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Abstract
Phylogenetic networks extend phylogenetic trees tomodel non-vertical inheritance, by
which a lineage inheritsmaterial frommultiple parents. The computational complexity
of estimating phylogenetic networks from genome-wide data with likelihood-based
methods limits the size of networks that can be handled. Methods based on pairwise
distances could offer faster alternatives. We study here the information that average
pairwise distances contain on the underlying phylogenetic network, by characterizing
local and global features that can or cannot be identified. For general networks, we
clarify that the root and edge lengths adjacent to reticulations are not identifiable, and
then focus on the class of zipped-up semidirected networks. We provide a criterion to
swap subgraphs locally, such as 3-cycles, resulting in indistinguishable networks. We
propose the “distance split tree”, which can be constructed from pairwise distances,
and prove that it is a refinement of the network’s tree of blobs, capturing the tree-like
features of the network. For level-1 networks, this distance split tree is equal to the
tree of blobs refined to separate polytomies from blobs, and we prove that the mixed
representation of the network is identifiable. The information loss is localized around
4-cycles, for which the placement of the reticulation is unidentifiable. The mixed
representation combines split edges for 4-cycles, regular tree and hybrid edges from
the semidirected network, and edge parameters that encode all information identifiable
from average pairwise distances.
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1 Introduction

Phylogenetic trees represent the past history of a set of organisms and are central to the
field of evolutionary biology. Phylogenetic networks offer a convenient framework to
extend phylogenetic trees, in which extra edges explicitly represent the various biolog-
ical processes by which an ancestral organism or population inherits genetic material
from several parents. With the advent of genome-wide data that can be collected
across many organisms, there is robust evidence for hybridization and gene flow in
many groups, and rooted phylogenetic networks are nowwidely used (Folk et al. 2018;
Blair and Ané 2020).

Inferring phylogenetic networks is hard, however. Computing times are prohibitive
with more than a handful of taxa for likelihood-based approaches, such as full like-
lihood or Bayesian methods in PhyloNet or SnappNet (Solís-Lemus and Ané 2016;
Cao et al. 2019; Rabier et al. 2021). Methods based on pairwise distances have the
potential to be much faster (Bryant and Moulton 2004). For inferring phylogenetic
trees, Neighbor-Joining and other distance-based methods (Saitou and Nei 1987; Des-
per and Gascuel 2004) are orders of magnitude faster than likelihood-based methods
and can handle data with many more taxa, even if their speed might be at the cost of
accuracy (but see Rusinko and McPartlon 2017).

We study here the information carried by average pairwise distances about the
underlying phylogenetic network. In other words, we ask whether phylogenetic net-
works are identifiable and what can be known about the network, theoretically, from
distances between pairs of taxa, averaged across the trees displayed in the network.
Trees and their branch lengths are identifiable from distances (Semple and Steel 2003).
Trees form the simplest class of networks. How much sparseness must be imposed on
networks to maintain identifiability?

Much previous work has focused on using shortest distances (Bordewich et al.
2018a; Chang et al. 2017), sets or multisets of distances (Bordewich and Semple 2016;
Bordewich and Tokac 2016; Bordewich et al. 2018b) or the logdet distance (Allman
et al. 2022). Average distances were used for network inference but without theoretical
guarantees (Willems et al. 2014).Willson studied the identifiability of parameters from
average distanceswhen the network topology is known (Willson 2012). Other previous
work has focused on the full identifiability of the network, thereby imposing strong
constraints, such as a single reticulation (Willson 2013; Francis and Steel 2015). To
obtain general results, we focus on the identifiability (or lack thereof) of local features
and of global features, without necessarily asking for the full identifiability of the
network. We also study the identifiability of branch lengths and inheritance values,
often understudied in previous work.

We highlight here some of our results. Notably, we show that the root of the network
is not generally identifiable from average distances. This is well-known for trees but
has not been clarified by prior work on networks, which assumed data available at
the root or a known outgroup (Willson 2013; Bordewich et al. 2018b) or the network
being ultrametric (e.g. Chan et al. 2005; Bordewich and Tokac 2016; Bordewich et al.
2018a; Allman et al. 2022), or equal edge lengths (without any degree-2 nodes except
perhaps for the root) (e.g. Bordewich and Semple 2016). Therefore, we focus our study
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on semidirected networks, in which the root is suppressed and edges are undirected
except for hybrid edges (Solís-Lemus and Ané 2016).

Without any restriction on the network complexity, we prove that we may swap
a local subgraph with another without altering average distances, provided that the
swapped subgraphs have the same pairwise inheritance and distance matrices at their
boundary. We apply this swap result to subgraphs with a small boundary, showing
that degree-2 blobs, degree-3 blobs and 3-cycles are not identifiable; and showing that
level-2 networks are not identifiable from average distances, not even generically. This
result provides a simple explanation for the reticulate exceptions that are permitted
in a network whose average distances fit on a tree in Francis and Steel (2015). We
anticipate that the application of our swap lemma will lead to other applications, using
larger subgraphs, finding local structures that prevent the identifiability of the network
from average distances.

For the global structure of the network, we prove that a refinement of the network’s
tree of blobs is identifiable (under mild assumptions) which we call the “distance
split tree”. Informally, any cycle in the network is condensed into a single node of
the tree of blobs, which encodes the tree-like parts of the network. While the tree of
blobs provides limited knowledge about the network, it could be leveraged to develop
divide-and-conquer approaches. Namely, once a blob is identified from the tree of
blobs using average distances, accurate estimation methods could be applied to a
subset of taxa that cover a given blob, that may be computationally feasible on the
subsample. Combining different types of methods to estimate different features of the
networks (such as the global tree of blobs and small subnetworks) may lead to efficient
strategies for accurate and computationally efficient network estimation methods.

Beyond the topology, we prove that only one composite parameter can be identified
from average distances, out of the lengths of all the parent edges and the child edge
incident to a hybrid node. Thismeans that average distances lose extra “degrees of free-
dom” compared to information from displayed trees, for example, because “sliding” a
reticulation along two parent edges affects edge lengths in displayed trees (Pardi and
Scornavacca 2015) and affects distance sets (Bordewich and Tokac 2016), but does not
affect average distances. We show that the “zipped up” version of a network, in which
all hybrid edges have length 0, does not depend on the order in which reticulations
are zipped up. Prior work has already constrained hybrid edges to have length 0, but
arguing that this assumption is biologically motivated (Willson 2013). The zipped up
network can be thought of as a canonical version to be inferred by estimation meth-
ods. Such methods will need to communicate to users that hybrid edge lengths are not
assumed to be 0 —because many biological scenarios can lead to positive lengths on
hybrid edges, but are instead constrained to be 0 (or solely influenced by a prior dis-
tribution) because they lack identifiability from average distances. Future work could
consider interactive visualizations that allow users to zip and slide each reticulation, to
explore the full equivalence class of networks represented by their zipped-up version.

Finally, we study level-1 networks, in which distinct cycles don’t share nodes and
each blob is a single cycle. The topology of level-1 networks has been shown to be
identifiable (up to some aspects of small cycles) from quartet concordance factors
(Baños 2019), logdet distances (Allman et al. 2022) or some Markov models (Gross
et al. 2020). We show here that, if internal tree edges have positive lengths (which can
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be achieved by creating potential polytomies), level-1 networks are identifiable from
average distances, except for local features around small cycles. Namely, neither the
direction of hybrid edges within 4-cycles, nor the parameters (length and inheritance)
of edges in and adjacent to 4-cycles are identifiable. We introduce the “mixed repre-
sentation” of a level-1 network in which 4-cycles are represented by split subgraphs,
whose parallel edges are split edges, with identical edge lengths and no inheritance
values. Thesemixed networks formalize the class of network topologies used in Baños
(2019) and Allman et al. (2019, 2022). We show that the mixed representation of a
level-1 network is identifiable from average distances, including its edge parameters.
Here again, future work on interactive visualizations could let users re-assign a hybrid
node within a 4-cycle, to help explore the class of phylogenetic networks with a given
mixed representation.

We conjecture that the tree of blobs is identifiable from many other data types,
such as distance sets (multiple distances for each pair of taxa), the logdet distance and
other distances. It would be interesting to characterize the general properties that a
distance function needs to satisfy, for the distance split tree derived from this distance
to identify a relevant refinement of the network’s tree of blobs. Given the complexity
of inferring phylogenetic networks, we hope that our study of global and local features
of the network will spur the development of new divide-and-conquer approaches.

Notations, main results and implications are presented in Sect. 2. The proofs and
more formal definitions are presented in Sect. 3 for non-identifiable features, Sect. 4
for the identifiability of the tree of blobs, Sect. 5 for the study of sunlets, and Sect. 6
for level-1 networks. More technical proofs are in the “Appendix”.

2 Notation andmain results

2.1 Phylogenetic networks

We use standard definitions for graphs and phylogenetic networks as in Steel (2016),
with slight modifications, and notations mostly following Baños (2019).

Definition 1 (rooted network) A topological rooted phylogenetic network (“rooted
network” for short) on taxon set X is a tuple (N+, f ). N+ is a rooted directed acyclic
graph with vertices V = {r} � VL � VH � VT and f : X → VL a labelling function,
where

• r = ρ(N+) is the root, the unique vertex in N+ with in-degree 0;
• VL are the leaves (or “tips”), the vertices with out-degree 0. We also require that
leaves all have in-degree 1;

• VT are the tree nodes, the vertices with in-degree 1 that are not leaves;
• VH are the hybrid nodes, the vertices with in-degree larger than 1;
• f is a bijection between X and VL .

An edge (a, b) is a tree edge if its child b is a tree node or a leaf node, and a hybrid
edge otherwise. We denote the set of tree edges by ET , and the set of hybrid edges by
EH . We will also write ab for the edge (a, b) when no confusion is likely. A polytomy
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Fig. 1 Example rooted network
N+ on X = {a, b, c, d, e}; LSA
network N+

X ; semidirected

network N−, subnetwork N−
Y

on Y = {a, b, c, e}; network Ñ+
obtained by rerooting N− (on
one of the hybrid edges); and a
display of N− illustrating the
modification of edge lengths to
zip-up N−. Hybrid edges are in
blue with arrows. LSA(X) is
shown as a large (orange) dot

is a non-root node of degree 4 or higher, or the root r if r is of degree 3 or higher. An
internal edge is an edge that is not incident to a leaf. A partner edge of a hybrid edge
e is a hybrid edge ẽ �= e having the same child as e.

Definition 1 differs from Steel (2016) in that we allow for degree-2 nodes in a network,
and also require the leaves to have in-degree exactly 1. The reason for this requirement
is technical: when a leaf is incident to a pendant edge, it forms a standalone “blob”,
which is defined later. When no confusion is likely, we refer to the rooted network
(N+, f ) as N+. Note that parallel edges are allowed.

For two nodes a, b in a rooted network N+, we write a ≤ b and say that a is above
b if there is a directed path from a to b. We write a < b if a ≤ b and a �= b. For a
set of nodes W in a rooted network N+, let D be the set of nodes that lie on all paths
from the root to the elements of W . The greatest element of D (i.e. the node s ∈ D
such that s ≥ t for all t ∈ D) is called the lowest stable ancestor of W , or LSA(W )

(Steel 2016, p. 263).
As in the casewith phylogenetic trees, we can unroot a rooted phylogenetic network

to obtain a semidirected phylogenetic network, or “semidirected network” for short
(see Fig. 1).

Definition 2 (semidirected network) A semidirected graph G− = (V , E) is a tuple
where V is the set of nodes, and E = ED � EU with a set ED of directed edges (also
referred to as hybrid edges) and a set EU of undirected edges (also referred to as tree
edges). ED consists of ordered pairs (a, b) where a, b ∈ V . In contrast, EU consists
of unordered pairs {a, b}, such that if {a, b} ∈ EU , then (a, b) /∈ ED , i.e. an edge
cannot be both directed and undirected.

Let (N+, f ) be a rooted network on X . The topological semidirected phylogenetic
network induced from (N+, f ) is a tuple (N−, f ), where N− is the semidirected
graph obtained by:

1. Removing all the edges and nodes above LSA(X);
2. Undirecting all tree edges e ∈ ET , but keeping the direction of hybrid edges;
3. Suppressing s = LSA(X) if it has degree 2: if s is incident to two tree edges, then

remove s and replace the two edges with a single undirected edge; if s is incident
to one tree edge and one hybrid edge, then remove s, and replace the two edges
by a directed edge with the same direction as the original hybrid edge. [Note that
s may not be incident to two hybrid edges if it has degree 2 by Lemma 1 in Baños
(2019)].
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For a semidirected graph M− with vertex set V and labelling function g : X → V ,
(M−, g) is a topological semidirected phylogenetic network if it is the semidirected
network induced from some rooted network.

Remark An alternate definition may consider skipping step 1, that is, retain nodes
and edges above the lowest stable ancestor, for a more general class of semi-directed
networks. We consider step 1 because the subgraph above the LSA is not identifiable
from pairwise distances. Other authors make assumptions that are similar to perform-
ing step 1, such as assuming the network is “proper” [every cut-edge and cut-vertex
induces a non-trivial split of X (Francis and Moulton 2018; Fischer et al. 2021), or
“recoverable”, i.e. LSA(N ) = ρ(N ) (Huber et al. 2014)]

For a semidirected network N− induced from N+, the sets VL , VH and VT are
still well defined: VL(N−) = VL(N+) is the set of nodes with degree 1, thanks to
our requirement that leaves must be of degree 1 in a rooted network, and because a
root of degree-1 would be above the LSA(X) in the rooted network. Hybrid nodes
VH (N−) = VH (N+) remain well-defined in a semidirected network, because hybrid
edges are directed and point to hybrid nodes. VT (N−) is the set of all the other nodes,
and may include the original root. The notion of child (node or edge) is also well
defined for hybrid nodes in semidirected networks. Indeed, the child edges of a hybrid
node are all the incident tree edges and outgoing hybrid edges. Consequently, the
notion of tree-child network (Steel 2016) also carries over.

For a rooted network N+ on X , the LSA network N+
X of N is the rooted network

obtained from N+ by removing everything aboveLSA(X) in N (Baños 2019). If N has
the property that ρ(N ) = LSA(X), then we call N an LSA network. One immediate
consequence of these definitions is that the semidirected network induced from N+
and N+

X are the same. Furthermore, every semidirected network can be induced from
an LSA network.

The unrooted graph U (N ) induced from a directed or semidirected graph N is
the undirected graph obtained from N by undirecting all edges in N . Because rooted
networks areDAGs, there cannot be directed cycles in rooted or semidirected networks.
A cycle in a rooted or semidirected network N is defined to be a subgraph C of N ,
such that U (C) is a cycle.

One may also consider rerooting a semidirected network N−: either at a node or on
an edge (Gambette et al. 2012). Specifically, rerooting at node s refers to designating
a node s in N− as root and directing all undirected (tree) edges away from s, if this
leads to a valid rooted network. Rerooting on edge uv refers to adding a new node s,
replacing uv by two edges us and sv, and finally rerooting at node s. It follows from
Definition 2 for semidirected network N− that there exists either a node u or an edge
e such that rerooting at u or rerooting on e gives an LSA network N which induces
N−: we can reroot at LSA(X) if it is not suppressed, or otherwise reroot at the edge e
where LSA(X) is suppressed. Note that while there is always a rerooting of N− that
gives a rooted LSA network, not all rerootings give an LSA network.

Because this work focuses on semidirected networks, in the later sections for
notational convenience we will usually denote a semidirected network without the
superscript, i.e. N instead of N−, and use N+ for an LSA network that induces N ,
which is obtained from rerooting at a node or on an edge.
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A rooted network is binary if its root has degree 2 and all the other nodes, except
for leaves, have degree 3. A semidirected network is binary if all its nodes, except for
leaves, have degree 3. The semidirected network induced by a binary rooted network
N+ is binary. On topological phylogenetic networks, we can further assign edge
lengths and hybridization parameters, also called inheritance probabilities, to obtain
metric phylogenetic networks.

Definition 3 (metric) A metric on a rooted or semidirected network N is a pair of
functions (�, γ ), with � : E → R≥0 assigning lengths to edges, and γ : EH → (0, 1)
assigning hybridization parameters to hybrid edges. The hybridization parameter γ (e)
for a hybrid edge e represents the proportion of genetic material that the child inherits
through the edge. As a result, we require that for a hybrid node v,

∑
e∈EH (v) γ (e) = 1,

where EH (v) denotes the set of incoming hybrid edges for v. We define γ (e) =
1 for any tree edge e, to extend the function γ : E → [0, 1] to all edges of N .
A rooted/semidirected network with a metric is called a metric rooted/semidirected
network.

In a metric semidirected network, when a node is suppressed (see step 3 in Def-
inition 2), the length of the new edge is the sum of the original two edges. The
hybridization parameter is unchanged for hybrid edges.

Two metric and/or semidirected networks are isomorphic if the (semi)directed
graphs are isomorphic with an isomorphism that preserves the labelling and themetric.
We regard isomorphic networks as identical, as we only identify networks and their
properties up to isomorphism.

Recall that a graph is 2-edge-connected if the removal of one edge does not dis-
connect the graph. A 2-edge-connected component is a maximal 2-edge-connected
subgraph.

Definition 4 (blob, level, tree of blobs) A blob B in a rooted or semidirected network
(N , f ) is a subgraph of N such thatU (B) is a 2-edge-connected component ofU (N ).
A blob is trivial if it has a single node. The edge-level (or simply level) of a blob
B is the number of edges in B one needs to remove in order to obtain a tree (i.e.
|EB | − |VB | + 1, where EB, VB are the edge set and node set of the blob B). The
level of a network is the maximum level of all its blobs. The tree of blobs BT(N ) of
a network N is an undirected graph where each vertex is a blob of N , and where two
vertices B1 and B2 are adjacent if there is an edge b1b2 or b2b1 in N such that b1 ∈ B1
and b2 ∈ B2. The degree of a blob is the degree of the corresponding vertex in the tree
of blobs.

Remark If N+ is an LSA network and N− is induced from it, then N+ and N− have
the same blobs and the same tree of blobs (except for the blob containing the root node
of N+, which may change or disappear if the root node is suppressed), because they
have the same undirected graphs.

Our definition of level follows (Gambette et al. 2012) and is nonstandard in using
2-edge-connected components rather than biconnected components. A graph is bicon-
nected if the removal of one vertex does not disconnect the graph. A biconnected
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Fig. 2 Example networks and their levels. Top left: network N with 1 blob but 2 biconnected components.
Hybrid edges are shown in blue with arrows. Top right: one possible resolution of N , with identical average
distances if the added edge (orange, cut edge) is assigned length 0. It has 2 blobs and is of level 1. Bottom:
the other 2 resolutions of N , with identical average distances if the added edge (orange) is assigned length
0. Both have 1 blob and are of level 2

component of a graph, or block, is a maximal biconnected subgraph. Any block of 3
or more nodes is 2-edge-connected, so each non-trivial block maps to a single blob
and each blob may be formed by one or more block(s). Therefore, the traditional level
based on biconnected components is lower than or equal to the level used here. How-
ever, the two definitions agree on binary networks. For binary networks, the level of
a blob B is the same as the number of hybrid nodes in B (Gambette et al. 2012). If
hybrid nodes may have more than two parents, the level of a blob could be greater
than its number of hybrid nodes.

The “tree of blobs” was first defined by Gusfield et al. (2007), using blocks and
after modifying the network with edges to separate overlapping blocks. It is easy to
verify that non-trivial blocks and blobs are identical after these modifications. Despite
the similar name and construction, the tree of blobs is different from the “blob tree”
defined in Murakami et al. (2019).

Unlike blocks, blobs partition the nodes in N and provide a convenient mapping of
edges from the tree of blobs to the network, as we will show later. Figure 2 (left) shows
a non-binary network with one blob of level 2, but with two level-1 blocks. There are
3 ways to refine this network into a binary network, one of which is of level 1 with 2
blobs (Fig. 2 right), and the other two are of level 2 with a single non-trivial blob (and
block). Figure 3 shows a level-1 network with 3 blobs (left) and its tree of blobs (top
right). In Fig. 2, note that both networks on the top row have the same block-cut tree
(derived from blocks and cut nodes, see Diestel 2017) after suppressing its degree-2
nodes, and both networks at the bottom have a block-cut tree reduced to a star, after
suppressing degree-2 nodes.

2.2 Average distances

Definition 5 (up–down path, rooted network, from Bordewich et al. (2018a)) In a
rooted network N+, an up–down path between two nodes u and v is a sequence of
distinct nodes u = u1u2 . . . un = v with a special node s = ui such that ui . . . u2u1
and ui . . . un−1un are directed paths in N+.
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Fig. 3 Example tree of blobs. Left: level-1 network N , with leaf labels omitted to avoid clutter. Hybrid
edges are shown in blue; cut edges in black. The two 5-cycles are identifiable provided that their tree (green)
edges have positive length (e.g. Corollary 13). Top right: tree of blobs T for N . One of its degree-3 nodes
corresponds to a degree-3 blob in N , undetectable from average distances. Bottom right: distance split tree
reconstructed from average distances. It is a refinement of T (and is N ’s block-cut tree after suppressing
degree-2 nodes). The extra edges (orange) correspond to polytomies in N

If u1u2 . . . un is an up–down path, we may write u ← s → v or u ↔ v as a
shorthand. Particularly, a directed path between u and v is also an up–down path, and
we will simply write u → v or u ← v, depending on the direction of the path. Note
that the up–down paths u1u2 . . . un and unun−1 . . . u1 are considered to be the same.
Formally, we can define up–down paths as the equivalence classes of these sequence
of nodes, with reversal of the sequence being an equivalence relation.

It is not obvious whether the notion of up–down paths is still valid in semidirected
networks: given an up–down path p = u0u1 . . . un in a rooted network N+, is it
possible to tell if p is an up–down path by looking at the induced semidirected network
N− alone? It turns out the answer is yes: the notion of an up–down path only has to
do with the semidirected structure of a network. An alternative definition that also
applies to the semidirected networks is the following:

Definition 6 (up–down path, semidirected network) Let N be a rooted or semidirected
network. An up–down path is a path of distinct nodes with no v-structure. More
formally, u0u1 . . . un is an up–down path if the ui ’s are distinct; for each i , either
ui ui+1 or ui+1ui is an edge in N (for a tree edge uv in semidirected network N , both
uv and vu are valid edges in N ); and there is no segment ui−1ui ui+1 such that ui is
a hybrid node and ui−1ui and ui+1ui are hybrid (directed) edges in N . An up–down
path with no hybrid nodes is a tree path.

This following equivalence is proved in “Appendix A.1”.

Proposition 1 Let N+ be a rooted network. Then p is an up–down path in N+ accord-
ing to Definition 5 if and only if it is an up–down path according to Definition 6.

Given a metric (�, γ ) on a network N and a up–down path p, we can define the path
length �(p) = ∑

e∈p �(e) where e ranges over the edges in path p. We also define the
path probability γ (p) = ∏

e∈p γ (e) as the product of all the hybridization parameters
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of the component edges. Here we use the convention of γ (e) = 1 when e is a tree
edge. γ (p) is the probability of path p being present in a random tree extracted from
N , where tree “extraction” proceeds as follows: at a hybrid node h, we pick one of h’s
parent hybrid edge according to the edges’ hybridization parameters, and delete all
other parent edges of h. If we do this independently for all hybrid nodes, then the result
is a random tree T with the same nodes as N . In T , there is a unique path between u
and v, which equals p with probability exactly γ (p).

In the special case that there is a tree path p between nodes u and v in N , then we
immediately have γ (p) = 1. In fact, p must be the unique up–down path between
u, v: because p does not contain any hybrid nodes, p is the unique path between u, v

on any displayed tree T .

Definition 7 (average distance) Let N be a rooted or semidirected network. The aver-
age distance between two nodes u and v in N is defined as

d(u, v) =
∑

p∈Puv

γ (p)�(p)

where Puv denotes the set of up–down paths between u and v. Equivalently, this is the
expected distance between u and v on a random tree T extracted from N (described
above). As a result, d satisfies the triangle inequality. We may write dN to emphasize
the dependence on N .

The same definition was used for rooted networks by Willson (2012). By consid-
ering our extended definition of up–down paths, our definition clarifies that average
distances are well-defined on semidirected networks.

Remark In a network N , contracting a tree edge of length 0 creates a network Ñ that
has a polytomy, but whose up–down paths are in bijection with those of N and such
that N and Ñ have identical average distances. Consequently, a polytomy at a tree
node of degree 4 has 3 distinct resolutions with identical average distances. This is
not true for hybrid edges of length 0: hybrid edges may not be contracted without
modifying the set of up–down paths. Moreover, if there is a polytomy at a hybrid node
with 2 incoming hybrid edges and 2 other (outgoing) edges (Fig. 4 left) then there is
a single resolution of this polytomy with identical set of up–down paths and identical
pairwise distances: with the addition of a tree edge (Fig. 4 center). The resolutions
shown in Fig. 4 (right) are not equivalent: there exist up–down paths a → c, a → d,
b → c and b → d in the network on the left, but each network on the right is missing
one of these paths.

Definition 8 (subnetwork, from Baños (2019)) Let N− be a semidirected network on
X , and Y ⊂ X . Then the induced network N−

Y on Y is obtained by taking the union
of all up–down paths in N− between pairs of tips in Y .

If N+ is a rooted version of N−, then it is possible to reroot N−
Y at LSA(Y ) in

N+, which belongs in N−
Y as shown in Baños (2019). N−

Y naturally inherits the metric
from N−: the distance between any pair of taxa x, y ∈ Y is the same in N−

Y and in
N− because the up–down paths between x, y are preserved, together with the edge
lengths and hybridization parameters on these paths.
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Fig. 4 A polytomy below a hybrid node (left) can be resolved by adding a new edge of length 0. The only
resolution with identical up–down path lengths and average distances is by adding a new tree edge (middle).
Contracting the horizontal hybrid edge in any network on the right to match the topology on the left would
affect up–down paths and average distances

2.3 Main results

Since distances are defined on up–down paths, and there is a bijection between the up–
down paths in a rooted network and its induced semidirected network that preserves
the path lengths and probabilities, it follows from Proposition 1 that average distances
are independent of the root location on a rooted network. So the root, or even the LSA,
is not identifiable from average distances:

Proposition 2 If rooted networks N+
1 and N+

2 induce the same semidirected network
N−, then pairwise distances on N+

1 and N+
2 are identical.

What may be identifiable from average distances, at best, is the semidirected net-
work N− induced from N+, unless further assumptions are made.

Several papers have considered average distances on networks before, with differ-
ent assumptions on the networks. Willson (2013) worked with binary networks and
assumed the knowledge of the root, that is, the root was one of the labelled leaves and
pairwise distance data was given between the root and the other leaves. Francis and
Steel (2015) also worked with binary networks and assumed that hybrid edges have
length 0, along with other assumptions.

The remainder of the work focuses on the following problem: Given the average
distances between tips, what can we identify about the semidirected network: what
topological structures, and what continuous parameters?

2.3.1 Non-identifiable features

We first cover negative results, on features that are not identifiable from average dis-
tances. The simplest such feature is the “hybrid zipper” (Fig. 5). We will show that a
network is not distinguishable from its zipped-up version defined below.

Definition 9 (zipped-up network) In a network, a hybrid node is zipped up if all its
parent edges have length 0. A network is zipped up if all its hybrid nodes are zipped
up. If a hybrid node h is not zipped up in a network N , the version of N zipped up at
h is the network obtained by modifying the edges adjacent to h as follows (we refer
to this operation as a zipping-up):
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Fig. 5 Zipping up: network transformation of branch lengths, setting hybrid edge lengths to 0. The new
length lh is given in (1). In case of a polytomy below the hybrid node (right), a new tree edge of length 0
needs to be added before zipping up

1. If h has k ≥ 2 children c1, . . . , ck and is not zipped up, add a tree node w and
insert a tree edge hw of length 0 as unique child edge of h, then delete each edge
hci and replace by wci with identical length (see Fig. 5). If h has a unique child,
then let w denote this child node.

2. Set the length of the unique child edge hw of h to

lh = �(hw) +
∑

u parent ofh

γ (uh)�(uh) (1)

then set the length of all its parent hybrid edges to 0.

The zipped-up version of a network N is the network obtained by zipping-up N at all
its unzipped hybrid nodes repeatedly.

In “Appendix A.2”, we prove that the zipped-up version is unique. Note that a hybrid
node may need to be zipped multiple times before the network is fully zipped up. In
network N− from Fig. 1 (bottom right) for example, h2 may need to be zipped-up
twice if it is considered before h1.

Proposition 3 (hybrid zip-up) Let N be a semidirected network, h be a hybrid node
in N with parents u1, . . . , un. If h has more than one child, then step 1 in Definition 9
does not affect average distances. If h has one child w, then the average distances
between the tips depend on �(u1h), . . . , �(unh), �(hw) only through lh given by (1).
Therefore, zipping up N at h does not change average distances.

The proof is in Sect. 3.1. This unidentifiability problemwas mentioned in Pardi and
Scornavacca (2015),where it is referred to as “unzipping”, aswell as inWillson (2013).
It is important to note that because we use average distances instead of displayed trees
in Pardi and Scornavacca (2015), we have an extra degree of freedom:As in unzipping,
we can subtract an equal amount ε in lengths from both uh and vh, and add ε to hw.
This leaves the average distances unchanged. What is new with average distances is
that we can also “slide” the hybrid node along the v-structure, that is: subtract (1−γ )ε

from uh and add γ ε to vh. This has no impact on the average distances either (Fig. 6).
Because of the extra degree of freedom, instead of “fully unzipping” each reticula-

tion as in Pardi and Scornavacca (2015) and working with networks where outgoing
edges from hybrid nodes have length 0, we shall restrict our attention to zipped-up
networks, which are networks where all the hybrid edges have length 0. This require-
ment is also present in Willson (2012, 2013), but the non-identifiability underlying
this requirement was not clarified. The requirement was motivated by the fact that
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Fig. 6 Any blob of degree 2
(left) or 3 (right) can be shrunk
while preserving average
distances

hybridizing populationsmust be contemporarywith each other. However, hybrid edges
of positive length appear naturally when hybridizations involve “ghost” populations
that went extinct or with no sampled descendants, or when two populations fuse, such
as if their habitat becomes less fragmented (Degnan 2018).

Proposition 4 (shrinking blobs of degree 2 or 3) Let B be a blob of degree 2 or 3 in a
semidirected network N. Then N ′, a network obtained by shrinking B (i.e. identifying
the nodes in ∂ B and deleting the other nodes in B) and modifying the lengths of the
cut edges adjacent to B, induces the same pairwise distances (Fig. 6).

Section 3.2 presents a more general Lemma 15 to swap a subgraph with another
within a semidirected networkwhile keeping the average distances, fromwhich Propo-
sition 4 follows as a corollary. Proposition 4 is used in many proofs when considering
subnetworks. If a blob reduces to a degree-2 or degree-3 blob after subsampling leaves,
then it can be ignored, up to the lengths assigned to the edges replacing the blob. A
consequence of Proposition 4 is that we require networks to not have degree-2 or
degree-3 blobs in many of our results. Equivalently, this requirement can be inter-
preted as considering networks after these blobs have been shrunk and edge lengths
modified appropriately.

Parallel edges may form a degree-2 blob. Even if they are part of a larger blob, they
can be swapped with a single tree edge:

Proposition 5 (merging parallel edges) In a network N, let h be a hybrid node such
that all its parent edges e1, . . . , en are incident to the same nodes, v and h. Consider
the network N ′ obtained by replacing e1, . . . , en by a single tree edge e = (vh) of
length

∑
i γ (ei )�(ei ). Then dN = dN ′ .

This proposition, proved in Sect. 3.2, gives a rationale for a traditional assumption
that rooted phylogenetic networks do not have parallel edges (Steel 2016), despite
the biological realism of parallel edges. First, parallel edges can arise from extinction
or unsampled taxa: hybridization between distant species would appear as a pair of
parallel edges if all the descendants of the two parental species are extinct or not
sampled. Second, a species may split into 2 populations and then merge back into a
single population due to evolving geographic barriers, such as glaciations. Therefore,
we allowed for parallel edges in our network definition. Also, parallel edges may be
identifiable from models and data other than average distances (Degnan 2018).

Similarly, 3-cycles are not identifiable: any 3-cycle (which may be part of a larger
blob) can be shrunk to a single node with the loss of one reticulation, without affecting
average distances (Fig. 7).
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Fig. 7 Any 3-cycle can be swappedwhile preserving average distances. aA3-cyclewith a single reticulation
(left) can be swapped by a subgraph without reticulation (right). b A 3-cycle with 2 reticulations (left) can
be swapped by a single reticulation (right). See Proposition 6 for edge length adjustments. c A ladder of
reticulations between sister lineages (left) can be eliminated (right) by repeated swaps

Proposition 6 Let N be a semidirected network on X, h a hybrid node in N with
exactly two parents u and v. Let γ1 = γ (uh) and γ2 = γ (vh) = 1 − γ1.

1. If uv is a tree edge (Fig. 7a), then let N ′ be the semidirected graph obtained by
shrinking the 3-cycle u, v, h as follows: remove edges uh, vh, and uv; add tree
node w; add tree edges uw, vw, and wh with lengths

�(uw) = γ2�(uv), �(vw) = γ1�(uv), �(wh) = γ1�(uh) + γ2�(vh).

2. If uv is a hybrid edge (Fig. 7b) and if v has exactly two parents u and x that are
not adjacent, then let γ3 = γ (uv) and let N ′ be the semidirected graph obtained
by shrinking the 3-cycle as follows: remove uv; make the other parent edge of v a
tree edge; and set

γ (uh) = γ1 + γ2γ3 ; γ (vh) = γ2(1 − γ3)

�(uh) = (
γ2γ3(�(uv) + �(vh)) + γ1�(uh)

)
/(γ2γ3 + γ1) .

Then N ′ is a semidirected network on X with one fewer reticulation than N, and
N ′ induces the same average distances as N on X. We may also suppress the degree-2
nodes in N ′, which does not affect pairwise distances.

Proposition 6 also follows from the swap lemma and is proved in Sect. 3.2. Note
that in case 2, if u and x are adjacent, then we may first shrink the 3-cycle xvu before
proceeding and shrinking uvh, possibly recursively (Fig. 7c). The lack of identifiability
of 3-cycles and blobs of degree 2 or 3 explains the special cases found by Francis and
Steel (2015) when characterizing networks whose average distances fit on a tree.
For some classes, these networks must be trees except for some local non-tree-like
structures. Namely, the class of “primitive 1-hybridization” networks was defined to
allow for a short cycle near the root. When the root is suppressed, this cycle becomes
a 3-cycle. Also, distances from “HGT networks” may fit a tree despite a series of
gene exchange between sister species (Fig. 7c), which form a degree-3 blob. Our
general characterization explains why these local structures are invisible from average
distances, found by Francis and Steel (2015).

The hybrid zippers and 3-cycles are not the end of identifiability problems. Here we
give an example of a level-2 network that is not identifiable (with generic parameters),
showing that in general, it is not possible to identify the topology of a network with
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Fig. 8 Semidirected networks with identical average distances on a parameter set of positive Lebesgue
measure. The network on the right is tree-child

average distances, even when requiring no degree-2 or 3 blobs and zipped-up reticula-
tions. As a result, with average distances, we can only aim to identify networks given
restrictions, or identify only certain features of networks.

Theorem 7 Let k ≥ 2. Consider the space S of zipped-up binary semidirected net-
works of level at most k on n ≥ 4 taxa, with no 2- or 3-cycles. Networks in S are
not generically identifiable from average pairwise distances, in the sense that there
exists network topologies N1 �= N2 in S and sets of parameters �1 and �2 with pos-
itive Lebesgue measure satisfying the following: for any (�1, γ1) ∈ �1, there exists
(�2, γ2) ∈ �2 such that the average distances defined by (N1, �1, γ1) and (N2, �2, γ2)

are identical.

The proof is presented in Sect. 5.1. In short, the main idea is to find examples
on 4 taxa, and then embed these examples in larger networks for any n. Figure 8
provides examples of topologies that can serve the role of N1 and N2 in Theorem 7
for n = 4. The network on the left is of level 1, showing that level-2 networks are
not distinguishable from level-1 networks in general. Also, the network on the right
is tree-child, implying that Theorem 7 also holds for the smaller class of tree-child
networks of level at most k (zipped and without any 2- or 3-cycles), thus providing a
stronger statement.

2.3.2 Identifiable features

Now we move on to positive results, i.e. what we can identify of a network from
average distances, subject to certain constraints.

Theorem 8 (identifying the tree of blobs) For a semidirected network N with no
degree-2 blob and no internal cut edge of length 0, a refinement of the tree of blobs
can be constructed from pairwise average distances, and which we call the distance
split tree.

Theorem 8 is proved in Sect. 4. The distance split tree is defined rigorously in Sect. 4,
Definition 12. Its construction is based on average distances alone.

Next, we provide examples showing that the tree of blobs cannot be reconstructed
without further assumptions, and that the restriction of reconstructing a refinement is
necessary. A refinement of tree T is a tree T ′ such that we can obtain T by contracting
edges of T ′.
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Fig. 9 Example of a binary network N of level 2 (left) whose tree of blobs is a star (middle). The distance
split tree T is also a star for generic parameters. But if γ3 = t2/(t1 + t2) and γ7 is small, then T is a strict
refinement of the tree of blobs (right). In this case, N and T have identical average distances

Example 1 Consider the network N in Fig. 9 (left). Let ti and γi denote edge i’s length
and hybridization parameter. N is a binary network of level 2. Its tree of blobs is a star
(Fig. 9 center). Its average distances are equal to those obtained from a tree (Fig. 9
right) for specific parameter values, namely when γ3 = t2/(t1 + t2) and γ7 is small
enough, and the same topology is obtained by the distance split tree from Theorem 8.
In this case, the distance split tree is a strict refinement of the tree of blobs BT(N ),
but is an exact and parsimonious explanation of the distances. We also note that under
generic parameters, the distance split tree is equal to the star tree of blobs (see Sect. 4
for the proofs).

Example 2 Consider the networks N1 and N2 in Fig. 10. N1 is not binary. It has one
blob, made of two biconnected components, and its tree of blobs is a star. N2 is a
binary resolution of N1 with two blobs: one for each block of N1. Since the extra
cut-edge in N2 has length 0, N1 and N2 have the same average distances and the same
distance split tree T (Fig. 10 right). T is a strict refinement of N1’s tree of blobs, but
it is the tree of blobs of N2: it recovers the separate blocks with the extra cut edge. In
this case again, the distance split tree represents a true feature of the network.

These examples and our results on non-binary level-1 networks (below) lead us to
state the following conjecture.

Conjecture 9 (the distance split tree as the tree of blobs of an equivalent network) Let
N be ametric semidirected network on taxon set X , dN its average distances on X , and
let T be the distance split tree reconstructed from dN . Then there exists a semidirected
N ′ of level equal or less than that of N with dN ′ = dN and such that T is the tree of
blobs of N ′.

In Theorem 10 below (proved in Sect. 4), we add assumptions to identify the tree
of blobs exactly. When we limit the network to be of level 1, we characterize the
distance split tree exactly: it is the tree of blobs refined by extra edges to partially
resolve polytomies adjacent to blobs.

Theorem 10 Let N be a level-1 network with internal tree edges of positive length
and with no degree-2 blob. Then the distance split tree of N is the tree of blobs of
N R, where N R is the network obtained as follows. For each non-trivial blob B in N
and each node u in B, let {a1u, . . . , aku} be the set of edges of u that are not in B.
If k ≥ 2, then refine the polytomy at u by creating a new node u′, adding tree edge
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Fig. 10 Left: example of a non-binary level-2 network N1. Middle: N2 is one possible resolution of N1.
N2 is of level 1, with an extra cut edge of length 0 (in orange). Right: tree of blobs T of N2. If, for example,
�(e) = 1 for all edges in N1 and γ (e) = 0.5 for all hybrid edges, then the distance split tree for N1 is T ,
which is a strict refinement of N1’s tree of blobs (a star). Note that the other resolutions of N1 have a star
as their tree of blobs

uu′ of length 0; and disconnecting each ai from u and connecting it to u′. That is, for
each i = 1, . . . , k, remove ai u and create tree edge ai u′.

Remark The assumption that internal tree edges have positive length is a weak require-
ment, because a tree edge of length 0 can be contracted to create a polytomy.

In the proof, we show that N R is indeed a valid semidirected network, with identical
average distances as N . The distance split tree from N is in fact the block-cut tree
of N (see “block-cutpoint trees” (Harary 1971, p. 36)), after suppressing its degree-2
nodes. For example, the network in Fig. 3 (left) has a distance split tree with 2 extra
edges (in orange, bottom right) compared to its tree of blobs (top right). If we further
assume that the network is binary, then N = N R and the distance split tree equals the
tree of blobs:

Corollary 11 For a binary level-1 semidirected network with internal tree edges of
positive length and no degree-2 blob, the tree of blobs can be constructed from average
distances.

In a binary level-1 network, each blob is a cycle and we can isolate a blob by
sampling an appropriate subset of tips. On this subset, the induced subnetwork, after
removing degree-2 blobs, is a “sunlet” (Gross and Long 2018), that is, a semidirected
networkwith a single cycle and a single pendant edge attached to eachnode in the cycle.
In Sect. 5, we tackle the identifiability of sunlets. Some of these results are special
cases of those in Willson (2013) (with a simpler proof strategy). One exception is the
case of 4-sunlets, which is excluded by the assumptions in Willson (2013): In general,
the 4-sunlet and its metric (�, γ ) are not identifiable, but the undirected 4-sunlet is a
structure that can be detected in the tree of blobs.

In Sect. 5, we can characterize all the 4-sunlets (and their parameters) that give rise
to a given average distance matrix. Ideally one would choose a “canonical” 4-sunlet
as the representative of all these distance-equivalent sunlets. However, we did not find
a single sensible choice for such canonical 4-sunlet. Consequently we opt to use a
separate split-network type of representation for these 4-sunlets.

Section 6 introduces mixed networks, in which some parts are semidirected and
4-cycles are undirected. In short, a mixed network encodes the reticulation node and
edges in k-cycles for k ≥ 5, and the unrooted topology in 4-cycles, without identifi-
cation of the exact placement of the hybrid node in a 4-cycle. In Sect. 6, we define
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this representation rigorously and combine results from Sects. 4 and 5 to prove the
following main result.

Theorem 12 (identifiability of mixed network representation for level-1 networks) Let
N1 and N2 be level-1 semidirected networks on X with no 2 or 3-cycles or degree-2
nodes, and with internal tree edges of positive lengths. Let N∗

i be the mixed network
representation of Ni after zipping up its reticulations for i = 1, 2. Then dN1 = dN2

implies that N∗
1 = N∗

2 .

Note that for a network N satisfying the conditions above and its mixed network
representation N∗, N and N∗ have the same unrooted topology, except that polytomies
adjacent to 4-cycles in N may be partially resolved in N∗. If we consider the space of
level-1 networks with no 4-cycles, we obtain the following result as a special case.

Corollary 13 (identifiability of zipped-up version of level-1 networks) Let N1 and N2
be zipped-up level-1 semidirected networks on X with tree edges of positive lengths,
without any 2, 3 or 4-cycles, and without degree-2 nodes. If dN1 = dN2 then N1 = N2.

2.4 Biological relevance

In practice, average distances between pairs of taxa need to be estimated from data.
Allman et al. (2022) studied the identifiability of the network topology using the log-
det distance, for level-1 networks and under a coalescent model. Future work could
study identifiability of the network and its parameters under various models and for
various methods to estimate evolutionary distances, such as the average coalescence
time between pairs of taxa (Liu et al. 2009), average internode distance (Liu and Yu
2011), or the f2 statistic when many genomes are available from each species (Peter
2016).

The most frequent reticulations are expected between incipient species, or sister
species that just split from each other and have yet to achieve reproductive isolation.
Ourwork shows that thesemost frequent reticulations are not identifiable from average
distances. Only the less frequent events between more distant species can be detected
using average distances.

Our work also shows a strong effect of taxon sampling, as observed with real data
(Conover et al. 2019; Karimi et al. 2020). Dense taxon sampling is critical to avoid
blobs of degree 2 or 3. For example, if a hybridization forms a cycle of degree 5 in
a full level-1 network, then it is necessary to sample at least one taxon from across
each of the 5 cut edges adjacent to the cycle, for the reticulation to be identifiable from
average distances. Conversely, it may be useful to reduce taxon sampling strategically.
Reducing the degree of some blobs to be 3 or less in the subnetwork could be a strategy
to obtain amore resolved tree of blobs on the reduced taxon set.When the true network
is of level greater than 1, different taxon subsamplesmay lead to different trees of blobs,
and to the detection of different reticulation events by methods that assume a level-1
network. While this sensitivity to taxon sampling may be disconcerting, subsampling
can decrease the level and bring strength to methods that require low-level networks
like SNaQ (Solís-Lemus and Ané 2016) and NANUQ (Allman et al. 2019).
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Pairwise distances are not unique in causing some features to lack identifiability.
From quartet concordance factors for example, some 3-cycles cannot be identified, and
the hybrid node position is not always identifiable in a 4-cycle (Solís-Lemus et al. 2016;
Baños 2019; Solís-Lemus et al. 2020). Software for network inference should provide
information on the class of equivalent networks with identical optimal likelihood, e.g.
list the multiple ways to place the reticulation in a 4-cycle. Bayesian approaches could
report on sets of networks that cannot be distinguished from thedata, andwhose relative
posterior probabilities are solely influenced by the prior. Interactive visualization tools
could facilitate the exploration of networks with equivalent scores, so practitioners
could avoid interpretations that hinge on a strict subset of these networks. If software
is misleadingly presenting a single network as being optimal without presenting the
whole class of networks with equivalent fit, then undue confidence could be placed on
some interpretation.

3 Proofs related to non-identifiable features

3.1 Hybrid zip-up

To prove Proposition 3, we first need the following definition and proposition.

Definition 10 (displayed tree) Let N be a directed or semidirected network. For hybrid
node h, let EH (h) be its parent hybrid edges. Let T be the graph obtained by keeping
one hybrid edge e ∈ EH (h) and deleting the remaining edges in EH (h), for each
hybrid node h in N . Then T is a tree, and is called a displayed tree. The distribution
on displayed trees generated by N is the distribution obtained by keeping e ∈ EH (h)

with probability γ (e), independently across h.

Note that T is a tree because it is a DAG (considering N as rooted), all the nodes are
still reachable from the root, and all nodes have in-degree at most 1.

Proposition 14 Let N be a (directed or semidirected) network. For two nodes u and
v and tree T , let quv(T ) be the unique path between u and v in T . Then, for a given
up–down path p between u and v in N,

P(quv(T ) = p) = γ (p)

where the probability is taken over a random tree T displayed in N. As a result,

d(u, v) = E�(quv(T ))

where d(u, v) is the distance between u, v, and �(q) is the length of path q.

Proof Since rooting a semidirected network does not change the process of generating
displayed trees, nor up–down paths in the network, it suffices to consider the casewhen
N is a directed network. Let p be an up–down path in N . Let E = {e1, . . . , en} be
the set of hybrid edges in p, and let H = {h1, . . . , hn} where hi is the child of ei . All
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the hi ’s are distinct hybrid nodes because the up–down path p may not go through
partner hybrid edges (no v-structure). It suffices to show that p = quv(T ) if and only
if for each hi ∈ H , ei is kept.

The “only if” part is evident since ei has to be in T for p to be in T . Now consider
a displayed tree S where for all hi ∈ H , ei is kept. Because all of the edges of p are in
S, p is a path between u and v in S; and since S is a tree, p is the unique path between
u and v in S. 
�

Proof of Proposition 3 (hybrid zip-up) If h has more than one child, then step 1 in
Definition 9 does not modify the set of up–down paths, other than inserting hw to the
paths containing ui h, hc j for some parent ui and child c j of h. Since the length of hw

is set to 0, step 1 does not change the length of up–down paths, nor average distances.
If h has a single child w, we first assume that h is the only hybrid node in N . Let
ai = �(ui h) and γi = γ (ui h) for i = 1, . . . , n and let t = �(hw). Let x, y be two tips
of N . There are two cases:

1. If some up–downpath p between x, y does not contain h, then p must be the unique
up–down path between x and y. This is because p is a path on the n displayed trees
of N . Consequently the distance between x and y does not depend on a1, . . . , an

or t , and the statement is vacuously true.
2. If all up–down paths between x, y contain h, then there are exactly n up–down

paths qi , with qi containing the edge ui h. In this case the average distance is

d(x, y) =
n∑

i=1

γi (ai + li + t) = lh +
n∑

i=1

γi li ,

where li = ∑
e∈qi ,e/∈{u1h,...,unh,hw} �(e) does not depend on (a1, . . . , an, t).

For the general case, we use Proposition 14. Let T be a random displayed tree in N
and Dxy = Dxy(T ) be the distance between x and y in T (a random quantity). Let R
be the set of hybrid edges kept in T at all hybrid nodes except for h. By conditioning
on R, we reduce the problem to a network with a single reticulation: E[Dxy | R] is the
average distance on a (random) network with a single reticulation at h. By the above
argument, E[Dxy | R] only depend on (a1, . . . , an, t) through lh . Taking expectation
again gives the result. 
�

3.2 Swap lemma and related results

In this section we present a general swap lemma and apply it to prove the non-
identifiability of specific features. We first introduce some necessary definitions and
notations.

Let A be a subgraph of a semidirected network N on X . A is hybrid closed if for any
hybrid edge in A, all of its partner edges are in A. We use ∂ A to denote the boundary
of A in N , defined as the set of nodes in A that are either leaves, or are incident to an
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edge not in A. For two nodes a, b ∈ ∂ A, we define

γA(a, b) =
∑

p: a↔b in A

γ (p),

where p ranges over the set of up–down paths from a to b that lie entirely in A. Then
we define the conditional distance in A as

d(a, b | A) =

⎧
⎪⎨

⎪⎩

1

γA(a, b)

∑

p: a↔b in A

γ (p)�(p) if γA(a, b) > 0

0 if γA(a, b) = 0

where in the sum p again ranges over up–down paths between a, b that lie in A. The
following lemma says that average distances are unchanged if we swap A with another
subgraph of identical boundary, provided that γA and d(., . | A) are preserved on ∂ A.

Lemma 15 (subgraph swap) Let N1 and N2 be metric semidirected networks on the
same leaf set X, with node sets V (Ni ) = VAi �VB and edge set E(Ni ) = E Ai � EB for
i = 1, 2, such that A1 and A2 are hybrid-closed subgraphs with identical boundary
in N1 and N2 respectively: ∂ A1 = ∂ A2, denoted as ∂ A. Here E Ai and VAi denote
the set of edges and nodes, respectively, in subgraph Ai . If γA1(a, b) = γA2(a, b) and
dN1(a, b | A1) = dN2(a, b | A2) for every a, b ∈ ∂ A, then dN1 = dN2 on X.

Proof Given an up–down path p and two nodes a, b on the path, we write a
p←→ b

for the segment of p between a, b, which is an up–down path as well.
Wefirst prove the lemmawhen there are no hybrid edges in EB . For nowwe consider

the distances in N1. To simplify notations, we shall write N = N1 and A = A1. Let
x, y ∈ X be two tips, and p an up–down path between them. Then p can be subdivided
into segments that consists of consecutive edges in EB , and segments of consecutive
edges in E A, the set of edges in A. Traversing p from x to y, let the j th segment in E A

be a j
p←→ a′

j , where a j , a′
j ∈ ∂ A. Note a1 = x and a′

k = y are possible for some k,

if x or y is in A. Given a 2k-tuple a = (a1, a′
1, . . . , ak, a′

k) ∈ ∂ A2k , let Pk(a) denote
the set of up–down paths p between x and y with exactly k segments in A, and such

that segment j enters and exits A at a j , a′
j : a j

p←→ a′
j .

The set of up–down paths between x and y can then be written as

⊔

k≥0

⊔

a∈∂ A2k

Pk(a).

Consequently, we have

d(x, y) =
∑

k≥0

∑

a∈∂ A2k

∑

p∈Pk (a)

γ (p)�(p) (2)

For a given a ∈ ∂ A2k and p ∈ Pk(a), consider the segments in EB , which are the

segments a′
j

p←→ a j+1, j = 1, . . . , k − 1 and possibly also x
p←→ a1 or a′

k
p←→ y
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when x or y is in VB . These segments are uniquely determined by k and a because
we assumed no hybrid edges in EB . There are no undirected cycles in the subgraph
formed by nodes VB ∪ ∂ A and edges EB , so for a given a′

j , a j+1 ∈ ∂ A, there is either
no path or a single (tree) path a′

j ↔ a j+1 in EB . Let EB(k, a) be the set of edges
e ∈ EB such that e ∈ p for any (and every) p ∈ Pk(a).

The segments of an up–down pathmust be up–down paths. Conversely, the concate-
nation of contiguous up–down paths alternating from E A and EB is still an up–down
path, because EB contains tree edges only. Therefore, if EB(k, a) is non-empty or
not needed (k = 1 and x, y ∈ ∂ A), then Pk(a) is non-empty and there is a bijection
between Pk(a) and

∏k
j=1 P1((a j , a′

j )): each p ∈ Pk(a) is mapped to the segments in
E A, with interleaving segments EB(k, a). Consequently, if Pk(a) is not empty then
we have

∑

p∈Pk (a)

γ (p) =
∑

p∈Pk (a)

k∏

i=1

γ (ai
p←→ a′

i ) =
∑

p1∈P(a1,a′
1)

· · ·
∑

pk∈P(ak ,a′
k )

k∏

i=1

γ (pi )

=
k∏

i=1

γA(ai , a′
i ).

For the first summation in (2), we may then write

∑

p∈Pk (a)

γ (p)�(p) =
∑

p∈Pk (a)

(
k∏

i=1

γ (ai
p←→ a′

i )

) ⎛

⎝
∑

e∈EB (k,a)

�(e) +
k∑

i=1

�(ai
p←→ a′

i )

⎞

⎠

=
k∏

i=1

γA(ai , a′
i )

⎛

⎝
∑

e∈EB (k,a)

�(e)

⎞

⎠

+
∑

p∈Pk (a)

k∑

i=1

⎛

⎝
∏

j �=i

γ (a j
p←→ a′

j )

⎞

⎠ γ (ai
p←→ a′

i )�(ai
p←→ a′

i )

=
k∏

i=1

γA(ai , a′
i )

⎛

⎝
∑

e∈EB (k,a)

�(e)

⎞

⎠ +
k∑

i=1

d(ai , a′
i | A)

k∏

i=1

γA(ai , a′
i )

=
k∏

i=1

γA(ai , a′
i )

⎛

⎝
∑

e∈EB (k,a)

�(e) +
k∑

i=1

d(ai , a′
i | A)

⎞

⎠ . (3)

From (3), it follows that as long as d(·, · | A) and γA remain the same on ∂ A, then
d(x, y) does not change.

The general case follows by first conditioning on a choice of hybrid edges in EB

(which must be hybrid closed because A1 is) and then using Proposition 14. 
�
Proof of Proposition 4 The non-identifiability of blobs of degree 2 or 3 follows as an
immediate corollary of Lemma 15: If A is a blob of degree 2 or 3, then ∂ A has 2
or 3 nodes, and γA ≡ 1 (Fig. 6). Since any metric on a set of 2 or 3 elements can
be represented by a tree metric, we may replace A by one tree edge or by three tree
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edges, to match d(., . | A) exactly. Specifically, using Fig. 6, on the left the degree-2
blob can be swapped by a single edge (a, b) in Ñ1 of length set to dN1(a, b). On the
right, a degree-3 blob can be swapped by a single tree node. Edge lengths in Ñ2 are
determined by the average distances between a, b, c in N2. For example, the length
of the edge to a is (dN2(a, b) + dN2(a, c) − dN2(b, c))/2 ≥ 0. 
�
Proof of Proposition 5 The subgraph A1 induced by {v, h} contains the parallel edges
e1, . . . , en exactly, has ∂ A1 = {v, h} and is hybrid closed because all parent edges of
h are assumed to be parallel. A2 is the subgraph on ∂ A2 = {v, h} with a single tree
edge e = (vh). Trivially, γA1(v, h) = 1 = γA2(v, h), and the length of e was defined
to ensure that dN (v, h | A1) = dN ′(v, h | A2). 
�
Proof of Proposition 6 We consider here a subgraph that contains a triangle, and swap
it with a simpler subgraph in which the triangle is shrunk. First note that N ′ is a
valid semidirected network, because the swapping operation can be made on a rooted
network to obtain a valid rooted network (with the same root). In case 1 we apply
Lemma 15 to swap the subgraph A1 induced by {u, v, h} on the left of Fig. 7a, with
A2 induced by {u, v, h, w} on the right. A1 is hybrid closed in N and A2 is hybrid
closed in N ′; ∂ A = ∂ A1 = ∂ A2 = {u, v, h} and γA1 ≡ γA2 ≡ 1 on ∂ A. The branch
lengths in Proposition 6 ensure that dN (., . | A1) ≡ dN ′(., . | A2) on ∂ A.

In case 2, let x be the parent node of v other than u. We apply Lemma 15 to swap
A1 with A2 in Fig. 7b, with V (A1) = V (A2) = {u, v, h, x}. A1 and A2 are hybrid
closed in N and in N ′, both with boundary ∂ A = {x, u, h}. In N and N ′, we have
γA(x, u) = 0, γA(x, h) = γ2(1 − γ3) and γA(u, h) = γ1 + γ2γ3. The branch lengths
in Proposition 6 ensure that dN (., . | A1) ≡ dN ′(., . | A2) on ∂ A. 
�

4 Identifying the tree of blobs

In this section, we prove Theorems 8 and 10. The key arguments are as follows. First,
edges in the tree of blobs BT(N ) define the same splits of leaves as cut-edges in N .
Second, pairwise distances satisfy the “4-point condition” for any set of four taxa
that spans one of these cut-edge splits. These terms and statements are made rigorous
below.

Proposition 16 For a semidirected network N, there is a bijection between the edges
of BT(N ) and the cut edges of N , and a bijection between the leaves of BT(N ) and
the tips of N .

The proof is in “Appendix A.3” since it is simply technical. Recall that a split
A | B of a set X is a partition of X into two disjoint nonempty subsets A and B. For a
phylogenetic X -tree T and an edge e of T , the split σ(e) induced by e is the partition
on X induced from the two connected components of T when e is removed.We denote
the set of edge-induced splits of a phylogenetic X -tree by 	(T ). Two splits A | B and
C | D of X are compatible if at least one of A ∩C , A ∩ D, B ∩C , and B ∩ D is empty.
By the Splits-Equivalence theorem (Semple and Steel 2003), all the splits in	(T ) are
compatible. Furthermore, two sets of splits 	1 and 	2 are pairwise compatible if for
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all σ1 ∈ 	1, σ2 ∈ 	2, σ1 and σ2 are compatible. A single split σ and a set of splits 	

are pairwise compatible if {σ } and 	 are pairwise compatible.
If N has no degree-2 blob, then its tree of blobs T can be viewed as a phylogenetic

X -tree. Different cut-edges in N , and therefore different edges in T , correspond to
different splits A | B of X .

Definition 11 (4-point condition)Given ametric d on X , the tuple (x, y, u, v) of leaves
in X satisfies the 4-point condition if

d(x, y) + d(u, v) ≤ d(x, u) + d(y, v) = d(x, v) + d(y, u). (4)

Because (4) is the same if we switch x, y or u, v, we can define the above condition
as the 4-point condition on the quartet xy | uv (short for {x, y} | {u, v}). We also say
the 4-point condition is satisfied for {x, y, u, v} if it holds for some permutation of
(x, y, u, v). We say that xy | uv satisfies the 4-point condition strictly if the inequality
in (4) is strict.

A split A | B on X is said to satisfy the 4-point condition (strictly) if for any
x, y ∈ A and u, v ∈ B, the 4-point condition on xy | uv is satisfied (strictly).

On a tree, the 4-point condition is satisfied for any choice of four nodes. In the
example below, the 4-point condition is not satisfied.

Example 3 (4-point condition on a 4-cycle) Let N be the leftmost network in Fig. 8
with t3 > 0 and t4 > 0. A quick calculation shows that d(a, d) + d(b, c) − d(a, c) −
d(b, d) = 2γ t3 > 0 and d(a, d) + d(b, c) − d(a, b) − d(c, d) = 2(1 − γ )t4 > 0.
Therefore the 4-point condition is not satisfied on the tips {a, b, c, d}.
Lemma 17 Let N be a semidirected network and T its tree of blobs. All splitsσ ∈ 	(T )

satisfy the 4-point condition for dN , and σ(e) satisfies the 4-point condition strictly if
�(e) > 0. Furthermore, if all internal cut-edges in N have positive length, then any
split σ ′ on X that satisfies the 4-point condition is pairwise compatible with 	(T ).

Proof As in the previous discussion, we identify edge e in T with the corresponding
cut edge in N .

Let σ = σ(e) = A | B. Take a, b ∈ A, u, v ∈ B. Since e is a cut edge in
N , removing e results in two connected components, such that a, b are in the same
component and u, v are in the other. Let c, w be the vertices of edge e, with c in the
same connected component as a, b, and w in the same one as u, v.

Let D(p, q) be the randomup–path length between nodes p and q, that is, the length
of the up–down path between p and q induced by a randomly sampled displayed tree.
Since all up–down paths from a to u must contain e, we have

D(a, u) = D(a, c) + �(e) + D(w, u).

Taking expectations,

d(a, u) = d(a, c) + �(e) + d(w, u).
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Similar equations hold for the pairs (a, v), (b, u), and (b, v), from which we get

d(a, b) + d(u, v) ≤ d(a, c) + d(b, c) + d(w, u) + d(w, v)

= d(a, u) + d(b, v) − 2�(e) = d(a, v) + d(b, u) − 2�(e) .

Hence A | B satisfies the 4-point condition, strictly if �(e) > 0.
To prove the second claim, assume that there exists a split σ ′ = U | V satisfying

the 4-point condition, but that is not compatible with a split σ = A | B induced by
some edge e in T . Since σ is nontrivial, e is an internal edge and �(e) > 0. Then we
can find a, b, u, v such that a, b ∈ A, u, v ∈ B, and a, u ∈ U , b, v ∈ V . Consequently
the 4-point condition holds both on ab | uv and au | bv. It then follows that the three
sums d(a, b) + d(u, v), d(a, u) + d(b, v) and d(a, v) + d(b, u) are all equal. Then
the 4-point condition on ab | uv cannot be strict, implying �(e) = 0: a contradiction.


�
Definition 12 (distance split tree) Let d be a metric on X . Let 	(d) be the set of
splits on X that satisfy the 4-point condition, and 	′(d) the set of splits in 	(d)

that are pairwise compatible with 	(d). Note that by construction, 	′(d) is pairwise
compatible. The distance split tree is defined as the X -tree τ(d) that induces 	′(d).

By the splits-equivalence theorem, τ(d) exists and is unique. Also, τ(dT ) = T if T is
a tree (Semple and Steel 2003).

Proof of Theorem 8 Let N be a semidirected network on X satisfying the requirements
in Theorem 8 and d = dN . For a tree T , let	T be the set of splits induced by T . Using
the notations in Definition 12, we have

	BT(N ) ⊂ 	τ(d) = 	′(d) ⊂ 	(d).

Because 	BT(N ) ⊂ 	τ(d), τ(d) is a refinement of BT(N ). 
�
Proof of Example 1 For the network N in Fig. 9 (left), we prove here that the distance
split tree τ(dN ) is a star for generic parameters, and is the tree oa | bc when γ3 =
t2/(t1 + t2) for γ7 small enough. It is easy to write the expressions

Sa = d(o, a) + d(b, c) = S0 + γ6u + γ7(2(γ3t1 + γ4t2) + v)

Sb = d(o, b) + d(a, c) = S0 + γ6(u + 2(γ4t1 + t5)) + γ7(2γ3t1 + v)

Sc = d(o, c) + d(a, b) = S0 + γ6(u + 2(γ4t1 + t5)) + γ7(2γ4t2 + v)

where S0 is the sum of the external edge lengths after zipping-up the network, u =
γ3t1 + γ4t2 and v = γ3t2 + γ4t1 + t5. Consequently,

Sb = Sc ⇐⇒ γ3 = t2/(t1 + t2)

Sa = Sb ⇐⇒ γ6 = γ4t2/(γ4(t1 + t2) + t5)

Sa = Sc ⇐⇒ γ6 = γ3t1/(t1 + t5) .
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Fig. 11 Left: network with a non-binary node u. Middle and right: refinements at u for two choices of
E1 | E2. In both, E1 contains the 3 hybrid edges incident to u and E2 contains the edges incident to v1
and v2. The edge incident to v3 is either in E1 (middle) or in E2 (right). The canonical refinement at u is
the rightmost network

Therefore, except on a subspace of Lebesgue measure 0, the pairwise sums Sa , Sb

and Sc take distinct values, all non-trivial splits violate the 4-point condition, and the
distance split tree is a star. Furthermore, we see that

Sa < Sb = Sc ⇐⇒ γ3 = t2/(t1 + t2) and 1 − γ7 = γ6 >
t1t2

(t1 + t2)(t1 + t5)

in which case oa | bc is the only non-trivial split satisfying the 4-point condition, and
forms the distance split tree. 
�

Turning to the proof of Theorem 10, we introduce a few more definitions. We first
define network refinements that preserve up–down paths and distances (Fig. 11). They
are defined for networks of any level and at any polytomy, so they are more general
than the refinements described in Theorem 10.

Definition 13 (network refinements) Let N be a semidirected network on X , u a non-
binary node (i.e. of degree 4 or more) in N , and let E(u) be the set of edges adjacent
to u. Let {E1, E2} be a partition of E(u) such that |E1|, |E2|≥ 2 and all the incoming
hybrid edges (into u), if any, are in E1. Then the network N ′ obtained by the following
steps is called a refinement of N at u by E1 | E2:

1. Add a new node u′, and add a tree edge uu′ of length 0;
2. replace each edge uv ∈ E2 by a new edge u′v.

Further, if B is a blob and u is a node in B, let EB(u) denote the set of edges in
B incident to u. If E1 contains EB(u), then we call the resulting refinement a blob-
preserving refinement at u. If E1 = EB(u) and E2 = E(u) \ EB(u) then we call the
refinement the canonical refinement at u.

Since leaves must have degree one and refinements are defined at non-binary nodes,
u cannot be a leaf. Also, if either E1 or E2 has only one edge, then u or u′ would
become of degree 2, rendering the refinement uninteresting. It is easy to see that N ′ is
still a valid semidirected network, since for any rooted network N+ that induces N ,
one can keep the root and direct the new edges consistently to get a rooted network
N+′ that induces N ′. Namely, if u is a hybrid node, then uu′ is directed towards u′.
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Otherwise, we can direct uu′ depending on whether the single parent of u is in E1 or
in E2. In both cases, uu′ is a tree edge.

A blob-preserving refinement does not change the non-trivial blobs, but adds a
new trivial blob {u′}: suppose B is a non-trivial blob in N , then E2 ⊆ E(u) \ EB(u)

contains cut edges only. Therefore, the new tree edge uu′ is also a cut edge. The
following lemma is a result of this property.

Lemma 18 Let B be a blob in a metric semidirected network N on X, b the corre-
sponding node in the tree of blobs T of N, and let u be a non-binary node in B. If
N ′ is a refinement of N at u, then the pairwise distance on X is the same on N ′ and
N. Furthermore, if N ′ is a blob-preserving refinement at u by the edge bipartition
E1 | E2, then BT(N ′) is a refinement of T at b by Ẽ1 | Ẽ2, where Ẽ2 = E2 (which
are cut-edges and appear in T ) and Ẽ1 = E(b) \ Ẽ2.

Proof For the first claim, it suffices to show that for any tips x, y ∈ X , there is a
bijection between the sets of up–down paths x ←→ y in N and in N ′ that preserves
the lengths and hybridization parameters. Assume the refinement is by E1 | E2. Let p
be an up–down path between x and y in N . Consider the followingmap f . If p does not
include u, or if p includes u but the two edges incident to u in p are both in E1, then p
is also an up–down path in N ′, and we let f (p) = p. If p includes u and the two edges
incident to u in p are both in E2, then we may change u to u′ in p to obtain up–down
path p′ in N ′ and set f (p) = p′. Finally, if p includes u with one incident edge in E1
and one in E2, thenwemay assume,without loss of generality, that p = x . . . aub . . . y
with au ∈ E1 and bu ∈ E2. Then let p′ = x . . . auu′b . . . y. Since uu′ is a tree edge,
p′ has no v-structure and is an up–down path in N ′. We set f (p) = p′. It is easy to
see that f is injective, that γ ( f (p)) = γ (p), and �( f (p)) = �(p). As a result, the
up–down paths in the image of f have hybridization parameters that sum up to one,
so f is surjective as well.

For the second claim, let u′ be the new node introduced in the refinement. As
previously noted, E2 contains cut edges only, so we are only deleting and adding cut
edges during a blob-preserving refinement. Hence all the operations correspond to the
operations on the tree of blobs T . Consequently we can get BT(N ′) from T by adding
a node b′ corresponding to the trivial blob B ′ = {u′} in N ′, cut edge bb′ corresponding
to uu′, and replace edges bc with b′c for each cut edge uv ∈ E2, where c corresponds
to the blob containing v. This is the refinement of T at b by Ẽ1 | Ẽ2. 
�

We now introduce definitions for splits that resolve a polytomy in the tree of blobs
without affecting the blob itself in the network. Later, we prove that the distance split
tree resolves the tree of blobs with splits of this kind.

Definition 14 (split along a blob; sibling groups) Let N be a semidirected network
on X , T its tree of blobs, and B a blob of N with corresponding node b in T . When
b is removed, suppose T is disconnected into k connected components, with taxa
Y1, . . . , Yk in each. We call {Yi ; i ≤ k} the partition induced by B. If a split σ on X
has a set that is the union of two or more Yi ’s, then σ is along the partition induced
by B, or along B. Let ei be the cut edge in T (or N ) adjacent to B whose removal
disconnects Yi from B. If ei and e j share a node u ∈ B then Yi and Y j are called
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sibling sets of B at u. For a node u ∈ B, the sibling group at u is the union of all
sibling sets of B at u.

The following is a restatement of Lemma 3.1.7 in Semple and Steel (2003), using our
definitions.

Lemma 19 Let T be a phylogenetic X-tree, and T ′ a refinement of T . Then every split
σ ∈ 	(T ′) \ 	(T ) is along some node u of T .

Next, we characterize the set of splits 	D that satisfy the 4-point condition on N .

Lemma 20 Let N be a level-1 network on X with no degree-2 blobs, and with internal
tree edges of positive lengths. Let B be a blob of N of degree 4 or more. If B is trivial,
then any split along B satisfies the 4-point condition. If B is nontrivial, then a split
along B satisfies the 4-point condition if and only if it is of the form S | S̄ where S
is a union of sibling sets of B. Furthermore, a split σ along B is in 	(T ′), T ′ being
the distance split tree, if and only if B is a nontrivial blob and σ is of the form S | S̄
where S is a sibling group of B.

Proof If B = {u} is trivial, then for any split σ along B we can find the corresponding
refinement N R at u with the extra edge inducing σ in the tree of blobs. Since N R

has the same pairwise distances, σ ∈ 	(BT(N R)) satisfies the 4-point condition by
Lemma 17. Furthermore, we claim that for any split σ along B, there is another split
σ ′ along B that is incompatible with σ . This would imply that σ /∈ 	(T ′). To show
the claim, let {Yi ; i ≤ d} be the partition induced by B, with d = deg(B) ≥ 4. Let
σ be of the form ∪i∈I1Yi | ∪i∈I2Yi , where {I1, I2} is a bipartition of {1, . . . , d}. Now
we may choose σ ′ = ∪i∈I ′

1
Yi | ∪i∈I ′

2
Yi where {I ′

1, I ′
2} is a bipartition of {1, . . . , d}

incompatible with {I1, I2}: such that Ii ∩ I ′
j are all non-empty. Then σ ′ is along B and

incompatible with σ .
If B is nontrivial, first consider σ = S | S̄ where S is a union of sibling sets of B, that

is, S contains the leaves corresponding to a set E of cut edges adjacent to some node
u ∈ B. Then, in the blob-preserving refinement of N R at u by E(u) \ E | E , the extra
cut edge induces σ . Hence σ ∈ 	(N R) satisfies the 4-point condition. Conversely,
consider a non-trivial split σ = A | Ā where both A and Ā intersect at least two
of the sibling groups of B. Let Y1, . . . , Yd be the sibling groups such that Y1 is the
sibling group at B’s hybrid node. Since d = deg(B) ≥ 4, it is easy to see that we can
find distinct {i1, . . . , i4}, x1, x2 ∈ A and x3, x4 ∈ Ā such that 1 ∈ {i1, . . . , i4}, and
x j ∈ Yi j . Then the subnetwork Ñ = N{x1x2x3x4} is equivalent to the leftmost network
in Fig. 8 with positive branch lengths for both tree edges in the cycle. By Example 3,
the 4-point condition is not met for x1x2 | x3x4, which finishes the proof of the claim.

Finally, consider a split σ = S | S̄ along B that satisfies the 4-point condition, but
where S is a proper subset of the sibling group at some node u ∈ B. Then u must
be adjacent to k ≥ 3 cut edges, and S must be the union of l sibling sets at u, with
2 ≤ l < k. Then similarly to the case when B is trivial, we can find a nonempty union
of sibling sets S′, such that σ ′ = S′ | S̄′ is incompatible with σ . Since σ ′ satisfies the
4-point condition, σ /∈ 	(T ′). 
�
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Fig. 12 4-sunlets with the same
undirected topology. Left: h is of
hybrid origin. Right: g is of
hybrid origin. By Theorem 22,
parameters can be chosen such
that both networks have the
same average distances between
leaves

Proof of Theorem 10 Note that the procedure described to obtain N R is a series of
canonical refinements. So by Lemma 18, N R is a valid semidirected network with
average distances identical to those in N .

Let T = BT(N ) and T ′ the distance split tree of N . By Lemma 19, any split
σ ∈ 	(T ′)\	(T ) is along some blob B of N . By Lemma 20, there is no such extra
split σ when B is trivial. If B is nontrivial, the extra splits must be of the form S | S̄
where S is a sibling group at some node u. Such a split corresponds to the split
introduced in the canonical refinement at u.

Finally, since N R can be obtained from a series of canonical refinements, by
Lemma 18, the tree of blobs of N R can also be obtained from the series of corre-
sponding refinements, which introduces exactly all the extra splits described above.
As a result, BT(N R) = T ′. 
�

5 Identifying sunlets

A k-sunlet is a semidirected network with a single k-cycle and reticulation, and for
each node on the cycle, one or more pendant edge(s) (adjacent to a leaf). The sunlet
is binary if k equals the number of leaves, n. This section considers the problem
of identifying the branch lengths and hybridization parameters in a sunlet from the
average distances between the n tips. We assume that we know the network is a k-
sunlet, but k is unknown and the ordering of the tips around the cycle is unknown. In
other words, we consider the problem of identifying the exact network topology given
that it is a sunlet.

A circular ordering of the leaves X = {x1, . . . , xk} is, informally, the order of
the leaves when placed around an undirected cycle. Formally, it is the class of an
ordering (xi1 , . . . , xik ) up to the equivalence relations (u1, . . . , uk) ∼ (uk, . . . , u1)

and (u1, u2, . . . , uk) ∼ (u2, . . . , uk, u1).

5.1 4-Sunlets

First we consider the problem of identifying the lengths and hybridization parameter in
a binary 4-sunlet, assuming the labelled semidirected topology is known (Fig. 12 left).
Specifically, we assume that we know h is of hybrid origin, a and b are its half-sisters
and g is opposite of the hybrid node.
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In this case, we have 6 average distances, but 9 parameters. Zipping up the 4-sunlet
removes 2 degrees of freedom, but one free parameter still remains. Specifically, we
have

dga = (μa + ta) + μg

dgb = (μb + tb) + μg

dab = (μa + ta) + (μb + tb)

dah = (μh + saγa + sbγb) + γb(ta + tb) + μa

dbh = (μh + saγa + sbγb) + γa(ta + tb) + μb

dgh = (μh + saγa + sbγb) + γata + γbtb + μg

(5)

Theorem 21 Let d be a metric on four tips {a, b, g, h}. The 4-sunlet N with circular
ordering (a, g, b, h) and in which h is of hybrid origin (left of Fig. 12) has average
distances d for some set of parameters such that ta > 0 and tb > 0 if and only if

dgh + dab > max{dah + dbg, dbh + dag} (6)

and

dgh + dab − dah − dbg

dab + dag − dbg
+ dgh + dab − dbh − dag

dab + dbg − dag
≤ 1. (7)

In this case, we can identify μg and the following composite parameters:

μg = 1

2
(dag + dbg − dab)

μa + ta = 1

2
(dab + dag − dbg)

μb + tb = 1

2
(dab + dbg − dag)

lh := μh + saγa + sbγb = 1

2
(dah + dbh − dab)

γata = 1

2
(dgh + dab − dah − dbg)

γbtb = 1

2
(dgh + dab − dbh − dag) . (8)

However, γ , ta , tb, μa, μb are not identifiable. In particular, γa can take any value
in the following interval:

[
dgh + dab − dah − dbg

dab + dag − dbg
, 1 − dgh + dab − dbh − dag

dab + dbg − dag

]

.

Furthermore, (6) is an equality if and only if one of the tree edges in the cycle has zero
length: ta = 0 or tb = 0.
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The proof below uses basic algebra. Condition (7) ensures that (8) can be solved to
give non-negative μa and μb, and (6) ensures that γata > 0 and γbtb > 0. If (6) is an
equality, then the 4-point condition is satisfied and d is a tree metric. Having γa = 0 or
1would lead to a treemetric, but hybrid edges are required to have γ > 0 by definition.
Setting ta or tb to 0 also leads to a tree metric. Contracting the corresponding edge
creates an unidentifiable degree-3 blob.

Proof of Theorem 21 It is easy to check with basic algebra that (8) is equivalent to (5).
Therefore, we simply need to show that additionally imposing (6) and (7) is equivalent
to requiring edge lengths be non-negative, ta, tb > 0 and hybridization parameters be
in (0, 1). Suppose that d comes from the 4-sunlet N . Condition (6) is equivalent to
dgh + dab − dah − dbg = 2γata ≥ 0 and dgh + dab − dbh − dag = 2γbtb ≥ 0. For
condition (7), we have

dgh + dab − dah − dbg

dab + dag − dbg
+ dgh + dab − dbh − dag

dab + dbg − dag
= γata

μa + ta
+ γbtb

μb + tb
≤ 1.

Conversely, suppose that a metric d on {a, g, b, h} satisfies (6) and (7). Then there
exists γ̃ such that

0 <
dgh + dab − dah − dbg

dab + dag − dbg
≤ γ̃ ≤ 1 − dgh + dab − dbh − dag

dab + dbg − dag
< 1.

Then we can set γa = 1 − γb = γ̃ in (8) to solve for ta first, getting ta > 0 from (6).
Then solving for μa , we get

μa = 1

2

(
(dab + dag − dbg) − (dgh + dab − dah − dbg)/γ̃

) ≥ 0

because of our condition on γ̃ . Similarly, solving for tb and μb gives tb > 0 and
μb ≥ 0. 
�

When the sunlet topology is unknown, we need to identify the circular ordering of
the tips around the cycle, and which of a, b, g or h is of hybrid origin. Suppose the tips
are labelled by x, y, z, w, then by Theorem 21, the opposing pairs {x, y} and {z, w}
correspond to the largest sum among dxy + dzw, dxz + dyw and dxw + dyz .

Identifying the opposing pairs {a, b} and {g, h} is enough to identify the undirected
graph of the 4-sunlet. However, identifying which tip is of hybrid origin is impossible,
as we show below.

Theorem 22 Let N be the 4-sunlet with circular ordering (a, g, b, h) in which h is of
hybrid origin (Fig. 12, left). Let N ′ be the 4-sunlet with the same circular ordering, but
in which g is of hybrid origin (Fig. 12, right). For any parameters (�, γ ) on N, there
exist parameters (�′, γ ′) on N ′ such that N and N ′ have the same average distances.

Proof We apply Theorem 21 to N ′ and the distance d obtained from N . We need to
check that (6) and (7) are met. Condition (6) is met because it is symmetric in g and
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h. Condition (7) is not symmetric however. To fit d on N ′, (7) can be written as (after
permuting g and h):

dgh + dab − dag − dbh

dab + dah − dbh
+ dgh + dab − dbg − dah

dab + dbh − dah
≤ 1.

Applying (8) to N from which d is obtained, we can rewrite the left-hand side as:

γbtb
(μa + ta) − γata + γbtb

+ γata
(μb + tb) − γbtb + γata

= γbtb
μa + γb(ta + tb)

+ γata
μb + γa(ta + tb)

≤ γbtb
γb(ta + tb)

+ γata
γa(ta + tb)

= 1 .

Hence (7) is met on N ′, and parameters can be set to match the average distances from
N . 
�

Depending on the parameters in the 4-sunlet, it may be possible to switch g with
a and h with b as well, if condition (7) holds for the network in which a (or b) is of
hybrid origin. Namely, this is possible if μh and μg are large enough to satisfy

γata
μg + γata

+ γbtb
μh + saγa + sbγb + γbtb

≤ 1.

Usually we do not have external information about which tip is of hybrid origin, and
even if we do, by Theorem 21 we can only identify μg , the length of the branch
“across” from the hybrid node. It is therefore not possible to identify the individual
edge lengths. More generally, we can combine the swap lemma and Theorem 21 to
prove that almost any hybrid-closed subgraph with 4 boundary nodes can be swapped
with a 4-cycle without affecting distances.

Proposition 23 (swap a subgraph with a 4-sunlet) In a network N, let A be a hybrid-
closed connected subgraph with 4 boundary nodes such that γA ≡ 1 and each node
u ∈ ∂ A has degree 1 in A. Let t(u) denote the length of the edge incident to u in A.
Then there exists η ≥ 0 (which depends on A\∂ A) such that the following holds: If
t(u) ≥ η for each u ∈ ∂ A, then we can swap A with a tree or with a 4-sunlet A′ on
leaf set ∂ A to obtain a valid semidirected network N ′ with dN ′ = dN .

Proof To simplify notations, let d denote d(., . | A). If d satisfies the 4-point condition,
then there is a unique 4-taxon tree A′ on ∂ A such that dA′ = d on ∂ A (and γA′ ≡ 1).
Swapping A with A′ leads to a valid semidirected network topology N ′ because any
valid root position in N remains valid in N ′. N ′ remains acyclic because γA ≡ 1
and A is hybrid-closed: when edges are directed away from the root, A must have
exactly one “entry” boundary node, whose incident edge in A is outgoing. Therefore,
an undirected path between two nodes in ∂ A made of edges not in A must have a v-
structure, and then N ′ cannot contain directed cycles. Finally, we can apply Lemma 15
to prove the claim with η = 0.

If d does not satisfy the 4-point condition, then A must contain at least one hybrid
edge. We may label the nodes in ∂ A as {h, a, g, b} such that (6) holds for d and h is
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below some hybrid edge in A. Let A′ be a 4-sunlet on leaf set ∂ A with h below the
hybrid node and circular ordering (h, a, g, b). Swapping A with A′ leads to a valid
semidirected network topology N ′ because any valid root position in N is not below
h, and is again valid in N ′. We also have γA′ = γA ≡ 1. We now want to assign edge
parameters in A′ such that dA′ = d on ∂ A. By Theorem 21, this is possible provided
that (7) holds for d. Modifying t(u) for u ∈ ∂ A does not modify the numerator of
either term in (7). Let aa0 and b0b be the edges in A incident to a and b respectively.
Then the denominators in (7) can be expressed as 2t(a) + da0b0 + da0g − db0g and
2t(b) + da0b0 + db0g − da0g . Therefore (7) holds if t(a) > η and t(b) > η where
η is the maximum of dgh + da0b0 − da0h − db0g − (da0b0 + da0g − db0g)/2 and
dgh + da0b0 − db0h − da0g − (da0b0 + db0g − da0g)/2. This concludes the proof by
Lemma 15. 
�

We can now prove Theorem 7 on networks of level up to k, k ≥ 2.

Proof of Theorem 7 It suffices to consider k = 2. Consider the networks in Fig. 8, say
A1 on the left and A2 on the right. Let n ≥ 4. If n = 4, set N1 = A1 and N2 = A2.
If n ≥ 5, we can form networks Ni (i = 1, 2) with n taxa by replacing the leaves a,
b, c and/or d in Ai by subtrees with enough taxa. Given any values for the parameters
labelled in Fig. 8 for A2 such that u4 > 0, dA2 satisfies (6) with the same ordering as
dA1 . By Proposition 23 and its proof, we can swap A2 with A1 provided that the edges
incident to b and c are long enough in A2. It follows that dN1 = dN2 for parameters in
subsets of positive Lebesgue measure. 
�
Definition 15 (canonical 4-sunlet split network) Consider a 4-sunlet whose undirected
topology has circular ordering (a, g, b, h) (e.g. Fig. 13 right) and with cycle tree
edges of positive lengths. The underlying undirected graph (e.g. Fig. 13 left) can be
considered as a split network, in which each pair of parallel edges identifies a single
split and a single split weight (edge length), with canonical edge lengths defined as
follows.

μ̂g = 1

2
(dga + dgb − dab) μ̂a = 1

2
(dag + dah − dgh)

μ̂h = 1

2
(dha + dhb − dab) μ̂b = 1

2
(dbg + dbh − dgh)

t̂hb|ga = 1

2
(dgh + dab − dga − dhb) t̂ha|gb = 1

2
(dgh + dba − dgb − dha) . (9)

Distances on this canonical split network, calculated between any two tips as the
length of the shortest path between them Huson et al. (2010), are identical to the
average distances on the original semi-directed 4-sunlet.

This split network provides a unique representation of what can be identified from
pairwise distances: undirected topology and identifiable composite parameters. Ide-
ally, we would have liked a semi-directed representation, but since the location of the
hybrid node is not identifiable, this was not an option.
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Fig. 13 Left: split network,with canonical edge lengths fromDefinition 15.Apair of parallel edges represent
the same split and thus share the same length (t̂hb|ga or t̂ha|gb here). The distance between two nodes is
defined as the length of the shortest path between them. Right: example zipped-up 4-sunlet represented by
the split network on the left, in which h is of hybrid origin. Distances (using up–down paths) are identical
to distances on the split network and satisfy (10)

Theorem 24 (identifiability of 4-sunlet split network) Let N and N0 be binary 4-
sunlets with identical leaf set and internal tree edges of positive lengths. If N and N0
have identical average distances, then the canonical 4-sunlet split networks of N and
N0 are identical.

Proof The positivity of cycle tree edge lengths ensures that

dab + dgh > max{dag + dbh, dah + dbg}

is satisfied strictly, so N and N0 must have the same circular ordering. Finally, the
definition of canonical edge lengths from average distances in (9) is symmetric with
respect to the hybrid node: canonical lengths depend on the circular ordering only. 
�

There is a tight correspondence between edge lengths in the semi-directed network
and edge lengths in the split network, provided that the placement of the hybrid node
is known. For example, if h is of hybrid origin and if the network is zipped up as in
Fig. 13 (right), then by Theorem 21 we have that:

μ̂g = μg, μ̂a = μa + γbta, t̂ha|gb = γata,

μ̂h = μh, μ̂b = μb + γatb, t̂hb|ga = γbtb. (10)

By (10) we have that μ̂s ≥ μs for each cut edge. In fact, μ̂s = μs is a correct length
estimate for the zipped-up child edge of the hybrid node and for the cut edge opposite to
the hybrid node. For the other cut edges, μ̂s is an overestimate of μs . For example, for
the network in Fig. 13 (right) where h is the hybrid node, then μ̂a = μa + γbta ≥ μa .
We do not know which cut edge length is correctly represented, however. Similarly,
t̂hb|ga and t̂ha|gb are underestimates of the length of tree edges in the cycle, although
we do not know which edges in the cycle are tree or hybrid edges.

If a 4-sunlet has a polytomy, its canonical split network can be defined (and The-
orem 24 can be applied) after resolving the polytomy with an extra edge of length 0.
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Fig. 14 Canonical split network representation (left) of 4 zipped-up semidirected networks with identical
average distances, in which h (middle) or b (right) is of hybrid origin. Two networks (bottom) have a
polytomy adjacent to the 4-cycle. In the split network, pairs of parallel edges of identical color represent a
single split and share the same length (split weight). Hybrid edges (arrows) have length 0 and inheritance
γ shown in blue for one of them. Numbers in black indicate edge lengths. The split network shows the
6 composite parameters identifiable from distances, pertaining to the 4-cycle. Zipped-up semidirected
networks have 7 associated parameters

As Fig. 14 shows, networks with polytomies adjacent to a 4-cycle may have the same
average distances as networks without polytomies.

5.2 k-sunlet for k ≥ 5

With 5 or more nodes in the cycle, we can identify the topology, branch lengths, and
hybridization parameters of the zipped-up version of the sunlet.

Theorem 25 (k-sunlet identifiability, k ≥ 5) Let N and N0 be semidirected networks
with identical leaf set {u0, . . . , un−1} and internal tree edges having positive lengths,
such that N is a k-sunlet and N0 is a k0-sunlet with k0 ≥ 5. If N and N0 have identical
average distances, then the zipped-up versions of N and N0 are identical.

Proof We first we show that N and N0 must have the same topology, and then the
same branch lengths and hybridization parameter. In N0, let the hybrid node be v0,
and let the other internal nodes be v1, . . . , vk−1 such that vi−1 and vi are neighbors (as
in Fig. 15). Let Ci be the set of leaves adjacent to vi in N0. If there are no polytomies,
then each Ci is reduced to a single leaf ui .

By Lemma 20, each non-trivial split in the distance split tree of N is of the form
C | C̄ , where C is a set of all the sister leaves that are adjacent to the same cycle node
in N , and C̄ = X \ C . The same holds for N0.
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Fig. 15 Left: 5-sunlet N on 8
taxa. Its tree of blobs is a star. Ci
is the sibling group at vi
(i = 0, . . . , 4). Right: distance
split tree constructed from dN . It
is a refinement of the tree of
blobs, but identifies the
polytomies in the sunlet

Since N and N0 have identical pairwise distances, they have the same distance split
tree, and consequently identical sets of sister leaves (polytomies). In particular, we
must have that k = k0. So without loss of generality, we choose a single representative
leaf from each Ci for the remainder of the proof. In other words, we may assume that
both N and N0 have no polytomies and k = n (as in Fig. 16).

Identifying the circular ordering of leaves

First, we claim that the leaf of hybrid origin u0 is the only leaf u such that:

∀x, y, z, {u, x, y, z} does not satisfy the 4-point condition. (11)

Indeed, if u = u0, then {u, x, y, z} induces in N0 a 4-sunlet in which both tree edges
in the cycle have positive length, so {u, x, y, z} does not satisfy the 4-point condition
by Theorem 21. If u = ui for i > 0, then we can choose 3 other leaves u j , uk , ul

different from u0, because k0 ≥ 5. The induced subnetwork is then a tree, so the
4-point condition holds, such that ui does not satisfy (11) for i ≥ 0. Therefore, the
leaf of hybrid origin must be the same in N as in N0: u0.

Next, we consider the subnetwork of N0 induced by the leaves other than u0.
(For sake of brevity, in what follows in this subsection, all the subnetworks have
degree-2 nodes suppressed.) This subnetwork has no reticulation, it is binary and its
internal branch lengths are positive, so it is equal to its tree of blobs and its distance
split tree. Therefore, the subnetwork of N induced by the leaves other than u0 has
the same tree topology. This tree must be a caterpillar (Fig. 16, middle) with two
cherries: {u1, u2} and {uk−2, uk−1} and internal nodes that correspond to v2, . . . , vk−2.
Its topology determines the ordering of the other leaves. In other words, the ordering of
u3, . . . , uk−3 must be identical in N and in N0. We can also match the internal nodes
v3, . . . , vk−3 in N0 to internal nodes in N . What remains to be identified is which of
{u1, u2} and which of {uk−2, uk−1} is adjacent to either parent of the hybrid node in N .
For this, consider the subnetworks from N and N0 induced by {u2, u1, u0, uk−1}. By
(6) in Theorem 21, the average distances on {u0, u1, u2, uk−1} determine the circular
ordering of these 4 taxa, such that u1 must be adjacent to a hybrid parent in N , as it is
in N0. Similarly, the average distances on {u0, u1, uk−2, uk−1} determine the circular
ordering of these 4 taxa such that uk−1 must be adjacent to a hybrid parent in N , like
in N0. This finishes the proof that the circular ordering of leaves is identical in N and
in N0.

Identifying branch lengths and hybridization parameters

By considering distances between u1, . . . , uk−1, we can determine the lengths of
all the edges of the caterpillar tree N{u1...,uk−1} (Fig. 16, middle). In particular, we get
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Fig. 16 Left: binary k-sunlet. Middle: after excluding u0, the subnetwork is a tree. Right: subnetwork on
{u0, u1, u2, uk−2, uk−1}, a sunlet with k = 5

that the following edges have the same length in N as in N0: vivi+1 for 2 ≤ i ≤ k − 3
and vi ui for 2 ≤ i ≤ k − 2. The parameters that remain to be identified are in
the subnetwork induced by {u0, u1, u2, uk−2, uk−1}. Therefore, we may assume that
k = 5, as we do below (Fig. 16, right).

For brevity in this paragraph, for an edge uv we also write its length as uv. From
the tree induced by {u1, . . . , u4}, we have the lengths u2v2, u3v3, v2v3, v3v4 + u4v4,
and u1v1 + v1v2. From the subnetwork induced by {u0, u1, u2, u4}, by Theorem 21
we can identify lh = γ1 · v1v0 + γ4 · v4v0 + u0v0, which is the length of v0u0 after
unzipping.We can also identify γ1 ·v2v1 and γ4(v2v3+v3v4). From the subnetwork on
{u0, u1, u3, u4}, we also get γ1(v1v2 +v2v3). Hence we can identify γ1 as

(
γ1(v1v2 +

v2v3)−γ1 ·v1v2
)
/v2v3 from pairwise distances. All other parameters in the unzipped

version of N are also identifiable, using: v1v2 = γ1 · v1v2/γ1, γ4 = 1 − γ1, v3v4 =(
γ4(v2v3 + v3v4)

)
/γ4 − v2v3, and as a result u1v1 and u4v4. 
�

6 Identifying level-1 networks

While a degree-3 blob is not detectable, a 4-cycle in a level-1 network corresponds to a
polytomy in the tree of blobs. Its hybrid node and its zipped-upversion is unidentifiable,
but the canonical split network of a 4-sunlet is identifiable, by Theorem 24. To prove
Theorem 12, we first define mixed networks formally.

6.1 Mixed network representation

In the mixed representation of a semi-directed level-1 network, the cycles of size
5 or greater are unchanged. The 4-cycles, which are only partially identifiable, are
replaced by split networks, extending the split network representation of 4-sunlets
from Sect. 5.1 with canonical edge lengths given by (9).

Definition 16 (mixed network) A mixed network is a semidirected graph where undi-
rected edges are partitioned into two sets: tree edges ET and split edges ES ; and where
ES is itself partitioned into a set of classes.When the graph is embedded in a Euclidean
space, split edges within the same class are represented as parallel segments. A metric
(�, γ ) on a mixed network M is such that � : E → R≥0 assigns the same length to
all edges in the same class of split edges; and γ : E → [0, 1] assigns γ (e) = 1 if e is
undirected and γ (e) ∈ (0, 1) if e is directed.
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Fig. 17 Mixed network: representation of a 4-cycle in a semidirected network N (left) to form a split blob
(right). Edges in the cycle are converted to undirected split edges with γ = 1, categorized in two classes
depicted by colors. Adjacent tree edges are added. If N is zipped up, then sa = sb = 0 and the lower tree
edge (adjacent to the hybrid node in N ) is not needed

Definition 17 (mixed network representation of a level-1 network) Let N be a level-1
semidirected network with no 2- or 3-cycles. The mixed network representation N∗
of N is the mixed network obtained as follows:

1. In each 4-cycle, the subgraph on the left of Fig. 17 is excised and replaced with
that on the right.

2. Suppress any degree-2 node.

In N∗, 4-cycles consist of split edges and are called split blobs.

In a mixed network M , a mixed up–down path between two nodes a, b is a path
p = u0u1 . . . un between u0 = a and un = b in U (M) such that:

1. p has no v-structure, that is, no segment ui−1ui ui+1 such that (ui−1ui ) and (ui+1ui )

are directed edges in M ;
2. if a segment ui . . . u j consists solely of split edges, then the segment is a shortest

path between ui and u j in U (M).

Given a metric (�, γ ) on M , the length of p is �(p) = ∑
e∈p �(e), and the probability

of p is γ (p) = ∏
e∈p γ (e). A split segment is a path that consists solely of split

edges. Two split segments S1, S2 are equivalent if they have the same endpoints and
�(S1) = �(S2). Note that a split segment S must have γ (S) = 1. Two mixed up–down
paths p and q are equivalent if one can obtain q from p by replacing some split
segments of p by equivalent split segments.

Definition 18 (average distance in a mixed network) The average distance between
two nodes u, v in amixed network M is theweighted average length ofmixed up–down
paths, up to equivalence, between u and v:

dM (u, v) =
∑

p∈Puv

γ (p)�(p)

where Puv is a set of mixed up–down paths between u and v, containing exactly
one representative from each equivalence class. This distance is well-defined because
equivalent paths have the same lengths and probabilities.

Importantly, average distances are preserved by the mixed representation of a level-1
network:
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Theorem 26 Let N be a level-1 semidirected network on taxon set X, and N∗ the
mixed network representation of N . Then for any x, y ∈ X,

dN (x, y) = dN∗(x, y).

The proof, in “Appendix A.4”, first shows that average distances in mixed networks
can be interpreted as the expected shortest path length over “displayed split networks”.

6.2 Identifying themixed representation of level-1 networks

We now have the tools to prove Theorem 12.

Proof of Theorem 12 For i = 1, 2, let Ni be a zipped-up level-1 semidirected network
on X with internal tree edges of positive lengths, and N R

i the refinement described
in Theorem 10. Also let N R∗

i be the mixed representation of N R
i , and N∗

i the mixed
representation of Ni . Assume that dN1 = dN2 = d. By Theorem 10, N R

1 and N R
2 have

the same tree of blobs T , so their blobs and cut edges are in bijection.
Let b be a node of degree k ≥ 4 in T , and {e1, . . . , ek} be the cut edges incident to b

in T . Let Bi be the corresponding cycle in N R
i (i = 1, 2), of length k ≥ 4. Removing

e j disconnects T into two components. We select a leaf x j from the component that
does not contain b and use distances on {x1, . . . , xk}. If k ≥ 5, B1 and B2 have the same
topology and edge parameters by Theorem 25. If k = 4, the split cycle representing
B1 (in N R∗

1 ) and B2 (in N R∗
2 ) have the same topology and canonical length of split

edges, by Theorem 24. So N R∗
1 and N R∗

2 have the same topology (referred below as
N R∗) and same parameters for edges within a blob.

Next, we need to prove that cut edges have the same length in N R∗
1 and N R∗

2 .
These edges are also cut edges in N R

i (i = 1, 2) and T . Let e = uv be a cut edge
and B(u), B(v) the blobs that u and v belong to. We can select leaves as follows.
If B(u) = {u} (resp. B(v) = {v}) is an internal tree node that is not in any cycle,
let e1 and e2 (resp. e3 and e4) be the two cut edges incident to u (resp. v) besides
e. If u (resp. v) is part of a cycle, let e1 and e2 (resp. e3 and e4) be the cut edges
incident to the two nodes adjacent to u (resp. v) in that cycle. We then choose a leaf
x j , j = 1, 2 (resp. j = 3, 4) in the connected component disjoint from B(u) (resp.
B(v)) when e j is removed from T (see Fig. 18). Finally, if u (resp. v) is a leaf, we set
x1 = x2 = u (resp. x3 = x4 = v). Note that {x1, x2, x3, x4} contains at least 3 distinct
leaves because N R∗ has no degree-2 blob. If u and v do not have an outgoing hybrid
edge in N R∗, then the length of e must be the same in N R∗

1 and N R∗
2 and equal to

�(e) = t := 1

2
(d(x1, x3) + d(x2, x4) − d(x1, x2) − d(x3, x4))

because N R∗
i is unzipped and because this equality holds on a tree and for external

edges of canonical degree-4 split sunlets. If u (resp. v) has an outgoing edge in N R∗,
then B(u) (resp. B(v)) is a k-cycle with k ≥ 5, u (resp. v) is adjacent to its hybrid
node, and B(u) (resp. B(v)) is reduced to a 3-cycle in the subnetwork induced by
{x1, . . . , x4}. By Proposition 6, shrinking this 3-cycle makes u (resp. v) of degree 2,
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Fig. 18 Taxon sampling to cover
a cut edge e = uv. In this
example, the blob containing v is
{v} and the blob containing u is
non-trivial. The subnetwork on
{x1, x2, x3, x4} includes e and
both u and v as degree-3 nodes

incident to e and to a new edge of length tu (resp. tv). This new edge length is known
because parameters are known for all cycle edges in B(u) (resp. B(v)). We can then
identify �(e) by subtracting tu (and/or tv) from t .

At this point we have that N R∗
1 = N R∗

2 . By contracting the tree edges of length 0
we get that N∗

1 = N∗
2 . This finishes the proof of Theorem 12. 
�
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Appendix A Proofs of technical results

A.1 Up–down paths and average distances

Proof of Proposition 1 Proposition 1 states the equivalence of up–down-path Defini-
tion 5 from Bordewich et al. (2018a), and Definition 6 for rooted networks. Let N+
be a rooted network, and let p = u0 . . . un in N+ satisfy Definition 5. Then clearly
there is no v-structure in p, that is, there is no segment ui−1ui ui+1 such that ui−1ui

and ui+1ui are both edges in N+, and p satisfies Definition 6. Next, let p = u0 . . . un

satisfy Definition 6. There are two cases:

• If u0u1 is an edge in N+, then since the direction cannot reverse during the path,
we have that for all i , ui ui+1 is an edge in N+, and p satisfies Definition 5.

• If u1u0 is an edge in N+, then we can look for the smallest index j such that
u j u j+1 is an edge in N+. If there is none, then p is a directed path from un to u0.
If there is such j , then by the same argument as before, for all i ≥ j , ui ui+1 is an
edge in N+. Either way, p satisfies Definition 5.


�

A.2 Proof that the zipped-up network is unique

In this section we prove that a metric semidirected network N has a unique zipped-up
version N∗ where all the hybrid edges have length 0, that can be obtained from N by
a series of “zipping operations”.
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Fig. 19 Left: the hybrid funnel F(h), highlighted in orange, is not maximal. F(g) is maximal, and contains
all highlighted edges (orange and brown). Right: F(u) and F(v) are both maximal (highlighted in yellow
and blue respectively). They are not disjoint, as may occur when a hybrid node has more than one child.
Zipping operations are performed after refining the network so that all hybrid nodes have a unique child

First we shall restrict ourselves to networks with all hybrid nodes having a single
child edge (i.e. tree edge or outgoing hybrid edge). For a network that does not satisfy
the requirement, we can apply step 1 of Definition 9 (shown in Fig. 5) and work with
the resulting network instead. By Proposition 3, such modifications do not change the
distances between existing nodes.

Definition 19 Let N be a metric semidirected network in which hybrid nodes have
a single child edge. Let h be a hybrid node, t be the length of its child edge and
ai , i = 1, . . . , n be the lengths of its n incoming hybrid edges. A zipping operation
at h is a modification of t, a1, . . . , an such that t and all ai remain non-negative,
and t + ∑n

i=1 γi ai stays constant. Two networks are zipping-equivalent if one can be
obtained from the other through a series of zipping operations.

The hybrid funnel F(h) based at a hybrid node h is themaximal connected subgraph
that consists of directed paths into h made of hybrid edges only, plus h’s child edge
(see Fig. 19). The height of a hybrid funnel is the number of edges on its longest path
ending at h.

Lemma 27 In a network in which hybrid nodes have a single child, distinct maximal
hybrid funnels have disjoint edge sets.

Proof First, for a maximal hybrid funnel, the child of its base h must be a tree edge,
because if it is a hybrid edge, we can get a larger hybrid funnel at its child node. Let
A and B be different maximal hybrid funnels. Then their bases u and v (respectively)
must be distinct: u �= v. If A and B have the same tree edge, then u and v must be
incident by their common child edge, and after rooting the network, u or v would have
three incoming edges but no outgoing edges, which is impossible. Therefore, A and
B cannot share a tree edge.

Suppose A, B share a hybrid edge ab. Then there is a path from b to u consisting
of hybrid edges only. The same holds for v. Because each hybrid node has a unique
child edge, one of the two paths must be contained in the other. Consequently u or v

has a hybrid edge as a child edge, which is a contradiction. 
�
Lemma 28 Let A be a maximal hybrid funnel in a metric semidirected network N.
Then zipping operations in N do not change

L(h) = th +
∑

p∈P(h)

γ (p)�(p) (A1)
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where h is the base of the funnel, th is the length of its child edge and P(h) is the set
of maximal directed paths in A that end at h.

Proof First, a zipping operation at a node outside of a maximal hybrid funnel F(h)

does not modify any of the edges of the funnel, and so does not change L(h). To finish
the proof, we show the following claim: for any hybrid node h, zipping operations at
nodes in the funnel F(h) (which may not be maximal) do not change L(h).

To show this claim, we use induction on the height of F(h). When the height is
1, the claim reduces to Proposition 3. Suppose the claim is true for heights up to k,
and F(h) is of height k + 1. Let u1, . . . , un be the parent nodes of h. We may assume
that ui is a hybrid node for i ≤ m and a tree node for i > m, for some m ≤ n. Then
F(ui ), i = 1, . . . , m are of height ≤ k. Note that

L(h) = th +
m∑

i=1

γi L(ui ) +
n∑

i=m+1

γi ti

where γi = γ (ui h) and ti = �(ui h). Let u be a hybrid node in F(h). If u �= h, then
u must be in some F(u j ), and a zipping operation at u does not affect L(h) because
th and all L(ui ) stay unchanged (by induction). To consider a zipping operation at
u = h, we rewrite

L(h) = th +
n∑

i=1

γi ti +
m∑

i=1

γi (L(ui ) − ti ).

The last sum is a function of edges in the hybrid funnels at u1, . . . , um , and is hence
unchanged by the zipping operation at h. The term th + ∑n

i=1 γi ti is constant by
Proposition 3, which completes the proof. 
�
Theorem 29 The zipped-up version of a network, as defined in Definition 9, exists and
is unique.

Proof Let N be a metric semidirected network. First we show that it is possible to
obtain a zipped-up version of N . Consider a topological ordering of the nodes in
N based on some (arbitrary) rooting of N . This is an ordering from the root to the
leaves, such that u is listed before v whenever there exists a directed edge uv. Perform
zipping-up operations as in Definition 9 according to this ordering (restricted to hybrid
nodes). We claim that the resulting network N∗ is zipped-up. Indeed, by virtue of the
topological ordering, zipping operations at either parent of a hybrid node h must be
performed before zipping up h, so the length of h’s parent edges remain 0 after being
set to 0, and N∗ is zipped-up.

To show that the zipped-up version of N is unique, we consider a zipped-up version
N ′ and show that N ′ and N∗ are identical. We consider two cases. If all hybrid nodes
of N have unique child edges, then N ′, N∗ and N have the same topology and the
same lengths for edges outside of any funnel. N ′ and N∗ have hybrid edges of length
0. To show uniqueness, it suffices to show that they have identical lengths for tree
child edges below hybrid nodes. Let h be a hybrid node with a tree child edge. Then
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the funnel F(h) is maximal. By Lemma 28, L(h) is identical in N ′ and in N∗ (and
in N ), because N ′ and N∗ are both zipping-equivalent to N . For N ′ and N∗, all the
paths have length 0 in the last sum of (A1), such that the length th of the child edge
must equal L(h) and therefore be identical in N ′ and N∗; and N ′ = N∗.

Nowwe consider the case when some hybrid nodes in N have two or more children.
For a network M , let M̃ denote the network obtained by performing step 1 of Def-
inition 9 below every hybrid node with multiple children, even those not zipped-up.
Then a zipped-up version N ′ of N may have a different topology than Ñ . Step 1 of
Definition 9 was performed in N ′ only at nodes that were not zipped-up, so the edges
in Ñ missing from N ′ are below hybrid nodes that are zipped-up in N ′. Conversely,
the edges introduced in N ′ during zipping-up have positive lengths from (1) in step 2.
Now let N ′

1 and N ′
2 be two zipped-up versions of N . Then Ñ ′

i is a zipped-up version
of Ñ , for i = 1, 2 (zipping up at the same series of hybrid nodes as to get N ′

i from N ).

By the previous case, Ñ ′
1 = Ñ ′

2. Since the positivity of edges in Ñ ′
i determines which

tree edges have been introduced in N ′
i , N ′

1 and N ′
2 have the same topology, and then

the same metric. 
�

A.3 Mapping the tree of blobs on the network

Proof of Proposition 16 Let T = BT(N ). For a node u in N , write B(u) for the blob
that contains u. For the first bijection: let g be the map from cut edges of N to the
edges of T such that g(uv) is the edge (B(u), B(v)) in T . It is injective because if two
edges e1 and e2 get mapped to the same edge (B(u), B(v)) in T , then one could find
a cycle in U (N ) that contains both e1 and e2, contradicting that they are cut edges. It
is surjective because for an edge e that connects two 2-edge-connected components
U and V , the removal of e must disconnect U and V : Otherwise U and V would be
the same 2-edge-connected component. Therefore e must be a cut edge, and we have
g(e) = (U , V ).

For the second bijection: recall that we require all tips of a rooted network to have
in-degree 1, so the same holds for the tips of a semidirected network N . The blob that
contains a tip x is therefore a trivial blob, {x}. Let f : VL(N ) → V (T ) be the map
such that f (x) is the trivial blob {x}. Clearly f is injective. We only need to show that
these trivial blobs are all the leaves of T , i.e. we did not introduce new leaves in T that
do not correspond to tips of N . Suppose that there is a leaf blob B in T that is not of
the form {x} for some tip x in N . B may not contain any leaf x , because {x} is a blob
itself, so we would have B = {x}, a contradiction. Let N+ be a rooted LSA network
that induces N , obtained from rerooting N at a node. Let e = (u, v) be the cut edge
incident to B in N+. Then we must have that u ∈ B, because otherwise v ∈ B and B
would contain any descendant leaf of e (found by following any directed path starting
at e until we reach a node of out-degree 0). Consequently, the root ρ(N+) must be in
B (a leaf in T ), for otherwise the edge e would be directed the other way. Now any
path from the root to a leaf must go through (u, v). Therefore v lies on every path from
the root to any leaf. Since v �= ρ(N+), N+ is not an LSA network, a contradiction. 
�
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A.4 Proof that mixed representations preserve distances

To prove Theorem 26, we extend Definition 10.

Definition 20 (displayed split network) Let N∗ be the mixed network representation
of a level-1 semidirected network N . For hybrid node h ∈ N∗, let EH (h) be its parent
hybrid edges. Let G be the graph obtained by keeping one hybrid edge e ∈ EH (h)

and deleting the remaining edge(s) in EH (h), for each hybrid node h ∈ N∗. Then
G is a split network (Steel 2016, p. 240) and is called a displayed split network. The
distribution on displayed split networks generated by N∗ is the distribution obtained
by keeping e ∈ EH (h) with probability γ (e), independently across h.

Note that G is a split network because it has no directed (hybrid) edges; its topology
is of level 1; and its blobs are degree-4 cycles, each with 2 pairs of split edges.

Proposition 30 Let N∗ be the mixed network representation of a level-1 semidirected
network N. For two nodes u, v and split network G, let Quv(G) be the set of paths
between u and v in G that have shortest length. Then each equivalence class of mixed
up–down paths between u and v in N∗ is equal to Quv(G) for some split network G
displayed in N∗. Furthermore, for a given mixed up–down path p between u and v in
N∗,

P(p ∈ Quv(G)) = γ (p)

where G is a random split network displayed in N∗. Consequently,

dN∗(u, v) = E�(Quv(G)) (A2)

where the expectation is taken over a random displayed split network G in N∗.

Proof For the first claim, note that any shortest path between u and v in G is a mixed
up–down path. We only need to show that all shortest paths between u and v in G are
equivalent. Let q and q ′ be two of them. Note that any tree edge or hybrid edge from
N∗ that was retained in G is a cut edge in G. Since N is of level 1, each blob of G
corresponds to a split blob (4-cycle) from N∗. Since the unique path from u to v in
the tree of blobs of G contains the paths in Quv(G), we get that q and q ′ must pass
through the same tree edges, hybrid edges and split blobs; and in the same order. They
may differ in the edges that they contain from each split blob. Any such difference
corresponds to replacing one split segment by an equivalent split segment (of shortest
length). Therefore q and q ′ are equivalent.

For the second claim, let p be a mixed up–down path from u to v in N∗. It suffices
to show that p ∈ Quv(G) if and only if all the hybrid edges present in p are kept in
G. The “only if” part is trivial. For the “if” part, assume that the hybrid edges from
p are retained in G, such that p is in G. We want to show that it is of shortest length.
Let q ∈ Quv(G). Both p and q go from u to v, so by the same argument as above, p
and q must pass through the same tree edges, hybrid edges, and split blobs; and in the
same order. Since p is a mixed up–down path, its split segments must be of shortest
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length. Therefore p must traverse each split blob through a split segment of length no
larger than that of q. Consequently p ∈ Quv(G). 
�
Proof of Theorem 26 By induction, it suffices to show that in a mixed network, replac-
ing a single 4-cycle by its corresponding split cycle does not change the average
distances. Let M be a mixed network on taxon set X with one or more semidirected
4-cycles, and let M ′ be the mixed network obtained from M by replacing one 4-sunlet
subgraph C in M by the corresponding split subgraph C ′. Since U (M) = U (M ′), M
and M ′ have the same tree of blobs T and C and C ′ correspond to the same node b in
T . Let x, y ∈ X be two tips of M and p be the path from x to y in T .

If p does not go through b, then the sets of mixed up–down paths between x, y
are identical in M and in M ′ (they do not intersect C or C ′ respectively), therefore
dM (x, y) = dM ′(x, y).

If instead p goes through b, then all mixed up–down paths from x to y in M (resp.
M ′) intersect C (resp. C ′), and they must all go through the same cut edges e1 and e2
adjacent to C (resp. C ′). Let u and v be the nodes in C adjacent to e1 and e2. We can
identify u and v with nodes in C ′ if we omit step 2 in Definition 17. We can do so
without loss of generality because the suppression of degree-2 nodes does not affect
distances. Then, all mixed up–down paths in M (resp. M ′) from x to y go from x to u
along edges that do not belong in C (resp. C ′), then from u to v within C (resp. C ′),
and then from v to y through edges not in C (resp. C ′). The same applies to each split
network displayed in M (resp. M ′). Since, in addition, dG is defined as the length of
the shortest path on a split network, the following holds when the graph G is any split
network displayed in M or M ′:

dG(x, y) = dG(x, u) + dG(u, v) + dG(v, y). (A3)

By (A2) in Proposition 30, (A3) also holds when G = M and G = M ′. Because M ′
differs from M only in C , which is replaced by C ′, we have dM (x, u) = dM ′(x, u) and
dM (v, y) = dM ′(v, y). We also have dM (u, v) = dM ′(u, v) because C ′ is the mixed
representation of the 4-sunlet C . Therefore dM (x, y) = dM ′(x, y). 
�
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