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Second-Order Sensitivity Methods for Robustly
Training Recurrent Neural Network Models

Liam Johnston™ and Vivak Patel

Abstract—Adjoint methods are used in both control
theory and machine learning (ML) to efficiently compute
gradients of functionals. In ML, the adjoint method is a pop-
ular approach for training multilayer neural networks and
is commonly referred to as backpropagation. Despite its
importance in ML, the adjoint method suffers from two well
documented shortcomings: (i) gradient decay/explosion
and (ii) excessive training time. Until now, the gradient
decay problem has primarily been addressed through mod-
ification to the network architecture with gating units that
add additional parameters. This results in additional com-
putational costs during evaluation and training which fur-
ther exacerbates the excessive training time. In this letter,
we introduce a powerful framework for addressing the gra-
dient decay problem based on second-order sensitivity
concepts from control theory. As a result, we are able to
robustly train arbitrary network architectures without suf-
fering from gradient decay. Furthermore, we demonstrate
that this method is able to speed up training with respect
to both wall-clock time and data efficiency. We demon-
strate our method on a synthetic long time gap experiment,
as well as three sequential modeling benchmarks with a
simple recurrent neural network architecture.

Index Terms—Backpropagation, machine
optimal control, recurrent neural networks.

learning,

[. INTRODUCTION

INIMIZING a functional to find an optimal param-
Meter estimate of a discrete time-varying system is a
central problem in control theory [1]. Typically, minimizing
the functional requires efficiently and accurately computing
its gradient [2]. The gradient can be efficiently computed
using Largrangian formalism, which results in the adjoint
method [2]. The adjoint method was first introduced in the
1970s as a way to perform identification of functional param-
eters for partial differential equations (PDE) [3], and was
extended to a second-order method for efficiently computing
matrix-free Hessian-vector products [4], [5].
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In machine learning (ML), the adjoint method is used to
train multilayer neural networks under the name back prop-
agation (BP) [6]. In fact, since its introduction, the adjoint
method has become a central algorithm in computing the gra-
dients required to find optimal parameters of Deep Neural
Networks (DNNs) [7]. Despite its importance in ML, the
adjoint method suffers from two shortcomings when training
DNNs: (i) gradient decay/explosion [8], [9] and (ii) excessive
training time [10].

Before now, the gradient decay problem has primarily been
addressed by modifying the original network architecture with
gating units [10], [11]. Unfortunately, these gating units add
a substantial number of parameters to the system and, conse-
quently, incur additional computation costs during evaluation
and training [12], which further exacerbates the excessive
training time.

In this letter, we introduce a powerful framework for
addressing the gradient decay problem based on second-order
sensitivity concepts from control theory. In particular, we
introduce a penalty term on the decay of the adjoints in the
training objective, and use the adjoint-over-adjoint method to
efficiently compute (i.e., matrix-free) the gradient of the result-
ing objective function. As a result, we are able to overcome the
gradient decay problem, which allows us to (a) train arbitrary
network architectures without introducing the aforementioned
complex gating units, and (b) speed up training. We demon-
strate the effectiveness of our method using a simple recurrent
neural network (RNN) architecture on a synthetic experiment
and three common benchmarks used in sequence modeling.

1. BACKGROUND
A. The Adjoint Method in Learning

In deep learning, the goal is to identify the parameters of a
T-horizon discrete-time system such that a given cost function
is minimized [13]. To be specific, simplifying to the case of
a single observation, the goal is to solve

min

F(y.3)

s.t. j\f’ = hout(xT, 61)
Xiy1 = hi(x;,6), i=0,1,...,T—1 M

where (y, xg) is a given observation; F is the cost function;
{xj ¢ Bmi : j = 1,...,T} are the states; ¥ is referred to as
the prediction; {6; € R™ : i = 0,...,T} are the parameters;
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{hi : R™ x R" — R™i+! : §=0,...,T — 1} are the system
dynamics that are engineered to address the learning task at
hand; and, similarly, Ao, is a mapping from the final state,
xr, to the prediction, y. While this problem is analogous to a
discrete two point boundary problem commonly seen in the
analysis of PDEs [1], [4], [5], there are several important dif-
ferences in the learning case: (a) the dimension of states are
usually identical over time (i.e., m; = m;) in the case of differ-
ential equation problems, whereas these dimensions are likely
to vary in the learning case; and (b), in the learning case,
the cost function is an average over individual cost functions
for each observation, of which there are usually a substantial
number.

Typically, solving (1) involves computing the partial deriva-
tive of the cost with respect to each of the parameters. For
example, to compute the gradient with respect to 8;, we use
the chain rule to derive

or _ (%)T(%)T . (B_j;)T_BF(y, »

80; 96,  ax; axr 3y
where, as an abuse of notation, T refers to the time horizon
or the transpose of a matrix. Unfortunately, as seen in (2),
computing the gradient requires the computation and prod-
uct of a sequence of Jacobian matrices, which can become
prohibitively expensive as the dimension of the states or
parameters grow.

To avoid this, the adjoint method can be used. The adjoint
method efficiently addresses this expense by proceeding by
duality, formulating a so-called adjoint system or “backward”
discrete-time system, and leveraging the solution vectors—
called the adjoint states or adjoint variables—of the adjoint
system to compute derivatives using only matrix-vector prod-
ucts [2].

The adjoint system can be derived through the Lagrangian
framework. The Lagrangian framework considers the state
dynamics as additional constraints under study and introduces
a set of adjoint variables (Lagrange multipliers), A1, ..., AT,
corresponding to the state equation at each position in the state
trajectory. Under this framework, the Lagrangian is defined as

.C = F(}’, 57) + 5!6’ - kout(xT, GT))
-1

+ 3 A (gt — i, 6)). 3)

i=0

) (&)

The Lagrangian’s first term is interpreted as the cost incurred
from predicting ¥, and the Lagrangian’s summation term is
interpreted as the cost of abiding by the forward system
dynamics. Note, the Lagrangian’s partial derivatives with
respect to the adjoint state are zero (i.e., g%_ = 0) if and only if
the forward, discrete-time dynamics are satisfied. Analogously,
the Lagrangian’s partial derivatives with respect to the state
variables,

aL .

— =0ecR™ 4

ox, — 0 € R )
generate the backward or adjoint system, which, when satis-
fied, can be used to compute the derivative of the Lagrangian
with respect to the parameters. Moreover, when the adjoint

system is satisfied, the Lagrangian’s partial derivatives with

Fig. 1. Graphical representation of a folded and unfolded RNN
architecture (many-to-one task).

respect to the parameters are equal to the original cost
function’s derivatives with respect to the parameters.

B. Recurrent Neural Networks and Gradient Decay

We now focus our derivation to a particular type of neu-
ral network architecture, called Recurrent Neural Networks
(RNNs) (see fig. (1)), designed for situations in which data
is observed over time or in sequences of arbitrary length, and
for which the aforementioned gradient decay problem is par-
ticularly insidious, as we will describe. In order to focus on
RNNs, we will need to modify our description of the learning
optimization problem, (1), in several ways:

1) The observation previously was (y,xp). Now, the
value of xp is randomly assigned, and we observe
(y,u1,...,ur), where u; e RP fori=1,...,T.

2) The observation u; is now an input to the function h;_;
that is used to compute x;.

3) We replace h; with a single function o that acts on each
component of a vector argument independently.

4) Finally, we require that all of the h;, fori=1,...,7T—1
have a single common parameter.

To summarize, we replace the general feed forward neural
network training problem, (1), with the RNN specific training
problem

ngn F@y,y
s.t. X =0 (WeeeXi—1 + Wiy +b1),t=1,...,T
j} = O'(Wou.rxT + bZ), (5)

where Wy, € R™™ is an unknown parameter called the
(recurrent) weight matrix; Wi, € R™*P is an unknown matrix
called the input weight matrix; b; € R™ is an unknown vector
called the bias; W,,; € R>m js an unknown matrix called the
output weight matrix; by € R/ is an unknown vector called
the output bias; 8 = {Wyee, Win, Wour, b1, b2} is shorthand for
all of the unknown parameters; and o is a nonlinear activation
function (e.g., sigmoid, tanh, etc.) that acts on each component
of its argument independently.

Solving (5) is typically performed using a gradient-based
optimization method. As previously described, the gradient
of (5) can be computed using the adjoint method. The adjoint
method produces the adjoint system

AF(yr, ¥y
5= — (_V;: J'T), (6)
avr
r do
AT = Why =2 (Wouk + by) 03, and @)
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Akzwfa—g

recy7 (WreeXi + Winltjy1 + b1) 0 Ay, (8

fork=T-—1,...,1, where o is the Hadamard product (recall
that o acts entry-wise on the vector argument) and takes prece-
dence over matrix-vector products and Z is used as a dummy
variable for ease of notation that takes the value where the
derivative is to be evaluated — for example in %% (WowexT +b2)
we have Z = Wyuxr + by. As described above, the adjoint
system can now be used to efficiently compute the gradients
of the Lagrangian with respect to the parameters and are equal
to the gradients of the original objective function with respect
to the parameters. The adjoint-based gradients are supplied by

9Ly do T
=—|do—(W b
W ( o BZ( outXT + 2))1; ©)
9L do
—_— = (W b ) 10
253 82( owtXT + b2) 0 (10)
T
9L do
oy (11)
AL, d % W Wt 4 b1y 0 ag
= — _— X — inU, o X
Wee |02 A
(12)
8£1 T do
e :—Z[ﬁ(wmcxk_l"i—wmuk +b1)oxk]u£ (13)

=~
I
-

Using these formula for the gradients, we can now describe
and contextualize the gradient decay problem. First, notice that
in (11)-(13), each time point contributes equally to comput-
ing the gradients for the recurrent weight matrix, the input
weight matrix and the bias. Thus, at the beginning of train-
ing, each time point can influence the prediction quality of
the RNN equally. Given that each time point corresponds to
an input vector u;, then each input vector can equally influ-
ence the prediction quality of the RNN at the beginning of
training, and this would only be modified if the minimization
induces the parameters to change the impact of each
input.

However, owing to the nonlinearity of o and the matrix-
vector products in (6), the adjoint variables, At, tend to zero
as k | 1 (note, they can also explode towards infinity, but
this is observed less frequently in practice). As a result, the
early inputs (i.e., those observed closest to + = 1) have a
substantially diminished or negligible influence on the choice
of parameters, and, consequently, have a negligible influence
on the predictions that are being made. If there is no prior
knowledge about the relative importance of the inputs, then
such a phenomenon would bias the RNN and could result in
poorer prediction power. This phenomenon is referred to as the
gradient decay or vanishing gradient problem, and is further
detailed in [9]. In the following section, we use second-order
sensitivity methods to address the gradient decay problem.

I1l. USING SECOND-ORDER SENSITIVITY METHODS TO
COMBAT GRADIENT DECAY

A. Our Coadjoint Method

Recall that the gradient decay problem is a consequence of
the adjoint variables, defined in (6), tending to zero as k | 1.
Thus, to combat the gradient decay problem, we introduce a
term to the cost function, G, which will be specified later,
that encourages specific behavior in the adjoint variables. Our
adjoint variable control can be stated as

ngn F3. )+ Gy, ..., A7)
S.t. Xt = 0 (WeeeXi—1 + Winits + b1)
53 = O'(Wou.rxT + bZ)

r 00
A = Wrgcﬁ(wmoxk + Wintti+1 + b1)
oAk
r 0o
A = Wmm(woml‘r +b3)od
‘7]
aF(yr, ¥y
5 = _2E0TIT) (14)
avr

wheret=1,...,Tandk=1,...,T—1; G is a differentiable
function, which we call the adjoint control function; the first
two constraints define the forward system dynamics; the latter
three constraints are the adjoint dynamics from (6). Note that
the additional constraints supplied from problem (5) to (14)
are constraints on the gradients computed during training, not
altering the forward dynamics of the network.

At first glance, the optimization problem proposed in (14)
seems odd as it imposes constraints on the adjoint variables
computed from the original optimization problem (5) under a
different objective. However, the adjoint constraints are neces-
sary due to the sequential nature of the new objective, F +G.
Namely, the addition of G and its influence on the optimization
path are determined “on top” of the original optimization
problem (5). Thus, this new optimization problem proceeds
by first computing F and the adjoint system by making a sin-
gle forward and backward pass over the network, where the
forward pass contributes the network’s prediction, y, and the
backward pass provides the adjoint variables, A; and 5. After
computing the prediction and adjoint variables, a second for-
ward and backward pass over the network are used to evaluate
G and imbue the characteristics of G into the adjoint variables.

To efficiently compute the gradient with respect to our cost
functional, we proceed by introducing another set of adjoint
variables and define the associated Lagrangian as in (3). In
sensitivity analysis, the introduction of a second set of adjoint
variables which act on the primary set of adjoint variables is
referred to as adjoint-over-adjoint methods. For simplicity, we
coin the second set of adjoint variables as coadjoints and the
process of computing the parameter gradients with respect to
L7 as the coadjoint method.

Now, our newly introduced coadjoint variables (¥, ¢, y and
ay) are the vectors obtained using a procedure identical to the
adjoint method, and are related by a corresponding coadjoint
system. When the coadjoint system is satisfied, the gradient of
the objective function in (14) with respect to the parameters
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is equal to the derivative of £, with respect to the parameters.
The resulting gradients will be used to update the system’s
parameters and are given by

0Ls do
= — — (W, X
W ( ¢0 BZ( owtXT + b2)
50 Wouyt) 0 o (Woaxr + b))k
— (] (o] X X
out¥YT 372 outXT 2 T
50 27 W +b2) )i (15)
—(6o0— x
57 outAT 2) VT
0Ly do
by —¢o ﬁ(Woml‘r + b2)
3o
—8 o (Wouyr) © @(Womﬁ-‘r + b2) (16)
T
0Ly do
o ; =7 WreeXeot + Wintti + b1) 0 a
— TZ_:] 0 Wiy + Wintt 4+ b1)
572 rectk—1 inlk 1
k=1
oAjy1 0 (Wmn)) (17)
9Ly L /30
T
W= ; (ﬁ(wmxk_l + Winttg + by) 0 ak)xk_l
= 92
- (ﬁ(wrecxk—l + Wintty + b1)
k=1
OJLJic+] o (Wmc}’k))x{
do T
+ ﬁ(wmcxk + Wintti41 + b1) © A1 Yk (18)
T
0Ls do
FT ket ; (ﬁ(wmxk_l + Wintk + b1) 0 ak)u{

= a2
- E (@(mek_l + Winttg + b1)

OJLJic+] o (Wmc}’k))u;a_[ . (19)

B. Selecting the Adjoint Control Function

In our formulation (14), we introduced a function that mod-
ifies the behavior of the adjoint variables, G(i1, ..., Ar), but
we did not specify its form. Generally, we will choose G
depending on characteristics that we wish to imbue the adjoint
variables, which is task dependent; thus, we should choose the
form of G to mold to the problem at hand.

To illustrate, we will choose a G that addresses the gradient
decay problem in the RNNs formulated above. Upon initial
inspection, a naive approach to formulating G is to penalize
small adjoint lengths. For a simple example, we can choose
G to penalize the sizes of (A1, ..., A7),

T
GO, ... A1) = — Y _log(lIAlI3).
k=1

(20)

which would deter adjoint variables from decaying. However,
choosing G of this form leads to numerical issues when eval-
vating the gradient of G due to adjoint decay. For example,
the gradient of (20) with respect to A is computed as:

3G 2

— = Q1)
Ak 2013

Evaluating (21) as A; — 0 we have the root of the numerical
issue: limy ;0 % — +00. An alternative approach to control
the size of the adjoint variables is to minimize the variance
between the adjoint layers. With this in hand, G could be
constructed as:

T T 2
1 , (1
G\, .. .s A7) = ;; Al — (? ; ||J\k||2) . (22

Forming G as in (22) encourages the minimization of the
adjoint variance. However, in practice (22) did not encourage
the sizes of the adjoints to homogenize to an adequate level,
but rather ||Ak]] — O for all k; thus encouraging the behavior
we wish to control, the decay of adjoints. As an alternative
approach to avoid such issues, we can choose G inspired from
the ideas employed in (20) and (22); namely, penalizing the
output layer’s adjoint state’s size, A, in addition to minimizing
the variance between the norms of adjoint states,

1< 1< ’
GOy -y i) = = YAkl — (= D IAkl2
Tk:l Tk:]

— log(lArl3).

Note that due to the recursive nature of the adjoint variables,
solely penalizing the size of Ar induces a less “aggressive”
penalty function on the sizes of all T adjoint layers.

While (23) certainly induces the adjoint variables to homog-
enize and avoid being too small, we made further improve-
ments by introducing a weighting function in the variance term
that would induce the magnitudes of adjoint variables near the
output layer to homogenize before inducing the magnitudes
of the adjoint variables near the input layer to homogenize.
While these improvements on the choice of G have meaningful
practical consequences, we enumerate them here to emphasize
several points. First, our coadjoint approach to inducing spe-
cific behavior in the adjoint variables is general and can be
applied to a variety of choices of G. Second, the choice of
the adjoint control function should be designed to address the
task and challenges of the problem that is being considered.
As a result, our coadjoint method is highly adaptive to the
needs of the learning task at hand. We now demonstrate the
effectiveness of the coadjoint method on a language processing
task.

(23)

V. EXPERIMENTAL RESULTS
A. Long Time Gap Experiment (LTG)

We design a synthetic experiment to specifically highlight
the control — or lack there of — of the standard adjoint-based
training (i.e., backpropagation). For each example (i.e., each
set of (y, u1,...,usp)) of eight thousand, the inputs, u;, are
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LTG: Classification Error

8ol AL
T Condon Y
[ . LE‘,TI‘ “!J 'LI
Epoch h
Fig. 2. Test classification error for LTG experiment comparing a RNN

trained with the adjoint and coadjoint methods as well as a LSTM
network.

independent five-dimensional standard Gaussian random vari-
ables. Moreover, for each example, the label, y, is a binary
indicator determined by whether 171y is positive or negative;
thus, there exists a perfect classifier for each label given the
input sequence. To perform the classification, we train a sim-
ple architecture RNN using the adjoint method; we train the
same RNN architecture using the coadjoint method; and we
train an LSTM network.

Recall that since u4 is far away from the output layer (note,
usg is closest to the output layer), the gradient decay problem
will prevent us from training an RNN with a simple archi-
tecture. Indeed, this phenomenon is observed in Fig. 2 (blue
line): the classification error remains around 0.5, which is
equivalent to guessing. Interestingly, this phenomenon is also
observed the LSTM network—a complex architecture with
multiple gating units—which is designed to avoid such issues;
that is, the classification error also remains around 0.5, which
is equivalent to guessing (see Fig. 2, green line).

On the other hand, the coadjoint method is effective at
avoiding the vanishing gradient problem (see Fig. 2, red line).
Thus, on this toy example, the coadjoint method is able to
capture the long time-gap correlations for the same RNN for
which the adjoint method fails. Furthermore, the coadjoint
method is able to start minimizing classification error within
the first few epochs, which indicates its data efficiency as well.

B. IMDB Sentiment Analysis

In this example, our goal is to determine the sentiment
(either positive or negative) of a film review. To achieve this
goal, we train RNNs on twenty five thousand labeled reviews
from IMBD [14], and test each RNN’s prediction quality on
a separate set of twenty five thousand reviews from the same
source. The input sequence is a single IMDB review truncated
to the first fifty words where each word in the review is embed-
ded in R'%; thus, the input sequence is {u; € R0 . We
train a simple RNN architecture using just the adjoint method;
we train the same architecture using the coadjoint method; and,
finally, we train the complex LSTM network using the adjoint
method. For each resulting RNN, the classification error on
the left-out twenty five thousand reviews are shown in Fig. 3.

IMDB: Classification Error

¥— Adjoint

ation Error

lassifi

G
T

A A )
100 150 200

Epoch

Fig. 3. Comparison of three RNNs: adjoint trained, coadjoint trained
and LSTM on test classification error on the IMDB sentiment analysis
data set.

TABLE |
COMPARISON OF THREE RNNS—ADJOINT TRAINED, COADJOINT
TRAINED AND LSTM—SGD UPDATE TIME IN SECONDS
AT DIFFERENT EPOCHS DURING TRAINING

Classifier Parameter Update Time
Epoch 1 Epoch  Epoch  Epoch  Epoch
25 50 150 250
RNN Adjoint ~ 0.0023 0.0011 00011 0.0011  0.0011
RNN Coadjoint 0.0091  0.0027 0.0027 0.0027 0.0027
LSTM Adjoint 0.0139  0.0260 0.0253 0.0245 0.0256

The results indicate that all three RNNs — adjoint trained,
coadjoint trained and LSTM — are able to eventually reach sim-
ilar classification rates if exposed to enough training examples.
However, the coadjoint method is able to begin training with
fewer examples (i.e., has greater data efficiency). Moreover,
the coadjoint method also trains in less wall-clock time. While
the coadjoint approach has greater data efficiency that will
reduce the training time, the coadjoint method is also partic-
ularly computationally efficient as shown in Table I, which is
the average time for a parameter to be updated at different
points in the training regime.

In particular, the coadjoint method is about three fold slower
than the adjoint approach for the simple RNN whereas the
method is about ten fold faster than training an LSTM archi-
tecture. Thus, the coadjoint approach beats out the adjoint
approach owing to its data efficiency; while it beats out the
LSTM network training owing to the faster speed with which
parameter updates can be made.

To reiterate, on this sentiment analysis task, the coadjoint
method can train a simple RNN more data-efficiently than the
standard approach for such a network, which results in faster
training time. Moreover, the coadjoint method trains a simple
RNN to a performance level that is comparable to an LSTM
network but faster owing to the efficiency of the second-order
sensitivity calculation of the gradients.

C. Sequential and Permuted MNIST

Using a subset of 28 x 28 images of handwritten digits taken
from the MNIST dataset we define a sequential data task to
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TABLE Il
PERFORMANCE COMPARISON OF ADJOINT AND COADJOINT TRAINED
RNNS ON THE SEQUENTIAL AND PERMUTED MNIST DATA TASKS

Classifier MNIST Results

F Test Error ||)\1||z
Seq. - Adjoint 14235.1 0.292 0(107")
Seq. - Coadjoint 14748.5 0332 0(107%)
Perm. - Adjoint 20268.3 0.652 0(107'7)
Perm. - Coadjoint ~ 15449.1 0.333 0(107%)

classify the digits {0, 1, 2} [15]. For the sequential MNIST task
we define the i element of the input sequence, {u; € st}fjl,
as the i column of the original input image. We train two
RNNs with the same architecture: one with the adjoint method
and one with the coadjoint method.

To add difficulty to the sequential MNIST task a fixed per-
mutation is applied to each training image (permuted MNIST
task). The permutation increases learning difficulty as it strips
the input of associations provided from adjacent input. Now,
the i element of the input sequence, {u; € st}?ﬁl, corre-
sponds to the ith permuted column of the original input image.
Again, we train two RNNs with the same architecture: one
with the adjoint method and one with the coadjoint method
where we seek to learn to classify the handwritten digits 0, 1
and 2.

The results for both the sequential and permuted MNIST
classification tasks are presented in Table II where F is
the training cross-entropy loss and time refers to the num-
ber of seconds to complete an epoch. The results indicate
that both the adjoint and coadjoint trained networks per-
form similarly for the sequential MNIST task. However,
permuting the input sequence has drastically different impacts
on the effectiveness of the adjoint and coadjoint methods.
The coadjoint method performs almost identically to the
sequential MNIST task, while the adjoint method is barely
able to do better than random guessing which would result
in a test accuracy of 0.66. This observation points to the
coadjoint method being particularly advantageous in tasks
where adjacent elements in the input sequence are not highly
correlated.

V. CONCLUSION

In this letter, we introduced the coadjoint method for train-
ing deep neural networks. Our coadjoint method adds a penalty
term on the adjoint states during the training process in order
to induce certain properties to the deep neural networks and
address certain computational challenges. Owing to its deriva-
tion from second-order sensitivity methods, our coadjoint
method is general and can be applied to any number of learn-
ing tasks. Moreover, owing to its derivation from second-order

sensitivity methods, our coadjoint method requires only a
marginal increase in the computational burden relative to other
state-of-the-art approaches.

Moreover, we demonstrated the effectiveness of our coad-
joint methods on training a recurrent neural networks. In
particular, we showed that the coadjoint method can success-
fully address the gradient decay problem that is endemic to
such neural networks, and require minimal additional compu-
tational burdens in comparison to state-of-the-art approaches
designed to address the gradient decay problem.

In the future, we will extend our coadjoint method to work
with these more complex network architectures in order to
reduce their overall training costs, and to extend this frame-
work to other deep learning tasks. In addition, we will continue
to demonstrate the effectiveness of our coadjoint method on
more complex and more realistic learning tasks.
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