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Motivated by the COVID-19 pandemic, this paper explores the supply chain viability of 

medical  equipment,  an industry whose supply chain  was put under  a  crucial  test  during the 

pandemic. This paper includes an empirical network-level analysis of supplier reachability under 

Random Failure Experiments (RFE) and Intelligent Attack Experiments (IAE). Specifically, this 

study investigates the effect of RFE and IAE across multiple tiers and scales. The global supply 

chain data was mined and analyzed from about 45,000 firms with about 115,000 intertwined 

relationships spanning across 10 tiers of the backward supply chain of medical equipment. This 

complex  supply  chain  network  was  analyzed  at  four  scales,  namely:  firm,  country-industry, 

industry, and country. A notable contribution of this study is the application of a supply chain 

tier optimization tool to identify the lowest tier of the supply chain that can provide adequate 

resolution for  the study of  the supply chain  pattern.  We also developed data-driven-tools  to 

identify the thresholds for breakdown and fragmentation of the medical equipment supply chain 

when faced with random failures  or different  intelligent  attack scenarios.  The novel network 

analysis tools utilized in the study can be applied to the study of supply chain reachability and 

viability in other industries.
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1. Introduction 

Recent  events,  such  as  the  COVID-19  pandemic,  Suez  Canal  blockage,  Colonial  Pipeline 

cyberattack, Texas ice storm, Huawei ban by the U.S. Department of Commerce, and the 2022 

Russian invasion of Ukraine, highlight the pressing need for supply chains that are robust and 

resilient in the face of high-intensity, sudden disruptions (Nagurney, 2021; Hosseini and  Ivanov, 

2021;  Kosasih  and Brintrup,  2021;  Crosignani  et  al.,  2021;  Powers,  2021;  Shi  et  al.,  2022; 

Boston, 2022) 

1The first and second authors contributed equally.



While  the  supply  chain of  many critical  products  consists  of  multiple  tiers  expanded across 

different industries and countries, relatively little research has focused on the vulnerability issue, 

with  most  prior  works  centering  on  productivity  and  efficiency  under  comparatively  small 

everyday disruptions (Remko, 2020). Indeed, it is not clear how to model large disruptions of the 

kind observed recently, especially when they affect multiple supply chain tiers across the globe, 

for which data has been widely considered unavailable.  In the present work, we analyze the 

robustness of the global medical supply chain network, both because of its inherent interest in 

light of the COVID-19 pandemic and also as a case study to show how such high-intensity, 

immediate  disruptions  can  be  modeled.  To do this,  we use  a  novel  supply  chain  discovery 

technique and utilize an improved metric of supply chain robustness, namely the reachability of 

terminal suppliers after a network disruption. We conduct our analysis across several scales and 

using both random and targeted disruptions. Finally, we compare our results to what would have 

been obtained using classical percolation-theoretical robustness estimates.

While  firms  traditionally  focused  on  their  immediate  suppliers  to  better  manage 

disruptions,  Butt,  in  a  2021  study  on  the  impact  of  COVID-19  in  supply  chain  networks, 

recommends that firms should expand the visibility  of their  supply chain beyond their  tier-1 

suppliers.  The  absence  of  supply  chain  visibility  “creates  havoc  in  the  entire  value  chain” 

(Pradhan and  Routroy,  2008).  Supply  chain  visibility  is  primarily  concerned  with  extending 

firms’ “timely and accurate” access to “key or useful” information to operate the supply chain 

(Barratt and Oke, 2007; Barratt and Barratt, 2011; Sunmola, 2021). Despite the importance of 

supply chain visibility, firms are generally hesitant to share information about their supply chain. 

On the one hand, supply chain information sharing among firms is known to result in 

“improved  operational  performance,  enhanced  customer  service,  reduced  costs,  improved 

quality, and enhanced competitiveness” (Yang et al. 2011). On the other hand, many firms have 

restrictive information disclosure policies that prevent them from promoting visibility across the 

supply  chain  (Marshall  et  al.,  2015).  There  is  evidence  that  justifies  the  firms’  hesitancy in 

disclosing supply chain information.  For example,  Mittendorf et  al.  (2021),  in their  study of 

supply chain information sharing, provide evidence that disclosing certain information may not 

be in the long-term financial interest of the firms or their customers. To address this challenge, 

we utilize a novel supply chain data collection using data mining of public financial records.



     The novel analysis of supply chain viability under failure and attack conditions is 

another  notable  contribution  of  this  work  that  opens  the  door  to  fruitful  future  analytical 

approaches in the study of intertwined supply chain networks.     

The global  medical  equipment  supply chain network can be studied through different 

scales of network structure spanning across multiple tiers. Motivated by COVID-19, we assess 

the vulnerability of the medical equipment supply chain at the network level (Ivanov and Dolgui, 

2021) to various interruptions at the firm, country-industry, industry, and country scales.  The 

present research is primarily  concerned with the “supply chain membership” (Marshall et  al. 

2015) of the firms in the supply chain network. 

In this paper, we will discuss how tools from graph theory and statistical physics can be 

applied to the study of complex supply chain networks. One of the questions that we address in  

this paper is how many tiers of the supply chain must be analyzed to provide needed visibility to 

the network pattern. We will also quantify how global supply chains will be affected by different  

degrees of random and intelligent attacks. Finally, we will provide a methodology to identify the 

level of failure or attack under which a supply chain breaks down and becomes fragmented. 

2. Literature Review

     Researchers and policymakers have called for development of new solutions for designing and 

managing  global  supply  chains  that  are  more  responsive  to  “the  risk  of  disruption”  (c.f. 

Sherkarian et al.  2020). The organizational supply chain's ability to manage disruptions is of 

particular  importance  “in the time of  crisis”  for critical  supplies  such as medical  equipment 

(Okeagu et al., 2021). Okeagu et al. (2021), in their study on the effect of COVID-19 in the U.S.  

medical  system,  call  for  better  “transparency  of  where  our  raw  materials  are  sourced, 

diversifying of our product resources, and improving our technology.” While companies do not 

voluntarily report their supply chain information, there are opportunities for data scientists to 

mine and analyze such data from the available data sources to explore the vulnerability of global 

supply chains to disruptions. “Disruptions are unexpected events occurring in a supply chain” 

(Wu et al. 2007) and are closely related to risk and uncertainties in the supply chain (Blackhurst 

and Wu, 2009). The supply chain’s abilities to manage uncertainties and disruptions has been 

widely studied using various measures, including agility,  robustness, vulnerability,  flexibility, 

and adaptability,  to  name a few.  Each measure  corresponds to  the supply  chain’s  ability  to 



prevent disruption and/or recover from a disruption (Zegordi and Davarzani, 2012). Appendix 1 

includes the definition of these abilities. 

Supply chain abilities can enable the organization to continue operations despite various 

uncertainties and disruptions, be they short-term, long-term, minor, or significant. The COVID-

19 pandemic is “characterized by a rapid spread” that affected not only supply and demand but 

also global logistics (Grida et al. 2020). The short-term effect of the COVID-19 interruption has 

been observed in the daily life of society as well as in critical medical operations (Okeagu et al. 

2021). Various export bans of medical equipment that went into effect in 2020 are examples of 

“protectionism in the pharmaceutical and medical supplies sectors” that put considerable short-

term  pressure  on  global  supply  chains  (Stellinger  et  al.  2020,  pp:  23).  In  the  long-term, 

businesses  are  expected  to  adapt  to  new patterns  of  production  and trade,  which  stem from 

operational necessities as well as protectionist  policies. “Dismantling the international supply 

chains, [and] reliance on domestic production” (Yacoub, and El-Zomor, 2020, pp:11) is a real 

possibility as a result of policies defined by “medical protectionism” and “retreat from global 

supply chains” (Baldwin and Evenett, 2020, pp: viii) is expected. This study employs a network 

view of the global supply chain within the general systems theory. We utilize percolation theory 

and cascading effects to analyze the effect of sources of disruption on the supply chain network. 

2.1 Network View of Supply Chain

Network analysis is “an essential tool for studying system resilience” due to its capability “to 

capture relationships and dependencies between components” (Williams and Musolesi, 2016). 

Advances in data mining and big data computation, along with recent developments in “analysis 

of...spatial  and temporal  network[s],” have provided researchers with tools to conduct “more 

accurate” analysis of many real-world network systems (Williams and Musolesi, 2016). Supply 

chain optimization practices (Haque et al.  2020) and globalization of markets and production 

have made the global supply chains less centralized (Abele, Elzenheimer et al. 2006; Mourtzis 

and  Doukas  2006).  Advanced  network  models  have  proven  capable  of  analyzing  complex 

networks “even in  completely decentralized architectures” (Trajanovski  et  al.  2012).  In their 

well-cited  study  on multi-tier  supply  chain  management,  Mena  et  al.  (2003)  emphasize  the 

network  view  of  the  supply  chain  and  describe  that  contemporary  firms  are  increasingly 

“operating within more complex and dynamic networks.”  Mena et al. (2003) explain that not all 



relationships are of the same importance. For example, one supplier may act as a bridge between 

different firms or clusters. Thanks to the advancement in the field of network science, we are 

equipped with several tools to measure the influence of each node in the network and simulate 

the effect of elimination of each node on the global supply chain network. We employ centrality 

measures  to  identify  and  measure  the  influence  of  the  firms  in  the  multi-tier  supply  chain 

network. In order to be able to conduct such analysis, the supply chain network needs to be 

mapped across multiple tiers. 

2.2 Supply Chain Mapping

Studying the global intertwined supply chains often requires mapping the supply chain network 

(Jia et al. 2019). However, such mapping is “not an effective nor efficient solution” if it is only 

based on the first-tier  suppliers (Choi and Linton 2011).  Melnyk et  al.  (2022) highlight the 

visibility  challenges  of  multi-tier  supply  chains  and  argue  that  the  “only  alternative  is  to 

undertake some form of supply chain mapping.” Mubarik et al. (2022) argue that supply chain 

mapping can  be  conducted  from three  perspectives,  “namely,  upstream [suppliers]  mapping, 

downstream [customers] mapping, and midstream mapping.” However, most firms manage their 

supply chains by focusing on the first-tier  supplier  and the first-tier  customer;  consequently, 

these firms lack true supply chain visibility.  In the present study, we start mapping the supply 

chain from distributors and use an upstream snowballing approach to map the supply chain. 

Combining data collection and data analysis methodologies in this paper which are based on 

network theory and analytical techniques from statistical physics, can be promising for some of 

the supply chain visibility challenges. These tools can help firms map their supply chains and 

identify the hot spots within the supply chain quickly and efficiently, as illustrated by mapping 

and analyzing the medical equipment supply chain in this study.

Furthermore, we identify the most influential nodes at different scales using centrality 

measures (please see the supplemental data). This is an important contribution since “unless SC 

mapping  is  measurable,  it  is  difficult  to  examine  its  impact  on  any  performance  indicator” 

(Melnyk et al. 2009). In this paper, we introduce solutions to measure the influence of each node 

across the global supply chain. 

Despite  the importance  of  supply  chain  mapping in  dealing  with  disruptions  such as 

COVID-19 (Mubarik et al. 2021), constructing such a map is often costly and time-consuming 



(Hall, 2019). Considering the visibility challenge (Melnyk et al. 2022) of firms’ supply chains, 

some researchers have primarily collected data through case studies on supply chains (c.f. Jia et 

al. 2019). Collecting data from primary sources is expensive, time-consuming, and may not be 

feasible to conduct across a large number of firms in an industry on a global scale. The use of 

primary sources can be helpful for managing the supply of critical components with a relatively 

few upstream tiers. One example is Toyota’s monitoring of its semi-conductor supply chain. 

Davis (2021a,  2021b) explains  how Toyota’s experience in dealing with the 2011 tsunami in 

Japan helped the company to be prepared to navigate the 2021 semi-conductor shortage, which 

was prompted by the COVID-19 and exacerbated by the 2021 fire in Renesas Electronics Corp, 

one of Toyota’s major semi-conductor suppliers. The recent success of Toyota in managing its 

multi-tier supply chain exhibits the importance of managing the supply chain across multiple 

tiers.

2.3 Percolation Theory and Cascading Effect

The  concept  of  disruption  propagation  in  the  supply  chain  has  been  well  recognized  and 

researched  in  the  area  of  operations  research  over  the  past  decades  (c.f.  Bhamra,  Dani,  & 

Burnard, 2011; Ivanov et al., 2013; Ghadge et al. 2021; Sindhwani et al. 2022). The concepts 

associated with ripple effects, bullwhip effects, and cascading failure, as well as implications of 

percolation theory in the supply chain, are well studied and understood in the previous research 

on supply chain disruption.  The analysis tools utilized in this study are based on random failures 

and intelligent (targeted) attacks within percolation theory, as well as the cascading failure of 

networked structures. 

Percolation  theory  is  an  extension  of  the  bond  percolation  process  as  proposed  by 

Broadbent and Hammersley (1957) to explain how “fluid spreads randomly through a medium” 

in limestone under gravity using mathematical modeling. Broadbent and Hammersley’s (1957) 

mathematical modeling was an advancement of previous diffusion approaches as they considered 

the  effect  of  “external  forces”  to  influence  the  network  structure  “beside  the  random 

mechanism.” Percolation  theory studies  the formation  of  connected  components  as  nodes  or 

edges are added to a graph (Wierman, 2011), which is naturally dual to the robustness situation,  

where nodes or edges are removed or disabled. Our work is partly inspired by these ideas, but we 

notably are not looking at connected graph components; instead are using the reachability of end 



suppliers,  which is  more applicable  and relevant.  It  is  possible  that  much of the percolation 

theory can be extended to this case, but we are not aware of any prior work having done so either 

theoretically or empirically using real-world big data.

Percolations  models  have  been  intensively  studied  and  “applied  to  a  wide  range  of 

phenomena  in  physics,  chemistry,  biology,  and  materials  science  where  connectivity  and 

clustering play an important role” (Wierman, 2011). To the best of our knowledge, the earliest 

application of percolation theory in business was the use of this theory to explain the “spread of 

innovation” (Hausman, 1998) along with diffusion theory. Both of these theories originate from 

“physical science and engineering” (Hausman, 1998). Percolation theory found its way to other 

areas of organizational studies and business topics in the early 2000s through its application in 

bankruptcy (Aleksiejuk and Holyst, 2001), innovation management (Silverberg and Verspagen, 

2003), disaster management (Helbing and Kuhnert, 2003) and in the retail network (Cliquet and 

Guillo, 2013). Only in the past decade have scholars in the field of operations and supply chain 

management  started  to  explore  supply  chain  networks'  reachability  through  the  lens  of 

percolation. For example, Mizgier, Wagner, and Holyst (2012), in their study on supply chain 

networks, highlighted the nonlinear nature of supply chain structures due to random failures in 

the context of bankruptcies using simulated models.

Supply chain failures are usually caused by random events (such as natural  disasters, 

including pandemics) or targeted/strategic events (such as trade wars, terrorism, sanctions, trade 

regulations, and competitive pressures). Percolation theory provides analytical tools to explore 

both types of causes of interruption. The study of targeted attacks can also reveal firms’ strategic 

supply chain weaknesses  and strengths.  A few previous  studies have attempted  to  study the 

application  of  percolation  theory  in  the  supply  chain  using  simulation  or  modeling  without 

tracking the multi-tier  supply chain to end suppliers.   For example,  Zhou and Wang (2018) 

proposed measuring  supply  chain  efficiency2 under  attack  scenarios  and failure  scenarios  of 

nodes  and  edges  using  a  simulated  scale-free  model  generated  by  Barabási  and  Albert’s 

algorithm (Barabási and Albert, 1999). In another study, Viljoen and Joubert (2018) explored the 

role of transportation infrastructure on supply chain network resiliency using simulation. They 

argued that most of the previous work around the design of the supply chain had been concerned 

2 Zhou and Wang (2011) defined supply chain efficiency “as the average of the reciprocal of the shortest path 
lengths between each node pair in the network”.



with quantifying and optimizing the supply chain efficiency, and less attention has been paid to 

quantifying  the  supply  chain  vulnerability.  Viljoen  and  Joubert  (2018)  promote  the  use  of 

percolation  theory  and  cascading  failure  as  “preferred”  tools  to  quantify  the  supply  chain 

network reach and vulnerability assessment. 

2.4 Research Gaps and Cascading Effects

Mizgier et al. (2012) further call for the need to use “real-world data” in this area. We address 

this  gap  in  this  study.  More  recent  studies  have  recommended  the  use  of  percolation  and 

propagation  of  cascading  effects  in  risk  management,  particularly  in  the  area  of  critical 

infrastructure  and supply  chain  (c.f.  Schauer  et  al.  2018,  Schauer  2018,  Smith  et  al.  2019, 

Abdulla and Birgisson, 2020, and Wang et al. 2021). Percolation is among the tools that can help 

firms navigate more successfully in “a post-COVID-19 world” (Hill et al. 2021). Despite many 

theoretical  modeling  studies  and  a  few case  studies,  there  exists  a  gap  in  the  literature  of 

empirically analyzing the complex network topology of the global supply chains through real-

world data (Krause et al. 2016).

Addressing this gap requires application of new methodologies. For example, we need to 

develop a data-driven methodology to identify the number of supply chain tiers that must be 

observed to have proper visibility of the supply chain pattern that crosses industries and borders. 

We discuss our tier-count tool that identifies the minimum number of tiers required for analysis 

under each disruption scenario. Another novel analysis that we apply from the field of statistical 

physics  is  with  regard  to  the  identification  of  a  threshold  of  supply  chain  breakdown  and 

fragmentation. This addresses another gap in the literature with regard to the threshold of supply 

chain disruption (c.f. Wang et al. 2018). 

The analytical methods used in this study are partially inspired by the cascading approach 

(c.f. Sauer and Seuring, 2019). Supply chain cascading analysis has been widely used to analyze 

disruptions in the context of computer network architecture (c.f.  Potts et al.  2020), computer 

network security (c.f. Yan et al. 2014), infrastructure networks such as power-grids (c.f. Ash and 

Newth, 2007; Guo et al. 2019), and traffic networks (c.f. Li et al. 2019). Cascading failure in  

these studies is usually caused by the overload of the network, which is not frequently applied to 

supply  chain  failure  analysis.  Yang  et  al.  (2021)  argue  that  “when  a  node  is  disrupted,  its 



downstream and upstream neighbors will be affected due to supply shortage and demand losses, 

respectively.”  From this  perspective,  both  underload  and overload  can  negatively  affect  the 

supply chain robustness through not only inventory but also cost (Sun et al., 2020). For example, 

in the case of an underload, the supply chain may be disrupted due to unfavorable economies of 

scale in backward or forward tiers of the supply chain.

As the supply chain of medical equipment has implications in the nations’ quality of life 

and  national  security,  previous  studies  on  infrastructure  and  military  supply  resiliency  (c.f. 

Brown et al. 2005, Barrow 2019) have contributed to a better understanding of critical supply 

chains. Brown et al. (2005) argue that while commercial supply chains may not be generally 

considered as critical infrastructure, “they are certainly critical” to the “well-being” of a nation. 

Disturbances  to  the  networked  infrastructure  may  be  caused  by  “random failure,  deliberate 

attacks, and natural disasters” (Wang et al., 2013).

3. Research Methodology

In their well-cited paper on supply chain disruption, Wu et al. (2007) discuss the intertwined 

global supply chain of products and services. Network-based modeling and analysis have been a 

recommended “methodology for supply chain distortion analysis” that addresses the complex, 

multi-tier, nonlinear, global, and dynamic characteristics of organizational supply chains (Wu et 

al. 2007). In arguably one of the most targeted and comprehensive investigations in the supply 

chain  literature  about  “disruption  propagation  and  structural  dynamics,”  Ivanov  and  Dolgui 

(2021) argue that this area has been explored using three categories of methodological tools, 

namely, network and complexity theory, mathematical optimization, and simulation studies. The 

present  work  can  be  best  classified  as  a  network  and complexity  theory  application,  where 

supply  chain  analysis  is  conducted  on  the  “macro  view of  the  supply  chain  structure”  and 

“operational parameters” are not the subject of the research (Ivanov and Dolgui, 2021). 

We now discuss some of the network-based methods to study the sources of supply chain 

disruptions along with their application in the present study. Petri nets have been discussed in the 

literature as a method for analyzing disruption risk and  uncertainty in complex global supply 

chain networks. While previous works aimed to understand supply chain disruptions using risk 

probability, Petri-net modeling does not require the availability of such probability distributions, 

which are usually constructed based on past experiences (Zegordi and Davarzani, 2012). This is 



good, since it allows for the modeling of events, such as the COVID-19 pandemic, for which we 

do not have probability estimates. Petri-net models have been utilized by firms with access to 

detailed  product  information,  including the  bill  of  materials  and production  process  of  their 

products/service. While such information is not available at the global supply chain scale, we 

adopt the “reachability” analysis approach used in Petri-net modeling across the network (Wu et 

al. 2007, Zegordi and Davarzani, 2012, Fierro and Garcia, 2020). “Reachability” is the basis of 

our supply chain disruption analysis. In this paper, we explore how the firms’ access (or reach) to 

their multi-tier supply chain is affected when interruptions occur.

     According to percolation theory, in certain classes of networks, there is a threshold 

number of edges that must be present for the network to form a giant connected component, but 

below that threshold, the network consists of disconnected clusters (Albert and Barabasi, 2002).

               

Figure 1 Caption: Data Collection and Analysis

Figure 1 Alt Text: Data collection, preparation, and analysis. After identifying the main suppliers 

of medical equipment, we conducted data mining to collect and prepare the supply chain network 



across different tiers. The data is mined from the public financial filings, as detailed in the data 

collection section.

Figure 1 displays the main steps of data collection and analysis in this work. To ensure 

that  we  have  collected  data  from  enough  backward  tiers  of  supply  chain  to  have  a  stable 

resolution of the network, we conducted a convergence analysis.  We then prepared data across 

tiers  and scales  of  analysis.  We conducted  network  reachability  analysis  using  the  result  of 

random failure and intelligent attack failures. Finally,  identified the threshold of supply chain 

breakdown and fragmentation at different limits. These steps are described in the data collection 

and data analysis sections.

  There have been no previous studies using the supply chain reachability method on real-

world  data  across  large-scale  multi-tier  supply  chain  data.  The  limited  number  of  previous 

studies that utilized similar methods have explored other aspects of the supply chain, such as 

supply chain sustainability analysis at small scales or using stochastic methods (c.f. Kumar and 

Rahman,  2017;  Bommel,  2010).  In  this  study,  the  global  supply  chain  reachability  will  be 

assessed in the presence of random failure and intelligent attacks using real-world supply chain 

data.

4. Data Collection

The supply chain data on which this study relies consists of 115,118 real relationships between 

44,927 firms, with other scales of the network being computed from the firm-scale data.  To the 

best  of  our  knowledge,  the  previous  studies  in  this  area  have  been  conducted  either  using 

stochastic, synthetic (simulated) supply chain networks (c.f. Sen et al. 2020; Yang et al. 2021; 

Wang et al. 2018) or using relatively small local supply chain structures (c.f.; Hernandez and 

Pedroza-Gutierrez, 2019, research on seafood market in Guadalajara, Mexico based on the study 

of 10 wholesalers,  using a single tier).  Considering that “synthetic networks” are constructed 

using “random network models” to represent a simulation of multi-tier supply chains (Yang et al. 

2021), they can provide an opportunity for researchers to practice various scenarios in synthetic 

supply  chain  structures,  assuming access  to  information  about  the  supply  chain.  Despite  the 

convenience  of  using  simulated  networks  to  study  real-world  constructs,  these  simulated 

networks come with restrictive assumptions and simplifications that limit the implications of the 



findings. For example, in an innovative study on supply chain resilience and restoration after a 

crisis using simulation data, Mao et al. (2020), assume that all firms in the supply chain will 

select the shortest path during restoration, which is not widely applicable to real-world supply 

chains. Additionally, data scientists using simulated networks face various limitations, including 

credibility, scalability (Rampfl, 2013), reliability, accuracy, different algorithms’ characteristics, 

and generalizability of the findings (Cassens et al., 2005). The alternative to simulated data has 

traditionally been carefully curated, real-world data. The advantage of this approach is that the 

topology is more realistic than in the random graph models, so the results may be more relevant.  

However, it is very difficult to collect enough real-world data to capture the multi-tier, multi-

scale complexity of global supply chains, so in general, studies using real networks can suffer 

from  serious  missing  data/boundary  effects  as  well  as  a  lack  of  understanding  of  how 

generalizable the conclusions are to broad industries.  The present study utilizes  a novel data 

collection method from financial  resources to get a comprehensive picture of the entire real-

world global supply chain among public firms.

The  Securities  and Exchange  Commission  (SEC)  Statement  of  Financial  Accounting 

Standards (SFAS) requires publicly traded firms (and many private firms) to report their notable 

customers and suppliers, among other information. More specifically, 17 CFR 229.101 requires 

firms  to  report  their  business  description  along  with  information  about  the  suppliers  and 

customers that “accounted for 10 percent or more of consolidated” revenue/cost “in any of the 

last three fiscal years, or if total revenue did not exceed $50,000,000 during any of those three 

fiscal years, 15 percent or more of consolidated revenue” or cost (SEC, 33-7620). We refer to 

these firms as “notable” customers and suppliers. These legal requirements, along with similar 

requirements by regulatory agencies of all other major stock exchanges, provide data scientists 

access to global supply chain data far beyond what is used in previous supply chain studies. In 

particular, there is every indication that this data is not biased toward US firms. To the best of 

our knowledge, this is the most comprehensive large-scale feasibly and legally available supply 

chain data. The data for this research is prepared and provided by the XXX Data Science Lab. 3 

XXX Data Science Lab uses various data mining techniques and resources to mine supply chain 

data. This data is not limited to publicly traded firms. Many medium and large private companies 

who wish to  have  access  to  certain  financial  instruments  (e.g.  those  issuing more  than  500 

3 A member of the XXX Data Science Lab is a co-author. To protect the anonymity of the review process, the 
name of the lab will be provided after the review process



common shares with assets in excess of $10 million)  are also required to file their  financial  

information with their exchange commission. 

MSF: Medical Supply Firm (MSF). Blacked out nodes are Terminal Suppliers (TS)                                        Shaded area represents a loop.

Figure 2 Caption: Network Data Structure: Tier-by-Tier Data Collection.

Figure 2 Alt Text: An illustration of a multi-tier supply chain across five tiers. The image 
identifies terminal suppliers. An example of a loop is also displayed in the image.

A  schematic  map  of  the  first  five  tiers  of  this  data  is  presented  in  Figure  2.  As  a 

simplification,  Figure 2 presents each tier as disjoint. In reality,  our supply chain network is 

nonlinear,  and many firms  are  present  across  multiple  tiers.  Medical  Supply  Firms (MSFs), 

which  are  wholesalers  or  distributors  of  medical  equipment,  are  the  starting  point  of  data 

collection. Terminal Supplier (TS) are firms in the supply chain for which we don’t know of any 

higher-tier dependencies, and they are identified in Figure 2 by black-filled nodes. These TSs are 

not  necessarily  in  the  last  tier,  as  lower-tier  firms are  not  guaranteed  to  report  any notable 

suppliers in higher tiers. The supply chain network includes numerous cycles. For cycles that 



include a TS, all members of the cycle are identified as TSs. In Section 5, we have provided the 

analytical justification for our choice to collect ten tiers of data.

The data collection starts with all companies listed in SNL Financial, S&P Capital I.Q., 

and Compustat under the primary Standard Industry Classification (SIC) 5047 (Medical, Dental, 

and Hospital Equipment and Supplies), which was 324 firms at the time of data collection. The 

supply chain information about notable suppliers of 267 MSFs was available to be mined. Ten 

rounds of data  mining and preparation were performed to construct  the 10-tier  supply chain 

network.  The  network  was  constructed  from  115,118  relationships  between  44,927  firms. 

Appendix 2 illustrates the distribution of the suppliers as well as the number of new firms we 

mined at each round of data collection. Information about the type of ownership is available for 

all of the firms in the sample. Twenty-four percent of organizations in our sample are public 

companies, 73% are private companies, and there is a small number of educational institutions, 

foundations/charitable  institutions,  and government institutions,  which account for 3% of our 

sample population. Information regarding the number of employees is available for 63% of the 

firms  in  our  sample.  The  median  firm  size  in  our  sample,  as  measured  by  the  number  of 

employees, is 463, with 48% of firms in our sample having more than 500 employees. Fifty-two 

percent of the firms have 500 or fewer employees.  A smaller portion of firms in our sample 

(25%) have 100 or fewer employees. If we assume that all firms with missing employees’ data 

are  private  Small  and  Medium  Enterprises  (SME),  the  share  of  firms  with  500  or  fewer 

employees increases to 69%. Appendix 3 presents the list of 20 main suppliers at each of the four 

scales of analysis.  We assigned each firm to a country-industry using the country where its 

headquarters  is  located,  following  Lavassani's  (2017)  proposed  multi-scale  network  analysis 

approach.  

5. Data Analysis

As sources of disruptions may be at  the firm scale,  country scale,  country-industry scale,  or 

industry  scale,  it  is  imperative  that  businesses  and  policymakers  have  the  capability  to 

understand and analyze disruptions at all scales. For example, consider global sanctions placed 

on a particular industry in a specific country. In this case, the country-industry scale would be 

suitable. 



We  determined  the  number  of  tiers  required  for  our  analysis  by  requiring  uniform 

convergence of the reachability curves (defined below) to within a 5% tolerance. We remark that 

uniform convergence of relevant statistics is a general-purpose tier count optimization tool that 

can identify the most efficient  supply chain network depth to analyze.  Uniform convergence 

criteria are widely applied throughout the simulation sciences, particularly mathematical physics. 

(c.f., Scott 2011, chs 12-13 for introductory material.) 

In this study, we utilize different random failure and intelligent attack methodologies, 

which are commonly used to study complex networks in the fields of mathematical physics, and 

system resiliency (c.f. Liu et al. 2005; Magnien et al. 2011; Yamashita et al. 2019; Sičanica and 

Vujaklija,  2020).  To  analyze  the  effect  of  disruptions,  we  conducted  Random  Failure 

Experiments (RFEs) and Intelligent Attack Experiments (IAEs) on the global supply chain across 

different  tiers  and  scales.  The  RFEs  and  employee-based  IAEs  are  performed  using  100 

realizations. Due to missing industry categorization for some firms, we also repeat the industry-

level PageRank-based experiments  24 times,  each with a different  imputation of the missing 

industry values, drawn with replacement from the distribution of industries that are known. We 

also plot the percentile intervals of outcomes from random and randomized attacks, from the 2.5th 

percentile to the 97.5th percentile. PageRank as a centrality measure in our static observed graph, 

is an observed variable as it can be measured directly without inference from other observed 

variables. Centralities were calculated at the firm-scale. The centralities at larger scales are taken 

to be the sum of constituent firm-scale centralities.

Unlike random network models such as Ising models, our static network does not bear a 

possibility  of  illustrating  different  structures,  and  hence  its  properties,  such  as  PageRank 

centrality,  do not directly  qualify as latent variables (Hallquist  et  al.,  2019). Similar  to other 

observed  variables,  should  there  exist  a  theoretical  support,  a  centrality  measure  can  be 

potentially  combined  with  other  measures  through  factor  analysis  techniques  within 

psychometric  methodologies  to  create  latent  variables  (c.f.  Hallquist  et  al.  2019;  Joshanloo, 

2021). The variables  used in this  study are observed variables,  which are directly  calculated 

based on the observed dyadic multi-tier network of the global supply chain.

Our procedure includes a set of procedural and conceptual assumptions that are presented in 

Table 1 and are briefly discussed in the following.



Table 1. Operating Assumptions

Operating Assumptions

● New  substitute  relationships  are 

not allowed

● Alternate existing path feasible 

● Unweighted network

● No capacity limit 

● Time lag

● Limited  to  network  of 

notable suppliers

The no substitution assumption assumes that if a supplier is eliminated, the node (firm, 

industry,  industry-country,  or  country)  cannot  substitute  that  supplier  with  another  supplier 

through establishing a new path. The “alternate existing path feasible” assumption implies that 

while the affected node cannot establish a new path, the node is still allowed to use the existing 

alternate path or paths that may already exist in the network.

The “no substitution” assumption may not be very realistic at the firm level since firms 

can  switch  suppliers,  albeit  after  incurring  switching  costs  and  delays.  However,  the  no 

substitution assumption can be materialized at the higher scales. For example, the  substitution 

may not be feasible at the industry level due to the product specification. The “alternate path” 

assumption, while possible, may not be feasible, especially at the firm scale, due to a partial or 

complete lack of compatibility of suppliers that may limit  product substitutability and due to 

available capacity throughout the alternate path.

The procedure also assumes that all edges have equal weight in the network. While we 

know that the supply chain relationships are notable, we do not have data about the dollar value 

of the transactions. Also, when a node is affected, and alternate network edges are utilized, we 

are assuming that  the  existing  nodes  and edges  have  the  capability  to  satisfy the additional 

demand.

The  supply  chain  network  includes  many  large  firms,  and  SMEs  that  do  not  have 

substantial  financial  transactions  with  large  firms  may  not  be  identified  in  our  data  mining 

process.  



Although the supply chain data collected from annual filings are accurate as of the date of 

data collection,  and it  is expected that companies do not change their  notable suppliers very 

frequently, still, the network can include firms that are no longer notable suppliers. The time lag 

is more limiting in the interpretation of firm scale data.

For conducting the IAEs, we need to define target attack criteria. We selected PageRank 

centrality as a recommended measure of “attack-based resiliency analysis” (Zhao et al., 2015; 

Newman, 2006). We use PageRank on the network and its transpose as two reasonable proxies 

for importance with respect to upstream and downstream firms, respectively.  High-PageRank 

firms were targeted first in the PageRank IAEs. We also looked for other available moderating 

factors  that  could  affect  firms'  influence  in  the  supply  chain  network.  We could  collect  the 

number of employees for 95% of firms in our supply chain network. In the absence of edge 

weights, the number of employees is a meaningful measure of a firm’s size and influence in the 

supply chain network. Thus, in the employee-based IAEs, the firms with the most employees 

were calculated first. (For firms without employee data, employee counts were imputed similarly 

to the industry imputation described above.)  To measure the consequence of RFE and IAE on 

the global supply chain, we measured the average percentage of TSs Reachable (ATSR) as well 

as  whether  at  least  one  TS was  reachable  (Some Terminal  Suppliers  Reachable,  or  STSR), 

averaged across MSFs.

Finally, we present two data-driven approaches to identify the threshold of disruption that 

may lead to breakdown and fragmentation of the global supply chain for medical equipment. The 

data analysis is presented in six subsections, namely, supply chain tier, firm scale, industry scale, 

country-industry scale, country scale, and supply chain breakdown and fragmentation.

5.1 Supply Chain Tiers Analysis

The number of tiers required for these analyses was data-driven, using uniform convergence of 

reachability statistics as a stopping criterion. The supply chain data is collected tier by tier, and 

the data can be collected virtually across an unlimited number of tiers. However, due to the large 

size of the data and computational limitations, a data scientist should identify the optimal number 

of tiers that best represent the structure of the global supply chain pattern. This issue is crucial 

since, as we expand data collection from one tier to the next, the number of firms in each supply  

chain tier may grow exponentially. Our analysis across different scales provides mathematical 



evidence for the appropriate number of tiers that can best represent the supply chain pattern for 

each type of analysis (i.e., random failures vs. intelligent attacks) and each scale of analysis (e.g., 

firm- vs. country-scale). Figure 3 displays the result of RFE and IAE across the four scales of 

analysis.
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X: One minus the Supply Chain Failure Rate (SCFR)
Y: Average Percent of Terminal Suppliers Reachable (ATSR)
In the random/randomized failure analysis: Realizations= 24 or 100.
Shading represents the range from the bottom 2.5th percentile to the top 97.5th percentile interval over realizations.

Figure 3 Caption: RFE & IAE Across Multiple Tiers of Supply Chain.
Figure 3 Alt Text: A sixteen-panel image of RFE & IAE at four scales across ten supply chain 
tiers.

The Y-axes in Figure 3 represent the average percentage of the end suppliers which are 

reachable (where the average is  taken across MSFs);  this  statistic  is  equal  to one minus the 

Supply Chain Failure  Rate (SCFR). The X-axes  indicate  the percent  of remaining operating 

firms, representing the percentage of firms that are still able to produce their goods or services 

under the RFE and IAE.

Our analysis demonstrates that the SCFRs across different tiers in the medical equipment 

industry have high correlations. The shaded areas capture 95% of the data spread across random 

realizations of firm failure order and/or industry/employee count imputation where needed. This 

shaded area shows the range of probable disruption variation when the supply chain experiences 

failure.  Each  of  the  RFEs  or  IAEs  in  Figure  3  allows  for  a  visual  assessment  of  network 

convergence.  To  have  a  reasonably  appropriate  estimation  of  the  supply  chain  structure, 

researchers need to collect data from an appropriate number of tiers. To identify the tier in which 

the network converges, we use uniform convergence of the mean as a function of percent firms 



remaining. We subtracted the mean ATSR curve with 10 tiers from the one with fewer tiers and 

take the absolute value. The largest value of the resulting function is then the uniform distance.  

Starting with one tier and adding tiers until the uniform distance is small enough (5% in our 

tests) we identified how many tiers are needed for convergence. Based on the analysis of each 

source of disruption across different scales of supply chain, we recommend a minimum number 

of supply chain tiers to be analyzed for each disruption scenario as displayed in Table 2. 

Table 2. Disruption scenarios and minimum recommended supply chain tiers to be analyzed.
  Failure/

         Attack                               
                   mod

e
        Unit

RFE IAE
Rando

m
PageRank 

of 
transpose

PageRa
nk 

Employee

Firm 4 8 7 6
Country-
Industry

3 5 6 4

Industry 5 8 8 7
Country 4 4 7 6

According to our analysis, for the purpose of RFE analysis at the firm-scale, we need to collect 

data from at least four supply chain tiers. In this scenario, the supply chain's reachability pattern 

stabilizes after the fourth tier; we call this the convergence tier count. Including higher tiers of 

the supply chain in this scenario only marginally enhances the network's resolution of the supply 

chain pattern, while substantially increasing the data complexity. Another example is the IAE 

based on employee count at the firm scale, where six tiers provide evidence that required supply 

chain information is collected to have a converged supply chain pattern for further research.

The decision about “data acquisition” is a critical one as it raises the question about how 

many more tiers are “economically reasonable” (Mohr and Rijn, 2022). Additionally, larger data 

carries the need for a more sophisticated data processing machine and more efficient algorithms. 

This critical decision has been of interest in the area of data science generally, with applications 

in  various  areas  such  as  object  recognition  (c.f.  Zhu  et  al.  2016),  machine  learning  (c.f. 

Pedregosa et  al.,  2011,  Mohr and Rijn,  2022,  and Cui  et  al.  2022),  and physics  simulation 

validation (c.f. Zhao and Su, 2019). In general, to enhance the accuracy of a model, we can either 

enhance our  algorithms or enhance  the data  quantity/quality—ideally  both (Pedregosa et  al., 

2011; Zhu et  al.  2016). As we are working with real data and a defined objective rooted in 

percolation theory, an effective method to enhance the validity of the model is to collect data 



from higher tiers and test the convergence of the models. In the present study, our data collection 

was simultaneous with the model development, so we opted to be as inclusive as possible by 

capturing essentially all available data. As we collected data from higher tiers, the number of 

new firms increased up to the 6th tier. The number of new firms in the sample decreased beyond 

the 6th tier, and we only had two new observations (firms) added to the supply chain network in 

the 10th tier, which resulted in the termination of further learning (see Appendix 2). Based on the 

convergence criteria we later developed (uniform convergence), we could have stopped after 8 

tiers without significantly affecting the study's accuracy.

     We also identified several interesting patterns of supply chain disruptions. One of the 

interesting observations is related to the case of industry-scale PageRank IAE. In this case, we 

recommend using at least eight tiers to obtain the best supply chain failure pattern depending on 

the scale of attack.  Six to seven tiers in this scenario would be sufficient for attacks that take out  

up to  approximately  10% of  industries;  however,  for  attacks  that  affect  more than  the  10% 

threshold, our analysis suggests collecting data from at least eight tiers. Based on the pattern of  

failure at this scale of analysis (Figure 3), it is expected that should data be collected from higher 

tiers, the supply chain may show more robustness and continue to show a stepped-down pattern 

of  catastrophic  failure  when  the  percentage  of  “industries  remaining”  continues  to  decrease 

beyond 0.8. In other words, an analysis with fewer tiers may overemphasize how fragile the 

supply chain is to this type of targeted attack. Another interesting finding based on the analysis 

of the pattern of supply chain disruptions across different tiers can be observed in the result of 

RFE at the country scale and the industry scale. The dark shaded areas representing the bottom 

2.5th percentile  shown  below  the  mean  reachability  curves  display  the  possibility  of  a 

catastrophic disruption with a relatively small elimination of units. For example, a 5% disruption 

at the industry scale or at the country scale can potentially cause 80% of MSFs TSs to become 

unreachable.  This  is  an  indication  of  high  cascading  dependency  of  interdependent  industry 

networks where a “small fraction of fault nodes may lead to complete fragmentation of a system” 

(Hong et al. 2015)

If  we consider 20% reachability  of TSs from MSFs as a  “catastrophic”  supply chain 

failure, we expect this threshold would probably not be reached unless at least 30% of industries 

or  countries  are  randomly  eliminated  from  the  global  supply  chain  of  medical  equipment. 

However, our IAE analyses indicate that should even a few (approximately 5%) of the notable 



industries or countries be eliminated, we can reach a catastrophic supply chain failure. The RFE 

analysis at the industry scale and the country scale reveals another interesting characteristic: as 

we  collect  and  analyze  supply  chain  data  from  higher  tiers,  the  likelihood  of  higher  TSs’ 

reachability (shaded area above the curves) decreases, however, the likelihood of catastrophic 

failure (shaded area under the curves) does not decrease notably.

We now have supportive evidence that the data includes enough tiers to conduct detailed 

analyses at all scales. We will discuss these analyses in the following sections.

5.2 Firm-scale Supply Chain: RFE and IAE Analysis

Figure 4 displays the RFE and IAE analysis at the firm-scale.  To better focus on the data ranges 

where notable changes occur, the analysis is presented with 0.3-1.0 and 0.9-1.0 remaining firms 

ranges. We have plotted the ATSR and STSR. Conducting analysis using both ATSR and STSR 

provides  further  insight  for  business  strategists.  In  scenarios  where  (1)  MSFs  have  buffer 

inventory for some inputs (e.g., parts), (2) there exist substitute inputs, or (3) MSFs can source 

some inputs from other suppliers, the STSR can be a better measure of supply chain operability.  

Remaining units range: 0.3-1.0 Remaining units range: 0.9-1.0

Avg. % TS Reachable Some TS Reachable Avg. % TS Reachable Some TS Reachable
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Figure 4 Caption: Firm-scale RFE & IAE of the global medical equipment supply chain.
Figure 4 Alt Text: A four-panel image of RFE & IAE at the firm-scale displays disruption's 
effect on the supply chain.



Overall, we have supportive evidence that the most effective disruption can be caused by 

an intelligent attack which is based on the centrality of the firms. Intelligent attacks targeting 

lower-tier  central  suppliers  (PageRank)  are  found to  be  more  effective  in  disrupting  supply 

chains  than  targeting  higher-tier  central  suppliers  (PageRank  of  the  transposed  network). 

Random failures  are  found to  be  the  least  effective  in  disrupting  the  supply  chain.  Finally, 

intelligent attacks based on firm size (as measured by the number of employees) are found to be 

similar to random failure on STSR.

It  is  noteworthy that  the vertical  distance between the percentage of firms remaining 

(purple line) and ATSR/STSR is the network effect stemming from supply chain dependencies. 

For example, in the STSR graphs (Figure 4), we can observe that the network effects of random 

failure and intelligent attacks are modest in the >95% firms remaining range; however, failures 

that affect more than 10% of firms will cause notably larger disruptions. In the case of ATSR, 

the network effects of disruptions are larger and earlier.

5.3 Country-Industry-scale Supply Chain: RFE and IAE Analysis
Figure 5 presents the analyses at  the country-industry scale.  In the ATSR analyses,  different 

intelligent attack methods produce very similar scales of disruptions, even in the 0.9-1.0 range. 

Similarities can be observed in STSR analyses as well; however, the PageRank-based attacks and 

transposed PageRank attacks are marginally more effective than size-based attacks. 

Remaining units range: 0.3-1.0 Remaining units range: 0.9-1.0

Avg.% TS Reachable Some TS Reachable Avg.% TS Reachable Some TS Reachable

Figure 5 Caption: Country-Industry-scale RFE & IAE of the global medical equipment supply 
chain.



Figure 5 Alt Text: A four-panel image of RFE & IAE at the country-industry-scale displays 
disruption's effect on the supply chain.

5.4 Industry-scale Supply Chain: RFE and IAE Analysis

The industry-scale analysis (Figure 6) measures the impact of random or targeted elimination of 

an industry.  The two centrality-based attacks  produce  nearly  identical  effects  on ATSR and 

STSR. This implies that attacks targeting higher tiers or lower tiers  at  the industry-scale are 

expected to result in the same scale of interruptions. It is notable to mention that the supply chain 

shows notable  resiliency  in  centrality-based industry  attacks  under  STSR scenarios  within  a 

certain  attack  range.  Specifically,  we  can  expect  over  80% of  TSs  to  stay  reachable  when 

approximately 15% of the industries are eliminated. In this scenario, the random attack has a 

reasonable probability of causing more devastating supply chain disruption as identified by the 

shaded area reaching below intelligent attack curves (for certain ranges of remaining industries). 

Remaining units range: 0.3-1.0 Remaining units range: 0.9-1.0
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Figure 6 Caption: Industry-scale RFE & IAE of the global medical equipment supply chain.
Figure 6 Alt Text: A four-panel image of RFE & IAE at the industry-scale displays disruption's 
effect on the supply chain.

5.5. Country-scale Supply Chain: RFE and IAE Analysis

Our  analysis  across  different  scales  reveals  that  as  we  move  from  firm-scale  and  country-

industry-scale analysis to industry-scale and country-scale analysis, the variability of interruption 



resulting from random failures increases. This issue can be observed by comparing the shaded 

areas between the 97.5 and 2.5 percentile of outcomes. According to this, the firm-scale analysis 

result has the lowest uncertainty. Figure 7 displays the result of the analyses conducted at the 

country scale.

Remaining units range: 0.3-1.0 Remaining units range: 0.9-1.0
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Figure 7 Caption: Country-scale RFE & IAE of the global medical equipment supply chain.
Figure 7 Alt Text: A four-panel image of RFE & IAE at the country-scale displays disruption's 
effect on the supply chain.

Our analysis shows the important role of some major countries like the U.S., China, and a 

few other  countries  whose elimination  can create  significant  disruption to  the global  supply 

chain.  This issue can be observed in the IAEs in Figure 7.  When the first  major  country is 

eliminated based on any of the IAEs, we can observe that the reachability of intelligent attacks 

starts to drop to approximately 25% for ATSR and 60% for STSR. 

5.6. Supply Chain Breakdown and Fragmentation.

Another interesting finding of this study regards the threshold of global supply chain breakdown 

or fragmentation at different scales. To the best of our knowledge and as reported in the literature 

(c.f. Wang et al. 2018), there is no inherent threshold number of firms remaining in operation 

that will result in the complete breakdown of global supply chain operations. Thus, we consider 

instead  different  degrees  of  breakdown in  terms  of  the  ATSR achieved  by  various  attacks, 

comparing this to classical, percolation-theoretical estimates of breakdown.

● Supply Chain Breakdown 



Based  on  our  global  medical  equipment  models,  effective  breakdown  thresholds  can  be 

estimated from  RFE and IAE results (Figures 4, 5, 7, and 7) using a user-selected minimum 

ATSR criterion. Table 3 summarizes the thresholds based on the supply chain breakdown where 

the "breakdown threshold" is defined as the largest value of percent firms remaining at which 

ATSR was less than 20% or 1%. Depending on the researchers’ needs, other  limits  may be 

chosen (Lee et al. 2019, Rapisardi et al. 2018).

Table 3.  Supply chain breakdown threshold of global medical equipment.

Supply Chain Breakdown Threshold

Failure/Attack 
Type

Scale
20% limit 1% limit

remaining affected remaining affected

Random

Firm 0.73 0.27 0.42 0.58

Country-industry 0.72 0.28 0.41 0.59

Industry 0.71 0.29 0.38 0.62

Country 0.60 0.40 0.29 0.71

PageRank
of transpose

Firm 0.93 0.08 0.84 0.16

Country-industry 0.98 0.02 0.91 0.09

Industry 0.88 0.12 0.66 0.34

Country 0.99 0.01 0.94 0.06

PageRank

Firm 0.97 0.03 0.91 0.10

Country-industry 0.99 0.01 0.90 0.10

Industry 0.88 0.12 0.76 0.24

Country 0.99 0.01 0.94 0.06

Employees

Firm 0.89 0.11 0.77 0.23

Country-industry 0.98 0.02 0.92 0.08

Industry 0.87 0.13 0.70 0.30

Country 0.99 0.01 0.94 0.06

As illustrated in Table 3, the supply chain breakdown thresholds are dependent on the 

type of disruption, scale of analysis, and desired breakdown limit values (here, calculated based 

on 20% limit and 1% limit). For example, when only 27% of the firms are affected by a random 

failure, the ATSR of the global supply chain for MSFs falls down to 20%. If the breakdown limit 

is defined at the 1% limit, the breakdown can be achieved when 58% of firms are randomly 

affected.

Overall, the intelligent attacks are found to be notably more efficient in achieving supply 

chain breakdown limits. For example, a country-industry PageRank-based attack can achieve the 



supply chain breakdown limit  of 20% by targeting merely 1.3% of country-industries,  while 

achieving the same level of supply damage through random failure calls for 28% of country-

industries to be eliminated from the global  supply chain.  The comparison of PageRank- and 

PageRank-of-transpose-based attacks also provides interesting results. The attacks at industry-

scale and country-scale have the same level of efficiency in both types of attacks.  However, 

PageRank is found to be marginally more effective at the firm and country-industry-scale. While 

PageRank provides more weight on the importance of lower tier suppliers, from the perspective 

of PageRank of transpose, higher tier suppliers are viewed to be more important. According to 

this result, eliminating lower tier suppliers is more efficient in achieving supply chain breakdown 

limits than eliminating higher-tier suppliers. While this result applied to the sample of medical 

equipment global supply chains, in other industries the supply chain breakdown thresholds may 

exhibit different patterns.

● Supply Chain Fragmentation

In addition to the abovementioned method, we wish to compare to a fragmentation threshold 

identification methodology from the field of graph theory based on the Erdős–Rényi (ER) model 

(Erdős and Rényi 1959) and power-law graphs.  The reachability statistics used in this paper are 

tailored to the case of supply chains, but they do bear a superficial similarity to more classical 

“network  robustness”  analyses  that  have  roots  in  percolation  theory  (c.f.  Bunde and Havlin 

1996). In such analyses, undirected graphs are generally assumed to have been drawn from a 

random graph model, and the goal is to determine, in the limit of infinitely large graphs, what  

proportion of nodes must be removed either randomly or in a targeted manner, in order to break 

up  the  graph  into  many  connected  components.  Classical  percolation  theory  does  not 

immediately apply to directed graphs, nor is our preceding analysis meant to imply anything 

about whether the supply chain consists of multiple  connected components.  To visualize the 

difference, we imagine the supply chain laid out in tiers, with each tier occupying a single layer  

(See Figure 8). 



Figure 8 Caption: Supply Chain network segmentation across tiers.

Figure 8 Alt Text: Two images of multi-tier networks. One multi-tier network is sliced vertically. 

The other multi-tier network is sliced horizontally. 

If we cut (disconnect)  the supply chain horizontally,  all  our reachability  statistics  are 

zero, but the network only contains two giant components. Conversely, if the chain is sliced 

vertically  several times,  our reachability  statistics  can be quite high,  even though the supply 

chain is broken into many pieces. Indeed, the vertical  slicing could correspond to competing 

business ecosystems which supply among themselves but not with each other, which is a feature 

of modern supply chains. In such a case, the reachability statistics would be unaffected, but the 

network  would  be  highly  fragmented  from a percolation-theoretical  perspective.  Despite  the 

differences between reachability and component-based approaches, it is interesting to compare 

our  reachability-based results  with  what  might  be  obtained  using  more  classical  percolation 

tools. We limit ourselves to the four most popular analyses: Erdos-Renyi vs. power law graphs 

and  random  vs.  (degree)  targeted  attacks.  Note  that  random  and  targeted  attacks  are 

approximately equally effective for ER graphs.

In graph theory, network robustness is measured by assessing “the impact of node failure 

on the integrity of a network” (Barabási , 1999). This method is widely utilized in statistical 

physics and mathematics within the context of percolation theory (c.f. Bunde and Havlin 1996; 

Zheng et al. 2021). Based on percolation theory principles we explore the change in the structure 

of the network when nodes or edges are removed from the network.  We start  removing the 

supply chain nodes until the average degree of each node is less than 1 (corresponding to the ER 



robustness limit). We use the ER’s connectedness threshold to identify the critical threshold of 

network fragmentation.  In this study, we refer to this network fragmentation as  supply chain 

fragmentation. The result of this analysis is presented in Table 4.

Table 4.  Supply chain fragmentation threshold of global medical equipment.

Supply Chain Fragmentation 
Threshold

Scale
Avg. node degree <1

Remaining Affected

Ran
dom 
failu

re

Firm 0.21 0.79

Country-industry 0.19 0.81

Industry 0.02 0.98

Country 0.01 0.99

We  define  the  supply  chain  fragmentation  as  the  situation  where  the  supply  chain 

network is broken into many disconnected components, identified by the average degree falling 

below 1. Albert et al. (2000), in their work “Error and attack tolerance of complex networks” 

explain  that  for  ER  networks,  targeted  and  random  failures  are  about  equally  effective  at 

fragmenting the network. The result from Table 4 shows that the robustness of the supply chain 

network measured using the ER model varies across different scales. The primary reason for this 

behavior is that, as we move our scale from firm and country-industry to industry and country, 

the network density is so great that it is hard to get the degree below one. The supply chain of  

medical equipment includes a relatively small number of extremely well-connected nodes and 

hence exhibits a highly skewed degree distribution.  This characteristic makes this supply chain 

particularly robust to random      disruptions, as the probability of failure in small well-connected 

firms  is  relatively  lower.  However,  the  same  characteristic  makes  the  supply  chain  highly 

vulnerable to intelligent attacks due to the high impact of targeted attacks launched on the small 

number of the well-connected firms. 

If instead we consider the supply chain as a power law network, we use the Molly-Reed 

criterion and an estimate of 1.4 for the power law exponent (obtained using the powerlaw python 

package). Thus, for random attacks all but .8% of firms must be deleted in order to break up the 



network. In the targeted case, the theory predicts that arbitrarily small attacks should break up 

the network. This is broadly consistent with the extreme observed efficacy of targeted attacks on 

the real network, which is expected, since the actual degree distribution is quite heavy tailed. 

While there is a consensus in the literature that “supply chains are often highly vulnerable in 

general” however the extent of vulnerability to random failures and intelligent attacks was not 

previously measured using real work data (Trkman and McCormack, 2009; Tang et al., 2016). 

This  work  provides  notable  advancement  toward  the  application  of  new  methodologies  in 

measuring the interruption thresholds.

 

6. Discussion

Ivanov and Dolgui (2020), as some of the seminal scholars in the field, promoted the study of 

viability analysis based on the intertwined network of supply chains. Ivanov and Dolgui (2020) 

highlighted the different behaviors of intertwined supply chain networks versus the traditional 

linear supply chains. As we identified in the complex network of about 150,000 supply chain 

connections, there exist numerous supply chain loops. As we expanded mining supply chain data 

tier by tier, we also identified numerous lower tier suppliers that become suppliers to the higher 

tier firms. These firms create intertwined value co-creation business ecosystems forming what 

Dolgui et al. (2020) refer to as “value webs”. 

Overall,  the  global  supply  chain  network  of  medical  equipment  exhibits  high 

vulnerability exhibited by a sharp decrease in TSs reachable to MSFs when the supply chain is 

faced with disruptions. The high scale of vulnerability is due to the very few alternative routes 

from higher-tier suppliers to the MSFs. The reason for such a vulnerable network structure is 

twofold. On the one hand, the medical equipment supply chain requires incorporating a high 

scale  of  service  (Maltz  and Maltz,  1998)  due to  its  final  products'  complexity  and sensitive 

nature. This factor limits the flexibility of MSFs to maintain costly supplier relationships with 

multiple suppliers simultaneously. On the other hand, over the past few decades, efficiency goals 

(NASEM, 2018; Jha, 2019) have “forced” (Denton and Jaska, 2014) MSFs to adopt creative 

efficiency practices and strategies including “pull,” “push,” “just-in-time (JIT),” “economies of 

scale” and “off-shoring.” 

The result of this study reveals that disruption in a small number of suppliers across any 

of the analyzed tiers can have a devastating effect on the supply of medical equipment. In such a 



business environment, one of the key questions facing supply chain managers is how many tiers 

of the supply chain need to be analyzed to obtain enough information about the structure of the 

supply chain? We provided a data-driven method that identified the minimum number of tiers to 

be analyzed to  acquire  such information.  We provided arguments  and evidences  (c.f.  Davis, 

2021a and 2021b)  that  firms  should  monitor  their  supply  chain  beyond  the  first  tier.  We 

recommend practitioners to use the proposed convergence tool and to identify and include the 

convergence tier in their monitoring procedure. 

The analysis of the effects of disruptions in this paper is primarily based on ATSR and 

STSR. However, it is noteworthy to mention that we also computed the percent of MSFs with 

All  Terminal  Suppliers  Reachable  (ALTSR).  Through  our  experiments,  we  observed  that 

ALTSR drops to zero with high probability almost immediately because each MSF depends on 

thousands of firms. This exhibits one of the limitations of the study, as in real-world operations,  

firms usually carry buffer inventories and hence may be able to identify alternative suppliers 

across different tiers. Nevertheless, such extreme experiments can provide beneficial information 

to identify critical supply paths, considering the high dependencies in the medical equipment's 

global  supply  chain.  In  addition  to  supply  chain  tier  analysis  and  random  vs.  intelligent 

disruptions, we also provided a novel approach to measure and illustrate the thresholds of supply 

chain breakdown and fragmentation.

We also tried to answer the question of when a firm’s supply chain breaks down and 

collapses. While the breakdown threshold varies from industry to industry and from firm to firm, 

we proposed a methodology that can be used by each firm or each industry based on their self-

determined limit. To illustrate our methodology, we simulated supply chain breakdown effects at 

1% and 20% limits (Table 3) and supply chain fragmentation at ER limit (Table 4) using our 

real-world data. In general, the supply chain network of medical equipment exhibited relatively 

more robustness to random failures while it was notably fragile against intelligent attacks.

As we move from the firm scale network (with the largest number of nodes) to the county 

scale network (with the smallest number of nodes), two opposite forces affect the robustness of 

the supply chain. On the one hand, in larger networks, the probability of eliminating a more 

central node at each marginal level of disruption is lower. Therefore, we would expect (under the 

ceteris  paribus  condition)  the  supply  chain  threshold  to  be  lower  for  smaller  networks,  i.e., 

industry scale and country scale networks. This argument  is valid  on the assumption that  in 



larger networks (e.g., firm-level), a lower percentage of firms is highly central, which is true in 

our sample of medical equipment supply chain networks.

On the other hand, to produce more macro-level networks, we aggregate the edges from 

the previous scale. Consequently, as we move from firm scale disruptions to country scale 

disruptions, the models with a smaller number of nodes assumes a higher level of supply chain 

(node) substitution in the network. For example, the model may assume an industry or a country 

can substitute the elimination of a node, which does not necessarily apply to all cases of 

interruptions in the real world. These two opposite forces can explain variances in the breakdown 

thresholds. To illustrate the threshold of supply chain fragmentation, we used the commonly 

used threshold in the network science literature corresponding to the ER robustness limit (Table 

4). Similar to supply chain breakdown analysis, the two opposite forces are at play to explain the 

results. The result indicates greater robustness of the network at industry and country scales. 

The global supply chain of medical equipment is comprised of interdependent networks 

of suppliers from different industries and countries. Such “interdependent networks are difficult 

to defend by strategies such as protecting” the highly central firms or industries (Huang et al. 

2010). One solution that increases resiliency to attacks and failures and minimizes the cascading 

effect of failures is to focus on protecting clusters/communities of firms (business ecosystems) 

instead of only protecting the central firms in order.

Another contribution of this work is its application in the validation of future simulation 

algorithms. Our analysis provides benchmark supply chain patterns of behavior to be used in 

future simulation algorithms to produce more accurate “in silico” models that can better “mimic 

real data” (De Smet and Marchal, 2010). The findings and methodologies utilized in this study 

have notable implications for policy makers working on commerce, national security and public 

health. Also, relying on multiple MSFs does not necessarily diversify the risk as many MSFs 

share some supply pathways across multiple tiers of backward supply chain. These are some of 

the topics that policy makers can strategically explore using such network analytics models.

7. Implications for research and practice

As reviewed by Perera et al. (2017), various attempts have been made to apply network science 

ideas to understanding the supply network and its robustness. The majority of these attempts 

have  focused on describing  the  network  topology,  especially  noting  the  heavy-tailed  degree 



distribution. Various models have been proposed to generate artificial supply chain networks, 

including Barabasi-Albert models and fitness-based models. Notably, most of these models only 

produce  undirected  networks.  Network  robustness  metrics  have  then  been  applied  to  these 

synthetic networks, largely drawing inspiration from computer networking theory. Generally, the 

network is disrupted and one of the robustness metrics, such as the size of the largest connected 

component after disruption or average path length in the largest connected component, is tracked 

as  a  function  of  the  number  of  remaining  nodes.  Using ideas  from percolation  theory,  it  is 

possible to obtain analytical results for some graph models. The general theme of such analyses 

is  that  random  attacks  are  not  very  disruptive,  but  even  small  degree-targeted  attacks  are 

devastating.

The network science approaches have contributed insight by noting the importance of the 

undirected topology for understanding robustness, but a number of key gaps remain unfilled by 

this literature.  First, most supply chain network models are still  too unrealistic, generally not 

even modeling edge direction. Second, the network robustness metrics are copied from computer 

science and don’t necessarily encode the actual robustness of supply chains, which don’t need a 

(weakly) connected component or short paths to function effectively. Our work addresses these 

gaps by (1) using the most complete, real supply chain network available and (2) using a more 

realistic  assessment of supply chain functionality in terms of suppliers’ ability to reach their 

customers. While the percolation-theoretic arguments may no longer directly apply with these 

modifications, the added realism is a significant advantage to our formulation.

The present study has notable contributions for practitioners as well  as policymakers. 

There have been several calls for enhancing the organizational supply chain visibility beyond the 

first-tier suppliers. This issue is further underscored by recognizing that contemporary supply 

chains are made up of intertwined networks that expand globally across different  industries. 

From a supply chain strategy perspective, businesses need to have a realistic map of their supply 

chain to show their dependencies on other firms, industries, and countries throughout multiple 

tiers. 

One question facing managers is: how many tiers of supply chain firms should firms monitor to 

ensure they have proper analysis depth? We provided an analytical tool, which enables firms to 

know the required number of tiers they need to explore (convergence tier) to ensure they have 



the required visibility to their supply chain. Once the supply chain network data is collected up to 

the  convergence  tier,  businesses  can  reliably  use  the  data  to  conduct  clustering  analysis  to 

identify the boundaries of their business ecosystem and their competitors’ business ecosystems. 

Another  important  application  of  this  study  for  businesses  is  that  firms  can  identify  their 

vulnerability  to  random failures  and intelligent  attacks  at  four  different  scales,  as  discussed 

before. Our model is a ready-to-use tool for firms to identify the cascading consequences of such 

interruptions in a timely manner.

Furthermore, in the cases of such interruption, our large-scale real-world network data 

can show the alternate possible network paths. Since our data only includes notable suppliers, as 

explained in the data collection section, the solutions will only include such firms. Our analyses 

showed that the global supply chain of medical equipment could be highly influenced by a small 

number of highly connected firms. Firms operating in this industry are recommended to identify 

these highly central firms and invest in the sustainability of their supply chain connections with 

these central  firms. One of the interesting applications of this  study is in asset management. 

While  some of  the  applications  of  this  study were  discussed  for  the  firms  operating  in  the 

industry (e.g., manufacturers and suppliers), our result provides notable information about the 

vulnerability  of  firms,  industries,  and countries  to  different  types  of  disruptions.  A political 

unrest  in a  country,  a natural  disaster affecting a particular  industry in  a specific  country,  a 

global/nationwide raw material shortage that affects an industry, or the bankruptcy of a major 

company can affect the asset value of firms across different supply chain tiers. Our vulnerability 

assessment methodology allows investors and asset managers to measure the risk of interruptions 

and  hedge  their  investments.  In  particular,  our  breakdown  and  fragmentation  analysis 

methodologies enable asset managers to measure their risk levels using their defined threshold 

limits at any of the four scales of analysis. 

The  present  work  also  has  critical  application  for  policymakers.  The  COVID-19 

pandemic illustrated how much the national security and well-being of every country's citizens 

can  be  negatively  affected  by  such  supply  chain  disruption.  More  importantly,  citizens  and 

governments became aware of the high level of fragility of global supply chains. One question 

facing  policymakers  is  what  are  the most  central  firms,  industries,  and countries  in  medical 

equipment supply? Our analysis provides the list of most critical firms, industries, and countries 



across the ten tiers of the medical equipment supply chain. The same data collection and analysis 

can be applied to other sectors to identify strategically  essential  firms and industries to each 

country's national security. This methodology can be applied as an attack and a defense plan for 

firms as well  as the government.  Our analysis identified the catastrophic effect of intelligent 

attacks on the supply of medical equipment.  Competitors (i.e. competing firms) and political 

adversaries (e.g. terrorists and cyber criminals) could target the highly central firms or industries 

to cause the most damage. As a countermeasure, firms and policymakers can use our findings to 

identify the highly central  firms. Protecting  the relatively small  number of highly connected 

firms can ensure the  firms’  competitiveness  and secure  the  supply of  medical  equipment  to 

citizens.

The  findings  as  they  relate  to  the  mapping  of  the  supply  chain  can  be  utilized  in 

identification and tracking of labor exploitation (c.f. LeBaron, 2021) and modern slavery (Sokat 

and Altay, 2022). The supply chain mapping further provides opportunities to not only explore 

business continuity planning (c.f. Zsidisin et al., 2003), sustainability (c.f. Mubarik et al. 2021) 

and cybersecurity (c.f. Melnyk et al. 2022), but also plan for preventative and contingency plans. 

While the supply chain mapping can have wide applications in different domains, we believe our 

proposed RFE and IAE in particular has notable application in cybersecurity and protecting the 

national supply chains (c.f. Mubarik et al. 2022). 

Finally, this study demonstrated the feasibility of mapping the supply chain using mined 

financial information. While this method of data collection has some limitations, it is arguably 

the  most  feasible  and  comprehensive  way  to  provide  a  “macro  view  of  the  supply  chain 

structure”  (c.f.  Ivanov  and  Dolgui,  2021)  at  the  global  level.  Additionally,  this  method  is 

affordable and less laborious, which can be of great importance to SMEs with limited resources. 

For example, once the coding is completed, tested, and debugged (which can take a few months 

for the first batch of data) moving forward, an operator can mine and analyze a multi-tier supply 

chain for any industry in a few days. However, this process can be automated with cloud high-

performance computing (HPC) to produce results in a shorter time. 

8. Limitations and Directions for Future Studies



Some of the constraints of this study are related to our data. As previously discussed the network 

is limited to notable suppliers and the monetary value of transactions is not available. 99% of 

firms in the OCED countries are SMEs (Lin et al. 2022). While our study includes data from all 

countries, a representative sample ideally—and arguably—is expected to include closer to 99% 

SMEs.  Due to the data mining methodology, a privately owned firm will not be included in our 

sample if the firm does not have notable supply chain transactions with a qualifying firm (that is, 

a firm that is required to file financial reports with the SEC). 44% of economic activity in the 

U.S. is generated by small businesses, and they play a critical  role in the nations’ economic 

prosperity (SBA, 2019). As discussed in the data collection section, at least 52% of firms in our 

sample are SEMs. If we assume that firms with missing employee data are privately owned 

SEMs  (which  is  a  reasonable  assumption),  the  percentage  of  SMEs  in  our  sample  can  be 

estimated to be up to 69%. In general, SMEs and private firms have lower representation in our 

sample vis-à-vis the representation of these firms in the global population of firms active in the 

supply chain of medical equipment. Underrepresentation of SMEs is one of the limitations of the 

study, particularly since SMEs are generally considered to be the supply chain's weakest links 

(CERT-UK, 2015). There is evidence that not only do smaller businesses face more volatility 

stemming from disruptions such as COVID-19 (Giunipero et al., 2022), but also they are less 

prepared  and  equipped  (operationally  and  financially)  to  navigate  and  survive  such 

vulnerabilities (OECD study, 2009). 

Other  limitations  of  the  present  study  stem  from  our  operational  assumptions,  as 

discussed previously (Table 1). One of the operational assumptions is that companies can only 

substitute their suppliers with the existing firms in the network through the existing paths, and 

furthermore, any alternative path can be used as an alternative supply path for any firm.  The fact 

is that “replacing suppliers is not always feasible,” especially for hard to replace items (Duman et 

al. 2022) and supplies with a low degree of substitutability. Replacing suppliers can be costly 

and time-consuming due to several factors, including operating constraints (Duman et al., 2022), 

the requirements for “product redesign” (Hansen and Schmitt,  2021), and geographic location 

(Kleifgen et al., 2022).  

Other operational limitations are associated with the assumed absence of capacity limit for each 

supply path, the absence of time lag, and the supply chain being limited only to notable suppliers 

and customers.  We recognize  that  these  assumptions  are  not  realistic  in  many cases.  Future 



studies  can  further  study  this  subject  by  removing  any  or  a  number  of  these  operational 

assumptions, pending the availability of data.

Since  we  tried  to  use  the  most  efficient  algorithms,  we  did  not  face  significant 

computational challenges that may arise from the data's size and complexity. While we could 

analyze the data across ten tiers for this industry using high-performance personal computers, we 

recommend researchers to consider using an affordable, commercially available cloud HPC for 

analyzing larger networks.

The present study explored the backward supply chain.  Future studies in the area are 

encouraged to conduct forward supply chains. The study of supply chains across multiple tiers 

and scales can be conducted at the network level, the process level and the control level (Ivanov 

and Dolgui, 2021). This study has been on the network-level, and there are fruitful opportunities 

for expanding the present work to process-level and control-level.

While  the  current  research  focuses  on  analyzing  nodes,  we believe  there  are  fruitful 

research  opportunities  in  conducting  clustering  analysis  based  on  community  detection 

algorithms. Future studies are encouraged to explore supply chains' vulnerability when a cluster 

of firms is affected or when central firms across different communities are affected. Furthermore, 

this study is based on the analysis of the supply chain networks. Future studies can explore the 

global supply chains using multi-layer connected networks of business ecosystems. 

In this  study, we proposed analytical  tools  to identify the survival  of firms based on 

access to suppliers. In future studies, we plan to identify the firms that survived some level of 

failure  or  attacks.  We are interested  in  exploring various  characteristics  of  firms  to  identify 

potential supply chain, firm specific and/or industry-specific characteristics that can contribute to 

higher probability of enduring such events. One such domain can be the study of relationship 

between uncertainty  and profitability  (c.f.  Knight,  1921).  While  most studies  in  this  domain 

explore the effect of disruption, there has been a gap in the literature on exploring post-disruption 

supply chain management (Ivanov, 2021). The research methodologies employed in this paper 

are  compatible  with  additions  to  simulate  random  as  well  as  intelligent  recovery  based  on 



“percolation strategies” (c.f. Smith et al. 2019). We plan to conduct such studies in the future 

with the goal of identifying the optimized recovery paths.
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Appendix 1
Supply Chain (SC) Ability Facets: Managing Disruptions

Supply Chain 
Abilities

Meaning Aim Source

Resiliency
SC’s ability to “to recover their performance after having 
absorbed the disruption effects” and “return to its original 
[or desired] state after being disturbed.”

Recovery
Baz and Ruel (2021); 
Peck (2003)

Robustness
“S.C.s’ ability to maintain its planned performance 
following…disruption(s).”

Maintain operation
Baz and Ruel (2021)

Agility
SC’s ability to “rapidly align the network and its operations 
to the dynamic and turbulent requirements of the demand 
network” and “shifts in supply”.

Rapid response
Ismail and Sharifi 
(2006); Kitchen and 
Hult (2007)

Vulnerability
SC’s “exposure to serious disturbance, arising from risks 
within the supply chain as well as risks external to the 
supply chain.”

Measure of risk
Peck (2003)

Flexibility
SC’s ability “to respond to changes in the volatile 
environment, without excessive performance loses.”

Manage minor, 
short-term 
disruption

Delic and Eyers 
(2020).

Adaptability

SC’s ability to “reshape” and “adapt to [an] uncertain 
environment in order to reduce any adverse 
impacts...without ties or legacy issues or regard to how the 
chain has been operated previously.”

Manage major, 
long-term 
disruption

Chan and Chan 
(2010); Kitchen and 
Hult (2007)
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Appendix 2 Caption: Firms' distribution across tiers

Appendix 2 Alt Text: Graph displaying the distribution of source firms and new firms across different 
tiers.




