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Abstract
Stopping criteria for Stochastic Gradient Descent (SGD)methods play important roles
from enabling adaptive step size schemes to providing rigor for downstream analyses
such as asymptotic inference. Unfortunately, current stopping criteria for SGD meth-
ods are often heuristics that rely on asymptotic normality results or convergence to
stationary distributions, which may fail to exist for nonconvex functions and, thereby,
limit the applicability of such stopping criteria. To address this issue, in this work, we
rigorously develop two stopping criteria for SGD that can be applied to a broad class of
nonconvex functions, which we term Bottou-Curtis-Nocedal functions. Moreover, as
a prerequisite for developing these stopping criteria, we prove that the gradient func-
tion evaluated at SGD’s iterates converges strongly to zero for Bottou-Curtis-Nocedal
functions, which addresses an open question in the SGD literature. As a result of our
work, our rigorously developed stopping criteria can be used to develop new adaptive
step size schemes or bolster other downstream analyses for nonconvex functions.

Keywords Stochastic gradient descent · Nonconvex · Stopping criteria · Strong
convergence

Mathematics Subject Classification 65K05 · 68Q25 · 90C06 · 90C30 · 68T05

1 Introduction

In data-driven and simulation-based disciplines, the optimization problem

min
θ

F(θ) (1)
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is frequently solved, where F(θ) = E [ f (θ, X)]; f : Rp × R
d → R; X is a random

variable with arbitrary support; and E is the expectation operator. Depending on X ,
the optimization problem’s objective function and its gradient may be impractical or
impossible to evaluate directly [2]. Fortunately,when certain regularity conditions hold
on f and X (e.g., [4,49]), the optimization problem’s structure is exploited to generate
solvers that use the gradient of f with respect to the argument θ for independent copies
of X [7,41]. Moreover, when the gradient of f is significantly cheaper to compute than
the gradient of F , the optimization problem can be efficiently solved using these so-
called Stochastic Gradient Descent (SGD) methods [2].

Despite the potential efficiency of SGD methods, they are fickle algorithms as
they are highly sensitive to the choice of step sizes [33,36]; and, consequently, SGD
robustification using adaptive stepping procedures has been an active area of research
since the inception of stochastic approximation procedures [11,12,14,24,32,43,44].1

Critically, SGD methods with adaptive stepping procedures lay out criteria for when
to stop the current step size schedule, and then provide a procedure for how to modify
it. Thus, SGD’s robustification is inherently tied to stopping criteria (see §17 of [37]).

While their utility in the adaptive step size selection for SGD methods cannot be
overstated, stopping criteria play other, equally important roles. In the deterministic
setting, stopping criteria determine whether asymptotic inference tools can be applied
(e.g., Theorem 5.23 in [45]), serve as a proxy for generalization quality [38],2 and indi-
cate when to terminate an algorithm. Even in the stochastic setting, these applications
of stopping criteria are essential and have warranted investigation.

Historically and even recently, stopping criteria—either studied independently or
within the context of adaptive stepsize rules—have focused almost entirely on either
determining when a confidence region of the iterates contains a strict minimizer
[35,43,44,46,51], or have focused on determining when the iterates satisfy a notion of
statistical stationarity [5,32,53]. Unfortunately, such stopping criteria are often limited
on modern problems. For example, stopping criteria that rely on finding confidence
regions that contain a strict minimizer are often limited to strongly convex prob-
lems,3 and are not applicable more broadly, say, to the increasingly common class of
overparametrized, nonconvex optimization problems found in machine learning [1].
Moreover, such confidence-region stopping criteria have had limited rigorous devel-
opment except in special cases [35,37,46].

Thus, stopping criteria that rely on statistical stationarity would seem preferable,
yet these criteria face two difficulties. First, such stopping criteria are generally only
employablewith sufficiently small step sizes (e.g., [53]), where the degree of smallness
has yet to be clearly specified. Additionally, such stopping criteria are rather brittle
for general nonconvex problems for two reasons. First, such stopping criteria may fail
to exist as a stationary distribution need not exist. As an example the stopping crite-
rion in [53] depends on the iterates achieving a stationary distribution, which cannot
occur, say, for the simple function F(θ) = E[(X − θ1θ2X)2], which is a toy example

1 For a review of recent approaches to adaptive step size procedures, see [8].
2 There has been some recent work that disagrees with whether early termination leads to better gener-
alization. See [1] and related work. However, even in this case, one needs to know that a minimizer is
achieved.
3 We can include those problems that are nonconvex, yet are locally strongly convex around minimizers.
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Stopping and strong convergence 695

of overparametrized models that are increasingly common in machine learning. Sec-
ond, such stopping criteria make use of only a single iterate sequence (i.e., a single
“Markov chain”) fromwhich to determine statistical stationarity, which is highly unre-
liable based on more rigorous stationarity detection methods used in Markov Chain
Monte Carlo methods [42]. Unfortunately, just as for confidence-region stopping cri-
teria, these statistical stationarity stopping criteria for stochastic optimization have
had limited rigorous development, excepting special cases [5,32,37].

To begin addressing the aforementioned limitations, we expand the scope of
stopping criteria for stochastic optimization by rigorously developing analogues to
gradient-based stopping criteria used in deterministic optimization. By taking this
gradient based perspective to stopping criteria,

1. we are able to supply stopping criteria that are applicable to any differentiable
nonconvex problemswith unbiased stochastic gradients, which renders our criteria
applicable to a broader set of problems in comparison to confidence-region and
statistical stationarity stopping criteria; and,

2. by focusing on a rigorous understanding of our stopping criteria, we demonstrate
that the gradient of F evaluated at the iterates converges to zero with probability
one, which improves the analysis of stochastic gradient methods for a broad class
of nonconvex problems and noise models.4

As a result, our stopping criteria lay a rigorous foundation for developing adaptive
step size algorithms, and our stopping criteria can be leveraged for other downstream
analyses such as developing statistical uncertainty sets.

The remainder of this paper is organized as follows. In Sect. 2, we provide an
overview of important notation. In Sect. 3, we detail the challenges of rigorously
developing stopping criteria, and howourwork contributes to the analysis of stochastic
gradient descent on nonconvex functions. In Sect. 4, we review, catalog, and organize
common conditions on F that specify its nonconvexity; and, in Sect. 4.4, we specify
a general class of nonconvex functions which we refer to as Bottou-Curtis-Nocedal
functions [4]. In Sect. 5, we precisely specify the stochastic gradient descent iterates
(Sect. 5.1), and prove that the gradient evaluated at the iterates converge strongly to
zero. In Sect. 6, we introduce and analyze our two stopping criteria. In Sect. 7, we
examine the behavior of our stopping criteria on a real data analysis task. In Sect. 8,
we conclude this work.

2 Notation

Below is a list of notation that is used throughout the text. The notation is organized into
several groups: notation related to numerical analysis; notation related to probability;
notation related the stochastic gradient method and stopping criteria; notation related
to conditions placed on the objective function.

4 Including a number of reports that came out after a preprint of this work was made public. See [18,23,31].
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3 Challenges of rigorous stopping criteria

Fundamentally, stopping criteria are posing a zero-one question—that is, either some
event does not happen (i.e., zero) or the event does happen (i.e., one). In a deterministic
setting, useful stopping criteria are typically asked about observable quantities, such as
the value of the objective function or the norm of the gradient function. Additionally,
in the deterministic setting, rigorous stopping criteria theory requires ensuring that the
stopping criterionwill be triggered,which, in turn, relies on proving that the underlying
optimization procedure generates iterates that converge to a stationary point or, more
broadly, that induce a reduction in the objective.

In the stochastic setting, these useful deterministic stopping criteria cannot be
directly applied as the quantities on which they are based (e.g., the objective function
or gradient function) cannot be feasibly evaluated. Thus, in the stochastic setting, such
deterministic stopping criteria can be adapted by either estimating the deterministic
objective or deterministic gradient function (e.g., SC-1), or estimating the zero-one
question posed by the deterministic stopping criteria (e.g., SC-2).

Unfortunately, these estimated stopping criteria inherently require a more complex
analysis. We now discuss each of these complexities, and, when appropriate, mention
how we contribute to the broader literature through our analysis.

3.1 Triggering the underlying deterministic stopping criterion

The usual, deterministic gradient-based stopping criterion requires evaluating whether
the norm of the gradient is less than some threshold. In the deterministic context, such
a stopping criterion is guaranteed to be triggered if we can prove that the gradient
function evaluated at the iterates is converging to zero. In the stochastic setting, any
estimated stopping criterion for this underlying deterministic criterion requires estab-
lishing the same result with the additional high standard of strong convergence (i.e.,
almost sure convergence, with probability one convergence).

To illustrate why we need strong convergence, consider stopping a sequence of
{0, 1}-valued, independent random variables when we observe a sequence of, say,
twenty, consecutive zeros with (possibly) random evaluation points, {Tj } ⊂ N. Specif-
ically, let {Xk} be independent random variables such that P[Xk = 0] = 1 − k−α for
some α ∈ (0, 1]. Then, {Xk} is converging to zero in probability, yet, by the second
Borel-Cantelli lemma, P[Xk = 1, i .o.] = 1, where i .o. means infinitely often. As a
result, it is entirely possible that a one appears in {XTj , XTj+1, . . . , XTj+19} for all j ;
that is, because strong convergence does not hold, a poor choice of {Tj } would pre-
vent us from ever observing a consecutive sequence of twenty zeros. Thus, stopping
criteria are predicated on establishing strong convergence, rendering convergence in
probability insufficient.

When F is convex, strong convergence can be readily established along with other
convergence rate results [2,4,7], but such results have not translated to useful stopping
criteria with limited exceptions (e.g., [5,32,35,37,46]). When F is nonconvex, con-
vergence in probability is already sufficiently challenging, even under the myriad of
notions of nonconvexity that we catalog in Sect. 4. In fact, even for the popular Bottou-
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Stopping and strong convergence 699

Curtis-Nocedal (BCN) functions [4]— see Sect. 4.4—convergence in probability has
yet to be established. Despite this, there are results under more stringent conditions,
notably Corollary 4.12 of [4], Theorem 2(c) of [26], and Theorem 1 of [27]. This last
result is a rather important contribution, but the additional condition assumed excludes
the simple linear regression problem and, consequently, BCN functions in general. In
summary, strong convergence for general, BCN nonconvex functions has yet to be
established.

In order to address this gap, our first contribution is to prove the strong convergence
(i.e., convergence with probability one) of Ḟ evaluated at the iterates of SGD to zero
for BCN functions (see Corollary 1), which generalizes and strengthens the preceding
results. Our proof employs several strategies that either refine current techniques or
are atypical in the stochastic optimization literature; our general strategy and how it
is distinct from [26] and [27] is discussed at the beginning of Sect. 5.2. Owing to this
contribution, we can guarantee that the underlying deterministic stopping criterion
will be triggered.

3.2 Triggering the estimated stopping criterion

Unfortunately, even if the underlying deterministic stopping criterion is triggered,
the estimated stopping criterion is not necessarily subject to such a guarantee. As an
example, consider SC-2 with ε ∈ (0, 1) (see Sect. 6) applied to f (θ) = θX , where X
is a Rademacher random variable. In this example, the stopping criterion would never
be triggered. However, there are situations in which the stopping criterion would offer
substantial computational and information theoretic-benefits (see T1 in Sect. 6).

As this example demonstrates, whether an estimated stopping criterion is trig-
gered is not subsumed by whether the underlying deterministic stopping criterion
is triggered, and the choice of estimated stopping criterion will have implications
for performance even for the same underlying deterministic stopping criterion. Thus,
studying whether the estimated stopping criterion is triggered adds a layer of com-
plexity that does not exist for the deterministic context. To our knowledge, such an
investigation has not been undertaken in the literature, and will be a central issue that
we will explore.

3.3 False negative and false positive control

Owing to the fact that estimated stopping criteria depend on the values of random
quantities, an estimated stopping criterion may

1. fail to stop the algorithm even when the deterministic gradient is sufficiently small
(i.e., a false negative);5 or

2. incorrectly stop the algorithm even though the norm of the iterate’s deterministic
gradient is too large (i.e., a false positive).

5 The notions of “sufficiently small” or “too large” are dependent on the application, just as they are in
deterministic optimization.
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700 V. Patel

Ideally, a stopping criterion is specified in order to control the probability of both
types of falsehoods from occurring. Unfortunately, to our knowledge, there are no
stopping criteria that have been specified that have rigorously addressed either of
these concerns. Therefore, in this work, we will derive false negative probability
controls.While our techniques can be applied to derive coarse false positive probability
controls, we will not state formal results in this direction: in our view, a false positive
is often deleterious as it would terminate the algorithm too early for any utility to
be derived from the terminal iterate; thus, coarse false positive controls are rather
useless for most practical situations (and, for those where it is allowable, they can be
readily derived using our techniques). For meaningful false positive control, we would
need assumptions on the cumulative distribution function of ‖ ḟ (θ, X)‖2, which is an
atypical consideration in the stochastic optimization literature. Thus, we will leave it
to future work.

4 Bottou-Curtis-Nocedal and other conditions on nonconvexity

For the specification of nonconvex functions, there aremany conditions in the literature
and many of them are intimately related. Our goal here is to define these conditions
as they appear in the literature, and demonstrate how they are related. At the end, we
state the Bottou-Curtis-Nocedal (BCN) conditions, which was popularized in [4] and
which is the main set of conditions under consideration in this work.

Before enumerating these distinct conditions,we note that there is a core assumption
that F is bounded from below, both Ḟ and ḟ exist, and that ḟ is unbiased. While it
is possible to allow for bias in ḟ (see Sect. 4 of [4]), this is only useful when we are
using a scalar step size; if we consider a matrix-based step size, as we will do here,
then the bias in ḟ cannot be allowed without extra assumptions. Hence, we will take
ḟ to be unbiased and we simply point out that the biased case with scalar step sizes is
an easier analysis than what we will present below.

4.1 Control on the iterate space

There are three common ways in which the space of iterates of θ is controlled. The
first condition assumes

The argument, θ , is restricted to a compact, convex subset
of Rp, denoted by Θ [25].(IS-1)

Condition IS-1 is quite convenient in the analysis of SGD methods because it
prevents the iterates from diverging out of a compact set—if an iterate is pushed
outside of the convex, compact set then it is simply projected back into the set. As a
result of this projection operation, the analysis of SGD methods where the iterates are
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Stopping and strong convergence 701

restricted to a convex, compact is a special case of when the situation where Θ is not
required to be bounded [2].

A less restrictive approach assumes

The argument, θ , is restricted to a closed, convex subset
of Rp, denoted by Θ [17,47].(IS-2)

Condition IS-2 certainly contains Condition IS-1, and thus is more general. How-
ever, just as for Condition IS-1, Condition IS-2 is imposed by projecting the iterates
into Θ . Again, as a result of this projection operation, the analysis of SGD methods
where the iterates are restricted to a convex, closed set is a special case of the analysis
in which Θ is the whole space Rp.

Thus, the final way in which the space of iterates of θ is controlled is to allow θ to
be unrestricted. For uniformity, we define this as

The argument, θ , is unrestricted. That is θ can take any
value in Rp.

(IS-3)

4.2 Control on the objective

There are several common ways in which the stochastic objective (SO) function, f ,
is directly controlled. The first one assumes

There exists aC > 0 such that
P [∀θ, | f (θ, X)| < C] = 1.

(SO-1)

Condition SO-1 is assumed in [19,54]. In fact, both of these works require more
stringent controls on f and its derivatives. However, in [19], these added controls
allow for the approximation of SGD methods by stochastic differential equations,
which are then leveraged to characterize the escape times of an SGD method from a
saddle point. It is worth noting that such a characterization supplies a more complete
analysis than the more recent results of [13,21], which only supply conditions for
finding an ε-approximate stationary point with a nearly positive definite Hessian, but
do not guarantee that such a point is stable (i.e., that the SGD method will not escape
this point as well).

A natural relaxation of Condition SO-1 is to assume that F(θ) is bounded from
above and below. While bounding F(θ) from below is necessary when θ is not
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restricted to a compact subset, there were no works in our review that directly assumed
that F(θ) is bounded from above. The closest condition in this regard come from [15],
which assumes

There exists aC > 0 such that for all θ ∈ R
p,

E
[| f (θ, X)|2] ≤ C .

(SO-2)

Note, by Jensen’s inequality, Condition SO-2 implies

|F(θ)|2 = |E [ f (θ, X)] |2 ≤ E

[
| f (θ, X)|2

]
≤ C; (2)

that is, Condition SO-2 implies F is bounded.
An alternative restriction to bounding the stochastic objective is to impose Lipschitz

continuity, which is often more appropriate for a number of data-driven optimization
problems. One specific form of using such continuity is assumed in [34,39], and
specified by

There exists aC > 0 such that
P
[∀θ1, θ2, | f (θ1, X) − f (θ2, X)| ≤ C ‖θ1 − θ2‖2

] = 1.
(SO-3)

Unfortunately,ConditionSO-3 excludes our litmusproblem (i.e., the standard linear
regression problem). Interestingly, Condition SO-3 is assumed locally in [15] along
with twice differentiability and constraints on the expected Hessian of F in order to
establish local rates of convergence for nonconvex functions.

The natural relaxations of Conditions SO-1 and SO-3 to the deterministic objective
(DO) function, F , are

There exists a C > 0 such that |F(θ)| ≤ C for all θ .(DO-1)

and

There exists aC > 0 such that for all θ1 and θ2,

|F(θ1) − F(θ2)| ≤ C ‖θ1 − θ2‖2 .
(DO-2)
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By Jensen’s inequality, it follows that Condition SO-1 implies Condition DO-1,
and that Condition SO-3 implies Condition DO-2. Note, Condition DO-1 is used in
[19] to establish an SDE approximation to the SGD iterates, and establish rather fine-
resolutions results about the escape times of the SGD from saddle points. Condition
DO-2 was used in the early nonconvex results of [17,39], and was used recently by
[34] to establish that SGD finds ε-approximate second-order stationary points with
high probability. Importantly, Condition DO-2 is essential in Theorem 1 of [27] (i.e.,
the aforementioned convergence with probability one result): it is used three times in
the proof of the result and done in such a way that it cannot be relaxed.

4.3 Control on the gradient

There are many more conditions that are placed on the stochastic gradients (SG), ḟ ,
than the stochastic objective (SO), f , owing to the centrality of ḟ in SGDmethods. The
first set of conditions will be analogous to those conditions on f . The most restrictive
condition, integral to the results in [3,19,29,39], is

There exists aC > 0 such that
P
[∀θ,

∥∥ ḟ (θ, X)
∥∥
2 ≤ C

] = 1.
(SG-1)

A more applicable relative of this condition and an analogue of Condition SO-3,
used in [1,3,13,20,21,28,29,34,40,47,54], is

There exists aC > 0 such that
P
[∀θ1, θ2,

∥∥ ḟ (θ1, X) − ḟ (θ2, X)
∥∥
2 ≤ C ‖θ1 − θ2‖2

] = 1.
(SG-2)

Condition SG-2 is also used locally in the results of [15]. More importantly, Condition
SG-2 is integral to the previously mentioned result, Theorem 2(c) of [26], which
established convergence in probability. While we will not directly compare Condition
SG-2 to theBCNconditions, wewill compareweaker conditions implied byCondition
SG-2 to the BCN conditions. In order to do so, we will first need to discuss common
conditions placed on the noise model (NM).

The first common restriction on the noise model (NM), used in [6,27], is specified
by

There exists aC ≥ 0 such that
P
[∀θ,

∥
∥ ḟ (θ, X) − Ḟ(θ)

∥
∥
2 ≤ C

] = 1.
(NM-1)
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The second and less restrictive noise model condition, used in [13,17,21,25,28,34,
52], is specified by

There exists aC ≥ 0 such that,∀θ,

E

[∥∥ ḟ (θ, X) − Ḟ(θ)
∥∥2
2

]
≤ C .

(NM-2)

As we will see subsequently, we have the following noise model condition, which
is motivated by Condition SG-2.

There exists aC1,C2 ≥ 0 such that,∀θ,

E

[∥∥ ḟ (θ, X) − Ḟ(θ)
∥∥2
2

]
≤ C1 + C2F(θ).

(NM-3)

The following lemma relates Condition SG-2 to Condition NM-3. Note, in the
following lemma, the parameter, L , is taken to be 0 in [26].

Lemma 1 Suppose there exists L ∈ R such that P [∀θ, f (θ, X) ≥ L] = 1 and sup-
pose Condition SG-2 holds. Then, for all θ1, θ2,

∥∥Ḟ(θ1) − Ḟ(θ2)
∥∥
2 ≤ C ‖θ1 − θ2‖2 , (3)

and for some C1,C2 ≥ 0, NM-3 holds.

Proof The first result follows by an application of Jensen’s inequality. For the second
result, for any θ , let

θ̃ = θ − 1

C
ḟ (θ, X). (4)

By Taylor’s theorem and Condition SG-2,

f (θ̃ , X) ≤ f (θ, X) + ḟ (θ, X)′(θ̃ − θ) + C

2

∥∥
∥θ̃ − θ

∥∥
∥
2

2
(5)

≤ f (θ, X) − 1

C

∥∥ ḟ (θ, X)
∥∥2
2 + 1

2C

∥∥ ḟ (θ, X)
∥∥2
2 (6)

≤ f (θ, X) − 1

C

∥∥ ḟ (θ, X)
∥∥2
2 . (7)

Therefore, since L ≤ f (θ̃ , X) with probability one,

∥∥ ḟ (θ, X)
∥∥2
2 ≤ C[ f (θ, X) − f (θ̃ , X)] ≤ C[ f (θ, X) − L]. (8)
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Moreover, this inequality with Jensen’s inequality implies that

∥
∥Ḟ(θ)

∥
∥2
2 ≤ E

[∥
∥ ḟ (θ, X)

∥
∥2
2

]
≤ C[F(θ) − L] (9)

Therefore,

E

[∥∥ ḟ (θ, X) − Ḟ(θ)
∥∥2
2

]
≤ 2E

[∥∥ ḟ (θ, X)
∥∥2
2

]
+ 2

∥∥Ḟ(θ)
∥∥2
2 ≤ 4C(F(θ) − L). (10)

If L is positive, then we can choose C1 = 0 and C2 = 4C . If L is negative, then we
can choose C1 = −4CL and C2 = 4C . 
�

While a variant of Condition NM-3 was recently considered (see the discussion
afterNM-4), a direct application ofNM-3 and the Polyak-Łojasiewicz (PL) condition
[22] provide a straightforward proof of convergence (in probability) of the objective
function evaluated at the iterates to the optimal value.

The final noise model condition is assumed in the BCN conditions [4], and is
specified by

There exists aC1,C2 ≥ 0 such that,∀θ ≥ 0,

E

[∥∥ ḟ (θ, X) − Ḟ(θ)
∥∥2
2

]
≤ C1 + C2

∥∥Ḟ(θ)
∥∥2
2 .

(NM-4)

In general, if Ḟ is Lipschitz continuous, then NM-4 implies NM-3 by a simple
analogue of Lemma 1. Given that Ḟ is often taken to be Lipschitz continuous in
the stochastic optimization literature, NM-3 is effectively more general. Some recent
works combining the two have also appeared under the names of expected smoothness
[23] and [18], and show weak forms of convergence under this broader assumption.
In fact, to strengthen their convergence results, the PL condition is employed [18,23],
which renders NM-3 and NM-4 equivalent. Specifically, if ∃μ > 0 and an optimal
objective function value F∗ such that

∥∥Ḟ(θ)
∥∥2
2 ≥ μ[F(θ) − F∗], (11)

then
C1 + C2F(θ) = (C1 + C2F

∗) + C2[F(θ) − F∗]
≤ (C1 + C2F

∗) + C2

μ

∥∥Ḟ(θ)
∥∥2
2 .

(12)

We note that the PL condition, if assumed globally as in [18,23], is rather a strong
assumption to make as it all stationary points to have value F∗, which is usually taken
to be the global minimum.

The final two conditions are the less restrictive implications that follow from Con-
ditions SG-1 and SG-2 about the deterministic gradient (DG), Ḟ . The first condition,
found in [6,16,20,48], is
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There exists aC > 0 such that, for all θ,∥∥Ḟ(θ)
∥∥
2 ≤ C .

(DG-1)

The second condition, found in [25,27,52,55], is

There exista aC > 0 such that for all θ1, θ2,∥
∥Ḟ(θ1) − Ḟ(θ2)

∥
∥
2 ≤ C ‖θ1 − θ2‖2 .

(DG-2)

4.4 Bottou-Curtis-Nocedal functions

The Bottou-Curtis-Nocedal (BCN) conditions, as popularized in [4], is a very general
set of conditions as it—arguably—takes the least restrictive conditions from those
discussed above. That is, the BCN conditions are defined as follows.

The BCN conditions are

1. F is bounded from below.
2. Ḟ is Lipschitz continuous (DG-2).
3. For all θ ∈ R

p, Ḟ(θ) = E[ ḟ (θ, X)].
4. The stochastic gradients satisfy NM-4.

(BCN)

Definition 1 A function that satisfies the BCN conditions is referred to as a BCN
function.

Remark 1 While we have not explicitly done so, we can allow for biased stochastic
gradients if we use scalar step sizes.

5 Strong global convergence

Here, we establish one of our key results: the deterministic gradient evaluated at
the iterates generated by stochastic gradient descent (SGD) converges to zero with
probability one for Bottou-Curtis-Nocedal (BCN) nonconvex functions. In order to
do this, we will first need to specify the precise nature of the SGD iterates that we will
consider. Then, we will establish global convergence of SGD with probability one for
BCN functions, which includes a broad class of convex and nonconvex functions.
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5.1 Stochastic gradient descent method

Here,wewill consider SGDmethodswithmatrix-valued learning rates. In doing so,we
will require the particular BCN conditions described earlier; however, we emphasize
that if the step size is scalar and the stochastic gradients are allowed to be bias, then
the iterates can be analyzed with the same arguments below and with less difficulty.

Let {Xk : k ∈ N} be independent and identically distributed random variables that
have the same distribution as X . Let β0 be either a fixed or random quantity in R

p.
Let F0 = σ(β0) and Fk = σ(β0, X1, . . . , Xk) denote the corresponding elements
of the usual filtration. Define the Stochastic Gradient Descent iterates {βk : k ∈ N}
recursively by

βk+1 = βk − Mk ḟ (βk, Xk+1), (13)

where {Mk} are matrices that satisfy:

The matrices {Mk} are symmetric and positive definite.(P1)

There exists an S > 0 such that
∞∑
k=0

λmax(Mk)
2 < S,

where λmax(·) denotes the largest eigenvalue of the given
matrix.

(P2)

The sum,
∞∑
k=0

λmin(Mk),

diverges, where λmin(·) is the smallest eigenvalue of the
givenmatrix.

(P3)

The condition numbers of {Mk}with respect to operator
2 − norm,{κ(Mk)}, satisfy

lim
k→∞λmax(Mk)κ(Mk) = 0.

(P4)
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There are several remarksworthmaking at this point. First, ifMk are scalarmultiples of
the identity, we would recognize properties P1 to P3 as the Robbins-Monro conditions
[41], and P4would be implied by P2. Second, P4 ensures that the condition number of
Mk cannot grow too rapidly such that subsequences of {Mk} may hinder convergence
(see Lemma 2). Importantly, P4 can be relaxed so that the limit is a positive number
that would depend on certain constants governing the deterministic gradient behavior
and the noise model (see (23)).

Finally, wemake a brief note about an important property of SGD that follows from
the independent of {Xk}, which we will formalize and make use of later. Specifically,
{βk} enjoy an analogue of the strong Markov property; that is, for any finite, stopping
time τ , the iterates {βτ+k} are independent of Fτ given βτ and Mτ . Moreover, since
properties P1 to P4 still hold for {Mτ+k} (see Lemma 3), any property that holds for
{βτ+k} (given βτ and Mτ ) must also hold for {βk}.

5.2 Strong global convergence

With the formulation of SGD in hand and the nature of the BCN functions specified,
we are now ready to prove the strong global convergence of the iterates; that is, we
will prove that

P

[
lim
k→∞

∥
∥Ḟ(βk)

∥
∥
2 = 0

]
= 1. (14)

The proof of this result will proceed by two steps. First, we will establish that, for
any δ > 0,

P
[∥∥Ḟ(βk)

∥∥
2 ≤ δ, i .o.

] = 1, (15)

where i .o. means infinitely often (see Theorem 1). Unfortunately, this alone will not
imply convergence. Therefore, we will use this result to prove that, for any δ > 0,

P
[∥∥Ḟ(βk)

∥∥
2 > δ, i .o.

] = 0, (16)

which implies that the deterministic gradient of the iterates converge to zero with
probability one (see Theorem 2).

Before detailing the results, we would like to point out the general strategy that we
use, and how it is similar to, or distinct from, previous efforts. First, we use coupling
to relate the iterate sequence and a related sequence, for which we then establish
an analogue of the strong Markov property mentioned previously. With these two
pieces, a refinement of Zoutendijk’s global convergence strategy [56], and an induction
argument, we are able to prove (15). Then, we leverage (15), the inclusion-exclusion
principle, and a conditional version of the Borel-Cantelli lemma to conclude (16).

As mentioned, our approach adapts Zoutendijk’s global convergence strategy [56],
which has been done previously in the stochastic optimization literature [39,40]. How-
ever, our approach refines this argument by establishing an analogue of the strong
Markov property through coupling, which we have not observed in any of the stochas-
tic optimization literature. This allows us to state a much stronger result than what has
previously been established.
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Another point of departure is that our approach avoids restating the behavior of
the iterates as a martingale, which is the primary strategy when F is convex (e.g., see
[2]). Our approach also avoids restating any evaluation of the iterates with respect
to the objective or the gradient as a martingale, which is the strategy that is used in
Theorem 2(c) of [26], and which seems to require much stronger conditions than the
general BCN conditions. In fact, the use of martingales only appears in the proof of
the conditional Borel-Cantelli lemma, which we do not derive but rather cite from
source material.

Finally, our proof does not require explicitly bounding the behavior of the differ-
ences between the norms of the deterministic gradients of sequential iterates by the
steps, {Mk}, to prove the deterministic gradients of the iterates converge to zero with
probability one. This type of argumentation is essential to the proof of [27]6 and in
[26].7

Remark 2 We also note that all of the inequalities and equalities below hold with
probability one, even if this is not explicitly stated.

Remark 3 We also point out that the probabilities and expectations below should be
conditional on F0. However, to avoid the additional cumbersome notation, we will
not explicitly state this.

5.2.1 Strongmarkov property and coupling

Our first task will be to set the stage to the analogue of strong Markov property that
will be relevant in analyzing the SGD method. Let τ be a finite stopping time with
respect to {Fk}; that is, P [τ < ∞] = 1. Moreover, as all of our arguments will be
asymptotic in this section, we will assume also that P [τ ≥ K ] = 1 where K ∈ N is
defined in the following lemma to satisfy the following property, which will be used
later.

Lemma 2 Suppose {Mk} satisfy P1 to P4, and recall that C is the Lipschitz constant
in DG-2 and C2 is the scaling constant in NM-4. There exists a K ∈ N such that, for
all k ≥ K and for any eigenvalue, λ of Mk,

1

2
λmin(Mk) ≤ λ − C

2
λ2 − CC2

2
λmax(Mk)

2. (17)

Proof We begin by showing that right hand side of (17) is minimized when λ =
λmin(Mk) for all k sufficiently large and then establish (17) for this choice of λ. We
first establish

λmax(Mk) + λmin(Mk) ≤ 2

C
. (18)

By P2, λmax(Mk) → 0. Therefore, there exists a k0 ∈ N such that for all k ≥ k0,
λmax(Mk) ≤ 1/C . Therefore, (18) follows for all k ≥ k0. Moreover, for every k ≥ k0,

6 This bound is required to apply Lemma 1 of [27]. See the second display equations of Page 6 in [27].
7 This type of bound is established in (15) and the subsequent display equation in [26]. The argument then
essentially reestablishes Lemma 1 of [27].
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we see that (18) holds for any other eigenvalue of Mk in place of λmax(Mk). Letting
λ denote any eigenvalue of Mk and noting that λ − λmin(Mk) ≥ 0,

(λ − λmin(Mk))(λ + λmin(Mk)) ≤ 2

C
(λ − λmin(Mk)), (19)

which can be rearranged to conclude that, for any k ≥ k0 and for any eigenvalue λ of
Mk ,

λmin(Mk) − C

2
λmin(Mk)

2 ≤ λ − C

2
λ2. (20)

It follows that the right hand side of (17) is minimized by λmin(Mk).
We now establish (17) with λ = λmin(Mk) by contradiction. Suppose that there

exists a subsequence {k j } for which (17) does not hold; that is, by rearranging (17),

Cλmin(Mk j )
2 + CC2λmax(Mk j )

2 > λmin(Mk j ). (21)

Taking an upper bound on the left hand side,

2C(C2 + 1)λmax(Mk j )
2 > λmin(Mk j ). (22)

Hence,

λmax(Mk j )κ(Mk j ) >
1

2C(C2 + 1)
, (23)

which contradicts P4 for j sufficiently large. Hence, there is a K ≥ k0 such that, for
all k ≥ K , (17) holds. 
�

Now, using τ , we will define a sequence of iterates {ψk} that we will eventually
couple with {βk}. To define {ψk}, let
1. Zk := Xτ+1+k for all k ∈ N.
2. ψ0 := βτ+1.
3. For all k ∈ {0} ∪ N, Pk := Mτ+1+k and

ψk+1 := ψk − Pk ḟ (ψk, Zk+1)1
[∥∥Ḟ(ψk)

∥∥2
2 > δ

]
, (24)

where 1 [·] is the indicator function for the given event.

There are two properties of these quantities that are worth noting: {Zk} are indepen-
dent and identically distributed; {Pk} inherit the properties of {Mk} with probability
one. The former is verified by Theorem 4.1.3 of [10], which states that {Zk} are mutu-
ally independent and independent of Fτ+1, and have the same distribution as X1. The
latter is verified by the following lemma.

Lemma 3 With probability one, {Pk} satisfy P1 to P4. Moreover, with probability one,
for all k ≥ 0 and any eigenvalue λ of Pk,

1

2
λmin(Pk) ≤ λ − C

2
λ2 − CC2

2
λmax(Pk)

2. (25)

123



Stopping and strong convergence 711

Proof The result follows from a standard divide and conquer argument. For P1,

P
[
Pk = P ′

k, Pk � 0
] = P

[
M ′

τ+1+k = Mτ+1+k, Mτ+1+k � 0
]

(26)

=
∞∑

j=0

P

[
M ′

j+1+k = Mj+1+k, Mj+1+k � 0
∣∣
∣ τ = j

]
P [τ = j] (27)

=
∞∑

j=0

P

[
M ′

j+1+k = Mj+1+k, Mj+1+k � 0
]

︸ ︷︷ ︸
=1 by P1 on {Mk }

P [τ = j] (28)

=
∞∑

j=0

P [τ = j] (29)

= P [τ < ∞] = 1. (30)

Similarly, for P2,

P

[ ∞∑

k=0

λmax(Pk)
2 < S

]

(31)

=
∞∑

j=0

P

[ ∞∑

k=0

λmax(Mj+1+k)
2 < S

∣∣∣∣
∣
τ = j

]

︸ ︷︷ ︸
=1 by P2 on {Mk }

P [τ = j] (32)

= P [τ < ∞] = 1. (33)

The analogous arguments will show that the remaining conclusions of the lemma hold.

�

From these properties, we see that if (24) did not have the indicator term, then the
only difference between {ψk} and {βk} is the initialization—the fact that {Pk} and {Mk}
are distinct is of little importance for our purposes as long as P1 to P4 are satisfied.
Thus, we see that {βk} exhibit an analogue of the strong Markov property.

Now, to couple these two iterate sequences, let G0 = Fτ+1 and Gk =
σ(Fτ+1, Z1, . . . , Zk), and, for δ > 0, define τδ to be a stopping time with respect
to {Gk} such that

τδ = min
{
k ≥ 0 : ∥∥Ḟ(ψk)

∥∥2
2 ≤ δ

}
. (34)

Then, on the event {k ≥ τδ}, ψk+1 = ψk . Moreover, on the event {k < τδ},

ψk+1 = ψk − Pk ḟ (ψk, Zk+1)

= βτ+1+k − Mτ+1+k ḟ (βτ+1+k, Xτ+2+k) = βτ+2+k
(35)

follows by induction. Therefore, for all 0 ≤ k ≤ τδ , ψk = βτ+1+k ; that is, the
sequences are coupled in this interval. Owing to this coupling, we see that τδ + 1 is
the number of iterates for βk to be within a “δ-region of zero gradient” after iterate τ .
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We now apply Zoutendijk’s global convergence approach to conclude that τδ is finite
with probability one.

5.2.2 Zoutendijk’s global convergence approach

We now apply Zoutendijk’s global convergence approach [56] to {ψk} to conclude
that P [τδ < ∞] = 1. First, by the fundamental theorem of calculus andDG-2 (recall,
with constant C),

F(ψk+1) ≤ F(ψk) + Ḟ(ψk)
′(ψk+1 − ψk) + C

2
‖ψk+1 − ψk‖22 (36)

= F(ψk) − Ḟ(ψk)
′Pk ḟ (ψk, Zk+1)1

[∥∥Ḟ(ψk)
∥∥2
2 > δ

]

+ C

2

∥
∥Pk ḟ (ψk, Zk+1)

∥
∥2
2 1
[∥
∥Ḟ(ψk)

∥
∥2
2 > δ

]
.

(37)

We now take the conditional expectation of the resulting inequality with respect to Gk .
Note, since ψk, Pk are measurable with respect to Gk and Zk+1 is independent of Gk ,
then E [ F(ψk)|Gk] = F(ψk) and

E
[
Ḟ(ψk)

′Pk ḟ (ψk, Zk+1)
∣∣Gk

] = Ḟ(ψk)
′Pk Ḟ(ψk). (38)

For the third term in (37), we will need to make use of NM-4 (with parameters
C1,C2 ≥ 0).

E

[∥∥Pk
[
ḟ (ψk, Zk+1) − Ḟ(ψk) + Ḟ(ψk)

]∥∥2
2

∣∣
∣Gk

]

= E

[∥∥Pk
[
ḟ (ψk, Zk+1) − Ḟ(ψk)

]∥∥2
2

∣
∣∣Gk

]
+ Ḟ(ψk)

′P2
k Ḟ(ψk) (39)

≤ C1λmax(Pk)
2 + C2λmax(Pk)

2
∥∥Ḟ(ψk)

∥∥2
2 + Ḟ(ψk)

′P2
k Ḟ(ψk) (40)

Putting the calculation for these three terms together in (37), we conclude

E
[
F(ψk+1)|Gk

] ≤ F(ψk) + CC1

2
λmax(Pk)

2 − 1
[∥
∥Ḟ(ψk)

∥
∥2
2 > δ

]

×
[
Ḟ(ψk)

′Pk Ḟ(ψk) − C

2
Ḟ(ψk)

′P2
k Ḟ(ψk) − CC2

2
λmax(Pk)

2
∥∥Ḟ(ψk)

∥∥2
2

]
.

(41)

We can find an upper bound for (41) by finding a lower bound for the third term in the
right hand side of the inequality. In particular, we will lower bound

min
v∈Sp−1

v′Pkv − C

2
v′P2

k v − CC2

2
λmax(Pk)

2 ‖v‖22 , (42)

where Sp−1 is the unit sphere in Rp.8

8 We could drop the last term in the optimization problem as it is a constant.
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Using the Schur decomposition of Pk ,9 we can transform (42) into the equivalent
problem

min
v∈Sp−1

p∑

i=1

[
λi − C

2
λ2i − CC2

2
λ21

]
v2i , (43)

where λmax(Pk) = λ1 ≥ λ2 ≥ · · · ≥ λp = λmin(Pk); and vi are the components of v.
Applying Lemma 3, the solution to (43) is lower bounded by λmin(Pk)/2.

Plugging this lower bound into (41), we have that

E
[
F(ψk+1)|Gk

] ≤ F(ψk) + CC1

2
λmax(Pk)

2

− 1

2
λmin(Pk)

∥
∥Ḟ(ψk)

∥
∥2
2 1
[∥
∥Ḟ(ψk)

∥
∥2
2 > δ

]
.

(44)

Rearranging and applying the condition in the indicator,

δ

2
λmin(Pk)1

[∥∥Ḟ(ψk)
∥∥2
2 > δ

]

≤ F(ψk) − E
[
F(ψk+1)|Gk

]+ CC1

2
λmax(Pk)

2.

(45)

Now, recall that Pk are measurable with respect to Fτ+1 and recall that Fτ+1 ⊂ Gk
for all k. Therefore,

δ

2
λmin(Pk)P

[∥
∥Ḟ(ψk)

∥
∥2
2 > δ

∣
∣∣Fτ+1

]

≤ E
[
F(ψk) − F(ψk+1)|Fτ+1

]+ CC1

2
λmax(Pk)

2.

(46)

Moreover, by (a) summing both sides from k = 0 to n ∈ N, (b) recalling that F(ψ0)

is finite with probability one given Fτ+1, and (c) applying P2 from Lemma 3, we
conclude

δ

2

n∑

k=0

λmin(Pk)P
[∥∥Ḟ(ψk)

∥∥2
2 > δ

∣∣∣Fτ+1

]

≤ F(ψ0) − E
[
F(ψn+1)|Fτ+1

]+ SCC1

2
.

(47)

Recall that, we have assumed that F(θ) is bounded from below by some constant
Fl.b. as a core assumption. Using this, we see that

δ

2

n∑

k=0

λmin(Pk)P
[∥∥Ḟ(ψk)

∥∥2
2 > δ

∣∣∣Fτ+1

]
≤ F(ψ0) − Fl.b. + SCC1

2
. (48)

9 Since Pk is random, its Schur decomposition is random.
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Moreover, note that, for all k ≥ 0,

P

⎡

⎣
∞⋂

j=0

{∥
∥Ḟ(ψ j )

∥
∥2
2 > δ

}
∣∣∣
∣∣∣
Fτ+1

⎤

⎦ ≤ P

[∥
∥Ḟ(ψk)

∥
∥2
2 > δ

∣∣
∣Fτ+1

]
. (49)

Therefore, for arbitrary n,

P

⎡

⎣
∞⋂

j=0

{∥∥Ḟ(ψ j )
∥∥2
2 > δ

}
∣∣∣∣∣∣
Fτ+1

⎤

⎦ ≤ F(ψ0) − Fl.b. + SCC1/2

(δ/2)
∑n

k=0 λmin(Pk)
(50)

By P3 from Lemma 3, the right hand side of this inequality can be made arbitrarily
small, which implies that the conditional probability on the left hand side is zero.

That is,

0 = P

⎡

⎣
∞⋂

j=0

{∥∥Ḟ(ψ j )
∥∥2
2 > δ

}
∣∣
∣∣∣∣
Fτ+1

⎤

⎦ = P
[
τδ = ∞|Fτ+1

]
. (51)

In other words, we have concluded that P
[
τδ < ∞|Fτ+1

] = 1 with probability one
for any finite stopping time τ . With this result, our last step is to use induction.

For now,wewill say that the iterates are in a δ-region of zero gradient if the squared-
norm of the gradient of the iterate is no greater than δ. If we let τ = −1, then τδ is the
first time the iterates enter a δ-region of zero gradient. Let T1(δ) = τδ when τ = −1.
Then, from the above argument, we have shown that T1(δ) is a finite stopping time.
Now, define Tj (δ) to be the j th time that the iterates enter a δ-region of zero gradient.
Suppose that Tj (δ) is finite. Then, define τ = Tj (δ). Then, τδ for this τ is the next
time that the iterates enter a δ-region of zero gradient. That is, Tj+1(δ) = τδ + Tj (δ).
Since we have assumed that τ = Tj (δ) is finite, we conclude that τδ is finite, which
implies that Tj+1(δ) is finite. Therefore, by induction we have proven the following
result.

Theorem 1 Let F be a Bottou-Curtis-Nocedal function (BCN) and let {βk} be the
iterates generated by Stochastic Gradient Descent satisfying P1 to P4 (Sect. 5.1),
then, for any δ > 0,

P

[∥∥Ḟ(βk)
∥∥2
2 ≤ δ, i .o.

∣
∣∣F0

]
= 1 with probability 1, (52)

where F0 = σ(β0).

5.2.3 Inclusion-Exclusion andmarkov’s inequality

Our next step is to prove that

P
[∥∥Ḟ(βk)

∥∥
2 > δ, i .o.

∣∣F0
] = 0 with probability 1. (53)
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Again, we will temporarily drop the conditioning on F0 for simplicity of the nota-
tion. By Theorem 1 and the inclusion-exclusion principle,

1 = P
[{∥∥Ḟ(βk)

∥∥
2 ≤ δ, i .o.

} ∪ {∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}]
(54)

= P
[∥∥Ḟ(βk)

∥∥
2 ≤ δ, i .o.

]+ P
[∥∥Ḟ(βk)

∥∥
2 > δ, i .o.

]

− P
[{∥∥Ḟ(βk)

∥∥
2 ≤ δ, i .o.

} ∩ {∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}]
.

(55)

Applying Theorem 1 again, we conclude that

P
[∥∥Ḟ(βk)

∥
∥
2 > δ, i .o.

]

= P
[{∥∥Ḟ(βk)

∥
∥
2 ≤ δ, i .o.

} ∩ {∥∥Ḟ(βk)
∥
∥
2 > δ, i .o.

}]
.

(56)

We will now show that the probability of the right hand side is zero. Note, for any
outcome

ω ∈ {∥∥Ḟ(βk)
∥∥
2 ≤ δ, i .o.

} ∩ {∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}
, (57)

theremust be an infinite subsequence ofN such thatβk is in a δ2-region of zero gradient
and then βk+1 exits this δ2-region of zero gradient. Suppose this were not true. Then,
there are two cases. In the first case, βk enters a δ2-region of zero gradient and then
never leaves, in which case

ω /∈ {∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}
. (58)

In the second case, we have that βk exits a δ2-region of zero gradient, and never enters
again, which implies

ω /∈ {∥∥Ḟ(βk)
∥∥
2 ≤ δ, i .o.

}
. (59)

In both cases, we have a contradiction. Therefore, using just one of the cases, we
conclude that {∥∥Ḟ(βk)

∥∥
2 ≤ δ, i .o.

} ∩ {∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}

⊂ {∥∥Ḟ(βk)
∥∥
2 ≤ δ,

∥∥Ḟ(βk+1)
∥∥
2 > δ, i .o.

}
.

(60)

We can write this latter event as
{∥∥Ḟ(βk)

∥∥
2 ≤ δ,

∥∥Ḟ(βk+1)
∥∥
2 > δ, i .o.

}

= {∥∥Ḟ(βk+1)
∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

]
> δ, i .o.

}
.

(61)

We will now show that this ultimate event occurs with probability zero using
Markov’s inequality and the Borel-Cantelli lemma. Let ε > 0 and recall that C > 0
is the parameter in DG-2. Then,

P
[∥∥Ḟ(βk+1)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

] ≥ δ + Cε
∣∣Fk

]
(62)

≤ P

[ (∥∥Ḟ(βk+1) − Ḟ(βk)
∥
∥
2 + ∥

∥Ḟ(βk)
∥
∥
2

)
1
[∥∥Ḟ(βk)

∥
∥
2 ≤ δ

]

≥ δ + Cε

∣∣∣∣Fk

] (63)
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≤ P
[∥∥Ḟ(βk+1) − Ḟ(βk)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

]+ δ ≥ δ + Cε
∣∣Fk

]
(64)

≤ P
[
C ‖βk+1 − βk‖2 1

[∥∥Ḟ(βk)
∥
∥
2 ≤ δ

] ≥ Cε
∣
∣Fk

]
(65)

≤ P
[∥∥Mk ḟ (βk, Xk+1)

∥
∥
2 1
[∥∥Ḟ(βk)

∥
∥
2 ≤ δ

] ≥ ε
∣
∣Fk

]
(66)

Applying Markov’s inequality to the last conditional probability and using NM-4,

P
[∥∥Ḟ(βk+1)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

] ≥ δ + Cε
∣∣Fk

]
(67)

≤ λmax(Mk)
2

ε2

[
C1 + (C2 + 1)

∥∥Ḟ(βk)
∥∥2
2

]
1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

]
(68)

≤ λmax(Mk)
2

ε2

[
C1 + (C2 + 1)δ2

]
(69)

By P2, the sum of the right hand side is bounded with probability one. Therefore, by
the conditional second Borel-Cantelli lemma (Theorem 5.3.2 of [10]),

P
[∥∥Ḟ(βk+1)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

] ≥ δ + Cε, i .o.
] = 0. (70)

Since ε > 0 is arbitrary, then this conclusion holds for each element in the sequence
{εm} where εm ↓ 0. Therefore,

P
[∥∥Ḟ(βk+1)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

]
> δ, i .o.

]
(71)

= P

[
⋃

m∈N

{∥∥Ḟ(βk+1)
∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

] ≥ δ + Cεm, i .o.
}
]

(72)

≤
∞∑

m=1

P
[∥∥Ḟ(βk+1)

∥∥
2 1
[∥∥Ḟ(βk)

∥∥
2 ≤ δ

] ≥ δ + Cεm, i .o.
]

(73)

= 0. (74)

Therefore, by using this result with (56), (60) and (61), we conclude the following
result.

Theorem 2 Let F be a Bottou-Curtis-Nocedal function (BCN) and let {βk} be the
iterates generated by Stochastic Gradient Descent satisfying P1 to P4 (Sect. 5.1),
then, for any δ > 0,

P
[∥∥Ḟ(βk)

∥
∥
2 > δ, i .o.

∣
∣F0

] = 0 with probability 1, (75)

where F0 = σ(β0).

Theorem 2 supplies the following corollary.

Corollary 1 Let F be a Bottou-Curtis-Nocedal function (BCN) and let {βk} be the
iterates generated by Stochastic Gradient Descent satisfying P1 to P4 (Sect. 5.1), then

P

[
lim
k→∞

∥∥Ḟ(βk)
∥∥
2 = 0

∣∣∣∣F0

]
= 1, with probability 1, (76)
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where F0 = σ(β0).

Proof For any δ > 0, by Theorem 2,

1 = P

[{∥∥Ḟ(βk)
∥∥
2 > δ, i .o.

}c∣∣∣F0

]
(77)

= P

[
lim sup
k→∞

∥∥Ḟ(βk)
∥∥
2 ≤ δ

∣
∣∣∣F0

]
. (78)

Since δ > 0 is arbitrary, the preceding result applies to each element in the sequence
{δm} where δm ↓ 0. Since the countable intersection of probability one events has
probability one,

1 = P

[
⋂

m∈N

{
lim sup
k→∞

∥∥Ḟ(βk)
∥∥
2 ≤ δm

}∣∣∣∣∣
F0

]

(79)

= P

[
lim sup
k→∞

∥
∥Ḟ(βk)

∥
∥
2 = 0

∣∣
∣∣F0

]
, (80)

which is the desired result. 
�

6 Stopping criteria

As discussed in Sect. 3, the key challenges related to rigorous estimated stopping
criteria are: establishing that the underlying deterministic stopping criterion will be
triggered; establishing that the estimated stopping criterion will be triggered; estab-
lishing false positive control; and establishing false negative control.

We have addressed the first challenge in Corollary 1 when the underlying deter-
ministic stopping criterion relies on the gradient function becoming sufficiently small
in norm. Therefore, we now address whether the estimated stopping criterion will be
triggered, and the issue of false negative control. We again underscore that while the
probability of false positives can be controlled using the techniques discussed below,
such bounds would be rather coarse andwould not be useful in the typical optimization
context where a false positive would be particularly insidious.

To achieve this, we organize the remainder of this section as follows. In Sect.
6.1, we state our two estimated stopping criteria (SC-1 and SC-2) that correspond
to the aforementioned gradient-based deterministic stopping criterion. In Sect. 6.2,
we superficially examine the consequences of the BCN conditions for our stopping
criteria, whichmotivate two important specializations that wewill consider in addition
to the general BCN conditions. In Sect. 6.3, we establish that SC-1 will be triggered
with probability one and establish control over its false negative probability. In Sect.
6.4, we establish that SC-2will be triggered with probability one and establish control
over its false negative probability.
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6.1 Overview of estimated stopping criteria

Now, we specify the estimated stopping criteria for the underlying deterministic cri-
terion. First, we recall that the underlying deterministic stopping criterion is when
the norm of the gradient drops below a given value. Second, before stating these two
criteria, we note that a stopping criterion should not be evaluated at each iteration
in the stochastic setting, but rather ought to be evaluated at select, possibly random,
iterations. While we will not specify the selection of these iterations in this work, we
will allow for this generality by considering the situation in which the given estimated
stopping criterion is evaluated at a strictly increasing sequence of finite stopping times,
{Tj : j ∈ N}, with respect to {Fk}.

The first estimated stopping criterion directly attempts to estimate the gradient
function using independent samples, while the second estimated stopping criterion
attempts to estimate the zero-one question posed by the deterministic stopping criterion
using independent samples.

Let ε > 0.Let {N j }be N−valued random variables such
thatN j ismeasurable with respect toFTj .Moreover, for
each j, let{Zi j : i = 1, . . . , N j } be copies of X that are independent
of each other and {Fk}.Then, the SGD iterates
are stopped at iterateTJ ,where

J = min

{

j ≥ 1 : 1
N j

∥∥∥∥
∥

N j∑

i=1
ḟ (βTj , Zi j )

∥∥∥∥
∥
2

≤ ε

}

.

(SC-1)

Let ε > 0.Let {N j } beN−valued random variables such
thatN j ismeasurable with respect toFTj .Let δ̄ ∈ (0, 1)
and let {δ j } be (0, δ̄)−valued random variables such that
δ j ismeasurable with respect toFTj .Moreover, for each j,
let{Zi j : i = 1, . . . , N j }
be copies ofX that are independent of each other and {Fk}.
Then, the SGD iterates are stopped at iterate TJ ,where

J = min

{

j ≥ 1 : 1
N j

N j∑

i=1
1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

≥ δ j

}

.

(SC-2)

Remark 4 We can readily imagine more efficient, dependent variants of these two
stopping criteria that make use of a recent set of historical values of the stochastic gra-
dients used to update {βk}. Indeed, such stopping criteria would be the most desirable
and require an even more complex analysis, which we will leave to future work.
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We now address one final technical point. Given that our estimated stopping criteria
are only evaluated at iterations {Tj : j ∈ N}, we need to ensure that the underlying
deterministic stopping criterion would be triggered at these iterations in finite time
with probability one. Thus, our first step is to specialize Corollary 1 to these iterations
as follows.

Corollary 2 Let F be a Bottou-Curtis-Nocedal nonconvex function (Sect. 4.4) and let
{βk} be the iterates generated by Stochastic Gradient Descent satisfying P1 to P4
(Sect. 5.1). If {Tj } are positive-valued, strictly increasing, finite stopping times with
respect to {Fk}, then

P

[
lim
j→∞

∥∥Ḟ(βTj )
∥∥
2

= 0

∣∣∣
∣F0

]
= 1, with probability 1, (81)

where F0 = σ(β0). Therefore, for any ε > 0, there exist a stopping time J ∗ that is
finite with probability one such that TJ∗ is finite with probability one, and

P
[∥∥Ḟ(βTJ∗ )

∥∥
2 ≤ ε

∣∣F0
] = 1, with probability 1. (82)

Proof Note, {Tj } are strictly increasing, which implies Tj ≥ j−1 for all j . Therefore,
for any j ∈ N and ε > 0,

∞⋂

m= j

{∥∥Ḟ(βTm )
∥∥
2 ≤ ε

}
(83)

=
∞⋂

m= j

( ∞⋃

k=m−1

{∥∥Ḟ(βk)
∥
∥
2 ≤ ε

} ∩ {Tm = k}
)

(84)

⊃
∞⋂

m= j

( ∞⋃

k=m−1

{

sup
k≥ j−1

∥∥Ḟ(βk)
∥∥
2 ≤ ε

}

∩ {Tm = k}
)

(85)

=
∞⋂

m= j

[{

sup
k≥ j−1

∥∥Ḟ(βk)
∥∥
2 ≤ ε

}

∩
( ∞⋃

k=m−1

{Tm = k}
)]

(86)

=
∞⋂

m= j

{

sup
k≥ j−1

∥∥Ḟ(βk)
∥∥
2 ≤ ε

}

∩ {Tm < ∞} (87)

=
{

sup
k≥ j−1

∥∥Ḟ(βk)
∥∥
2 ≤ ε

}

∩
⎛

⎝
∞⋂

m= j

{Tm < ∞}
⎞

⎠ . (88)

Since Tm are assumed to be finite stopping times with probability one, we conclude

P

[

sup
Tm≥ j−1

∥∥Ḟ(βTm )
∥∥
2 ≤ ε

∣∣∣∣∣
F0

]

≥ P

[

sup
k≥ j−1

∥∥Ḟ(βk)
∥∥
2 ≤ ε

∣∣∣∣∣
F0

]

. (89)
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By Corollary 1, the limit of the left hand side converges to 1 as j → ∞. Since ε > 0
is arbitrary, the first part of the result follows.

For the second part, recall that Tj are finite with probability one for all j . Therefore,

P [TJ∗ < ∞|F0] =
∞∑

j=0

P
[
Tj < ∞∣∣ J ∗ = j,F0

]
P
[
J ∗ = j

∣∣F0
]

=
∞∑

j=0

P
[
J ∗ = j

∣∣F0
] = P

[
J ∗ < ∞∣∣F0

]
.

(90)

Hence, it is enough to prove that P
[
J ∗ < ∞|F0

] = 1. Note,

P
[
J ∗ < ∞∣∣F0

] = P

⎡

⎣
⋃

j

{∥∥Ḟ(βTj )
∥∥
2

≤ ε
}
∣∣∣∣∣
∣
F0

⎤

⎦ (91)

≥ P

[

lim sup
j→∞

∥∥Ḟ(βTj )
∥∥
2

≤ ε

∣
∣∣∣∣
F0

]

, (92)

where we have already shown that the right hand side has probability one. 
�

6.2 Consequences of the BCN conditions and specializations

For aBCN function,wewill readily be able to establish thatSC-1will be triggeredwith
probability one.Wewill refer to the case where we consider a function satisfyingBCN
as Scenario (a). Unfortunately, we will have some difficulty with this general scenario
for SC-2 if the stochastic gradients are concentrated away from their mean, which
happens for the BCN function induced by f (θ, X) = θX , where X is a Rademacher
random variable.

For this reason,wewill consider two specializations ofBCN. Thefirst specialization
is the case when C1 = 0 in the definition of NM-4. This specialization corresponds
to the important case of over-parametrized models, and occurs when the minimizer of
F is also a minimizer of all f with probability one [1]. This first specialization will
be referred to as Scenario (b).

For the final specialization of BCN, which we refer to as Scenario (c), we consider
the following additional condition.

Let π1, π2 ∈ (0, 1) and π3 ≥ 1.For
∥∥Ḟ(θ)

∥∥
2 ≤ π1

and for anyt ≥ π3
∥∥Ḟ(θ)

∥∥
2 ,

P
[∥∥ ḟ (θ, X)

∥∥
2 ≥ t

] ≤
(

π3
∥∥Ḟ(θ)

∥∥
2

t

)π2(T1)
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The role of T1 is to ensure that there is a concentration of the norm of the stochastic
gradient function near small values when the deterministic gradient is sufficiently
small, which would avoid the issues that occur with f (θ, X) = θX , where X is a
Rademacher random variable. Moreover, we note that the general BCN conditions do
not imply T1, as illustrated by f (θ, X) = θX . Conversely, T1 does not imply BCN,
as a random variable that satisfies T1 is not even guaranteed to have a mean, leave
alone a second moment (i.e., NM-4).

To summarize, Scenario (a) refers to objective functions satisfying the generalBCN
conditions; Scenario (b) refers to objective functions satisfying the BCN conditions
with C1 = 0 in NM-4; and Scenario (c) refers to objective functions satisfying BCN
and T1.

6.3 Stopping criterion by gradient estimation

Wenowestablish thatSC-1will be triggeredwith probability one andwederive bounds
on the probability of a false negative. We begin with some general consequences of
any effort to estimate the mean for the three aforementioned scenarios.

Lemma 4 Let F be a BCN function (Sect. 4.4). For N ∈ N, let {Z1, . . . , ZN } be
independent copies of X. Then for ε > 0,

P

[
1

N

∥∥
∥∥∥

N∑

i=1

ḟ (θ, Zi )

∥∥
∥∥∥
2

≤ ε

]

≥ 1 − C1 + (C2 + N )
∥∥Ḟ(θ)

∥∥2
2

Nε2
. (93)

Moreover, if T1 holds and
∥
∥Ḟ(θ)

∥
∥
2 ≤ π1, then, for ε ≥ π3

∥
∥Ḟ(θ)

∥
∥
2,

P

[
1

N

∥∥∥∥∥

N∑

i=1

ḟ (θ, Zi )

∥∥∥∥∥
2

≤ ε

]

≥ 1 − N

(
π3
∥
∥Ḟ(θ)

∥
∥
2

ε

)π2

. (94)

Proof In both cases, we will find the upper bound for the complement, from which
a lower bound for the stated event is readily derived. For the first case, by Markov’s
inequality and NM-4,

P

[
1

N

∥∥∥
∥∥

N∑

i=1

ḟ (θ, Zi )

∥∥∥
∥∥
2

> ε

]

≤
E

[∥∥∥ 1
N

∑N
i=1 ḟ (θ, Zi )

∥∥∥
2

2

]

ε2
(95)

≤ C1 + (C2 + N )
∥∥Ḟ(θ)

∥∥2
2

Nε2
. (96)

For the second case, if ε ≥ π3
∥∥Ḟ(θ)

∥∥
2, then

P

[
1

N

∥
∥∥∥∥

N∑

i=1

ḟ (θ, Zi )

∥
∥∥∥∥
2

> ε

]

≤ NP
[∥∥ ḟ (θ, Z1)

∥∥
2 > ε

]
, (97)
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to which we apply T1. 
�
The first part of Lemma 4 covers Scenarios (a) and (b), while the second part

covers Scenario (c). We discuss each of these scenarios individually and in order.
With regard to Scenario (a), Lemma 4 shows that the main hurdle in establishing a
meaningful bound on the probability of a false negative is in choosing Nε2 to be
sufficiently large to account for the constant C1 > 0. Thus, for applications where
achieving a small bound on the deterministic gradient is necessary, Lemma 4 implies
that N would need to be larger than the reciprocal squared of this small bound. On the
other hand, for applications where achieving a bound on the order of the noise level is
acceptable (e.g., ε ≈ √

C1), then moderate values of N are acceptable. The following
result formalizes these concepts.

Proposition 1 Let F beaBCN function (Sect. 4.4) and let {βk}be the iterates generated
by Stochastic Gradient Descent satisfying P1 to P4 (Sect. 5.1). Let ε > 0. If

P

[
lim inf
j→∞ N j >

C1

ε2

∣∣∣
∣F0

]
= 1 with probability one, (98)

then SC-1 will be triggered in finite time with probability one. Moreover, for any
ρ ∈ (0, 1) and γ > 1, if

N j >
γC1 + C2(ερ)2

(1 − ρ2)ε2
, (99)

then

P

⎡

⎣ 1

N j

∥∥∥∥∥
∥

N j∑

i=1

ḟ (βTj , Zi j )

∥∥∥∥∥
∥
2

> ε,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

∣∣∣∣∣
∣
FTj

⎤

⎦ ≤ 1

γ
. (100)

Proof When C1 = 0, the proof of the result uses analogous reasoning to the case
when C1 > 0; therefore, we will take C1 > 0. By (98), there exist δ > 1 and a finite
stopping time, J̄ , such that for all j ≥ J̄ , with probability one,

N j ≥ δC1

ε2
. (101)

Moreover, by Corollary 2, for δ′ ∈ (1, δ), there exists a finite stopping time J ∗ such
that for all j ≥ J ∗, with probability one,

(δ′ − 1)C1

C2 + δC1/ε2
>
∥∥Ḟ(βTj )

∥∥2
2
. (102)

Therefore, for all j ≥ max{J ∗, J̄ }, with probability one,

C1 + (C2 + N j )
∥∥Ḟ(βTj )

∥∥2
2

N jε2
<

C1 + (C2 + δC1/ε
2)
∥∥Ḟ(βTj )

∥∥2
2

δC1
(103)
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<
C1 + (δ′ − 1)C1

δC1
. (104)

Therefore, for all j ≥ max{J ∗, J̄ }, Lemma 4 implies

P

⎡

⎣ 1

N j

∥∥∥
∥∥∥

N j∑

i=1

ḟ (βTj , Zi j )

∥∥∥
∥∥∥
2

≤ ε

∣∣∣
∣∣∣
FTj

⎤

⎦ ≥ 1 − δ′

δ
> 0. (105)

Given that {Zi j } are independent over i and j and recall that J is defined in SC-1, the
probability that J > j is controlled by a geometric distribution for j ≥ max{J ∗, J̄ }.
Therefore, we conclude that J is finite with probability one: that is, SC-1 is triggered
in finite time with probability one.

For the second part of the result, note

P

⎡

⎣ 1

N j

∥∥∥∥
∥∥

N j∑

i=1

ḟ (βTj , Zi j )

∥∥∥∥
∥∥
2

> ε,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

∣∣∣∣
∣∣
FTj

⎤

⎦

= P

⎡

⎣ 1

N j

∥∥∥∥∥
∥

N j∑

i=1

ḟ (βTj , Zi j )

∥∥∥∥∥
∥
2

> ε

∣∣∣∣∣
∣
FTj

⎤

⎦ 1
[∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

]
.

(106)

Applying Lemma 4 with ‖Ḟ(βTj )‖2 ≤ ρε/
√

γ and the lower bound on N j implies
the bound on the false negative probability. 
�

Clearly, Proposition 1 applies to Scenario (b) which, we recall, is the special case of
Scenario (a) inwhichC1 = 0.Here, we see that evenwith N j = 1 for all j , Proposition
1 implies that SC-1would be triggered in finite time (though the false positive control
would likely be quite poor). Similarly, Proposition 1 allows for controlling the false
negative probability at 1/γ so long as

N j >
C2ρ

2

1 − ρ2 , ρ ∈ (0, 1). (107)

With regard to Scenario (c), Lemma 4 demonstrates that having more samples does
not help in the case where T1 holds; in fact, it actually makes the situation worse.
This is expected as such a fat-tailed distribution has a population mean of infinity,
which, intuitively, would make a sample mean entirely useless. Thus, considering T1
for SC-1 does not provide any additional value, and we will not pursue it further.

To summarize, under the general BCN conditions and Scenario (b), Proposition 1
shows that SC-1 will be triggered in finite time for N j sufficiently large, and provides
control over the false negative probability.
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6.4 Stopping criterion bymajority vote

We now establish that SC-2 will be triggered with probability one and we derive
bounds on the probability of a false negative. Just as we did in Sect. 6.3, we begin
with a general result that will guide our specific analysis of SC-2.

Lemma 5 Let F be a Bottou-Curtis-Nocedal nonconvex function (Sect. 4.4). For N ∈
N, let {Z1, . . . , ZN } be independent copies of X. Let ε > 0 and δ ∈ (0, 1) and define

Δ = δ − P
[∥∥ ḟ (θ, X)

∥∥
2 ≤ ε

]
. (108)

When Δ < 0,

P

[
1

N

N∑

i=1

1
[∥∥ ḟ (θ, Zi )

∥∥
2 ≤ ε

] ≥ δ

]

≥ 1 − exp
(
−2NΔ2

)
. (109)

Proof The proof leverages McDiarmid’s inequality (see Sect. 3 of [30]). Let the range
of X be denoted by X . Let z1, . . . , zN ∈ X and define

h(z1, . . . , zN ) = 1

N

N∑

i=1

1
[∥∥ ḟ (θ, zi )

∥∥
2 ≤ ε

]
. (110)

Then, for any j ∈ {1, . . . , N } and z1, . . . , zN , z′j ∈ X ,

|h(z1, . . . , zN ) − h(z1, . . . , z
′
j , . . . , zN )| ≤ 1

N
. (111)

Since
E [h(Z1, . . . , ZN )] = P

[∥∥ ḟ (θ, Z1)
∥
∥
2 ≤ ε

]
, (112)

McDiarmid’s inequality implies

P [h(Z1, . . . , ZN ) < δ]

= P [h(Z1, . . . , ZN ) − E [h(Z1, . . . , ZN )] < Δ] (113)

≤ exp(−2NΔ2). (114)

By computing the complement, the result follows. 
�
If we compare Lemma 5 to Lemma 4, we get two very different controls on the

triggering probability: in the former, we have an exponential control in N , while in
the latter we have sublinear control in N . As a result, increases in N offer a dramati-
cally greater benefit for SC-2 over SC-1, and this phenomenon underlies the famous
theorem of machine learning referred to as “classification is easier than regression”
[9, Theorem 6.5]. However, this benefit comes at a slight loss in generality: Lemma 5
requires that P[‖ ḟ (θ, X)‖2 ≤ ε] exceeds δ, which may not hold for arbitrary values
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of ε > 0, or for general BCN functions such as the one induced by f (θ, X) = θX
with X as a Rademacher variable.

If we can allow for ε > 0 to be large (e.g., ε � √
C1), then we can account for

general BCN functions. However, if we cannot, then we must restrict our analysis
to the situation where ḟ (θ, X) has some concentration near Ḟ(θ), which is precisely
induced in Scenarios (b) and (c). Therefore, we will restrict our attention to Scenarios
(b) and (c), and we note that if ε is allowed to be large than Scenario (a) can be
accounted for analogously to Scenario (b). We begin with proving that SC-2 will be
triggered in finite time under Scenarios (b) and (c).

Proposition 2 Let F be a BCN function (Sect. 4.4) with either C1 = 0 in NM-4 or
T1; and let {βk} be the iterates generated by Stochastic Gradient Descent satisfying
P1 to P4 (Sect. 5.1). Let ε > 0. Then SC-2 is triggered in finite time with probability
one.

Proof Let δ′ ∈ (δ̄, 1), where δ̄ is defined in SC-2. Now, by Corollary 2, there exists a
finite random variable J ∗ defined for each scenario such that for all j ≥ J ∗:
1. under Scenario (b), ‖Ḟ(βTj )‖22 < (1 − δ′)ε2/(C2 + 1); or
2. under Scenario (c), ‖Ḟ(βTj )‖22 < ε(1 − δ′)1/π2/π3.

Then, by Lemma 4 (with N = 1), under both scenarios, for j ≥ J ∗, with probability
one,

P

[∥
∥ ḟ (βTj , Zi j )

∥
∥
2

≤ ε

∣∣
∣FTj

]
> δ′. (115)

Therefore,
δ j − P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣∣∣FTj

]
< δ̄ − δ′ < 0. (116)

Apply Lemma 5, we conclude, for j ≥ J ∗, with probability one,

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

≥ δ j

∣
∣∣∣∣∣
FTj

⎤

⎦ > 1 − exp
(
−2(δ′ − δ̄)2

)
. (117)

Hence, the distribution of J , as defiend inSC-2, for j ≥ J ∗ is controlled by a geometric
distribution. We conclude J is finite with probability one; that is, SC-2 is triggered in
finite time with probability one. 
�

Our next step is to establish control over the probability of a false negative. Just as
we did in Proposition 1, we will state these controls in terms of some parameters ρ

and γ ; however, unlike in Proposition 1, we will need more control over the values of
ρ. Specifically,

ρ ∈
⎛

⎝0,

√
1 − δ̄

C2 + 1

⎞

⎠ or ρ ∈
(
0, (1 − δ̄)1/π2

)
, (118)

for Scenarios (b) or (c), respectively. The following result establishes control over the
probability of a false negative for Scenario (b).
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Proposition 3 Let F be a BCN function (Sect. 4.4) with C1 = 0 inNM-4; and let {βk}
be the iterates generated by Stochastic Gradient Descent satisfying P1 to P4 (Sect.
5.1). Let ε > 0. Suppose ρ satisfies (118) and γ > 1. If

N j >
log(γ )

2
(
1 − δ̄ − ρ2/γ

)2 , (119)

then

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j ,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

∣∣∣∣∣∣
FTj

⎤

⎦ ≤ 1

γ
. (120)

Proof When ‖Ḟ(βTj )‖2 ≤ ρε/(π3γ ), by (118) and Lemma 4,

P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣∣∣FTj

]
≥ 1 − ρ2/γ > δ̄. (121)

Therefore,

δ j − P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣∣∣FTj

]
≤ δ̄ + ρ2/γ − 1 < 0. (122)

Hence, for the given choice of N j ,

exp

{
−2N j

(
δ j − P

[∥
∥ ḟ (βTj , Zi j )

∥
∥
2

≤ ε

∣∣
∣FTj

])2}
(123)

≤ exp

{
−2N j

(
δ̄ + ρ2/γ − 1

)2} ≤ 1

γ
. (124)

Noting that

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j ,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

∣∣∣∣
∣∣
FTj

⎤

⎦

= P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j

∣∣∣∣
∣∣
FTj

⎤

⎦ 1
[∥∥Ḟ(βTj )

∥∥
2

≤ ρε√
γ

]
,

(125)
then, applying Lemma 5 when the norm of Ḟ(βTj ) satisfies the hypothesized upper
bound and N j satisfies the hypothesized lower bound,

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥
∥ ḟ (βTj , Zi j )

∥
∥
2

≤ ε
]

< δ j

∣∣∣
∣∣∣
FTj

⎤

⎦ ≤ 1

γ
. (126)


�
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We can derive a similar result for Scenario (c).

Proposition 4 Let F be a BCN function (Sect. 4.4) satisfying T1; and let {βk} be the
iterates generated by Stochastic Gradient Descent satisfying P1 to P4 (Sect. 5.1). Let
ε > 0. Suppose ρ satisfies (118) and γ > 1. If

N j >
log(γ )

2
(
1 − δ̄ − (ρ/γ )π2

)2 , (127)

then

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j ,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε

π3γ

∣∣∣∣∣∣
FTj

⎤

⎦ ≤ 1

γ
. (128)

Proof When ‖Ḟ(βTj )‖2 ≤ ρε/(π3γ ), by (118) and Lemma 4,

P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣∣∣FTj

]
≥ 1 − (ρ/γ )π2 > δ̄. (129)

Therefore,

δ j − P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣
∣∣FTj

]
≤ δ̄ + (ρ/γ )π2 − 1 < 0. (130)

Hence, for the given choice of N j ,

exp

{
−2N j

(
δ j − P

[∥∥ ḟ (βTj , Zi j )
∥∥
2

≤ ε

∣∣∣FTj

])2}
(131)

≤ exp
{
−2N j

(
δ̄ + (ρ/γ )π2 − 1

)2} ≤ 1

γ
. (132)

Noting that

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j ,
∥∥Ḟ(βTj )

∥∥
2

≤ ρε

π3γ

∣∣∣∣
∣∣
FTj

⎤

⎦

= P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j

∣∣∣∣∣
∣
FTj

⎤

⎦ 1
[∥∥Ḟ(βTj )

∥∥
2

≤ ρε

π3γ

]
,

(133)
then, applying Lemma 5 when the norm of Ḟ(βTj ) satisfies the hypothesized upper
bound and N j satisfies the hypothesized lower bound,

P

⎡

⎣ 1

N j

N j∑

i=1

1
[∥∥ ḟ (βTj , Zi j )

∥∥
2

≤ ε
]

< δ j

∣
∣∣∣∣∣
FTj

⎤

⎦ ≤ 1

γ
. (134)
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�

Remark 5 The general case—Scenario (a)—can be addressed using these same tech-
niques as long as ε is allowed to be sufficiently large so that we can provide a nontrivial
upper bound on P[‖ ḟ (θ, X)‖2 > ε].

To summarize, we have shown that under Scenarios (b) and (c), SC-2 will be
triggered in finite time with probability one and the false negative probability can be
controlled when N j is sufficiently large and ‖Ḟ(βTj )‖2 is sufficiently small.

7 Numerical experiment

We will discuss, in order, the background of the experiment, the experimental setup,
the results of the experiment, and the interpretation of the results.

7.1 Background

For the setting of this experiment, we train a neural network to classify greyscale
images of ten different types of clothing [50]. We make use of 60,000 examples in
this training, and the objective function is defined as the average sparse categorical
cross entropy over the labels of the sixty thousand examples and the predicted labels
as produced by a neural network that: vectorizes the image; passes it through three
dense rectified linear unit layers (each with output dimension of 128); passes the result
through a dense linear layer with output dimension 10; and chooses the index with
the maximum value to generate a prediction. The resulting parameter that is being
optimized is of dimension 151, 306.

The objective function is optimized using batch stochastic gradient descent with a
scalar learning rate

Mk = 0.2
375000

k + 375000
I , (135)

and is terminated after two hundred epochs (i.e., total passes through the data set).
Note, at the beginning of the optimization, the learning rate is 0.2 and by the end it
is 0.1, where k represents the total number of batches processed in the 200 epochs.
At the end of each epoch, the parameter value is stored, the value of the objective
function is calculated, and the norm of the gradient function is calculated. The value
of the objective function and gradient function at the end of each epoch is plotted in
Fig. 1.

7.2 Experimental setup

As an overview, at each of the recorded parameter values, the two stopping criteria are
evaluated multiple times and the triggering rate (i.e., the number of times the stopping
criterion is triggered divided by the total number of attempts) is recorded. Specifically,
at each of the recorded parameter values—which occurs at the end of each epoch—,
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Fig. 1 The value of the objective function (left) and norm of the gradient function (right) at the end of each
of the two hundred epochs

SC-1 and SC-2 are evaluated one hundred times each using independent samples from
the underlying data with the following specifications:

1. the threshold ε = 0.07 (i.e., about twice the norm of the gradient at the final
epoch);

2. the sample size N j takes value in {50, 100, 200}; and,
3. for SC-2, δ j are kept constant and take value in {0.5, 0.6, 0.7, 0.8}.
In total, SC-1 is evaluated on 600 combinations (200 epochs, three distinct values
of N j ), and SC-2 is evaluated on 2, 400 combinations (200 epochs, three distinct
values of N j , four distinct values for δ j ). Furthermore, each combination is evaluated
independently 100 times.At the end of each 100 independent evaluations the triggering
rate is calculated for each combination, which is the number of evaluated stopping
criteria that are triggered divided by the total number of evaluated stopping criteria
(i.e., 100) for the given combination.

7.3 Results

Figure 2 shows the estimated triggering rate of SC-1 as a function of the objective
and as a function of the norm of the gradient. Note, Fig. 2’s x-axes are reversed so
as to roughly align with the increase in epochs; moreover, the points are jittered to
allow for the zero values to be observable. Figure 2 indicates that, as the objective
function decreases (i.e., as we are presumably approach a solution) and as the norm of
the gradient function decreases (i.e., as we are presumably approaching a stationary
point), SC-1 is more likely to be triggered. Moreover, Fig. 2 shows that the triggering
rate is most variable for the case where N j = 50 and least variable for the case of
N j = 200.

Figure 3 shows the estimated triggering rate of SC-2 as a function of the objective
and as a function of the norm of the gradient. Note, Fig. 2’s x-axes are reversed so
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Fig. 2 The triggering rate of SC-1 by the value of the objective function (left) and norm of the gradient
function (right). Note, the x-axis scales are reversed so as to roughly align with the increase in epochs

as to roughly align with the increase in epochs; the points are jittered to allow for the
zero values to be observable; and the panels each correspond to the different values of
δ j (i.e., the vote threshold). Figure 3 indicates that, as the objective function decreases
in value, SC-2 is more likely to be triggered—for the smaller vote thresholds, SC-2
is likely to be triggered at less optimal values, while, for larger vote thresholds, SC-2
is likely to be triggered close to the optimal value. On the other hand, Fig. 3 shows
that, for all of the vote threshold values except for δ j = 0.8, SC-2 has no discernible
pattern for when it is triggered. When δ j = 0.8, Fig. 3 shows that SC-2 is likely to
be triggered only for small values of the gradient with the most variability occurring
when N j = 50 and least variability occurring when N j = 200.

7.4 Discussion

Aswewould expect from the theory presented, SC-1 correlates well with the decaying
norm of the gradient and the probability of a false negative decays with increasing N j .
Moreover, SC-1 is rather conservative: the probability of a false negative, even when
N j = 200 and the norm of the gradient is at its smallest, is 0.65. Of course, N j = 200
is less than 0.4% of the total set of examples, and using more examples will better
control the false negative probability, as we would expect.

Whereas SC-1 behaved as we would expect, SC-2 is surprisingly more unpre-
dictable. In particular, when the vote threshold was less than 0.8, SC-2 was triggered
for the larger values of the norm of the gradient. Unfortunately, for this particular
problem, the distribution of the stochastic gradients are highly concentrated near zero
with a handful that are far from zero. Therefore, when the vote threshold is low, this
concentration of the stochastic gradients is likely to produce a false positive. However,
when the vote threshold is increased, we see much more desirable behavior of SC-2:
it is being triggered only for smaller values of the norm of the gradient, and the false
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Fig. 3 The triggering rate of SC-2 by the value of the objective function (left) and norm of the gradient
function (right). Note, the x-axis scales are reversed so as to roughly align with the increase in epochs

negative rate is closer to about 0.2. Again, as expected from the theory, SC-2 is much
more efficient with the observations in comparison to SC-1, but we must be careful
and ensure that the value of δ j is sufficiently large to prevent false positive signals.

8 Conclusion

In this work, our goal was to lay a rigorous foundation for stopping criteria for stochas-
tic gradient descent (SGD) as applied to Bottou-Curtis-Nocedal (BCN) functions,
which includes a broad class of convex and nonconvex functions. We started by devel-
oping a strong global convergence result for SGDonBCNfunctions,which generalizes
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previous results on the convergence of SGD on nonconvex functions. Then, we pre-
sented two stopping criteria and rigorously analyzed them.

This work has raised several questions that we enumerate below, and which we
hope to address in future work.

1. Given strong global convergence, what is the local rate of convergence to a sta-
tionary point? Are we even guaranteed to find a stationary point? Is this stationary
point guaranteed to be a minimum? As evidenced by the many works cited, these
issues are of great importance and can be answered more completely now that we
have established strong global convergence.

2. Can something be said about dependent versions of the estimated stopping criteria?
In some sense, dependent stopping criteria are ideal as they are the least wasteful
stopping criteria. However, to develop such results, we need a maximal inequality
over the norms of the iterates.

3. For all of the stopping criteria, what are reasonable choices of {Tj } and {N j }?
4. What are reasonable conditions to place on the lower tail probabilities (analogous

to T1) and what are their implications for controlling the false positive probability
of the stopping criteria studied in this work?

5. Finally, is there a context in whichNM-3 is more appropriate thanNM-4, and can
the preceding results be developed in this context as well?

Acknowledgements We thank the reviewers for their detailed feedback, which has greatly improved the
quality of this work.
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