must accept some
tradeoff in analysis accuracy and runtime. For example, the
F1Tenth Car in Table II gave a deviation bound of 6.01 at
time 27, greater than r = 20. Thus, using a larger r may
produce a better deviation bound. However, the execution time
is already large, so a designer may decide to accept this result,
especially if it meets the required safety bound.

E. Use of the Algorithms

Having analyzed the scalability of our algorithms, we now
provide some general recommendations based on running time
and tightness of deviation bounds. When using our algorithms
in practice, it is likely best for an engineer to first use
Algorithm 2, which sometimes gave good bounds and never
required more than 2 seconds in our experiments. Engineers
may then switch to Algorithm 4 if Algorithm 2 diverges (i.e.,
the greatest deviation bound occurs at the end of the time
horizon). Due to its poor performance, only finding one bound
in Table II, Algorithm 1 is not generally recommended. We
present it primarily for its simplicity, which makes it seem
like a viable method for solving Problem 2. However, the
high amount of over-approximation resulting from combining
the matrices of a transducer automaton makes it typically
not useful. We note that all our experiments are limited
by not examining how great of an over-approximation our
algorithms produce. This would unfortunately be intractable,
as noted in Section V, but since the bounds produced are
safe, our methods are still valuable to designers. Finally, it
is necessary to discuss the time required for our various
algorithms. While a very large run length parameter r is
sometimes needed for Algorithm 4 (up to 20 in Table II),
leading to long execution times as described in Section VII-D,
this is likely not a limitation in practice. Because the analysis
is performed offline, running times around an hour as seen
in our experiments are likely acceptable, especially since our
techniques may reduce the need for lengthy testing cycles.
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VIII. CONCLUSIONS AND FUTURE WORK

Unlike most previous studies on modeling the impact of
implementation platform uncertainties on control performance,
which focus on stability, in this paper we considered quantita-
tive safety properties. In particular, we proposed three approxi-
mation techniques to bound the maximum deviation between a
nominal behavior and any possible system trajectory resulting
from platform timing uncertainties. Our evaluation on four
system models shows that we can overcome the computational
challenge typically associated with the reachability analysis
necessary to analyze such quantitative safety properties. This
allows us to choose control and deadline overrun handling
strategies for each system to quantitatively optimize system
safety. To the best of our knowledge, such a characterization
of deadline overrun handling strategies was not studied before.
However, we also see that depending on the system and

scheduling strategy, the error accumulated in our approxi-
mation strategies may grow very large—to the extent that
the estimated deviation becomes unbounded. The focus of
our future work will be to reduce such wrapping error. One
strategy is to create multiple convex (box) hulls, one for
each small cluster of system states, instead of a single one
to approximate all reachable states. This could reduce the
degree of over-approximation, at the cost of an increase in
computational complexity. We also plan to study sampling
techniques to provide probabilistic estimates of deviation while
improving the scalability of the analysis. In particular, we will
explore the use of Jeffreys’s Bayes factor testing [36] to obtain
deviation bounds with probabilistic guarantees.
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[28] R. Blind and F. Allgöwer, “Towards networked control systems with
guaranteed stability: Using weakly hard real-time constraints to model
the loss process,” in 54th IEEE Conference on Decision and Control
(CDC), 2015.

[29] B. Ghosh and P. S. Duggirala, “Robust reachable set: Accounting for
uncertainties in linear dynamical systems,” ACM Trans. Embed. Comput.
Syst., vol. 18, no. 5s, Oct. 2019.

[30] R. Lal and P. Prabhakar, “Bounded error flowpipe computation of
parameterized linear systems,” in Proceedings of the 12th International
Conference on Embedded Software (EMSOFT), 2015.

[31] R. Farhadsefat, J. Rohn, and T. Lotfi, “Norms of interval matrices,”
Institute of Computer Science, Academy of Sciences of the Czech
Republic, Tech. Rep, 2011.

[32] R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 2nd ed.
John Wiley & Sons, 1980.

[33] W. C. Messner and D. M. Tilbury, “Control tutorials for matlab
and simulink: a web-based approach,” 1998. [Online]. Available:
http://ctms.engin.umich.edu/CTMS

[34] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” Proceedings of Machine Learning Research,
vol. 123, 2020.

[35] K. N. Murphy, “Analysis of robotic vehicle steering and controller
delay,” in Fifth International Symposium on Robotics and Manufacturing
(ISRAM), 1994.

[36] R. Kass and A. Raftery, “Bayes factors,” Journal of the American
Statistical Association, vol. 90, no. 430, pp. 773–795, 1995.


