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Abstract

Economic model predictive control (EMPC) is a flexible control design strategy that can be modified to
achieve many operating goals while also ensuring safe operation (e.g., by adding Lyapunov-based stability
constraints to form Lyapunov-based EMPC, or LEMPC). Prior works have investigated LEMPC capabil-
ities for achieving goals online beyond optimizing process economics, including aiding in model structure
selection to benefit model-based control system design since the accuracy and quality of the process model
are important for achieving an expected performance from such systems. This work further probes the
capabilities of LEMPC to accomplish multiple objectives during process operation, including aiding in the
discrimination between mechanistic models online. In particular, several rival mechanistic models may
explain the existing data. To discard models from this set that do not fully represent the actual process, a
new set of “online experiments” can be conducted to collect more information. However, additional experi-
mentation may be costly and unsafe to be performed. LEMPC can aid in performing online data collection
when discrimination between mechanistic models is needed, with the flexibility to ensure safety as the data
is gathered and trade off the data-gathering goal for cost considerations. Motivated by this, we discuss how
LEMPC can be designed to automatically and dynamically collect data that is useful for the selection of
mechanistic models from among a set of possibilities. A chemical process example is used to clarify benefits

and limitations of LEMPC for promoting online model discrimination.
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1. Introduction

Economic model predictive control (EMPC)! is an optimization-based control strategy that has found
numerous applications, including in bioreactor systems,? periodic process operation,® and building temper-
ature control.* One of its key characteristics is flexibility due to the fact that it is formulated as a general
nonlinear or nonconvex optimization problem, and that its purpose is to facilitate operating objectives
beyond tracking a steady-state or reference. EMPC’s name focuses on its ability to optimize economic
performance online; however, it is also capable of achieving a variety of other online objectives, such as
attempting to gather data that might be indicative of process model structure® (which can aid in develop-
ing and selecting mechanistic models which may or may not have data-driven components, i.e., parameter
values obtained based on a process dataset). Another way of conceptualizing the use of real-time control
for aiding in selecting an appropriate model structure is to assume that already, a number of mechanistic
model candidates have been proposed, and that it is desired to determine which of them provides a sufficient
fit to additional process data. In this work, we demonstrate that LEMPC can also be formulated to carry
out this goal, further demonstrating its flexibility for performing a variety of tasks safely and online, and
thereby suggesting that EMPC may be an interesting technology to consider for next-generation manufac-
turing goals such as full plant autonomy® where the capability of a controller to be able to carry out a large
number of online tasks can be attractive.

The potential benefit for full plant autonomy of a controller which can aid in model-building tasks in
a variety of ways is that system modeling by engineers can be a time-consuming and at times challenging
task. Modeling strategies (e.g., system identification) often rely on data collected a priori to indicate an
appropriate model form/structure for representing the behavior of a specific dynamical system, or in cases
where deciding upon an appropriate mechanistic model form is too time-consuming or expensive, different
engineering strategies have been proposed such as assuming a gray-box or hybrid model structure that
integrates physics-based components with empirical model parts.”®? However, after an investigation and
model identification procedure is applied, based on the available experimental data and potentially physical
insights, a set of plausible mechanistic models may be capable of explaining the available information.?

This situation requires new online experiments to select a model from among a set of seemingly good



mechanistic models via additional data. An EMPC formulation that automatically chooses which data
to collect as part of online “experimentation” for discriminating between rival mechanistic models while
ensuring safe operation may be beneficial, which extends the “EMPC toolbox” to include the capability of
EMPC to aid in online model discrimination.

Studies addressing experiment design for engineering systems have been conducted which focused on
parameter estimation techniques (e.g.,'!) or discrimination between competing models (e.g.,'*!3). For

I an iterative parameter identification methodology based on a class of polynomial models has

example, in,
been utilized to apply optimal control sequences to the system for identification experiment design while
the model complexity is progressively increased. In,'? an online model-based design of experiment approach
was proposed for model selection to identify the best model from a list of candidates in an autonomous
reactor platform. Data-supported computational modeling of engineering systems often involves model
identification (e.g., parameter estimation or model fitting), model discrimination, and model validation.'#:15
However, as engineers move toward greater autonomy of control systems, it would be beneficial to design
automated optimal input sequences for collecting data online which is most favorable for discriminating
between different potential models while ensuring safe and high-performance operation inside the process
operating region.

An important direction for safe and automated model discrimination is model-based control-assisted
frameworks. An approach described as model predictive control (MPC) with dual features (i.e., the ma-
nipulated inputs are used both to control and explore the system) has been proposed (e.g.,'67). In,'6 a
dual control scheme has been used to perform experimentation (sufficient excitation to the process) only
when there is high uncertainty in the parameters or not enough information is available for parameter
identification. In,!” an adaptive dual model predictive controller has been proposed based on output error
models parameterized using generalized orthogonal basis filters and applied to inject input excitation. In
addition, a control design named model predictive control and identification has been developed in'® and
incorporates constraints that enforce persistent excitation. A stochastic MPC scheme proposed in'® uses
active model structure discrimination during process operation for closed-loop fault diagnosis. In the di-
rection of exciting a system for exploration/exploitation, learning-based MPC or safe learning in control
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has also been investigate 20 for example, a sequential exploration-exploitation approach has



been proposed that uses active learning in control to gather data and reduce dynamics uncertainty during
an exploration step and then exploit the acquired information to perform the desired task while ensuring
high-probability guarantees of satisfying safety constraints. In,?' a control architecture has been proposed
that utilizes a model-free reinforcement learning algorithm to learn a controller with the control barrier
function-based controller guiding policy exploration and ensuring safety during the learning process.

In the context of online model discrimination using model-based control-assisted designs, an EMPC
framework,! which can outperform conventional MPC schemes in terms of improving process profitability,
may also be used for selecting mechanistic models online. In,> an EMPC has been utilized to guide the
process state to conditions over time which might suggest the form of a dynamic model (by, for example,
attempting to hold one process variable constant while manipulating others). However, a challenge with the
approach in® is that the guidance to select helpful data for the model structure selection procedure is based
on penalizing deviations of the predicted state from desired data in the objective function or enforcing a
stabilization constraint to attempt to develop data which lies along the pathway from a given point toward
the origin. This requires some a priori assessment of what the desired data might be. In the interest of
making the discrimination between physics-based models automated and less costly, automatic techniques
are needed for determining what the desired data should be.

This work seeks to suggest an automated technique for online control-assisted discrimination between
mechanistic models (by discerning which mechanistic model structure may be most in accordance with
the new online “experimental” data) to extend EMPC’s capabilities. Because EMPC is not restricted to
steady-state operation, it may also enable a flexible strategy for explicitly trading off economic performance
and mechanistic model selection. A flexible type of EMPC with closed-loop stability constraints named
Lyapunov-based economic model predictive control (LEMPC)?? is used to formulate a technique for dy-
namically collecting desired data while accounting for process dynamics, safety, and process profitability.
Specifically, since LEMPC is designed to operate the process within a pre-defined stability region, a model
that allows good state predictions inside the stability region may be sufficient to guarantee the desired
control performance and safe operation. In this case, mechanistic models may be able to be used by the
LEMPC to predict the process state trajectory with acceptable accuracy inside the designed region of op-

eration. We assume that mechanistic model candidates have already been suggested, but that the set of



mechanistic model possibilities remains to be discriminated between while ensuring closed-loop stability
in a safe region of state-space. A chemical process example that illustrates aspects of the methodology is

discussed.

2. Preliminaries
2.1. Notation

R corresponds to the set of real numbers. The Euclidean norm of a vector is indicated by |- | and the
transpose of a vector x is denoted by xT. A continuous function « : [0,a) — [0, 00) is said to be of class K if
it is strictly increasing and «(0) = 0. Set subtraction is designated by z € A/B :={x € R" : x € A,z ¢ B}.
Finally, a level set of a positive definite function V' is denoted by Q, := {x € R" : V(x) < p}.

2.2. Class of Systems

The class of nonlinear systems considered is the following:

&(t) = f(x(t), u(t), w(t)) (1)

where x € X C R" and u € U C R™ are the state and input vectors, respectively, in deviation variable
form from the steady-state (z5) and steady-state input of the system (us); w € W C R* (W = {w €
R? | |lw| < O, © > 0}) is the disturbance vector and f is locally Lipschitz on X x U x W. We consider
that the “nominal” system of Eq. 1 (w = 0) has its origin at the equilibrium point (i.e., £(0,0,0) = 0) and
is stabilizable such that there exists an asymptotically stabilizing feedback control law h,(z), a sufficiently

smooth Lyapunov function V(x), and class K functions «;(-), i = 1,2, 3,4, where:

o (o) < V(@) < o) (20)
D) fa hyla),0) < ~as(le) (2b)
o< aia) 29
hy(z) € U (2d)

Vx €D C R" (D is an open neighborhood of the origin). We define 5 C D to be the stability region of
the nominal closed-loop system under the controller hy(z) and require that it be chosen such that z € X,
Va € Q5. We consider that state measurements are available continuously, but are only used by a controller

at discrete sampling times for computing a control action.



In this work, we consider the following nonlinear model candidates represented by nonlinear ordinary

differential equations:

q,i(t) = fnr,i(2q,i(t), uq,i(t)) (3)
where fyr,; is a locally Lipschitz nonlinear vector function in x4 ; = [z441 Zg42 - - xq,m]T € X C R"and in
the input ug; = [ugi1 ugi2 .- uqyim]T € Ui C R™ (both in deviation variable form from the steady-state

(which shares the same z, of Eq. 1) and steady-state input ug; s of the system of Eq. 3) with fyx;(0,0) =0
for all 4. The index 7 = 1,2,..., is used to reflect that different nonlinear models may be used over time.
We consider nonlinear models for which the origin can be rendered asymptotically stable by a stabilizing
feedback control law (hnri(2qi) = [ANL,i1(2gi) ANLi2(Tgs) --- hNL’i’m(xq,i)]T), considering a sufficiently

smooth Lyapunov function and class K functions &;(-), i = 1,2, 3,4, where:

b (|2qa]) < Vilwgs) < dal|zqal) (4a)

V(2 .

8( £ ) InLi(Tgis hNLi(Tg:)) < —a3(|2ql) (4b)
qul

WVi(zqs)| .

Do |< () (40)

hnri(xgi) € Ugi (4d)

Vg; € Dy, (an open neighborhood of the origin). We define Q,, C Dgy; (chosen such that z,; € X,
Vg € Q, C Qp) to be the stability region. There are positive constants I:;W and Mfw Va1, T2, 24 € Q5

and ug; € Uy, such that:

OVi(xy) Vi (x2) .
e Invpi(zr,ug:) — Dirs InLi(e, ugq)| < L |w1 — a2 (ba)
| N L (g, uga)| < My, (6)

Finally, because f is a locally Lipschitz function of its arguments, we can write the following for all

z1,x2 € Q5,u €U, we W, and L, L, Ly, L, and My as positive constants:

|f(x1,u,w)—f(x2,u,0)| §L1|$1—$2|+Lw|w’ (73“)
Wf(wl,u,w)—a‘g?f(m,u,()) < Ll |zy — zo| + L, |w]| (7b)
|f(z,u, w)| < My (8)



2.3. Economic Model Predictive Control

EMPC?* is an optimization-based control design for which the control actions are computed via the

following optimization problem:

min / o Le(z(7),u(r))dr (9a)

u(t)eS(A)

5.t xf; — F(E(t), u(t),0) (9D)
i(ty) = x(ty,) (9¢)
#(t) € X, Yt € [try tryn) (9d)
u(t) € U, Yt € [tr, tryn) (9¢)

where N is called the prediction horizon, and u(t) is a piecewise-constant input trajectory with N pieces,
where each piece is held constant for a sampling period with time length A. The economics-based stage
cost L, of Eq. 9a is evaluated throughout the prediction horizon using the future predictions of the process
state Z from the model of Eq. 9b (the nominal model of Eq. 1) initialized from the state measurement
at tx (Eq. 9¢). The process constraints of Eqs. 9d-9e are state and input constraints, respectively. The
optimization problem is solved every A time units (at each sampling time ¢j) such that the first of the N
pieces of the optimal input vector trajectory is applied to the process. A type of EMPC called Lyapunov-

based EMPC (LEMPC?) incorporates the following additional constraints:

V(Zi(t)) < Pes Vte [tkatk+N)7 if :L‘(tk) c Q/;E (10&)
av(gw(tk))f(f(tk)au(tk)ao) < W F@(t), hp(x(t)),0), if (ty) € 2/, (10b)

where Q5, C Q5 makes Q5 forward invariant under the controller of Eqgs. 9-10.
3. Online Control-Assisted Mechanistic Model Structure Discrimination Using LEMPC

Prior work® in our group described how data that might reveal aspects of what a reasonable model
structure for a system’s dynamics is could be attempted to be obtained using a formulation of LEMPC that
penalizes deviations from the desired data in the objective function and enforces the constraint of Eq. 10b
at intermittent times. However,® did not provide an automated mechanism for determining what data to

gather (i.e., what the “desired” data should be). In this work, we consider that one of the goals of designing



optimal control sequences for selecting an appropriate mechanistic model is to discriminate among possible
mechanistic models for a system that are consistent with its behavior. The “desired data,” then, is that which
reveals which of a set of potential mechanistic model structures is consistent with the process behavior.
The flexibility of LEMPC allows it to attempt to gather this data in a manner that guarantees closed-loop
stability throughout the data-gathering process. Particularly, we propose an LEMPC-assisted mechanistic
model discrimination procedure that incorporates closed-loop stability guarantees via the constraints of
Egs. 10a-10b with the ability to gather meaningful data without compromising closed-loop stability. The
fact that the objective function of LEMPC does not impact stability or feasibility guarantees allows it to be
modified if desired to attempt to gather different data than might occur under normal operation for model

discrimination. In the following subsections, we formalize this control concept.

3.1. LEMPC for Discriminating Between Mechanistic Models: Formulation

To achieve the data-gathering goals described above and attempt to quickly discern between potential
models, the control design takes the form of the LEMPC in Egs. 9-10 but enforces certain criteria (which
will be clarified in Section 4.3) on each of a set of |M.| mechanistic models, where |M,| represents the
cardinality of a set M, of model candidates. The objective function of the LEMPC can be modified if it is
considered that an economics-based objective function does not cause the computed control actions to cause
the state predictions between different models to be sufficiently different (when it is not known which model
may provide the most accurate state predictions, an economics-based objective function might minimize
the sum of all of the costs which might be obtained under the different models, where we denote this sum
by Zlff' Le(Zq,i(7),uq,1(7))). For example, to modify the objective function, a term could be added to the
stage cost that penalizes “closeness” of the trajectories of the states of two of the process models from one
another (to attempt to cause the LEMPC to maximize the difference between the state predictions from the
different models under the inputs that it computes). The resulting two terms in the objective function may
be weighted by binary parameters (denoted by 81 and f2 in the following) to enable activation of either a
profit-maximizing mode or a data-gathering-focused mode independently. This provides some capability to

collect non-routine operating data when minimizing costs does not provide data that enables models to be



discriminated. The formulation of the LEMPC just described is as follows:

|Me| |Mec| =1 [ M|

e+ N
min / 81 Le(dqi(m),ugn (1) = B2 > Y Yildqi(r) — Zgs(1)*] dr  (11a)
ug,1()ES(A) Jy,, 1 i=1 j=i+1
s.t. jjq’i(t) = fNL,i(l%q,i(t)a ’LLqJ(t)),Z' =1,..., |Mc|, Ugi = Ug,1 T Ug,1,s — Ugq,i,s (11b)
jq,i(tk) :x(tk)’i: ..., M, (11C)
Zga(t) € X, Vi€ [ty thrn) (11d)
Uug,1(t) € Ug1, Vit € [th, thin) (11e)
Vi(Zq1(t) < pen, ¥t € [thothpn) if Vi(Zg1(te)) < pen (11f)
OV (Tq1(t N OV (Tq1(t N }
WfNL,l(xq,l(tk)aUq,l(tk)) < MfNL,I(xq,l(tk)zhNL,l(fL'q,l(tk)))
.qu71 aqu
if Vl(fq,l(tk» > Pe,1 (11g)

where L, is the EMPC economics-based stage cost function (reflecting costs that must be minimized), Z,;
and Z,; are the state predictions in deviation variable form from z; based on the i-th and j-th model
candidate, respectively, and x(¢x) is the state measurement at tx. (2 = 1 corresponds to the activation
of the data-gathering mode. However, both terms 5; and B2 may be set to 1 to attempt to account also
for profitability measures while collecting closed-loop informative data. In this case, a trade-off between
process economics and model discrimination is considered (e.g., if the system is already operating in an
economically optimal fashion at steady-state and the maximization of the predicted state trajectories among
all rival models happens away from this operating condition). In addition, each term corresponding to the
magnitude difference between Z,; and Z,; in the double summation in the objective function of Eq. 1la
can be weighted with ;; (which may aid with placing importance on certain terms or putting all terms on
the same order of magnitude). p. 1 is analogous to j. in Eq. 10, for the 1-th empirical model.

In this work, we assume that the stability regions for each of the models are nested such that the i = 1
model has the smallest stability region, followed by that for ¢ = 2 (which fully contains that for i = 1),
and so forth. The stability region for the i = |M,.| model is the largest and contains every one of the other
stability regions for i < |M,|, and Q,, , € Q,, (where Q,_ . = Q, is the smallest stability region in the
set Me, i.e., plow = min{p;} and pe oy := min{pe;}), i = 1,...,|M,|). The LEMPC of Egs. 9-10 is used

with an initial model f until it has been decided to modify the process model due to model inaccuracy or



choice of potentially better model structures. At this time, the controller is replaced by Eq. 11 containing
a full set of |M.| mechanistic models. The data-gathering mode can then be activated if desired (assuming
that the process state is inside a subset of Q,,, as will be clarified in Section 3.3) and, thus, the LEMPC
selects control actions according to the criteria described above. During the data-gathering process, the
set M, must be adjusted over time by removing/pruning models from the set if certain candidates are
found to be inconsistent with the process data. In particular, if the measured state, at any time, exits the
stability region of the i-th model in M., that model is discarded from the set M, (this is because if the i-th
mechanistic model structure was accurate to within a bound used in deriving the size of ),,, the actual
state would be maintained in €2,,, as will be demonstrated in Section 3.3).

The concept behind the term multiplying [2 in Eq. 1la is as follows: state measurements will be
available over the next sampling period under whichever input is computed by the LEMPC. If one of the
mechanistic models in the set is more accurate compared to others (according to a metric such as the norm
of the difference between the state prediction at the end of a sampling period under a model and the actual
measurement at the next sampling time, which is a similar concept for identifying model correctness as in,
for example,?®), this means that the others fail to cause the state trajectory which they compute under
a given input to match the actual data obtained from the process under that same input. The one that
is sufficiently accurate, under any input selected by the LEMPC, will make predictions that are “close”
(according to the metric) to the measurements under the same input. If the same input also causes the
less accurate model to make state predictions that are as different as possible from the predictions under
the other models (which is the goal in Eq. 11a), then its predictions may be more different from the state
predictions from the more accurate model and potentially also from the actual measurements over the next
sampling period as well, which can help to flag it as less accurate. Then, though it is not known which model
in the set M, enables predictions to be made to within a desired tolerance of the actual process behavior,
the concept of attempting to cause the predictions from the |M.| models to differ from one another as much
as possible in FEq. 11a is due to the recognition that if at least one of the mechanistic models in the set is
more accurate compared to others, the inputs that cause the state predictions to differ significantly under
different mechanistic models may also cause the actual process data to differ significantly compared to some

models. Whenever the metric exceeds a threshold used for discriminating between the more accurate and
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less accurate mechanistic model candidates (denoted by €ps) for a given model, that model is discarded
from M.. Though the weightings and interactions between terms can complicate these goals of using the
term multiplying (2 in Eq. 1la, and even the standard profit-based objective function of LEMPC may
be sufficient for enabling inputs selected to be discriminating, there is potential that the additional term
multiplying 82 could be useful for the data-gathering goals for model discrimination.

An important note in terms of the feasibility of the optimization problem of Eq. 11 is that each of
the M. mechanistic models can have a different steady-state input so that the stabilizing Lyapunov-based
controllers hyy,; for each can be different. Therefore, hyy 1 does not necessarily drive the actual closed-
loop state toward a neighborhood of the origin if it or a control action satisfying Egs. 11f-11g is applied.
Therefore, to ensure that a control action that satisfies Eqs. 11f-11g in the case that the ¢ = 1 model is
not accurate does not drive the closed-loop state out of the stability region of a more accurate model over
a sampling period, the stability regions for all models should be nested with €2,,, ¢ > 1, sufficiently larger
than €, such that if the closed-loop state starts in €2,,, then it cannot leave (2,, within a sampling period
regardless of the input applied (that includes Ay, 1). This requirement is equivalent to a condition that
Q,, must be sufficiently larger than €, , given the sampling period length and process dynamics (this will
be made more precise in Section 3.3). However, because the models are pruned from M, over time and we
do not know a priori which of the mechanistic models is more accurate than others, we do not know if the
original ¢ = 1 mechanistic model may be discarded. If it is discarded and the original ¢ = 2 mechanistic
model is not, then the updated set of models is re-numbered (e.g., the original ¢ = 2 mechanistic model
becomes the updated ¢ = 1 mechanistic model for the next sampling period). In that case, it will be
required that the original ¢ = 2 mechanistic model has a stability region sufficiently smaller than that of
the next model so that when hyp 2 is a feasible control action, it cannot drive the closed-loop state out of
the next largest stability region. Without loss of generality, we consider that only one of the models will
be the most accurate based on the procedure above, and denote the stability region of this more accurate
mechanistic model as €, , where a € {1,...,|M.|}. However, it is not known which of the mechanistic

models the a-th model corresponds to until the data-gathering is complete.

Remark 1. A particular challenge for designing reliable mechanistic models is introduced when the un-

derlying process dynamics change over time (due to, for example, catalyst deactivation) and, thus, the

11



model used by the controller without any revision may be less representative of the process and should be
revised. Process data recorded off-line or obtained from steady-state operation may not carry meaningful
information for the purpose of reidentifying and discriminating between mechanistic models during process
operation; an online (control-assisted) selection of the process model after a system identification approach

is more suitable for this goal.

Remark 2. In the literature, several EMPC schemes have been proposed for which closed-loop stability can
be guaranteed, which, in addition to LEMPC, include EMPC with terminal equality or terminal region
constraints,?® with generalized terminal constraints,?” without terminal constraints,?® or robust EMPC
methods.??>3% We would not expect the ability of EMPC to aid in mechanistic model discrimination to be
restricted to LEMPC, but conditions required to achieve safety during mechanistic model discrimination

with other control policies are outside the scope of the present work.

Remark 3. The proposed approach could be utilized to attempt to discriminate even between non-
mechanistic models; however, since the models in such a case might be derived from data, and the proposed
approach gathers data for selecting models, the approach is more applicable if insufficient data was utilized

to develop them.
3.2. LEMPC for Discriminating Between Mechanistic Models: Implementation Strategy

Assuming that a reasonably accurate mechanistic model is used by the proposed LEMPC design at the
beginning of the process operation, the implementation strategy below includes a region pe ;o = pe,1, which

is chosen such that if the actual state is in C Q,,, under sufficient conditions, then the closed-loop

Pe,low

state is maintained in €, for ¢ > 0 if the ¢-th mechanistic model is sufficiently accurate. Particularly,

information may be gathered automatically as follows (assuming that x(tx) € Q,, ., ):

1. At the sampling time ¢, the LEMPC of Eq. 11 receives the state measurement z(tg). If it is desired
to optimize economics, set §1 = 1. If it is desired to operate the LEMPC in a data-gathering mode
(i.e., attempting to maximize differences between state trajectories), set S = 1, and go to Step 2.

2. The LEMPC of Eq. 11 computes control actions that may cause the state trajectories predicted based
on the different mechanistic model candidates in M, to differ from one another under the same input.

The computed inputs are applied to the process for a sampling period. Go to Step 3.

12
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Figure 1: Workflow for checking model accuracy.

Check the value of z(t), t € [tg,tr+1] and the values of the prediction error metrics for each of
the mechanistic models in M, that are to be used for distinguishing between the rival mechanistic
models. The i-th mechanistic model candidate (i = 1,2,...,|M,|) is discarded from the set M, if: 1)
the prediction error metric evaluated for Z,; (the predicted state using the i-th mechanistic model)
and the state measurement x is above the accuracy threshold (epr); or 2) the value of z(t), t € [tg, tg+1]
is outside of the stability region of the i-th mechanistic model, i = 1,2,...,|M.|. Go to Step 4.

. Goto Step 1 (k + k+1).

Fig. 1 shows the major steps in this implementation strategy when models are being discriminated.

Remark 4. To prevent the LEMPC’s data-gathering mode from significantly impacting economic opti-
mization, triggering mechanisms may be used. Ideas for these include those which only collect desired
information when the optimal solution to the optimization problem is close to the information which it
is desired to obtain in a norm sense. For example, the data-gathering mode may be activated when the
predicted state of at least one model at the end of a sampling period, Zi(tg+1), is within €4 of a pre-
specified state, zq; (e.8., |Tq,i(tkt1) — 24| < €q). A profit-based triggering mechanism may also be used
which triggers data-gathering when closed-loop economic performance under the proposed LEMPC with
B2 = 1 over the next sampling period is within a tolerance €, of what would be obtained if 82 = 0. These
types of triggering mechanisms may be particularly beneficial when there is a possibility that the case with
B2 = 0 may be sufficient for aiding in mechanistic model discrimination, because they allow the profit-based

component of the objective function to be “tried” for model discrimination before attempts to gather data
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in a non-standard way are made.

3.8. LEMPC for Discriminating Between Mechanistic Models: Stability Analysis

In this section, we prove recursive feasibility and closed-loop stability of the process of Eq. 1 under the
implementation strategy of Section 3.2. The impacts of bounded plant/model mismatch on the process
state trajectory are delineated in Proposition 1, and Proposition 2 bounds the Lyapunov function value at

different points in the stability region.

Proposition 1. °Consider the systems below

fa = f(wa(t), u(t),w(t)) (122)

T = [NLi(@0i(1), u(t) — ug,is) (12b)
with initial states xq(to) = xpi(to) € Qp, with tg = 0. There exists a function fyw,;(-) such that fort € [0,T]:

|za(t) — 26, ()] < fw,i(t — to) (13)
for all x4 (t),xp;(t) € Qp, C Qp, u e U, and w € W, with

Lw@ + MeTT,’i) e(L:cT—l) (14)

Jwi(T) == < I

where Merr; is defined by the following: |f(x,u,0) — fynri(x, v —ugis)| < Merri, Vo € Q,, and u € U.

Proposition 2. ? Consider the Lyapunov function Vi(-) of the system of Eq. 3 under the controller hnr,i(+)

that satisfies Eqs. 4a-4d. There exists a quadratic function fy,;(-) such that:
Vi(@) < Vi(@) + fua(lz — 7)) (15)

or all z,7' € Q,, with
f Pi

fi(s) = Gui(a7; (pi))s + My,s? (16)
where M, ; is a positive constant.

The following theorem guarantees closed-loop stability of the process of Eq. 1 under the implementation

strategy of Section 3.2.
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Theorem 1. Consider the closed-loop system of Eq. 1 under the implementation strategy of Section 3.2,
where hyr, i(-) used in the LEMPC of Eq. 11 for any i-th model in the set M. meets the inequalities in Egs.
4a-4d with respect to the i-th model candidate. Let ey, > 0, A >0, and N > 1. At every sampling time,
let Q... € Q,, C X, where pioy = min{p;} and pe jon := min{pe;} for the models which are in the set M,

at a sampling time. Also, assume that:

8Va(x(t)) oV (z(t))
ox ox -

where My > 0, for all x € Q5. Let pei > pmin,i > Psis Pi > Pei > Pi—1, fori=1,2,... |M.|, satisfy:

—Gi3,i(A5 (ps)) + Ly My < —€yi /A, i =1,..., | M| (18)
—G3,0(G5 4 (Pe,a)) + A1,a(87 4 (Pa)) Merra + Ly My A + Li,© + 2Mg My < =€, o /A (19)
Pea+ fva(fw,a(B)) < pa (20)

pei > max{Vi(x(t)) : x(ty) € Q1 t € [trstr1),u €U, weE WY, i=2,...,| M, (21)
pmin > max{Vi(z(t)) : x(ty) € Qp,;,t € [ty tir),u €U, w € W}, i=1,...,| M, (22)
Pming > max{Vi(Z4i(t)) : Tqi(ts) € Qi t € [tistir1), u €U, we W, i=1,...,|M] (23)

If 2(to) € Qp,, for the i = 1 model in the set M. at to, then x(t) € Q,, fort > 0.

Proof. The proof consists of two parts. In the first part, recursive feasibility at every sampling time under
the implementation strategy of Section 3.2 is demonstrated. In the second part, it is demonstrated that the
closed-loop state is maintained within §,, for all times (regardless of whether 8, =0or 8, =1, p=1,2)

if IE(to) S Qpe,l =0 at tg.

Pe,low

Part 1. We first demonstrate that hxnr 1 is a feasible solution to the LEMPC of Eq. 11, with either
Bp=0or B, =1,p=1,2, at all sampling times under the implementation strategy of Section 3.2. Under
this implementation strategy, at time ¢o, hxnr,1 satisfies the constraint of Eq. 11e from Eq. 4d with respect
to the 4 = 1 model. It also satisfies Eqs. 11f-11g.2% Specifically, the system state Zq(to) must be inside

the smallest stability region peiow C plow- In this case, hyr () implemented in sample-and-hold is a

feasible input policy because it trivially satisfies Eq. 11g. Furthermore, under the conditions in Eqgs. 18
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and 23, hyp 1 satisfies Eq. 11f if Z4,(t9) = z(t9) € Q2 C Q. (and thereby Eq. 11d since €, C X).

Pe,low

Specifically, from Eq. 4b, if Z4:(tx) € Q,,/Qp, ;, Where p1 = pow:

8‘71 (iq,l(tp))

0% 1 INe1(Zg1(tp), hnp,1(Zg1(p))) < —b31(|Zg,1(tp)]), p=Fk,...,k+ N -1 (24)
q7

Therefore, for t € [ty tp41) and p=k,...,k+ N — 1 and Z41(tp) € Qp, /Qp, ;-

8Vl (-i‘q,l(t))

9% Fna(@q1(t), hnea(Fq1(tp)) < —as1(651(ps1)) + Ll My, A (25)
q,

OV (Tq.1(tp)

where this inequality follows from adding and subtracting o5 ) INp(Zg1(tp), Ane1(Zq1(tp)))

to/from %ﬁﬁ(t» Inpa(Zg1(t), hnp1(Z41(tp))) and applying the triangle inequality, and subsequently
using Eqgs. 4a, 5a, and 6. If Bq. 18 holds, 2Eet@) py) (3, 1(1), hnp (T4 (1)) is negative with

Vi(t) < Va(ty) for t € [ty tpi1) so that if &,1(ty) € Q C Q.. then Z,1(t) € Q Vi€ [ty tprr). I

Pe,low Pe,low?

instead Zg,1(tp) € Qp, ,, then from Eq. 23 and pejow > pmin,1 > ps,1, Tq,1(t) € Q c N cO for

Pmin,1 Pe,low Plow

t € [tp,tpt1), as required by the constraint of Eq. 11f.

At time 1, the closed-loop state is in €,,, as will be demonstrated below. In this case, one of two
outcomes occurred at ¢ according to the implementation strategy in Section 3.2: 1) models were removed
from M,; 2) models were not removed from M. If no models were removed, the original ¢ = 1 model is still
the model corresponding to €1, . In that case, the closed-loop state is again in €2, . and feasibility will
again hold by the proof above. If models were removed from M., the remaining models are re-numbered so
that the model with the smallest stability region is labeled as the ¢ = 1 model, that with the next largest
stability region is labeled as the i = 2 model, and so forth. At this sampling time, z(t;) € §,, for the new
i = 1 model (or else that model would have been discarded according to the implementation strategy of
Section 3.2), and the new hyp 1 again satisfies Eqgs. 11e, 11d, 11f, and 11g from the proof above. Applying
these arguments recursively indicates that the hyr ; for the current set of i = 1,...,|M,.| models at any
sampling time is a feasible solution to Eq. 11. Thus, there is a feasible solution to Eq. 11 at every sampling
time when the implementation strategy in Section 3.2 is used.

Part 2. We now demonstrate that under the implementation strategy in Section 3.2, the closed-loop state

is maintained within Q,, for all times. At o, z(t9) € Q C Q,,. Eq. 11 ensures that V3(Z,1(t)) < pe.1.

Pe,low

Either the ¢ = 1 model corresponds to ¢ = a, or a model with ¢ > 1 corresponds to ¢ = a. If ¢ > 1
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corresponds to ¢ = a, then Eq. 21 ensures that z(t) € Q,,, t € [tg, ty41) since x(ty) € Q,. If i =1

corresponds to ¢ = a, then from Propositions 1 and 2:

A~

Va(2(t)) < Va(@ga() + fra(|Zaa(t) = 2(t)]) < pea + fralfwa(A)) (26)

for t € [to,t1). If Eq. 20 holds, then z(t) € Q,, for t € [tg,t1). At t1, either models are removed from the
set M, according to the implementation strategy in Section 3.2, or they are not. In either case, the new
value of py, either is the same as p, (it cannot be greater because the i = a model will not be discarded if
the prediction error metric threshold is set to avoid removing sufficiently accurate models from M, and if
x(t) € Qp,, t € [to,t1) (which was proven to hold when Egs. 21 and 20 hold) so that the model cannot be
removed for the closed-loop state leaving 2,,) or less than p, at ¢;. In either case, the closed-loop state is

in the updated Q,, C €, . In this case, either x(t;) € Q,,,, /S or z(ty) € I x(ty) € Q

Plow Pe,low Pe,low Pe,low’

then the constraint of Eq. 11f holds for the ¢ = 1 model, and again Eq. 21 and Eq. 20 ensure that () € €2,,,
t € [t1,t2), whether the ¢ = 1 model corresponds to i = a or a model with i > 1 corresponds to i = a.

If instead x(t) € Q,,, /2 then the constraint of Eq. 11g is activated. If ¢ > 1 corresponds to

Pe,low?
the ¢ = a model, then Eq. 21 ensures that x(t) € Q,, for t € [ty,t441). If instead i = 1 corresponds to
i = a, then Eq. 24 holds for the ¢ = 1 model with hnp, 1(Z4,1(tp)) replaced by ug1(tp). A bound on the time

derivative of the Lyapunov function at ¢; for the nominal model of Eq. 1 under u(t1) = ug1(t1) 4 ug,1,s can

be developed as follows:

VA (x(t . ~
W) (1) (1), 0) < s a(lt)]) + i (0)]) M (27)
which is derived from adding and subtracting %fNL’l(:c(tl),u(tl) — ug1s) to/from

%ﬂx(tl),u(tl),m, and applying Eq. 4c, Eq. 24, and the definition of Mg, ;. Vl along the
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closed-loop state trajectory under u(ty) is then obtained from:

fw F(@(t), ultr), w(t)) < Wf(x(t),u(tl),w(t)) - P2 o) ), wie)
+ Wf(x(t),u(tl), w(t)) — W(;;Etl))f@(tl),u(tl)v 0)
+ W(gcfmf(x(tl),u(tl),o) — Wf(x(tl)m(tl), 0)
+ Wf(w(tl),wl)’o)

OVi(z(t) OV (x(t)
or ox

L |oViat)  oV(e(t))
ox ox

< —aga(Je(ty)]) + dan((z(t) ) Merry + 2MgMy + L MpA + L7, ©

<

[ (2(t), u(ty), w(t)]| + Li|x(t) — 2(tr)| + Ly w]

[f(@(t1), u(tr), 0)] = a1 (Ja(tr)]) + daa (Je(t)|) Merry

< —63,0(G5 4 (Pe.a)) + A1,a(7 4 (Pa)) Merra + Ly MpA + L, © + 2My My
(28)

which is obtained from applying the triangle inequality, Eqs. 4a, 7b, 8, 17, and 27, continuity of x, the fact
that z(t1) € Qp,/Q.,, and the bound on w. When Eq. 19 holds, Eq. 28 implies that the value of Vi is
decreasing over time along the closed-loop state trajectory, so that Vi (z(t)) < Vi(x(t1)) < pa for t € [t1,t2).

Applying this recursively, the actual state stays within €,, at all times. O

Remark 5. When the conditions of Theorem 1 hold, bounded plant/model mismatch with magnitudes ©
and Me,r enable closed-loop stability to be guaranteed under the a-th model (i.e., every model for which
bounds on the plant/model mismatch meet the conditions of Theorem 1, along with the other functions
and parameters used in LEMPC, is considered to be “sufficiently accurate” because it maintains system
safety). Therefore, from Proposition 1, |z44(tk) — Zga(tkltk—1)] < fwa(A), where Zqq(tk|tk—1) is the
predicted state at t; using the a-th model initialized from the state measurement at tx_;. Although the
accurate model is unknown, the value fiy,(A) represents that there exists a lower bound on the threshold
ey that avoids flagging a sufficiently accurate model as inaccurate due to the presence of disturbances,
but without allowing excessive amounts of model error. If ey is greater than fiy(A), the detection
threshold avoids flagging acceptable plant/model mismatch as unacceptable (i.e., it would avoid pruning
a sufficiently accurate model from M.). However, which models are sufficiently accurate for maintaining

closed-loop stability under LEMPC is not known a prior: so that less accurate models may also fall within
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a given bound €); on the prediction error, or the bound on the prediction error might be set too low in
practice so that a sufficiently accurate model is pruned. Other metrics besides prediction error could also

be considered for evaluating whether models should remain within M, or not.

Remark 6. Another way to implement the proposed control design and prove closed-loop stability for all
time is to enforce the constraint of Eq. 11f not only for the model that corresponds to the smallest stability
region but also for each i-th model in the set M,. The proof would follow as above, except that feasibility
of each of these added constraints depends on Eq. 21. Although models are discarded from M, during the
data-gathering process, which progressively reduces the number of constraints enforced on this alternative
control design over time, this control implementation is not as streamlined as that in Section 3.1 in the

sense that as the number of models |M,| grows, more constraints are imposed on the closed-loop state.

Remark 7. The results of Theorem 1 hold assuming that a model for which the plant/model mismatch is
sufficiently small (in the sense that the conditions of the theorem hold for the model with i = a) is in the
set M., and that nested stability regions for all candidate models can be found. If it is not possible to nest
the stability regions of all possible mechanistic models, the set M. can be broken up into multiple sets of
mechanistic model candidates for which it is possible to nest the stability regions, and then the models in
each set can be discriminated following the conditions in Theorem 1 by using the proposed LEMPC for a
given set at a time. There would need to be overlap of the different sets or multiple sufficiently accurate
models in this case, as the assumption that there is at least one mechanistic model meeting the assumptions
of Theorem 1 in the controller used for each set must continue to hold. The assumptions of nested stability
regions could be challenging to implement in practice (e.g., to meet Eq. 21, small values of A may be
needed, especially if there are many possible models that must be needed); in general, designing LEMPC’s
that fully meet theoretical conditions for practical use can be a challenge. The potential conservatism and
limitations that nesting stability regions might introduce is partially due to a lack of knowledge and lack
of a priori data for discriminating between the models before the controller is put online. In general for
LEMPC, it may be desirable to use large stability regions. One could attempt to more rigorously determine
the region of attraction and use this in evaluating a variety of stability regions to seek to select one which

32,33,34)

takes up as large a fraction of the region of attraction as possible (e.g., . In practice, one may not

know whether a model meeting the requirements of Theorem 1 is in the set; in this case, sufficient data on
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process behavior and physics may be necessary to provide a reasonable set of models which is expected to
include a model for which the requirements of Theorem 1 hold, or many models might be suggested (i.e.,
| M.| might be large) to attempt to include many possible models with the hope that one might meet the
requirements of Theorem 1 even if it is not known at the beginning of the model discrimination procedure
which it is. It may be challenging to check whether the conditions of Theorem 1 are satisfied when putting
an LEMPC online, as some of the conditions (e.g., Egs. 19 and 20) are required to hold for the sufficiently

accurate model but may not hold for the others, and a sufficiently accurate model is not known a priori.

Remark 8. It may be possible that more than one model in M, may be consistent with the available data
over time, particularly considering measurement noise and plant/model mismatch between all models and
the process dynamics, such that it may not be possible to confidently state that one of the models is better
than the other. In such a case, if the conditions of Theorem 1 are satisfied with at least one of the models
selected as the a-th model, then one of those that meets the requirements may be selected as the i = a
model, and the system can be run safely (i.e., the closed-loop state will be maintained within €,). This
does not necessarily mean, however, that the mechanisms conveyed by the mechanistic model selected in
such a case are those which actually describe the process physics. Because this strategy may combine
first-principles modeling (in the development of the mechanistic models) with data (for discriminating
between the potential mechanisms suggested), one might consider it an alternative concept of combining
first-principles and data-driven techniques in modeling (where certain techniques for doing this often fall

within a category of “hybrid modeling”).

Remark 9. The reason for including both Eqgs. 22 and 23 is that the latter is needed to ensure that the state
predictions do not leave Q. if T; € Q,,,/Q,, . (to ensure feasibility of Eq. 11 with the state predictions),

whereas Eq. 22 is required for ensuring that the actual closed-loop state does not exit €2, .

4. EMPC for Discriminating Between Mechanistic Models: Illustrative Process Example

In this section, we provide simulations that illustrate and elucidate some of the concepts discussed above
and serve to indicate some of the potential benefits and limitations of using EMPC for model discrimination.
This example makes no attempt to fully demonstrate the control theory above, and thus does not rigorously

demonstrate the implementation strategy in Section 3.2. Rather, it is intended to showcase more practical
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considerations regarding when and how the flexibility of EMPC might be used for model discrimination,
to elucidate relevant aspects that were not highlighted in the theory introduced so far, and to provide
some discussion toward future automation of digital twin development via control-assisted approaches for
gaining non-standard operating data for on-line model development. Exploring how to develop parameters
and evaluate the practicality of the method described in Section 3 when full control theory is applied can be
a subject of future work, but that theory is important for this discussion in demonstrating that there would
be conditions under which safe model discrimination could be performed via control-assisted methods.
For this example, we consider the problem of seeking to, on-line, develop insights into the physics of
a process as an initial step toward automated control-assisted digital twin development (and the potential
benefits that that might entail for applications such as fault diagnosis, process monitoring, and developing
more economically-optimal control strategies). This goal is considered for a non-ideal continuous stirred tank
reactor (CSTR) with dead space and bypass, in which a second-order, exothermic, irreversible reaction of
the form A — B is occurring. The dynamics of this system are considered to be represented by a perturbed
version of the following dynamic equations (where the perturbations are random numbers from a bounded

standard normal distribution that are added to the right-hand side of each of the following equations):

dCam F,, —Eg
A — T (Cto = Ciam) — hoe P8 CFy (290)
Fy— F,, F,
Ca= OTCAO + ?OCAm (29b)
dT,, F,, — —Eg Q
=M = Ty — T, koeFm OF 4 ———— 2

Fy
This non-ideal CSTR has a well-mixed volume V,,,, and a total volume V. The concentration of species A,
volumetric flow rate, and temperature in this well-mixed part of the reactor are denoted as Cap,, Finn, and Tpy,
respectively. This reactor also presents a dead zone (with volume V' —V,,) and a bypass (with a volumetric
flow rate of Fy — F};,). To complete the model for the actual process dynamics, process disturbances were
added to the right-hand side of the differential equations describing the rates of change of C4 and T with
zero mean and standard deviations of 20 kmol/m? h and 100 K/h, and bounds of 10 kmol/m? h and 50
K/h, respectively. Measurement noise was also included based on a standard normal distribution with

mean zero, standard deviations of 0.01 kmol/m?® and 1 K, and bounds of 0.05 kmol/m? and 5 K for the
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concentration of the reactant and reactor temperature, respectively. The process parameters are presented
in Table 1. The steady-state values of the states Cy4,, and T,, and inputs are Cay,s = 1.22 kmol/m3,
Trns = 438.2 K, Cags = 3.888 kmol/m?, and Q, = 6.387 x 103 kJ /h, respectively. The vectors of deviation
variables for the states and inputs from their steady-states are z = [z] 22]7 = [Ca — Cas T — Ti]* and
u = [ug ug]’ = [Cag — Caos Q — Qs]T. It is assumed that the sensors for concentration and temperature of
the reactor are placed within the well-mixed part of the reactor and that the process has been operated at
the steady-state in the past, so that most of the available process data consists of measurements reading
Cams and T),5. We also assume that the controller readings (C40s and Q5) are available. However, though
Fpy is assumed to be fixed and measurable, T is not measured. Also, there is no sensor for potential
The total reactor volume is assumed to be

impurities in the feed that could impact reaction kinetics.

monitored via a level sensor, so that V' is also known.

Table 1: Parameters for the CSTR models.

Parameter Value Unit
Vv 1 m?
Ty 300 K
Cy 0.231 kJ /kg-K
ko 8.46 x 10°  m3/h-kmol
F() 5) m3/h
oL 1000 kg/m?
Ey 5 x 10% kJ /kmol
R 8.314 kJ /kmol-K
AH —1.15 x 10*  kJ/kmol
F, 0.99F, m?3 /h
Vin 0.95V m>
Fna 4.95 m? /h
Eo 5.019 x 10*  kJ/kmol
Vin3 0.9596 m?
To3 300.06 K

It is assumed that the plant engineers would like to enhance the profitability of the process by obtaining
a more accurate model of the process dynamics to aid in operating the process under EMPC and also to
aid with process monitoring efforts. To do this, a control-assisted approach will be used that is similar
in concept to that described in Section 3 (though without being rigorously designed to meet all control-

theoretic conditions needed for guaranteeing safety during the data-gathering process). Specifically, a set of
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rival mechanistic models will be identified where the available data for discrimination between these models
is insufficient for selecting which is the most accurate because most of the available dataset was developed
when operating at a steady-state, and the data from dynamic operation is limited. We desire to use EMPC
to aid in discriminating between the rival mechanistic model candidates online. Particularly, the control
objective is to select a suitable mechanistic model candidate within the set M, to be used by the controller.

The first question to be addressed is which models will be in the set M.. We consider that the plant
engineers have hypothesized that the reactor may have bypass and dead zone, but that they do not know
if it has both or only one of these non-ideal scenarios. Therefore, the model structures for the mechanistic
models consider that both dead zone and bypass may occur (as in Eq. 29), that only dead zone may occur,
or that only bypass may occur. However, though this fixes several potential model structures, it does not
fix their parameters, and the strategy presented in Section 3 for control-assisted model structure selection
requires that the model parameters already be identified or postulated for every model in M.. We note,
however, that because some operating data is available (primarily at steady-state) and some data on the
physical process is available (e.g., knowledge of V'), it is not possible for all possible model parameters to
be valid. Consider, for example, a model structure of the following form, representing a system with bypass

only (with a bypass flow rate of Fy — F,):

dCam  Fp Y
d;‘ = 77 (Cao = Cam) = koe ®Tm C2 (30a)
Fy—F, E,
Ca= OTCAO + ?OCAm (30b)
dT, —AH - =Eo Q
M Ty — Ton koeFTm O v 30
T N oA (30)
F, (T, — Ty) + FyT
T— ( 0) + 1'odo (30d)

In these equations, F},, Tp, ko, and Ej (the bypass flow rate, feed temperature, pre-exponential factor, and
activation energy) are considered to be parameters that, based on the sensing/monitoring setup in place for
this process described above, could be values different from what is expected. However, because we know
that when Ca.s = 1.22 kmol/m? and T),s = 438.2 K, then Cags = 3.888 kmol/m?® and Qs = 6.387 x 103
kJ/h, we can attempt to check whether different values of the unknown parameters are consistent with
the steady-state data. For example, consider the case where kg = ko and Eq = Ej in Table 1 (i.e., only

F,, and Ty are considered to be unknown). In this case, values of F,, and Tj that satisfy the steady-
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state form of Eq. 30 when Cuaym = Cams, Tmn = Tins, Cao = Cags, and Q@ = @, obtained using fsolve
in MATLAB R2016b with an initial guess of F,,, = 5 m®/h and Ty = 300 K, are F,, = 5.21 m®/h and
To = 300.3 K. However, we would discard these potential values of the parameters because though they
are consistent with the steady-state data, they are not consistent with our knowledge that Fp is 5 m?/h, so
that the maximum possible value of the bypass flow rate (which is a fraction of this) must be less than 5
m?/h. This demonstrates that even with limited data available, the physics of the system can set bounds
on potential allowable values of parameters in potential mechanistic model structures based on different
physics postulates, aiding in forming the set M..

For the purposes of illustration, we will utilize a limited set of models (only three mechanistic model
candidates) in the remainder of this example, though more could be developed. One is the mechanistic
model of Eq. 29 (which is close to the “actual” process dynamics but still differs from these dynamics because
there are disturbances added to the right-hand side of Eq. 29 for the “actual” process), one is a mechanistic
model assuming only a dead zone in the reactor (no bypass), and one is a mechanistic model assuming only
bypass through the reactor (and no dead zone). All three consider the second-order, exothermic, irreversible
reaction (A — B) to be occurring in the CSTR. Based on attempts like that described in the prior paragraph
to obtain model candidates for which there is a steady-state with the measured values of concentration and
temperature in any well-mixed portion of a reactor set to Cams and T;,s when Cyg = Cags and Q = Qs,
parameters for the dead space and bypass flow rates, as well as some kinetics and feed data, are different
between the models. Fig. 2 illustrates the different physics considered for the three model candidates.
Below, the three mechanistic model candidates are numbered /ordered for use in an EMPC with a similar
form to that in Eq. 11.

The first mechanistic model candidate (Model 1; ¢ = 1 in the original set M.), which is represented by
Fig. 2a, is a non-ideal CSTR with bypass (F, = Fy — Fin1), but without considering dead space, and can

be described by the following equations:

dCam, F, —Eo1
d;‘ = 71(0A0 — Clam) — kge Fm O3, (31a)
Fo— F,, F,,
Ca= OTOICAO + ?OICAm (31b)
dT,, Foa —AH “Eo1 _, Q
Em o Il — T, koe FTm C% 4+ —% 31
g~ v Lo Tw)+ e koe T Ch, 4 2oy (31c)
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Figure 2: Mechanistic CSTR model candidates (a) has only bypass, (b) has bypass and a dead zone, and (c) has only a dead
zone. For the model candidate in (a), Fin1 represents the volumetric flow rate into and out of the well-mixed portion of the
CSTR, and Fp; represents the bypass flow rate (which is a fraction b of the inlet volumetric flow rate Fy). For the model
candidate in (b), F), represents the volumetric flow rate into and out of the well-mixed portion of the CSTR, which is a
fraction (1 — ¢) of the total volumetric flow rate Fy into the CSTR (the fraction c of the total volumetric flow rate is F3). Vg
represents the volume of the dead zone, which is a fraction (1 — a) of V' (the fraction a of the total volume is the well-mixed
part V;,,). For the model candidate in (c), the dead zone Vg3 is a fraction (1 — d) of the total volume, with V;,3 representing
the volume of the well-mixed part of the CSTR.

le(Tm - TO) + FOTO

T —
Fy

(31d)

The second mechanistic model candidate (Model 2; i = 2 in the original set M,) is represented by
Fig. 2b and has the dynamics in Eq. 29. The third mechanistic model candidate (Model 3; i = 3 in the
original set M.,), which is represented by Fig. 2¢, is a non-ideal CSTR with dead space (V = Vi + Viu3),

but without considering bypass, and can be described by the equations below:

dCA Fo —Eg

W = m(CAO — CA) — ]ﬂ(]e RT 0124 (32&)
dT  Fy —AH,  -B _, Q
— =—Ty3—T k C _— 32b
I Vm3( 03 ) + oiCy o€ RT Uy + 220, Virs (32b)

The parameters of the three mechanistic model candidates described above are shown in Table 1. All three
process models, and the actual plant dynamics, are numerically integrated using the explicit Euler method
with an integration step size of 10~* h. We note that because C'4 and T differ in the three mechanistic model
candidates, the sensor placement in this case makes the discrimination challenging with the steady-state
operating data (if, for example, the sensor was placed at the outlet stream of the reactors (i.e., C4 and T
were obtained for every case in Fig. 2), a difference may be observed between the expected measurements
from the three models when the steady-state inputs are applied, and the models could be discriminated
while operating at steady-state).

The EMPC formulation to be used for control-assisted online model discrimination will have a form
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similar to that in Eq. 11 (though the constraints will not be designed to meet the control-theoretic condi-
tions). Therefore, it is necessary to design operating regions for the different models to use in constructing
the constraints. To do this, a Lyapunov function V; = xaiPa:q,i, i = 1,2,3, where P = [1200 5;5 0.1],
was selected. To nest the stability regions, the stability region using Model 1 was set to p; = 300 (i.e.,
Q, ={z € R?: Vi(z) < p1}) with p.; = 275; the stability region using Model 2 was set to pg = 370
with pe 2 = 325; and the stability region using Model 3 was set to p3 = 470 with p. 3 = 380. We note that
in general, nesting of stability regions may not imply that the models with the larger stability regions can
stabilize the closed-loop system under a Lyapunov-based controller from a larger portion of state-space,
but rather that a more conservative subset of that region is selected for one of the regions than might oth-
erwise be chosen to facilitate the nesting. However, it makes sense to place stability regions that are more
conservative due to the region of state-space from which a given model can be stabilized within stability
regions corresponding to models that can be stabilized from a larger region of state-space, to avoid excessive
conservatism in the stability region design.

A practical consideration for control-assisted model discrimination is that there need to be subsets of
the stability regions where at least some models give sufficiently different state predictions from one another
so that some will be able to be pruned from M,.. It is possible to check if this is a possibility using an
a priori analysis of the model candidates to see if there are possible initial conditions within the smallest
stability region and inputs within the input bounds which can maintain the closed-loop state in the smallest
stability region (in case the ¢ = 1 model is correct so that the closed-loop state may not exit this region)
and also indicate that the models will make noticeably different state predictions. To demonstrate this, we
performed a discretization of the state and input spaces within a small range of the steady-state values,
initialized each model from the discretized state values under the inputs in the input discretization, and
simulated the three models for 0.01 h (checking that the Lyapunov function value did not exceed 300, which
corresponds to p1; the need to evaluate this over only 0.01 h of operation is because A = 0.01 h will be
used in the EMPC, and it is necessary that the state predictions from the different models are sufficiently
different from one another after a sampling period that the models can be discriminated between at the end
of a sampling period). The discretization used involved the following: initial conditions were developed by

setting a variable Ig;scretize that varied in increments of 0.1 between 0 and 0.5. Each initial condition for
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Cam was then obtained by dividing the value of Ijscrerize being used by 5, and each initial condition for
T,, was then obtained by multiplying the value of Ijseretize being used by 20. The inputs were discretized
so that Cyg varied from 2.5 to 5.5 kmol/m? in increments of 0.1 kmol/m? and @ varied from -10000 to
10000 kJ/h in increments of 1000 kJ/h. Examples of two sets of trajectories for Ca,, and T, are shown in
Fig. 3, corresponding to two different sets of initial conditions and inputs selected within the discretization.
Specifically, the top plots correspond to initial conditions of Ca,, = 1.2231 kmol/m? and T;, = 438.25 K
with inputs of C49 = 3.9 kmol/m?® and @ = 6000 kJ/h, whereas the bottom plots correspond to initial
conditions of C4,, = 1.3231 kmol/m? and T, = 448.25 K with inputs of C49 = 5.5 kmol/m? and @ = 10000
kJ/h. This figure shows that whereas it is difficult to discriminate between the models visually from the
top plots, Model 1 is noticeably less accurate compared to the other two in the bottom plots. In particular,
the absolute value of the difference between Model 1 and Model 2 at the end of the 0.1 h of operation in
the top plots is 2.702 x 107 kmol/m3 in C4p, and 0.0007 K in T},, whereas it is 0.001 kmol/m3 in Cym
and 0.218 K in T}, in the bottom plots. The absolute value of the difference between Model 3 and Model 2
at the end of the 0.1 h of operation in the top plots is 3.657 x 107 kmol/m? in Cy,, and 0.0002 K in T},
whereas it is 5.486 x 1070 in Ca,, and 0.0019 K in T}, in the bottom plots. This indicates that at least
one of the models may eventually be able to be dropped from M. under the control-assisted online model
discrimination strategy, depending on the model error threshold set (if Model 1 is sufficiently accurate, it
would be expected that the sensor measurements will be consistent with its trajectory and that the other
two models could be dropped; if Models 2 or 3 are instead sufficiently accurate, it would be expected that
the sensor measurements will be consistent with those trajectories and that Model 1 could be dropped).
To see whether Models 2 and 3 and could be discriminated between if Model 1 was determined not to be
sufficiently accurate and only those two models were left, further analysis would need to be performed.
There is no guarantee that two models will be sufficiently different to be discriminated from one another
online in the presence of measurement noise.

The EMPC is designed in a similar form to FEq. 11, in the sense that it uses the i = 1 model at %,
to establish constraints related to the Lyapunov function. Constraints in the spirit of Eqgs. 11f-11g are
formulated for this problem, where if V; (x(tx)) < pe,1, a constraint of the form in Eq. 11f is enforced at

the end of each sampling period in the prediction horizon. If instead Vi (x(t)) > pe1, a constraint of the
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Figure 3: Maximum (plots from the bottom) and minimum (plots from the top) difference between the predicted state
trajectories of the models over three sampling periods among a set of different initial conditions and inputs. The y-axis range
is larger in the bottom plots than the top plots. Except in the upper right plot where the trajectory for Model 2 is somewhat
visible on its own, the trajectories for Models 2 and 3 are overlaid.

form in Eq. 11g is used at g, and then a constraint of the form in Eqs. 11f is enforced at the end of each
sampling period. Since the goal is to select a suitable mechanistic model in M., we explore the use of the
form of the objective function of Eq. 11 with 1 =0, B2 =1, and ;5 = 1,49 = 1,2 and j > i+ 1 up to
|M,|, to attempt to maximize the distance between the state predictions from the three mechanistic model
candidates in M, (i.e., the LEMPC is implemented in data-gathering mode only). Particularly, the EMPC
computes control actions (C'49 and @) in a manner that seeks to maximize the following cost function:
thon 2 3
/ 1072 7 ) [(#g06(7) = Bg1,5(7))? + (Bg24(7) — Fg2,5(7))?] dr (33)
2 i=1 j=i+1

where Z,1,; and 242, correspond to the predicted concentration of species A leaving the reactor and the
outlet temperature of the reactor based on the i-th mechanistic model, respectively. The double sum in the
objective function above was multiplied by 107'? to avoid making the objective function magnitude too
large.

To demonstrate aspects of EMPC-assisted model discrimination, the process state was initialized at
the steady-state (2j,; = [0 kmol/m? 0 K]7) and the simulation was performed over 0.04 h of operation
using a computer with an Lenovo model 80XN x64-based ideapad 320 with an Intel(R) Core(TM) i7-
7500U CPU at 2.70 GHz, 2904 Mhz, running Windows 10 Enterprise, in MATLAB R2016b. N was set
to 10. To simulate process disturbance and noise, the function “randn()” was used, with a seed to the

random number generator, through the MATLAB function rng, of 10. To discriminate between the rival

mechanistic models, we computed the following distance-based index D; = \/(Z4,(t) — z(t))? (which reflects
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Figure 4: Measured closed-loop system trajectories (“Process”) and predicted state trajectories (“Model 1,7 “Model 2,” and
“Model 3”) using different mechanistic model candidates under the EMPC with the objective function in Eq. 33 from 0 to 0.01
h of operation (top plots) and from 0.01 to 0.02 h of operation (bottom plots). The predictions from Model 2 and Model 3
are almost overlaid.

the difference between the predicted closed-loop states, Zq;(t), based on the i-th model, i = 1,2,3, and
the measured states, z(t)) to evaluate the impact of setting different metrics for model discrimination and
different thresholds eps on these metrics for discarding models during the model discrimination task. Fig. 4
shows the state predictions over the first and second 0.01 h of operation, reflecting differences between
Model 1 and Models 2 and 3; however, due to the measurement noise and disturbances, the model which
provides the best “fit” (or alternatively, which provides an insufficient “fit”) to the process behavior is less
clear visually. The controller drove the closed-loop state to operating data points off steady-state. The
control actions computed by fmincon were not guaranteed to be global minima. In addition, over 0.04 h,
the state predictions are kept inside their respective stability regions, which can be visualized in Fig. 6.
For comparison, to evaluate whether any of the models might visually appear to be more accurate than
others if the sensor noise is neglected, the predicted state trajectories from 0 to 0.01 h and 0.01 to 0.02 h
are plotted against the process dynamic behavior in the absence of measurement noise (disturbances only)
in Fig. 5. This figure indicates that Model 1 deviates more significantly from the process behavior than do
the Model 2 and 3 predictions, indicating that understanding whether the EMPC-assisted technique could
aid in distinguishing this in the presence of the measurement noise is desirable.

Because it is not clear visually which model, if any, provides a potential explanation for the process
behavior in the presence of measurement noise, we return to the case with measurement noise and analyze
the impact of different metrics on discriminating between the different models. The metrics to be analyzed

are the norm of the difference between the state prediction from a model and the state measurement at the
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Figure 5: Measured closed-loop system trajectories in the absence of measurement noise (“Process”) and predicted state
trajectories (“Model 1,” “Model 2,” and “Model 3”) using different mechanistic model candidates under the EMPC with the
objective function in Eq. 33 from 0 to 0.01 h of operation (top plots) and from 0.01 to 0.02 h of operation (bottom plots).
The predictions from Model 2 and Model 3 are almost overlaid.
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Figure 6: Trajectories of the state predictions for the three process models, initialized from a noisy measurement of the process
state at the beginning of every sampling time, over 0.04 h for the three mechanistic model candidates under the EMPC with

the objective function in Eq. 33.
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end of a sampling period (Error Metric 1), the maximum value of the difference between the state prediction
from a model and the state measurement at any point during a sampling period (Error Metric 2), and the
average value of the difference between the state prediction from a model and the state measurement across
a sampling period (Error Metric 3). Table 2 presents the results of using each metric in each of the four
sampling periods simulated. It can be seen that in the first and second sampling periods, all three error
metrics give a higher value for Model 1 compared to Models 2 and 3, though it is not as clear in the first
sampling period with Error Metric 2. However, in later sampling periods, this is not always the case. For
example, in sampling period 3 for Error Metric 2, Model 3 gives the largest value of the error metric. Except
in the first sampling period for Error Metric 3, the value of the error metric for Model 2 is lower than the
error metrics for the other models. However, the fact that this is not true in one sampling period indicates
that error metrics and the thresholds on them must be carefully selected in practice to prevent discarding
potentially reasonable models from M,.. These results also demonstrate that the measurement noise can
make it challenging to discriminate between the models. Regarding the selection of thresholds, the data
in Table 2 indicates that with different thresholds on the error, different models may have been kept or
discarded from M.. This discussion indicates that if the plant/model mismatch is large for all mechanistic
models, various indexes for attempting to discriminate between models may all be large and potentially
close to each other (from a theoretical perspective, it would have to be questioned whether any of them
would then provide plant/model mismatch or bounded disturbances that are small enough to meet the
stability requirements in Theorem 1).

To analyze the extent to which the difficulty in model discrimination in this example depends on the
sensor noise, we can examine Error Metric 1 for the process with disturbances only (no measurement noise).
In the first sampling period, it would evaluate to 1.537 for Model 1, 0.0105 for Model 2, and 0.251 for Model
3, and at the second sampling period it would be 1.659 for Model 1, 0.010 for Model 2, and 0.200 for Model
3, indicating that there is a large difference between Model 1 and Models 2 and 3 at these sampling periods.
However, this difference is less noticeable in the third sampling period, where Error Metric 1 is 0.328 for
Model 1, 0.180 for Model 2, and 0.345 for Model 3. This again indicates that working with model error
and setting thresholds on model error when none of the process models postulated exactly replicates the

dynamics, even in the absence of sensor noise, can be challenging in practice.
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Table 2: Error metrics for different models for the four sampling periods from 0 to 0.04 h of operation using the EMPC with

the objective function of Eq. 33 and the process with both measurement noise and disturbances considered.

Sampling 1 2 3 4

Period

Error Model 1: 1.854; Model 1: 2.209; Model 1: 1.372; Model 1: 1.237;

Metric 1 Model 2: 0.308; Model 2: 0.583; Model 2: 1.177; Model 2: 1.115;
Model 3: 0.568 Model 3: 0.767 Model 3: 1.353 Model 3: 1.232

Error Model 1: 2.795; Model 1: 3.096; Model 1: 2.621; Model 1: 2.563;

Metric 2 Model 2: 2.467; Model 2: 2.322; Model 2: 2.482; Model 2: 2.536;
Model 3: 2.495 Model 3: 2.413 Model 3: 2.632 Model 3: 2.580

Error Model 1: 0.986; Model 1: 1.025; Model 1: 0.929; Model 1: 0.684;

Metric 3 Model 2: 0.785; Model 2: 0.784; Model 2: 0.921; Model 2: 0.680;

Model 3: 0.783

Model 3: 0.789

Model 3: 0.939

Model 3: 0.684

The example above used the EMPC only in data-gathering mode; to attempt to avoid profit loss during
the model discrimination task, we can evaluate whether an economics-based objective function can be used
instead. To evaluate this case, an EMPC using an economics-based objective function (to be referred to
subsequently as “standard EMPC” because it uses an economics-based objective function which is a standard
goal of EMPC when model discrimination is not in view) may be implemented to attempt to obtain the
desired mechanistic model discrimination. Conceptually, if a standard LEMPC operates the process in a
manner that causes a dynamic/transient system behavior, profit-maximizing operation may already impose
enough “excitation” to the system so that new information can be gathered for model discrimination. In this
case, the objective function based solely on data collection (f2 = 1) may not be needed to select a suitable
mechanistic model in M., which could lead to profit loss compared to the case where an economics-based
objective function is used throughout the time of operation.

To investigate this with the set of models M, defined above, we carried out the process simulation
under the standard LEMPC over 0.04 h of operation with z;,;; = [0 kmol/m® 0 K]?. For this control
formulation, A and N were again set to 0.01 h and 10, respectively, and the Lyapunov-based stability
constraints were designed using the same method as described above for when the objective function was
given by Eq. 33. The standard LEMPC’s economics-based objective function was formulated to maximize
sum of the production rates from each model as follows:

ey O E/(R(2 T 2
/ [Z koe_ [(B(@q,2.+ ms))(‘%q,l,i +CAms) ] dr

bk i=1
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Over the first 0.04 h of operation, Error Metric 1 evaluated to the same values at the end of the sampling
periods as it did in Table 2 for the case that the EMPC with the objective function in Eq. 33 was used.
In general, this can happen, because the inputs which maximize one objective function may also maximize
another. This motivates attempting to start model discrimination with 81 = 1 and o = 0, and then using

B2 = 1 if the data when B2 = 0 is insufficient for model discrimination.

5. Conclusion

This work highlights a capability of LEMPC to operate a process in a flexible and potentially non-
routine fashion to meet online operating goals, in particular for discriminating between mechanistic model
candidates. The LEMPC developed for this task determines what desired data should be gathered for
model discrimination and can collect the required information while maintaining closed-loop stability even
when it is unknown which of a set of model candidates may be sufficiently accurate. A chemical process

example was used to demonstrate practical considerations for EMP C-assisted online model discrimination.
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