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Abstract

Reconstructing an accurate 3D object model from a few
image observations remains a challenging problem in com-
puter vision. State-of-the-art approaches typically assume
accurate camera poses as input, which could be difficult
to obtain in realistic settings. In this paper, we present
FVvOR, a learning-based object reconstruction method that
predicts accurate 3D models given a few images with noisy
input poses. The core of our approach is a fast and robust
multi-view reconstruction algorithm to jointly refine 3D ge-
ometry and camera pose estimation using learnable neu-
ral network modules. We provide a thorough benchmark of
state-of-the-art approaches for this problem on ShapeNet.
Our approach achieves best-in-class results. It is also two
orders of magnitude faster than the recent optimization-
based approach IDR [67]. Our code is released at ht tps :
//github.com/zhenpeiyang/FvOR/.

1. Introduction

Reconstructing the 3D shape of objects solely from un-
registered RGB inputs is a long-standing problem in com-
puter vision. One popular pipeline is to integrate Structure-
from-Motion (SfM) and Multi-view Stereo (MVS) [24,35].
A common principle of this popular pipeline is to recover
relative camera poses, establish pixel correspondences (ei-
ther explicitly or implicitly), and solve triangulation to ob-
tain a dense reconstruction. The success of this paradigm
relies on dense image coverage to obtain accurate camera
poses and correspondences [1, 18, 19,49]. Enabled by the
emergence of large scale 3D datasets that provide shape pri-
ors about 3D objects, a recent line of works focus on learn-
ing monocular 3D reconstruction [9, 13, 14,21,59,60]. The
general idea is to learn multi-scale correlation priors among
different regions of geometric shapes, which are used to in-
fer complete geometry from partial observations.

Acquiring dense input views is crucial for achieving
good 3D reconstruction quality on current pipelines, but it
is also a very tedious and not user-friendly process. For in-
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Figure 1. Our approach FvOR outperforms state-of-the-art ap-
proaches of few-view 3D reconstruction.

stance, a casual non-expert user that just began using 3D
reconstruction applications (such as creating 3D models of
their house), may overlook the strict requirements of cap-
turing high-quality dense views.

In this paper, we study the setting of few-view recon-
struction [9], which sits between dense-view reconstruction
and single-view reconstruction. The promise of this setting
is that the input views cover the most of underlying object,
and one only needs to fill in a small portion of missing re-
gions, a task that is easier to achieve than single-view recon-
struction. The ultimate goal is to match the quality of dense
reconstruction while significantly reducing the number of
inputs. While both few-view reconstruction and single-view
reconstruction fall into the category of learning-based ap-
proaches, the performance of few-view reconstruction re-
lies on accurate image poses, which could be challenging
to estimate from the input images themselves in realistic
scenarios. In dense-view reconstruction, the SfM pipeline
estimates image poses by first predicting relative camera
poses using feature correspondences and then performing
synchronization [6, 1 1] to extract absolute camera poses.
However, this pipeline does not apply to few-view recon-
struction as there are only a few images, which makes the
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Figure 2. Our approach consists of two stages. The first stage is pose initialization which predicts an initial pose for each input image. The
second stage alternates between shape update and pose update to give an accurate reconstruction with jointly improved camera poses.

accurate pose prediction using correspondence difficult.

This paper introduces a novel learning-based approach
for joint optimization of the shape reconstruction and the
camera poses associated with the input images. The core
of our approach consists of a pose initialization module, a
shape module, and a pose refinement module. The pose ini-
tialization module computes an initial camera pose for each
input image. The shape and pose refinement modules are
alternated to improve the shape reconstruction and the cam-
era poses jointly. We design the pose initialization module
using a geometric approach, aiming to reduce outlier pre-
dictions of camera poses that are difficult to rectify in pose
refinement. The shape module combines the strengths of
per-view image features and 3D convolutional features to
obtain an accurate implicit 3D reconstruction with shape
details. The pose refinement module performs geometric
alignments between rendered images and real images in a
learned feature space. Both the shape and pose modules
are end-to-end trainable. Compared to existing learning-
based image pose estimation techniques, our approach uses
a dynamically changing 3D reconstruction and geometric
constraints, both of which are unavailable in standard end-
to-end pose estimation approaches [16,27, 54, 62].

Our approach achieves state-of-the-art results on
ShapeNet. The shape reconstruction module also improves
upon state-of-the-art approaches under the setting of known
camera poses. Due to the efficiency of our neural network
modules, our approach is two orders of magnitude faster
than the recent optimization-based approach IDR [67].

2. Related Work

Single-view Object Reconstruction Typical single-view
approaches use an image encoder to estimate a latent code,
which is then decoded into 3D shape representations such
as voxels [20], point-clouds [15], meshes [22, 56], skele-
tons [30, 61], or implicit functions [37]. Although this
methodology has shown promising results, they are inher-
ently limited to large uncertainties in the invisible regions

given the partial visible observations (c.f. [52]).

Dense-view Object Reconstruction Traditional ap-
proaches for reconstructing an object usually involve dense
scanning around the object, followed by SfM(Structure
from Motion) [11, 48, 50, 58] or SLAM(Simultaneous
Localization and Mapping) [12, 66] approaches for recon-
struction and camera pose estimation. Popular software
includes COLMAP [46] and OpenMVG [39]. Deep
learning counterparts, for example DeepV2D [3, 53], have
also been proposed in recent years. [34] proposed an
approach to recover object shape from posed video frames
by combing a deep shape prior network with photometric
optimization. Recently, the seminar work NeRF [38]
inspire many research learning implicit 3D representation
from images. Some recent works [33, 36, 67] consider
inaccurate camera poses as input and optimize the shape
reconstruction [67](or neural radiance field [33, 36])
and poses jointly. This type of approach requires the
most expensive capture efforts, but usually gives good
performance.

Few-view Object Reconstruction Such a task aims at re-
constructing the underlying object given several images.
In general, there are two approaches to solving this task:
whether they model camera poses explicitly during the in-
ference time, or not. One pioneering work of the pose-free
approach is 3D-R2N2 [9], which uses a 3D convolutional
LSTM to aggregate multi-view information sequentially. A
recent example of this type of approach is Pix2Vox++ [63].
The other approaches model camera poses directly. Many
of these approach assume ground truth camera poses as in-
put [2,29,41,43,57, 64,65, 68]. For example, [29] use
ground truth camera pose to build a volumetric feature rep-
resentation, which is then decoded into discrete voxel. [65]
proposed learning a shape prior during training, and opti-
mizing the shape code to minimize silhouette loss during
testing to recover the shape. [64] directly uses predicted
camera pose obtained from pre-trained network. Recently,
NeRS [69] proposed a NeRF-style few-view reconstruction
method using a neural surface representation. Our approach



innovates in learning shape reconstruction and pose estima-
tion using deep learning. As a result, our approach does
not require object masks [67,69] or category-specific mesh
initialization [69]. Moreover, our approach requires only a
few updates, and the running time is significantly faster than
IDR [67] and NeRS [69].

3. Approach

We first introduce the problem statement and an
overview of our approach in Sect. 3.1. We then elaborate
on the technical contributions from Sect. 3.2 to Sect. 3.5.

3.1. Few-view Object Reconstruction

Problem statement. Given a set of RGB images 7 =
{I; | =0,...,k — 1} observing a single object, where k is
the number of observations, we aim to recover the 3D mesh
model S of the underlying object, up to a global similarity
transformation. We assume the camera intrinsic matrix K
is known and fixed across all views.

Approach overview. Fig. 2 is an overview of FVvOR. It
starts with a pose initialization module that predicts cam-
era poses for each image. This module gives us initial pose
estimates with acceptable accuracy. We then alternate be-
tween reconstructing the shape from input images with cur-
rent poses and performing image-shape alignment to refine
the poses of each input image. For the shape reconstruction
module, we combine a two-stream network that integrates
image-based features with 3D features. Image-shape align-
ment is performed in a learned feature space between input
images and corresponding rendered images of the predicted
shape. Both modules are end-to-end differentiable. We al-
ternate between the shape and pose modules to reconstruct
an accurate 3D model from few-view inputs.

A common approach for training the alternating mech-
anism is to stitch the alternating shape, pose modules to-
gether, and enforce a loss on the final output. We found
that this strategy is challenging to train and is not very flex-
ible. In the same spirit as the gradient operators in alternat-
ing minimization, this paper trains each module in isolation
while forcing them to make progress under different inputs.
For example, the pose module is learned to recover the un-
derlying ground truth under randomly perturbed poses. This
methodology offers excellent flexibility in developing train-
ing losses and instilling training data.

3.2. Pose Initialization Module

The goal of the pose initialization module is to provide
initial camera poses for subsequent shape and pose opti-
mization steps. As the camera poses can be refined later,
we design a pose initialization module to reduce the num-
ber of pose outliers, which are hard to rectify later in the
pose refinement stage. For each pixel of each input image,
we predict its 3D coordinate in a world coordinate system

(scene coordinate) of the underlying geometry [47,55]. The
pose is then obtained by performing global matching be-
tween 2D image pixels and the corresponding 3D points
via RANSAC [17]. Our approach exhibits three advantages
compared to existing regressing and classification based
pose estimation approaches [16, 27]. First, reconstructing
the 3D coordinates of each image uses information from all
input images during testing, meaning the camera poses are
jointly predicted. Second, pose regression enforces geomet-
ric constraints between correspondences. Third, RANSAC
can efficiently deal with incorrect 3D coordinates.

Scene coordinate prediction. Our model first encodes a
2D feature map for each input image independently. We
then use a multi-image attention module to aggregate fea-
tures from all input images. Inspired by [31,51], the multi-
image attention module is composed by alternating between
self-attention and cross-attention blocks. The final output is
a 3D coordinate p; ; for each pixel. The detailed network
design can be found in the supp. Network training min-
imizes the /5 distances between the predicted and ground-
truth scene coordinates. The loss for one set of input images
is given by
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where (u; ;,v; ;) is the pixel coordinate of the j-th pixel of
the i-th input image; df; is its ground-truth depth; T :=
(RS'[t7") € SE(3) is the ground-truth camera to world pose
of the ¢-th image. w; ; is a binary weight indicating whether
or not this pixel has G.T. depth.

Pose regression. After we acquired scene coordinate esti-
mates, we use an off-the-shelf RANSAC PnP approach to
recover the pose estimates for each input view (details is in
the supp.). This initial camera pose serves as input for the
subsequent shape optimization module.

3.3. Shape Optimization Module

The shape optimization module takes as input the input
images and their pose estimates {(;,7%)]i = 0,...,k —
1} and outputs a shape reconstruction. Motivated by the
success of implicit shape representations [7,42], we encode
the 3D reconstruction as a deep signed distance function
g' : R?® — R [42] that outputs the signed distance of any
query point in the space.

Our approach innovates computing the implicit function
value §*(x) by fusing features from two sources:

gt (X) = ge (fitmage (X)a f?lfD (X)> )

where go is a multi-layer fully connected network. Similar

to [2,26,32,44,45,64,68], fi () is given by the features

extracted from projecting x onto the input images:
£ age (x) = Pooling (F;(Pi(x,T;))),

image



where P;(x, T}) is the projection of x on image I; given the
current camera pose Tit; F; is augmented ResNetl8 [25]
that takes each image as input and outputs the pixel-wise
feature map; Pooling is the average pooling function. In ad-
dition, £} (x) represent features obtained from a 3D feature
volume:

fip (x) =

where V' € Re*4xd%d i 3 3D volume produced by a con-
volutional 3D U-Net [10] with trainable parameters ®. The
input to this 3D U-Net is an initial volume built by evaluat-
ing flmage( x) where x is the coordinates at d x d x d grid
position (See the supp.).

Network training. In addition to supervising the im-
plicit shape reconstruction using ground-truth signed dis-
tance values, we also force the gradient field of the implicit
representation to match the corresponding ground truth:
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where Sy are points sampled in the 3D space as done in
DeepSDF [42]; &7 are points in on the surface of the under-
lying object.

3.4. Pose Optimization Module

We now describe the module for updating the camera
pose estimates given the current 3D reconstruction. Specif-
ically, the input consists of the input images Z, the cur-
rent implicit shape representatlon , and the current camera
poses {T%|i = 0,...,k — 1}. The output of this module is
the pose updates AT* = {AT}}o<i< of the correspond-
ing camera poses. Our key idea is to perform geometric
alignment between the 3D reconstruction and the input im-
ages on a learned feature representation. This is achieved by
rendering the 3D reconstruction and then aligning features
extracted from the rendered images and the corresponding
input images. The training objective enforces that the pose
updates derived from these modules match the underlying
ground truth. We now describe the technical details.
Efficient renderer. The efficiency of end-to-end learning
of the pose module depends on the efficiency of the implicit
function renderer. Therefore, unlike IDR [67] that repeat-
edly evaluates the implicit function to find the accurate in-
tersection point, we use a volumetric grid of size d x d x d
(d = 64 in our implementation) to discretize the implicit
function and then render the discretized implicit function.
Rendering is achieved using sphere tracing [23,28]. Such
discretization allows us to render 224 x 224 images at 79.1
FPS (IDR’s speed is only 0.32) using a Nvidia V100 GPU.
The output of this module is a depth map which is converted
into a 2D object mask M* and a set of 3D points that repre-
sent the visible region of the current 3D reconstruction.

Learning feature alignment. The goal of this sub-module
is to find an incremental pose update AT! € SE(3) to bet-
ter align the rendered object mask M; and the input image
I;. The goal is to ensure that this sub-module is end-to-end
trainable while utilizing as much information as possible.
Instead of directly aligning M; and I;, we use a neural net-
work to compute a dense feature space to align M; and I;.
Since the underlying pose between M; and I, is expected to
be small, we found that it is sufficient to enforce the loss on
pose update derived from aligning the corresponding points
in the feature space.

Specifically, let fo denote the network that computes
the dense image descriptor, and fi = fo (]\;[1) and f; =
fo(I;) be the resulting feature map. Denote current cam-
era pose for image i as T := (RY|t?), and its corre-
sponding G.T. as T := (R%'|t?'). We employ the expo-
nential map parametrization of the pose correction AT} =

elAcilx At;
(0
I; derived from rendering. We propose to compute c; and
t; by solving following non-linear least square problem:

). Let P; = {p,} collect the 3D points of
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Here (u;, v;) denotes the pixel coordinates of p; in the ren-

dered image. P(Kp;-) denotes the corresponding pixel co-
ordinates on the input image after applying the pose update.

To obtain an explicit expression of Ac; and At;, we use
a linear approximation. This leads to the following expres-
sion, which applies one-step of Levenberg—Marquardt [40]:

(Aci, Aty)T = —(JTT + )71 (I ), @

where r = Zj rid = Zj Jj;1 is the identity matrix;\ is a
constant. Moreover, r; and J; are given by

rj = fi(P(Ep})) — fi(uj,v;) 3)
Ji = L
I 7 9(Ae, At)T
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Training Details For training the pose refinement module,
we simulate input poses by adding random perturbations to
the ground truth camera poses [33]. We then train the pose
refinement module by forcing it to recover from the pertur-
bations. We then minimize the following loss:

I+ Acl] At;\ (RY 9 RE
ﬁposerehne—ZH< ) (0 1>_<0 1



Algorithm 1 FvOR 3D Recon Algorithm

Input: Z, 75
§° + shape_update(Z, 7°)
fort =0:nydo
for J=0:n2 do .
M?" « render(3*, T") o
Tt «+ pose_update(Z, ¢, T, M)
end for A
Gt+! « shape_update(Z, T?)
THL T
end for .
Return gmt, 7™

3.5. Alternating Shape and Pose Optimization

We first train the shape module 3.3 using GT poses.
Then, we add noise to the GT poses to fine-tune the shape
module and use the shape module’s prediction on the fly to
train the pose update module 3.4 with a single step update.
At inference time, we make two modifications: first, we
alternate between shape update and pose update for multi-
ple iterations instead of the single iteration used in training.
Second, we add a regularization term that penalizes very
large deviations from initial pose estimates. The complete
algorithm is shown in Algorithm 1. We set n; = 3 and
ng = 5 in our experiments.

4. Experimental Results

In this section, we present our experimental results. We
first describe the datasets used for evaluation in Sect. 4.1.
Then, we introduce the baselines for camera pose estima-
tion (Sect. 4.2) and 3D reconstruction (Sect. 4.3). In
Sect. 4.4 we discuss the evaluation metrics. Finally, we pro-
vide an analysis of results in Sect. 4.5

4.1. Datasets

ShapeNet. This dataset was introduced by 3D-R2N2 [§]
based on ShapeNet [5] and has become a widely used
benchmark for single/multi-view 3D reconstruction. It con-
tains objects from 13 categories from ShapeNet v1 [5]. For
each object, it contains 24 views from a camera pointing to
the origin, and has large azimuth variation but small eleva-
tion variation. We follow the training/test splits and evalua-
tion protocol in [2] and randomly sample 5 views out of the
24 views to form an input set.

4.2. Baselines for Pose Initialization

In this section, we describe different baseline approaches
for initializing the pose estimates.
DISN [64] parametrizes camera poses by orthogonal vec-
tors, and introduces a novel loss for regression-based pose
estimation. We implement DISN’s camera pose estimation

DISN [64] Caietal.[4] FvOR-Quat FvOR
Base 3.66 5.10 4.46 3.82
Base + Cross 2.46 2.25 3.06 1.40

Table 1. Ablation study of the pose initialization module on
ShapeNet. The results are the Pixel Error. We can see that cross-
attention can help predict more accurate image poses. ‘“Base”
means per-image prediction is used. ‘“Base+Cross” means that
each image’s feature map interacts with other images through
cross-image attention.

Metrics All W/0 fimage  W/0 f3p  W/0 Lgpaa
ToU?T 0.783 0.782 0.718 0.759
Chamfer-L1]  0.058 0.060 0.082 0.066

Table 2. Ablation study of the decoder design and the gradient
loss. We use ShapeNet and ground truth poses in this experiment.
The results are averaged across all 13 categories.

algorithm based on our framework. Note that for baseline
comparison, we report results of our updated implementa-
tion, which improve from the original results in [64].

Cai et al. [4] Extreme-Rot is a recent deep learning method
for estimating pair-wise relative rotations between two im-
ages with little overlap. It estimates the rotation by pre-
dicting a distribution over discretized Euler angle bins. We
implement Extreme-Rot based on our framework and mod-
ify it to predict the absolute pose for each image (details are
in the supp. material).

FvOR-Quat. The above two methods use the continu-
ous rotation matrix and discrete Euler angle representa-
tions. In addition, we add a baseline that predicts a quater-
nion/translation vector. It shares the same backbone as our
method. But instead of predicting per-pixel scene coordi-
nates, it averages the feature map of each image to a single
vector and regresses the quaternion and translation.

4.3. Baselines for 3D Reconstruction

We now describe the 3D reconstruction baselines that we
use to evaluate the effectiveness of our approach.
OccNet [37] is a top performing method for single-view
3D reconstruction . We follow the practice of 3D43D [2]
which provides a multi-view augmented version of OccNet
denoted as OccNet' [2, 37]. For Tab. 3, we use the evalua-
tion results provided in 3D43D [2].
Pix2Vox++ [63] is a recent work that provides an improved
framework to 3D-R2N2 [9] with multi-scale context-aware
fusion. We train their model on ShapeNet using our settings
(5 views). We evaluate their prediction against continuous
mesh instead of the discretized version [37].
3D43D [2] is a recent work that uses pixel-aligned feature
representations and multi-view images with ground-truth
camera poses for object 3D reconstruction.
IDR [67] is an optimization based algorithm that does not
learn a prior from training data. IDR achieves good per-
formance when reconstructing objects with tens of images
paired with ground truth object masks. We run IDR [67]
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Figure 3. Visualizing the intermediate results of FVvOR. On the left we visualize 4 input views (out of 5 views used) and the back-projected
masks in each iteration. On the right we show the progression of 3D reconstructions through alternating shape and pose optimizations.

Img

Category w/o GT Pose w/ GT Pose

OccNet [37] OccNet [2] Pix2Vox++ FvOR 3D43D [2] FvOR w/ GT Pose

plane | 0.591/0.134/0.845 0.600/0.096 /0.853 0.366/-/- 0.726 /0.0541/0.905 | 0.736/0.021/0.899  0.802/0.032/0.930
bench | 0.492/0.150/0.814 0.547/0.176/0.834  0.328/-/- 0.654/0.0530/0.904 | 0.663/0.027/0.881 0.710/0.047/0.913
cabinet | 0.750/0.153/0.884 0.770/0.125/0.893 0.601/-/- 0.844/0.0773/0.931 | 0.831/0.073/0.925  0.83/0.067 /0.936
car | 0.746/0.149/0.852 0.759/0.109/0.861 0.581/-/- 0.768 /0.0953/0.874 | 0.797/0.090/0.873  0.800/0.088 / 0.882
chair | 0.530/0.206/0.829  0.568/0.1870.846 0.430/-/- 0.690/0.0730/0.918 | 0.716/0.063/0.911  0.746/0.057 / 0.932
display | 0.518/0.258/0.857 0.593/0.168/0.884  0.443/-/- 0.754/0.0769/0.935 | 0.752/0.089/0.935 0.794/0.058 / 0.950
lamp | 0.400/0.368/0.751 0.415/1.083/0.764 0.277/-1- 0.599/0.116/0.867 | 0.625/0.256/0.858  0.682/0.069 / 0.893
speaker | 0.677/0.266/0.848 0.699/0.360/0.856  0.588/-/- 0.793/0.109/0.908 | 0.807/0.143/0.912 0.807/0.089/0.919
rifle | 0.480/0.143/0.783 0.466/0.112/0.789  0.338/-/- 0.705/0.0476/0.913 | 0.745/0.012/0.903 0.823/0.0269 / 0.944
sofa | 0.693/0.181/0.867 0.731/0.171/0.886  0.554/-/- 0.804/0.0748 /0.938 | 0.809/0.054/0.927 0.834/0.063/0.943
table | 0.542/0.182/0.860 0.569/0.588/0.873 0.373/-/- 0.654/0.0726/0.923 | 0.689/0.058/0.921  0.706 / 0.060 / 0.934
phone | 0.740/0.127/0.939 0.785/0.103/0.948 0.589/-/- 0.855/0.0434/0.978 | 0.861/0.017/0971  0.875/0.039/0.977
boat | 0.547/0.201/0.797 0.592/0.163/0.818 0.437/-/- 0.712/0.0816/0.884 | 0.708 /0.053/0.868  0.763 / 0.064 / 0.906
Mean | 0.593/0.194/0.840 0.621/0.265/0.854  0.455/-/- 0.735/0.075/0.914 | 0.749/0.073/0.906  0.783 / 0.058 / 0.928

Table 3. Quantitative results of few-view 3D reconstruction on the ShapeNet dataset. The numbers in each cell is (IoU / Chamfer-L1 /
F-score). OccNet [37] uses a single view. The rest of the methods use 5 views. The last two columns show methods that use GT camera
poses. We do not factor out similarity because we obtained results for OccNet/OccNet/3D43D directly from original papers. Chamfer-L1
is multiplied by 10 [37].



on each test inputs for 1000 epochs on ShapeNet for best
results.

FvOR w/ GT Pose is our standalone 3D reconstruction
module trained with ground truth camera poses. This set-
ting is also used in 3D43D [2], but we differ from 3D43D
in network architecture. Although DISN [64] also shown in
qualitative results for multi-view reconstruction in their pa-
per, we do not find their official implementation for multi-
view reconstruction. Instead, we compare a variant of our
method W/0 fimage Which is similar to DISN, in Tab. 2.
FvOR + Noise@L{1,2,3}. For this baseline, we train
our standalone 3D reconstruction module with noisy in-
put poses. In order to do this, we add Gaussian noise to
the camera poses at 3 different levels of standard deviation
(o € {0.75e—2,1.5e—2,2.25e—2}) [33].

FvOR w/o Joint is our proposed approach without per-
forming iterative refinement during inference. We use this
baseline to demonstrate the importance of pose optimiza-
tion for improving robustness to noisy poses.

4.4. Evaluation Metrics

Pose Initialization. We evaluate the camera pose estima-
tion accuracy using three metrics. The first metric is Pixel-
Error, which is calculated by first projecting the object’s
surface point into each view using predicted pose and GT
pose, and then calculating the corresponding distance in the
pixel space. The other two metrics are Rotation Error and
Translation error. Pixel-Error is a more reasonable metric
for evaluating poses for multi-view 3D reconstruction, as it
reflects both the rotation and translation errors [64].

3D Reconstruction We measure the distance between a
predicted 3D mesh S and a ground truth 3D mesh S us-
ing common metrics [2, 37, 64] including IoU, Chamfer-LI
distance, and normal consistency. To eliminate the influ-
ence of predicted poses on the final mesh reconstruction,
for each method we factor out the similarity transformation
between the reconstructed mesh and the underlying ground-
truth mesh for evaluation in Tab. 4(details in the supp).
However, to provide a direct comparisons with previous ap-
proaches, we do not perform this alignment for results re-
ported in Tab. 3).

4.5. Results Analysis

Pose initialization In Tab. 1, we report results for the dif-
ferent pose initialization baselines on the ShapeNet. The
per-category results on ShapeNet can be found in the supp.
We make two key observations from these results. First, our
approach is the top-performing approach on both datasets.
In particular, our method has only a 1.40 pixel error on
ShapeNet. Given that all the baselines for pose estima-
tion share the same backbone, these results demonstrate the
benefits of our scene-coordinate representation of camera
poses. Second, we also observe from Tab. 1 that removing
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Figure 4. Per iteration results of the refinement approach on
ShapeNet under Noise @L3. Our iterative refinement approach has
improved 3D reconstruction scores. The refinement process also
converges quickly in 3~ 4 iterations.

the cross-view attention module reduces the accuracy of the
pose estimates across the board. This illustrates the impor-
tance of aggregating information across multiple views.
Few-view 3D reconstruction w/ GT pose. To validate our
3D reconstruction module design, we perform multi-view
3D reconstruction experiments on the ShapeNet dataset us-
ing ground truth camera poses. The results can be found in
Tab. 3 (FvOR T) and Tab. 2. Tab. 3 shows that our method is
the top performer, achieving a 0.783 IoU, which is a 4.5%
relative improvement compared with the previous state-of-
the-art. In addition, the ablation results in Tab. 2 show
that removing the pixel-aligned feature (fimage), 3D convo-
lutional feature (f3p) or removing the gradient loss (Lgraq)
have negative impacts on the reconstruction accuracy, both
in terms of IoU and Chamfer-L1.
Robustness of few-view 3D reconstruction under noisy
poses. We experiment two settings of camera poses. In
the first setting, a Gaussian noise is applied to the ground
truth camera poses, following the practice of BARF [33].
The pose perturbation magnitude is controlled by o €
{0.75e—2,1.5e—2,2.25e—2} with three values (called L1,
L2, and L3 respectively). The corresponding average pixel
errors are {2.29,4.58,6.88} on ShapeNet. In Tab. 4, we
show results on ShapeNet. The first observation is that
FvOR trained with ground truth poses (FVvOR w/ GT Pose)
is highly sensitive to noisy pose initialization at inference
time. In particular, the average IoU drops from 0.806 to
0.667 with L1 noise, and drops further to 0.441 with L3
noise. A second observation is that FvOR trained with noisy
poses (FVOR w/ Noise@L{1,2,3}) (rows 3-5 in Tab. 4)
gains robustness at the trained noise level, as expected. For
example, FYOR w/ Noise@L1 achieves an IoU of 0.743 at
test time with noise level L1, far exceeding the IoU of 0.667
achieved with FVOR w/ GT Pose. On the other hand, the
robustness of these models (FVOR w/ Noise@L{1,2,3})
comes at a cost of decreased performance when accurate
camera poses are given, which is expected as they simply fit
the network to noisy pose without explicitly modeling(e.g.
the first column in Tab. 4).

In contrast, FvOR with joint shape and pose iterative re-
finement is a lot more robust to noisy poses, while retain-
ing high performance when the poses become accurate. In
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Figure 5. Qualitative comparison on ShapeNet. On the left we show the five input images. On the right we show the prediction of
OccNett [2,37], IDR [67] and FvOR(ours). IDR and FvOR use our predicted camera poses.

Method GT Noise@L1 Noise@L2 Noise@L3 Predict

TIoU?T Chamfer-L1], TIoU?T Chamfer-L1] IoU?T Chamfer-L1] TIoU?T Chamfer-L1], ToU?T Chamfer-L1]

OccNetf [2,37] | 0.667/0.702 1.22/0.989 | 0.667/0.702 1.22/0.989  0.667/0.702 1.22/0.989 0.667/0.702 1.22/0.989 | 0.667/0.702 1.22/0.989

IDR [67] | 0.392/0.358 4.12.4 0.419/0.444 4.0/2.2 0.393/0.364 4.3/2.6 0.415/0.396 3.9/2.2 0.392/0.370 4.3/12.4

FvOR w/ Noisy@L1 | 0.760/0.795  0.744/0.642 | 0.743/0.777  0.811/0.694  0.688/0.722 1.07/0.899 0.601/0.631 1.64/1.33 0.751/0.787  0.796/0.659
FvOR w/ Noisy@L2 | 0.725/0.757  0.899/0.741 | 0.718/0.748  0.935/0.777  0.703/0.733  0.998/0.851  0.676/0.710 1.14/0.964 | 0.721/0.752  0.920/0.756

FvOR w/ Noisy@L3 | 0.704/0.741  0.977/0.828 | 0.698/0.731 1.01/0.858 0.689/0.724 1.06/0.906  0.677/0.712  1.13/0.966 | 0.700/0.739 1.02/0.834
FvOR w/ GT Pose | 0.806/0.841  0.605/0.498 | 0.667/0.699 1.17/0.985 0.531/0.557 2.05/1.70 0.441/0.443 2.89/2.29 0.785/0.825  0.677/0.543
FvOR w/o Joint | 0.786/0.820  0.658/0.554 | 0.749/0.779  0.777/0.667  0.645/0.677 1.27/1.09 0.533/0.551 2.06/1.78 0.775/0.812  0.702/0.573
FvOR | 0.783/0.818  0.664/0.561 | 0.779/0.814  0.676/0.571  0.766/0.803  0.735/0.600  0.721/0.768  0.988/0.707 | 0.773/0.812  0.708/0.576

Table 4. Evaluating the robustness of few-view 3D reconstruction baselines on ShapeNet (mean/median, top-2 results highlighted). We
report the results using ground truth poses, perturbed poses with different perturbation levels, and predicted poses from our pose estimation
module. Chamfer-L1 is multiplied by 100. Our approach(FvOR) can strike a balance between being robust to noisy poses and obtaining
high reconstruction accuracy. The details of three noise levels can be found in Section 4.5. Note that differently from Table 3, here we
pre-align the predicted shape with ground truth shape before evaluation to focus on accessing shape quality. Since OccNett always predicts
a unit scale shape. We’ve factored out the shape scale when computing the Chamfer-L1 metric of OccNett for a fair comparison.

Metric ~ IoUt  Chamfer-L1] Inference Speed(s)) Computational speed. We found our approach typically

IDR [67] 0.392 4.33 1.0 x 10° converges after 3 shape and pose updates, while IDR [67]

FvOR  0.773 0.708 98 requires thousands of updates. The inference speed can be
Table 5. Inference speed for ShapeNet dataset. As an optimization found in the Tab. 5.

based approach, our method is significant faster than IDR [67].

Fig. 4 we show how reconstruction metrics improve as a 5. Conclusions and Limitations
function of the number of Levenberg—Marquardt updates
in the refinement process. Fig. 3 shows how the rendered
masks and geometry improve at each iteration.

In the second setting, we use predicted poses produced
by our pose initialization method during inference. This is
shown in the last column of Tab. 4. We observe that our
iterative refinement approach (FvOR) does not provide fur-
ther gains(i.e. FYOR w/o joint ) in this case(last 2 rows of
Tab. 4), which is also expected because on ShapeNet dataset
the predicted pose are already fairly close to G.T. 1, and
our pose update module are designed to address consider-
able pose error. Qualitative comparison between FYOR and
existing methods on the ShapeNet dataset can be found in
Fig. 5. FvOR outperforms existing methods significantly.

Conclusions. This paper studied the problem of recon-
structing a 3D object from a few observations. We proposed
a joint pose and shape refinement approach that strikes a
balance between being robust to noisy camera poses and
producing accurate 3D reconstructions.

Limitations. A limitation of our approach is that separate
training of shape and pose module may result in sub-optimal
performance. Another limitation is the pose optimization
module requires a reasonable initial shape prediction. We
plan to address these limitations in future work.
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