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Abstract

Economic model predictive control (EMPC) is a �exible control design strategy that can be modi�ed to

achieve many operating goals while also ensuring safe operation (e.g., by adding Lyapunov-based stability

constraints to form Lyapunov-based EMPC, or LEMPC). Prior works have investigated LEMPC capabil-

ities for achieving goals online beyond optimizing process economics, including aiding in model structure

selection to bene�t model-based control system design since the accuracy and quality of the process model

are important for achieving an expected performance from such systems. This work further probes the

capabilities of LEMPC to accomplish multiple objectives during process operation, including aiding in the

discrimination between mechanistic models online. In particular, several rival mechanistic models may

explain the existing data. To discard models from this set that do not fully represent the actual process, a

new set of �online experiments� can be conducted to collect more information. However, additional experi-

mentation may be costly and unsafe to be performed. LEMPC can aid in performing online data collection

when discrimination between mechanistic models is needed, with the �exibility to ensure safety as the data

is gathered and trade o� the data-gathering goal for cost considerations. Motivated by this, we discuss how

LEMPC can be designed to automatically and dynamically collect data that is useful for the selection of

mechanistic models from among a set of possibilities. A chemical process example is used to clarify bene�ts

and limitations of LEMPC for promoting online model discrimination.
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1. Introduction

Economic model predictive control (EMPC)1 is an optimization-based control strategy that has found

numerous applications, including in bioreactor systems,2 periodic process operation,3 and building temper-

ature control.4 One of its key characteristics is �exibility due to the fact that it is formulated as a general

nonlinear or nonconvex optimization problem, and that its purpose is to facilitate operating objectives

beyond tracking a steady-state or reference. EMPC's name focuses on its ability to optimize economic

performance online; however, it is also capable of achieving a variety of other online objectives, such as

attempting to gather data that might be indicative of process model structure5 (which can aid in develop-

ing and selecting mechanistic models which may or may not have data-driven components, i.e., parameter

values obtained based on a process dataset). Another way of conceptualizing the use of real-time control

for aiding in selecting an appropriate model structure is to assume that already, a number of mechanistic

model candidates have been proposed, and that it is desired to determine which of them provides a su�cient

�t to additional process data. In this work, we demonstrate that LEMPC can also be formulated to carry

out this goal, further demonstrating its �exibility for performing a variety of tasks safely and online, and

thereby suggesting that EMPC may be an interesting technology to consider for next-generation manufac-

turing goals such as full plant autonomy6 where the capability of a controller to be able to carry out a large

number of online tasks can be attractive.

The potential bene�t for full plant autonomy of a controller which can aid in model-building tasks in

a variety of ways is that system modeling by engineers can be a time-consuming and at times challenging

task. Modeling strategies (e.g., system identi�cation) often rely on data collected a priori to indicate an

appropriate model form/structure for representing the behavior of a speci�c dynamical system, or in cases

where deciding upon an appropriate mechanistic model form is too time-consuming or expensive, di�erent

engineering strategies have been proposed such as assuming a gray-box or hybrid model structure that

integrates physics-based components with empirical model parts.7,8, 9 However, after an investigation and

model identi�cation procedure is applied, based on the available experimental data and potentially physical

insights, a set of plausible mechanistic models may be capable of explaining the available information.10

This situation requires new online experiments to select a model from among a set of seemingly good
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mechanistic models via additional data. An EMPC formulation that automatically chooses which data

to collect as part of online �experimentation� for discriminating between rival mechanistic models while

ensuring safe operation may be bene�cial, which extends the �EMPC toolbox� to include the capability of

EMPC to aid in online model discrimination.

Studies addressing experiment design for engineering systems have been conducted which focused on

parameter estimation techniques (e.g.,11) or discrimination between competing models (e.g.,12,13). For

example, in,11 an iterative parameter identi�cation methodology based on a class of polynomial models has

been utilized to apply optimal control sequences to the system for identi�cation experiment design while

the model complexity is progressively increased. In,12 an online model-based design of experiment approach

was proposed for model selection to identify the best model from a list of candidates in an autonomous

reactor platform. Data-supported computational modeling of engineering systems often involves model

identi�cation (e.g., parameter estimation or model �tting), model discrimination, and model validation.14,15

However, as engineers move toward greater autonomy of control systems, it would be bene�cial to design

automated optimal input sequences for collecting data online which is most favorable for discriminating

between di�erent potential models while ensuring safe and high-performance operation inside the process

operating region.

An important direction for safe and automated model discrimination is model-based control-assisted

frameworks. An approach described as model predictive control (MPC) with dual features (i.e., the ma-

nipulated inputs are used both to control and explore the system) has been proposed (e.g.,16,17). In,16 a

dual control scheme has been used to perform experimentation (su�cient excitation to the process) only

when there is high uncertainty in the parameters or not enough information is available for parameter

identi�cation. In,17 an adaptive dual model predictive controller has been proposed based on output error

models parameterized using generalized orthogonal basis �lters and applied to inject input excitation. In

addition, a control design named model predictive control and identi�cation has been developed in18 and

incorporates constraints that enforce persistent excitation. A stochastic MPC scheme proposed in19 uses

active model structure discrimination during process operation for closed-loop fault diagnosis. In the di-

rection of exciting a system for exploration/exploitation, learning-based MPC or safe learning in control

has also been investigated.20,21,22 In,20 for example, a sequential exploration-exploitation approach has
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been proposed that uses active learning in control to gather data and reduce dynamics uncertainty during

an exploration step and then exploit the acquired information to perform the desired task while ensuring

high-probability guarantees of satisfying safety constraints. In,21 a control architecture has been proposed

that utilizes a model-free reinforcement learning algorithm to learn a controller with the control barrier

function-based controller guiding policy exploration and ensuring safety during the learning process.

In the context of online model discrimination using model-based control-assisted designs, an EMPC

framework,1 which can outperform conventional MPC schemes in terms of improving process pro�tability,

may also be used for selecting mechanistic models online. In,5 an EMPC has been utilized to guide the

process state to conditions over time which might suggest the form of a dynamic model (by, for example,

attempting to hold one process variable constant while manipulating others). However, a challenge with the

approach in5 is that the guidance to select helpful data for the model structure selection procedure is based

on penalizing deviations of the predicted state from desired data in the objective function or enforcing a

stabilization constraint to attempt to develop data which lies along the pathway from a given point toward

the origin. This requires some a priori assessment of what the desired data might be. In the interest of

making the discrimination between physics-based models automated and less costly, automatic techniques

are needed for determining what the desired data should be.

This work seeks to suggest an automated technique for online control-assisted discrimination between

mechanistic models (by discerning which mechanistic model structure may be most in accordance with

the new online �experimental� data) to extend EMPC's capabilities. Because EMPC is not restricted to

steady-state operation, it may also enable a �exible strategy for explicitly trading o� economic performance

and mechanistic model selection. A �exible type of EMPC with closed-loop stability constraints named

Lyapunov-based economic model predictive control (LEMPC)23 is used to formulate a technique for dy-

namically collecting desired data while accounting for process dynamics, safety, and process pro�tability.

Speci�cally, since LEMPC is designed to operate the process within a pre-de�ned stability region, a model

that allows good state predictions inside the stability region may be su�cient to guarantee the desired

control performance and safe operation. In this case, mechanistic models may be able to be used by the

LEMPC to predict the process state trajectory with acceptable accuracy inside the designed region of op-

eration. We assume that mechanistic model candidates have already been suggested, but that the set of
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mechanistic model possibilities remains to be discriminated between while ensuring closed-loop stability

in a safe region of state-space. A chemical process example that illustrates aspects of the methodology is

discussed.

2. Preliminaries

2.1. Notation

R corresponds to the set of real numbers. The Euclidean norm of a vector is indicated by | · | and the

transpose of a vector x is denoted by xT . A continuous function α : [0, a)→ [0,∞) is said to be of class K if

it is strictly increasing and α(0) = 0. Set subtraction is designated by x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}.

Finally, a level set of a positive de�nite function V is denoted by Ωρ := {x ∈ Rn : V (x) ≤ ρ}.

2.2. Class of Systems

The class of nonlinear systems considered is the following:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the state and input vectors, respectively, in deviation variable

form from the steady-state (xs) and steady-state input of the system (us); w ∈ W ⊂ Rz (W := {w ∈

Rz | |w| ≤ Θ, Θ > 0}) is the disturbance vector and f is locally Lipschitz on X × U ×W . We consider

that the �nominal� system of Eq. 1 (w ≡ 0) has its origin at the equilibrium point (i.e., f(0, 0, 0) = 0) and

is stabilizable such that there exists an asymptotically stabilizing feedback control law hp(x), a su�ciently

smooth Lyapunov function V (x), and class K functions αi(·), i = 1, 2, 3, 4, where:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, hp(x), 0) ≤ −α3(|x|) (2b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|) (2c)

hp(x) ∈ U (2d)

∀ x ∈ D ⊂ Rn (D is an open neighborhood of the origin). We de�ne Ωρ̃ ⊂ D to be the stability region of

the nominal closed-loop system under the controller hp(x) and require that it be chosen such that x ∈ X,

∀x ∈ Ωρ̃. We consider that state measurements are available continuously, but are only used by a controller

at discrete sampling times for computing a control action.
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In this work, we consider the following nonlinear model candidates represented by nonlinear ordinary

di�erential equations:

ẋq,i(t) = fNL,i(xq,i(t), uq,i(t)) (3)

where fNL,i is a locally Lipschitz nonlinear vector function in xq,i = [xq,i1 xq,i2 . . . xq,in]
T ∈ X ⊂ Rn and in

the input uq,i = [uq,i1 uq,i2 . . . uq,im]T ∈ Uq,i ⊂ R
m (both in deviation variable form from the steady-state

(which shares the same xs of Eq. 1) and steady-state input uq,i,s of the system of Eq. 3) with fNL,i(0, 0) = 0

for all i. The index i = 1, 2, . . ., is used to re�ect that di�erent nonlinear models may be used over time.

We consider nonlinear models for which the origin can be rendered asymptotically stable by a stabilizing

feedback control law (hNL,i(xq,i) = [hNL,i,1(xq,i) hNL,i,2(xq,i) . . . hNL,i,m(xq,i)]
T ), considering a su�ciently

smooth Lyapunov function and class K functions α̂i(·), i = 1, 2, 3, 4, where:

α̂1(|xq,i|) ≤ V̂i(xq,i) ≤ α̂2(|xq,i|) (4a)

∂V̂i(xq,i)

∂xq,i
fNL,i(xq,i, hNL,i(xq,i)) ≤ −α̂3(|xq,i|) (4b)

∣

∣

∣

∣

∂V̂i(xq,i)

∂xq,i

∣

∣

∣

∣

≤ α̂4(|xq,i|) (4c)

hNL,i(xq,i) ∈ Uq,i (4d)

∀xq,i ∈ Dq,i (an open neighborhood of the origin). We de�ne Ωρi ⊂ Dq,i (chosen such that xq,i ∈ X,

∀xq,i ∈ Ωρi ⊂ Ωρ̃) to be the stability region. There are positive constants L̂′
xi
, and M̂fi , ∀x1, x2, xq,i ∈ Ωρ̃

and uq,i ∈ Uq,i, such that:

∣

∣

∣

∣

∂V̂i(x1)

∂x1
fNL,i(x1, uq,i)−

∂V̂i(x2)

∂x2
fNL,i(x2, uq,i)

∣

∣

∣

∣

≤ L̂′
xi
|x1 − x2| (5a)

|fNL,i(xq,i, uq,i)| ≤ M̂fi (6)

Finally, because f is a locally Lipschitz function of its arguments, we can write the following for all

x1, x2 ∈ Ωρ̃, u ∈ U , w ∈W , and Lx, L
′
x, Lw, L

′
w, and Mf as positive constants:

|f(x1, u, w)− f(x2, u, 0)| ≤ Lx|x1 − x2|+ Lw|w| (7a)
∣

∣

∣

∣

∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣

∣

∣

∣

≤ L′
x|x1 − x2|+ L′

w|w| (7b)

|f(x, u, w)| ≤Mf (8)
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2.3. Economic Model Predictive Control

EMPC24 is an optimization-based control design for which the control actions are computed via the

following optimization problem:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (9a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (9b)

x̃(tk) = x(tk) (9c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (9d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (9e)

where N is called the prediction horizon, and u(t) is a piecewise-constant input trajectory with N pieces,

where each piece is held constant for a sampling period with time length ∆. The economics-based stage

cost Le of Eq. 9a is evaluated throughout the prediction horizon using the future predictions of the process

state x̃ from the model of Eq. 9b (the nominal model of Eq. 1) initialized from the state measurement

at tk (Eq. 9c). The process constraints of Eqs. 9d-9e are state and input constraints, respectively. The

optimization problem is solved every ∆ time units (at each sampling time tk) such that the �rst of the N

pieces of the optimal input vector trajectory is applied to the process. A type of EMPC called Lyapunov-

based EMPC (LEMPC23) incorporates the following additional constraints:

V (x̃(t)) ≤ ρ̃e, ∀ t ∈ [tk, tk+N ), if x(tk) ∈ Ωρ̃e (10a)

∂V (x̃(tk))

∂x
f(x̃(tk), u(tk), 0) ≤

∂V (x̃(tk))

∂x
f(x̃(tk), hp(x(tk)), 0), if x(tk) ∈ Ωρ̃/Ωρ̃e (10b)

where Ωρ̃e ⊂ Ωρ̃ makes Ωρ̃ forward invariant under the controller of Eqs. 9-10.

3. Online Control-Assisted Mechanistic Model Structure Discrimination Using LEMPC

Prior work5 in our group described how data that might reveal aspects of what a reasonable model

structure for a system's dynamics is could be attempted to be obtained using a formulation of LEMPC that

penalizes deviations from the desired data in the objective function and enforces the constraint of Eq. 10b

at intermittent times. However,5 did not provide an automated mechanism for determining what data to

gather (i.e., what the �desired� data should be). In this work, we consider that one of the goals of designing
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optimal control sequences for selecting an appropriate mechanistic model is to discriminate among possible

mechanistic models for a system that are consistent with its behavior. The �desired data,� then, is that which

reveals which of a set of potential mechanistic model structures is consistent with the process behavior.

The �exibility of LEMPC allows it to attempt to gather this data in a manner that guarantees closed-loop

stability throughout the data-gathering process. Particularly, we propose an LEMPC-assisted mechanistic

model discrimination procedure that incorporates closed-loop stability guarantees via the constraints of

Eqs. 10a-10b with the ability to gather meaningful data without compromising closed-loop stability. The

fact that the objective function of LEMPC does not impact stability or feasibility guarantees allows it to be

modi�ed if desired to attempt to gather di�erent data than might occur under normal operation for model

discrimination. In the following subsections, we formalize this control concept.

3.1. LEMPC for Discriminating Between Mechanistic Models: Formulation

To achieve the data-gathering goals described above and attempt to quickly discern between potential

models, the control design takes the form of the LEMPC in Eqs. 9-10 but enforces certain criteria (which

will be clari�ed in Section 4.3) on each of a set of |Mc| mechanistic models, where |Mc| represents the

cardinality of a set Mc of model candidates. The objective function of the LEMPC can be modi�ed if it is

considered that an economics-based objective function does not cause the computed control actions to cause

the state predictions between di�erent models to be su�ciently di�erent (when it is not known which model

may provide the most accurate state predictions, an economics-based objective function might minimize

the sum of all of the costs which might be obtained under the di�erent models, where we denote this sum

by
∑|Mc|

i=1 Le(x̃q,i(τ), uq,1(τ))). For example, to modify the objective function, a term could be added to the

stage cost that penalizes �closeness� of the trajectories of the states of two of the process models from one

another (to attempt to cause the LEMPC to maximize the di�erence between the state predictions from the

di�erent models under the inputs that it computes). The resulting two terms in the objective function may

be weighted by binary parameters (denoted by β1 and β2 in the following) to enable activation of either a

pro�t-maximizing mode or a data-gathering-focused mode independently. This provides some capability to

collect non-routine operating data when minimizing costs does not provide data that enables models to be
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discriminated. The formulation of the LEMPC just described is as follows:

min
uq,1(·)∈S(∆)

∫ tk+N

tk

[β1

|Mc|
∑

i=1

Le(x̃q,i(τ), uq,1(τ))− β2

|Mc|−1
∑

i=1

|Mc|
∑

j=i+1

γij |x̃q,i(τ)− x̃q,j(τ)|
2] dτ (11a)

s.t. ˙̃xq,i(t) = fNL,i(x̃q,i(t), uq,i(t)), i = 1, . . . , |Mc|, uq,i = uq,1 + uq,1,s − uq,i,s (11b)

x̃q,i(tk) = x(tk), i = 1, . . . ,Mc (11c)

x̃q,1(t) ∈ X, ∀ t ∈ [tk, tk+N ) (11d)

uq,1(t) ∈ Uq,1, ∀ t ∈ [tk, tk+N ) (11e)

V̂1(x̃q,1(t)) ≤ ρe,1, ∀ t ∈ [tk, tk+N ) if V̂1(x̃q,1(tk)) ≤ ρe,1 (11f)

∂V̂1(x̃q,1(tk))

∂x̃q,1
fNL,1(x̃q,1(tk), uq,1(tk)) ≤

∂V̂1(x̃q,1(tk))

∂x̃q,1
fNL,1(x̃q,1(tk), hNL,1(x̃q,1(tk)))

if V1(x̃q,1(tk)) > ρe,1 (11g)

where Le is the EMPC economics-based stage cost function (re�ecting costs that must be minimized), x̃q,i

and x̃q,j are the state predictions in deviation variable form from xs based on the i-th and j-th model

candidate, respectively, and x(tk) is the state measurement at tk. β2 = 1 corresponds to the activation

of the data-gathering mode. However, both terms β1 and β2 may be set to 1 to attempt to account also

for pro�tability measures while collecting closed-loop informative data. In this case, a trade-o� between

process economics and model discrimination is considered (e.g., if the system is already operating in an

economically optimal fashion at steady-state and the maximization of the predicted state trajectories among

all rival models happens away from this operating condition). In addition, each term corresponding to the

magnitude di�erence between x̃q,i and x̃q,j in the double summation in the objective function of Eq. 11a

can be weighted with γij (which may aid with placing importance on certain terms or putting all terms on

the same order of magnitude). ρe,1 is analogous to ρ̃e in Eq. 10, for the 1-th empirical model.

In this work, we assume that the stability regions for each of the models are nested such that the i = 1

model has the smallest stability region, followed by that for i = 2 (which fully contains that for i = 1),

and so forth. The stability region for the i = |Mc| model is the largest and contains every one of the other

stability regions for i < |Mc|, and Ωρlow ⊆ Ωρi (where Ωρlow = Ωρ1 is the smallest stability region in the

set Mc, i.e., ρlow := min{ρi} and ρe,low := min{ρe,i}), i = 1, . . . , |Mc|). The LEMPC of Eqs. 9-10 is used

with an initial model f until it has been decided to modify the process model due to model inaccuracy or
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choice of potentially better model structures. At this time, the controller is replaced by Eq. 11 containing

a full set of |Mc| mechanistic models. The data-gathering mode can then be activated if desired (assuming

that the process state is inside a subset of Ωρ1 , as will be clari�ed in Section 3.3) and, thus, the LEMPC

selects control actions according to the criteria described above. During the data-gathering process, the

set Mc must be adjusted over time by removing/pruning models from the set if certain candidates are

found to be inconsistent with the process data. In particular, if the measured state, at any time, exits the

stability region of the i-th model in Mc, that model is discarded from the set Mc (this is because if the i-th

mechanistic model structure was accurate to within a bound used in deriving the size of Ωρi , the actual

state would be maintained in Ωρi , as will be demonstrated in Section 3.3).

The concept behind the term multiplying β2 in Eq. 11a is as follows: state measurements will be

available over the next sampling period under whichever input is computed by the LEMPC. If one of the

mechanistic models in the set is more accurate compared to others (according to a metric such as the norm

of the di�erence between the state prediction at the end of a sampling period under a model and the actual

measurement at the next sampling time, which is a similar concept for identifying model correctness as in,

for example,25), this means that the others fail to cause the state trajectory which they compute under

a given input to match the actual data obtained from the process under that same input. The one that

is su�ciently accurate, under any input selected by the LEMPC, will make predictions that are �close�

(according to the metric) to the measurements under the same input. If the same input also causes the

less accurate model to make state predictions that are as di�erent as possible from the predictions under

the other models (which is the goal in Eq. 11a), then its predictions may be more di�erent from the state

predictions from the more accurate model and potentially also from the actual measurements over the next

sampling period as well, which can help to �ag it as less accurate. Then, though it is not known which model

in the set Mc enables predictions to be made to within a desired tolerance of the actual process behavior,

the concept of attempting to cause the predictions from the |Mc| models to di�er from one another as much

as possible in Eq. 11a is due to the recognition that if at least one of the mechanistic models in the set is

more accurate compared to others, the inputs that cause the state predictions to di�er signi�cantly under

di�erent mechanistic models may also cause the actual process data to di�er signi�cantly compared to some

models. Whenever the metric exceeds a threshold used for discriminating between the more accurate and
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less accurate mechanistic model candidates (denoted by ϵM ) for a given model, that model is discarded

from Mc. Though the weightings and interactions between terms can complicate these goals of using the

term multiplying β2 in Eq. 11a, and even the standard pro�t-based objective function of LEMPC may

be su�cient for enabling inputs selected to be discriminating, there is potential that the additional term

multiplying β2 could be useful for the data-gathering goals for model discrimination.

An important note in terms of the feasibility of the optimization problem of Eq. 11 is that each of

the Mc mechanistic models can have a di�erent steady-state input so that the stabilizing Lyapunov-based

controllers hNL,i for each can be di�erent. Therefore, hNL,1 does not necessarily drive the actual closed-

loop state toward a neighborhood of the origin if it or a control action satisfying Eqs. 11f-11g is applied.

Therefore, to ensure that a control action that satis�es Eqs. 11f-11g in the case that the i = 1 model is

not accurate does not drive the closed-loop state out of the stability region of a more accurate model over

a sampling period, the stability regions for all models should be nested with Ωρi , i > 1, su�ciently larger

than Ωρ1 such that if the closed-loop state starts in Ωρ1 , then it cannot leave Ωρ2 within a sampling period

regardless of the input applied (that includes hNL,1). This requirement is equivalent to a condition that

Ωρ2 must be su�ciently larger than Ωρ1 , given the sampling period length and process dynamics (this will

be made more precise in Section 3.3). However, because the models are pruned from Mc over time and we

do not know a priori which of the mechanistic models is more accurate than others, we do not know if the

original i = 1 mechanistic model may be discarded. If it is discarded and the original i = 2 mechanistic

model is not, then the updated set of models is re-numbered (e.g., the original i = 2 mechanistic model

becomes the updated i = 1 mechanistic model for the next sampling period). In that case, it will be

required that the original i = 2 mechanistic model has a stability region su�ciently smaller than that of

the next model so that when hNL,2 is a feasible control action, it cannot drive the closed-loop state out of

the next largest stability region. Without loss of generality, we consider that only one of the models will

be the most accurate based on the procedure above, and denote the stability region of this more accurate

mechanistic model as Ωρa , where a ∈ {1, . . . , |Mc|}. However, it is not known which of the mechanistic

models the a-th model corresponds to until the data-gathering is complete.

Remark 1. A particular challenge for designing reliable mechanistic models is introduced when the un-

derlying process dynamics change over time (due to, for example, catalyst deactivation) and, thus, the
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model used by the controller without any revision may be less representative of the process and should be

revised. Process data recorded o�-line or obtained from steady-state operation may not carry meaningful

information for the purpose of reidentifying and discriminating between mechanistic models during process

operation; an online (control-assisted) selection of the process model after a system identi�cation approach

is more suitable for this goal.

Remark 2. In the literature, several EMPC schemes have been proposed for which closed-loop stability can

be guaranteed, which, in addition to LEMPC, include EMPC with terminal equality or terminal region

constraints,26 with generalized terminal constraints,27 without terminal constraints,28 or robust EMPC

methods.29,30 We would not expect the ability of EMPC to aid in mechanistic model discrimination to be

restricted to LEMPC, but conditions required to achieve safety during mechanistic model discrimination

with other control policies are outside the scope of the present work.

Remark 3. The proposed approach could be utilized to attempt to discriminate even between non-

mechanistic models; however, since the models in such a case might be derived from data, and the proposed

approach gathers data for selecting models, the approach is more applicable if insu�cient data was utilized

to develop them.

3.2. LEMPC for Discriminating Between Mechanistic Models: Implementation Strategy

Assuming that a reasonably accurate mechanistic model is used by the proposed LEMPC design at the

beginning of the process operation, the implementation strategy below includes a region ρe,low = ρe,1, which

is chosen such that if the actual state is in Ωρe,low ⊂ Ωρi , under su�cient conditions, then the closed-loop

state is maintained in Ωρi for t ≥ 0 if the i-th mechanistic model is su�ciently accurate. Particularly,

information may be gathered automatically as follows (assuming that x(tk) ∈ Ωρe,low):

1. At the sampling time tk, the LEMPC of Eq. 11 receives the state measurement x(tk). If it is desired

to optimize economics, set β1 = 1. If it is desired to operate the LEMPC in a data-gathering mode

(i.e., attempting to maximize di�erences between state trajectories), set β2 = 1, and go to Step 2.

2. The LEMPC of Eq. 11 computes control actions that may cause the state trajectories predicted based

on the di�erent mechanistic model candidates in Mc to di�er from one another under the same input.

The computed inputs are applied to the process for a sampling period. Go to Step 3.
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Figure 1: Work�ow for checking model accuracy.

3. Check the value of x(t), t ∈ [tk, tk+1] and the values of the prediction error metrics for each of

the mechanistic models in Mc that are to be used for distinguishing between the rival mechanistic

models. The i-th mechanistic model candidate (i = 1, 2, . . . , |Mc|) is discarded from the set Mc if: 1)

the prediction error metric evaluated for x̃q,i (the predicted state using the i-th mechanistic model)

and the state measurement x is above the accuracy threshold (ϵM ); or 2) the value of x(t), t ∈ [tk, tk+1]

is outside of the stability region of the i-th mechanistic model, i = 1, 2, . . . , |Mc|. Go to Step 4.

4. Go to Step 1 (k ← k + 1).

Fig. 1 shows the major steps in this implementation strategy when models are being discriminated.

Remark 4. To prevent the LEMPC's data-gathering mode from signi�cantly impacting economic opti-

mization, triggering mechanisms may be used. Ideas for these include those which only collect desired

information when the optimal solution to the optimization problem is close to the information which it

is desired to obtain in a norm sense. For example, the data-gathering mode may be activated when the

predicted state of at least one model at the end of a sampling period, x̃q,i(tk+1), is within ϵd of a pre-

speci�ed state, xd,j (e.g., |x̃q,i(tk+1) − xd,j | ≤ ϵd). A pro�t-based triggering mechanism may also be used

which triggers data-gathering when closed-loop economic performance under the proposed LEMPC with

β2 = 1 over the next sampling period is within a tolerance ϵp of what would be obtained if β2 = 0. These

types of triggering mechanisms may be particularly bene�cial when there is a possibility that the case with

β2 = 0 may be su�cient for aiding in mechanistic model discrimination, because they allow the pro�t-based

component of the objective function to be �tried� for model discrimination before attempts to gather data

13



in a non-standard way are made.

3.3. LEMPC for Discriminating Between Mechanistic Models: Stability Analysis

In this section, we prove recursive feasibility and closed-loop stability of the process of Eq. 1 under the

implementation strategy of Section 3.2. The impacts of bounded plant/model mismatch on the process

state trajectory are delineated in Proposition 1, and Proposition 2 bounds the Lyapunov function value at

di�erent points in the stability region.

Proposition 1. 5Consider the systems below

ẋa = f(xa(t), u(t), w(t)) (12a)

ẋb,i = fNL,i(xb,i(t), u(t)− uq,i,s) (12b)

with initial states xa(t0) = xb,i(t0) ∈ Ωρi with t0 = 0. There exists a function fW,i(·) such that for t ∈ [0, T ]:

|xa(t)− xb,i(t)| ≤ fW,i(t− t0) (13)

for all xa(t), xb,i(t) ∈ Ωρi ⊂ Ωρ̃, u ∈ U , and w ∈W , with

fW,i(τ) :=

(

LwΘ+Merr,i

Lx

)

e(Lxτ−1) (14)

where Merr,i is de�ned by the following: |f(x, u, 0)− fNL,i(x, u− uq,i,s)| ≤Merr,i, ∀x ∈ Ωρi and u ∈ U .

Proposition 2. 31Consider the Lyapunov function V̂i(·) of the system of Eq. 3 under the controller hNL,i(·)

that satis�es Eqs. 4a-4d. There exists a quadratic function fV,i(·) such that:

V̂i(x̄) ≤ V̂i(x̄
′) + fV,i(|x̄− x̄′|) (15)

for all x̄, x̄′ ∈ Ωρi with

fV,i(s) := α̂4,i(α̂
−1
1,i (ρi))s+Mv,is

2 (16)

where Mv,i is a positive constant.

The following theorem guarantees closed-loop stability of the process of Eq. 1 under the implementation

strategy of Section 3.2.
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Theorem 1. Consider the closed-loop system of Eq. 1 under the implementation strategy of Section 3.2,

where hNL,i(·) used in the LEMPC of Eq. 11 for any i-th model in the set Mc meets the inequalities in Eqs.

4a-4d with respect to the i-th model candidate. Let ϵWi
> 0, ∆ > 0, and N ≥ 1. At every sampling time,

let Ωρlow ⊆ Ωρi ⊂ X, where ρlow := min{ρi} and ρe,low := min{ρe,i} for the models which are in the set Mc

at a sampling time. Also, assume that:

∣

∣

∣

∣

∣

∂V̂a(x(t))

∂x
−

∂V (x(t))

∂x

∣

∣

∣

∣

∣

≤Mg (17)

where Mg > 0, for all x ∈ Ωρ̃. Let ρe,i > ρmin,i > ρs,i, ρi > ρe,i > ρi−1, for i = 1, 2, . . . , |Mc|, satisfy:

−α̂3,i(α̂
−1
2,i (ρs,i)) + L̂′

x,iM̂fi∆ ≤ −ϵw,i/∆, i = 1, . . . , |Mc| (18)

−α̂3,a(α̂
−1
2,a(ρe,a)) + α̂4,a(α̂

−1
1,a(ρa))Merr,a + L′

xMf∆+ L′
wΘ+ 2MgMf ≤ −ϵ

′
w,a/∆ (19)

ρe,a + fV,a(fW,a(∆)) ≤ ρa (20)

ρe,i ≥ max{V̂i(x(t)) : x(tk) ∈ Ωρi−1
, t ∈ [tk, tk+1), u ∈ U, w ∈W}, i = 2, . . . , |Mc| (21)

ρmin,i ≥ max{V̂i(x(t)) : x(tk) ∈ Ωρs,i , t ∈ [tk, tk+1), u ∈ U, w ∈W}, i = 1, . . . , |Mc| (22)

ρmin,i ≥ max{V̂i(x̃q,i(t)) : x̃q,i(tk) ∈ Ωρs,i , t ∈ [tk, tk+1), u ∈ U, w ∈W}, i = 1, . . . , |Mc| (23)

If x(t0) ∈ Ωρe,1 for the i = 1 model in the set Mc at t0, then x(t) ∈ Ωρa for t ≥ 0.

Proof. The proof consists of two parts. In the �rst part, recursive feasibility at every sampling time under

the implementation strategy of Section 3.2 is demonstrated. In the second part, it is demonstrated that the

closed-loop state is maintained within Ωρa for all times (regardless of whether βp = 0 or βp = 1, p = 1, 2)

if x(t0) ∈ Ωρe,1 = Ωρe,low at t0.

Part 1. We �rst demonstrate that hNL,1 is a feasible solution to the LEMPC of Eq. 11, with either

βp = 0 or βp = 1, p = 1, 2, at all sampling times under the implementation strategy of Section 3.2. Under

this implementation strategy, at time t0, hNL,1 satis�es the constraint of Eq. 11e from Eq. 4d with respect

to the i = 1 model. It also satis�es Eqs. 11f-11g.23 Speci�cally, the system state x̃q,i(t0) must be inside

the smallest stability region ρe,low ⊂ ρlow. In this case, hNL,1(·) implemented in sample-and-hold is a

feasible input policy because it trivially satis�es Eq. 11g. Furthermore, under the conditions in Eqs. 18
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and 23, hNL,1 satis�es Eq. 11f if x̃q,i(t0) = x(t0) ∈ Ωρe,low ⊆ Ωρlow (and thereby Eq. 11d since Ωρlow ⊂ X).

Speci�cally, from Eq. 4b, if x̃q,i(tk) ∈ Ωρ1/Ωρs,1 , where ρ1 = ρlow:

∂V̂1(x̃q,1(tp))

∂x̃q,1
fNL,1(x̃q,1(tp), hNL,1(x̃q,1(tp))) ≤ −α̂3,1(|x̃q,1(tp)|), p = k, . . . , k +N − 1 (24)

Therefore, for t ∈ [tp, tp+1) and p = k, . . . , k +N − 1 and x̃q,1(tp) ∈ Ωρ1/Ωρs,1 :

∂V̂1(x̃q,1(t))

∂x̃q,1
fNL,1(x̃q,1(t), hNL,1(x̃q,1(tp))) ≤ −α̂3,1(α̂

−1
2,1(ρs,1)) + L̂′

x,1M̂f1∆ (25)

where this inequality follows from adding and subtracting
∂V̂1(x̃q,1(tp))

∂x̃q,1
fNL,1(x̃q,1(tp), hNL,1(x̃q,1(tp)))

to/from
∂V̂1(x̃q,1(t))

∂x̃q,1
fNL,1(x̃q,1(t), hNL,1(x̃q,1(tp))) and applying the triangle inequality, and subsequently

using Eqs. 4a, 5a, and 6. If Eq. 18 holds,
∂V̂1(x̃q,1(t))

∂x̃q,1
fNL,1(x̃q,1(t), hNL,1(x̃q,1(tp))) is negative with

V̂1(t) ≤ V̂1(tp) for t ∈ [tp, tp+1) so that if x̃q,1(tp) ∈ Ωρe,low ⊆ Ωρlow , then x̃q,1(t) ∈ Ωρe,low , ∀ t ∈ [tp, tp+1). If

instead x̃q,1(tp) ∈ Ωρs,1 , then from Eq. 23 and ρe,low > ρmin,1 > ρs,1, x̃q,1(t) ∈ Ωρmin,1
⊂ Ωρe,low ⊆ Ωρlow for

t ∈ [tp, tp+1), as required by the constraint of Eq. 11f.

At time t1, the closed-loop state is in Ωρa , as will be demonstrated below. In this case, one of two

outcomes occurred at t1 according to the implementation strategy in Section 3.2: 1) models were removed

from Mc; 2) models were not removed from Mc. If no models were removed, the original i = 1 model is still

the model corresponding to Ωρlow . In that case, the closed-loop state is again in Ωρlow , and feasibility will

again hold by the proof above. If models were removed from Mc, the remaining models are re-numbered so

that the model with the smallest stability region is labeled as the i = 1 model, that with the next largest

stability region is labeled as the i = 2 model, and so forth. At this sampling time, x(tk) ∈ Ωρ1 for the new

i = 1 model (or else that model would have been discarded according to the implementation strategy of

Section 3.2), and the new hNL,1 again satis�es Eqs. 11e, 11d, 11f, and 11g from the proof above. Applying

these arguments recursively indicates that the hNL,1 for the current set of i = 1, . . . , |Mc| models at any

sampling time is a feasible solution to Eq. 11. Thus, there is a feasible solution to Eq. 11 at every sampling

time when the implementation strategy in Section 3.2 is used.

Part 2. We now demonstrate that under the implementation strategy in Section 3.2, the closed-loop state

is maintained within Ωρa for all times. At t0, x(t0) ∈ Ωρe,low ⊂ Ωρa . Eq. 11 ensures that V̂1(x̃q,1(t)) ≤ ρe,1.

Either the i = 1 model corresponds to i = a, or a model with i > 1 corresponds to i = a. If i > 1
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corresponds to i = a, then Eq. 21 ensures that x(t) ∈ Ωρa , t ∈ [tk, tk+1) since x(tk) ∈ Ωρ1 . If i = 1

corresponds to i = a, then from Propositions 1 and 2:

V̂a(x(t)) ≤ V̂a(x̃q,a(t)) + fV,a(|x̃q,a(t)− x(t)|) ≤ ρe,a + fV,a(fW,a(∆)) (26)

for t ∈ [t0, t1). If Eq. 20 holds, then x(t) ∈ Ωρa for t ∈ [t0, t1). At t1, either models are removed from the

set Mc according to the implementation strategy in Section 3.2, or they are not. In either case, the new

value of ρlow either is the same as ρa (it cannot be greater because the i = a model will not be discarded if

the prediction error metric threshold is set to avoid removing su�ciently accurate models from Mc and if

x(t) ∈ Ωρa , t ∈ [t0, t1) (which was proven to hold when Eqs. 21 and 20 hold) so that the model cannot be

removed for the closed-loop state leaving Ωρa) or less than ρa at t1. In either case, the closed-loop state is

in the updated Ωρlow ⊆ Ωρa . In this case, either x(tk) ∈ Ωρlow/Ωρe,low or x(tk) ∈ Ωρe,low . If x(tk) ∈ Ωρe,low ,

then the constraint of Eq. 11f holds for the i = 1 model, and again Eq. 21 and Eq. 20 ensure that x(t) ∈ Ωρa ,

t ∈ [t1, t2), whether the i = 1 model corresponds to i = a or a model with i > 1 corresponds to i = a.

If instead x(tk) ∈ Ωρlow/Ωρe,low , then the constraint of Eq. 11g is activated. If i > 1 corresponds to

the i = a model, then Eq. 21 ensures that x(t) ∈ Ωρa for t ∈ [tk, tk+1). If instead i = 1 corresponds to

i = a, then Eq. 24 holds for the i = 1 model with hNL,1(x̃q,1(tp)) replaced by uq,1(tp). A bound on the time

derivative of the Lyapunov function at t1 for the nominal model of Eq. 1 under u(t1) = uq,1(t1)+ uq,1,s can

be developed as follows:

∂V̂1(x(t1))

∂x
f(x(t1), u(t1), 0) ≤ −α̂3,1(|x(t1)|) + α̂4,1(|x(t1)|)Merr,1

(27)

which is derived from adding and subtracting ∂V̂1(x(t1))
∂x fNL,1(x(t1), u(t1) − uq,1,s) to/from

∂V̂1(x(t1))
∂x f(x(t1), u(t1), 0), and applying Eq. 4c, Eq. 24, and the de�nition of Merr,i.

˙̂
V1 along the
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closed-loop state trajectory under u(t1) is then obtained from:

∂V̂1(x(t))

∂x
f(x(t), u(t1), w(t)) ≤

∂V̂1(x(t))

∂x
f(x(t), u(t1), w(t))−

∂V (x(t))

∂x
f(x(t), u(t1), w(t))

+
∂V (x(t))

∂x
f(x(t), u(t1), w(t))−

∂V (x(t1))

∂x
f(x(t1), u(t1), 0)

+
∂V (x(t1))

∂x
f(x(t1), u(t1), 0)−

∂V̂1(x(t1))

∂x
f(x(t1), u(t1), 0)

+
∂V̂1(x(t1))

∂x
f(x(t1), u(t1), 0)

≤

∣

∣

∣

∣

∣

∂V̂1(x(t))

∂x
−

∂V (x(t))

∂x

∣

∣

∣

∣

∣

|f(x(t), u(t1), w(t))|+ L′
x|x(t)− x(t1)|+ L′

w|w|

+

∣

∣

∣

∣

∣

∂V (x(t1))

∂x
−

∂V̂1(x(t1))

∂x

∣

∣

∣

∣

∣

|f(x(t1), u(t1), 0)| − α̂3,1(|x(t1)|) + α̂4,1(|x(t1)|)Merr,1

≤ −α̂3,1(|x(t1)|) + α̂4,1(|x(t1)|)Merr,1 + 2MgMf + L′
xMf∆+ L′

wΘ

≤ −α̂3,a(α̂
−1
2,a(ρe,a)) + α̂4,a(α̂

−1
1,a(ρa))Merr,a + L′

xMf∆+ L′
wΘ+ 2MgMf

(28)

which is obtained from applying the triangle inequality, Eqs. 4a, 7b, 8, 17, and 27, continuity of x, the fact

that x(t1) ∈ Ωρa/Ωρe,a , and the bound on w. When Eq. 19 holds, Eq. 28 implies that the value of V̂1 is

decreasing over time along the closed-loop state trajectory, so that V̂1(x(t)) ≤ V̂1(x(t1)) ≤ ρa for t ∈ [t1, t2).

Applying this recursively, the actual state stays within Ωρa at all times.

Remark 5. When the conditions of Theorem 1 hold, bounded plant/model mismatch with magnitudes Θ

and Merr,a enable closed-loop stability to be guaranteed under the a-th model (i.e., every model for which

bounds on the plant/model mismatch meet the conditions of Theorem 1, along with the other functions

and parameters used in LEMPC, is considered to be �su�ciently accurate� because it maintains system

safety). Therefore, from Proposition 1, |xq,a(tk) − x̃q,a(tk|tk−1)| ≤ fW,a(∆), where x̃q,a(tk|tk−1) is the

predicted state at tk using the a-th model initialized from the state measurement at tk−1. Although the

accurate model is unknown, the value fW,a(∆) represents that there exists a lower bound on the threshold

ϵM that avoids �agging a su�ciently accurate model as inaccurate due to the presence of disturbances,

but without allowing excessive amounts of model error. If ϵM is greater than fW,a(∆), the detection

threshold avoids �agging acceptable plant/model mismatch as unacceptable (i.e., it would avoid pruning

a su�ciently accurate model from Mc). However, which models are su�ciently accurate for maintaining

closed-loop stability under LEMPC is not known a priori so that less accurate models may also fall within
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a given bound ϵM on the prediction error, or the bound on the prediction error might be set too low in

practice so that a su�ciently accurate model is pruned. Other metrics besides prediction error could also

be considered for evaluating whether models should remain within Mc or not.

Remark 6. Another way to implement the proposed control design and prove closed-loop stability for all

time is to enforce the constraint of Eq. 11f not only for the model that corresponds to the smallest stability

region but also for each i-th model in the set Mc. The proof would follow as above, except that feasibility

of each of these added constraints depends on Eq. 21. Although models are discarded from Mc during the

data-gathering process, which progressively reduces the number of constraints enforced on this alternative

control design over time, this control implementation is not as streamlined as that in Section 3.1 in the

sense that as the number of models |Mc| grows, more constraints are imposed on the closed-loop state.

Remark 7. The results of Theorem 1 hold assuming that a model for which the plant/model mismatch is

su�ciently small (in the sense that the conditions of the theorem hold for the model with i = a) is in the

set Mc, and that nested stability regions for all candidate models can be found. If it is not possible to nest

the stability regions of all possible mechanistic models, the set Mc can be broken up into multiple sets of

mechanistic model candidates for which it is possible to nest the stability regions, and then the models in

each set can be discriminated following the conditions in Theorem 1 by using the proposed LEMPC for a

given set at a time. There would need to be overlap of the di�erent sets or multiple su�ciently accurate

models in this case, as the assumption that there is at least one mechanistic model meeting the assumptions

of Theorem 1 in the controller used for each set must continue to hold. The assumptions of nested stability

regions could be challenging to implement in practice (e.g., to meet Eq. 21, small values of ∆ may be

needed, especially if there are many possible models that must be needed); in general, designing LEMPC's

that fully meet theoretical conditions for practical use can be a challenge. The potential conservatism and

limitations that nesting stability regions might introduce is partially due to a lack of knowledge and lack

of a priori data for discriminating between the models before the controller is put online. In general for

LEMPC, it may be desirable to use large stability regions. One could attempt to more rigorously determine

the region of attraction and use this in evaluating a variety of stability regions to seek to select one which

takes up as large a fraction of the region of attraction as possible (e.g.,32,33,34). In practice, one may not

know whether a model meeting the requirements of Theorem 1 is in the set; in this case, su�cient data on
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process behavior and physics may be necessary to provide a reasonable set of models which is expected to

include a model for which the requirements of Theorem 1 hold, or many models might be suggested (i.e.,

|Mc| might be large) to attempt to include many possible models with the hope that one might meet the

requirements of Theorem 1 even if it is not known at the beginning of the model discrimination procedure

which it is. It may be challenging to check whether the conditions of Theorem 1 are satis�ed when putting

an LEMPC online, as some of the conditions (e.g., Eqs. 19 and 20) are required to hold for the su�ciently

accurate model but may not hold for the others, and a su�ciently accurate model is not known a priori.

Remark 8. It may be possible that more than one model in Mc may be consistent with the available data

over time, particularly considering measurement noise and plant/model mismatch between all models and

the process dynamics, such that it may not be possible to con�dently state that one of the models is better

than the other. In such a case, if the conditions of Theorem 1 are satis�ed with at least one of the models

selected as the a-th model, then one of those that meets the requirements may be selected as the i = a

model, and the system can be run safely (i.e., the closed-loop state will be maintained within Ωρ). This

does not necessarily mean, however, that the mechanisms conveyed by the mechanistic model selected in

such a case are those which actually describe the process physics. Because this strategy may combine

�rst-principles modeling (in the development of the mechanistic models) with data (for discriminating

between the potential mechanisms suggested), one might consider it an alternative concept of combining

�rst-principles and data-driven techniques in modeling (where certain techniques for doing this often fall

within a category of �hybrid modeling�).

Remark 9. The reason for including both Eqs. 22 and 23 is that the latter is needed to ensure that the state

predictions do not leave Ωρe,i if x̃q,i ∈ Ωρe,i/Ωρs,i (to ensure feasibility of Eq. 11 with the state predictions),

whereas Eq. 22 is required for ensuring that the actual closed-loop state does not exit Ωρa .

4. EMPC for Discriminating Between Mechanistic Models: Illustrative Process Example

In this section, we provide simulations that illustrate and elucidate some of the concepts discussed above

and serve to indicate some of the potential bene�ts and limitations of using EMPC for model discrimination.

This example makes no attempt to fully demonstrate the control theory above, and thus does not rigorously

demonstrate the implementation strategy in Section 3.2. Rather, it is intended to showcase more practical
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considerations regarding when and how the �exibility of EMPC might be used for model discrimination,

to elucidate relevant aspects that were not highlighted in the theory introduced so far, and to provide

some discussion toward future automation of digital twin development via control-assisted approaches for

gaining non-standard operating data for on-line model development. Exploring how to develop parameters

and evaluate the practicality of the method described in Section 3 when full control theory is applied can be

a subject of future work, but that theory is important for this discussion in demonstrating that there would

be conditions under which safe model discrimination could be performed via control-assisted methods.

For this example, we consider the problem of seeking to, on-line, develop insights into the physics of

a process as an initial step toward automated control-assisted digital twin development (and the potential

bene�ts that that might entail for applications such as fault diagnosis, process monitoring, and developing

more economically-optimal control strategies). This goal is considered for a non-ideal continuous stirred tank

reactor (CSTR) with dead space and bypass, in which a second-order, exothermic, irreversible reaction of

the form A→ B is occurring. The dynamics of this system are considered to be represented by a perturbed

version of the following dynamic equations (where the perturbations are random numbers from a bounded

standard normal distribution that are added to the right-hand side of each of the following equations):

dCAm

dt
=

Fm

Vm
(CA0 − CAm)− k0e

−E0
RTm C2

Am (29a)

CA =
F0 − Fm

F0
CA0 +

Fm

F0
CAm (29b)

dTm

dt
=

Fm

Vm
(T0 − Tm) +

−∆H

ρLCp
k0e

−E0
RTm C2

Am
+

Q

ρLCpVm
(29c)

T =
Fm(Tm − T0) + F0T0

F0
(29d)

This non-ideal CSTR has a well-mixed volume Vm, and a total volume V . The concentration of species A,

volumetric �ow rate, and temperature in this well-mixed part of the reactor are denoted as CAm, Fm, and Tm

respectively. This reactor also presents a dead zone (with volume V −Vm) and a bypass (with a volumetric

�ow rate of F0 − Fm). To complete the model for the actual process dynamics, process disturbances were

added to the right-hand side of the di�erential equations describing the rates of change of CA and T with

zero mean and standard deviations of 20 kmol/m3 h and 100 K/h, and bounds of 10 kmol/m3 h and 50

K/h, respectively. Measurement noise was also included based on a standard normal distribution with

mean zero, standard deviations of 0.01 kmol/m3 and 1 K, and bounds of 0.05 kmol/m3 and 5 K for the
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concentration of the reactant and reactor temperature, respectively. The process parameters are presented

in Table 1. The steady-state values of the states CAm and Tm and inputs are CAms = 1.22 kmol/m3,

Tms = 438.2 K, CA0s = 3.888 kmol/m3, and Qs = 6.387× 103 kJ/h, respectively. The vectors of deviation

variables for the states and inputs from their steady-states are x = [x1 x2]
T = [CA − CAs T − Ts]

T and

u = [u1 u2]
T = [CA0−CA0s Q−Qs]

T . It is assumed that the sensors for concentration and temperature of

the reactor are placed within the well-mixed part of the reactor and that the process has been operated at

the steady-state in the past, so that most of the available process data consists of measurements reading

CAms and Tms. We also assume that the controller readings (CA0s and Qs) are available. However, though

F0 is assumed to be �xed and measurable, T0 is not measured. Also, there is no sensor for potential

impurities in the feed that could impact reaction kinetics. The total reactor volume is assumed to be

monitored via a level sensor, so that V is also known.

Table 1: Parameters for the CSTR models.

Parameter Value Unit

V 1 m3

T0 300 K

Cp 0.231 kJ/kg·K

k0 8.46× 106 m3/h·kmol

F0 5 m3/h

ρL 1000 kg/m3

E0 5× 104 kJ/kmol

R 8.314 kJ/kmol·K

∆H −1.15× 104 kJ/kmol

Fm 0.99F0 m3/h

Vm 0.95V m3

Fm1 4.95 m3/h

E01 5.019× 104 kJ/kmol

Vm3 0.9596 m3

T03 300.06 K

It is assumed that the plant engineers would like to enhance the pro�tability of the process by obtaining

a more accurate model of the process dynamics to aid in operating the process under EMPC and also to

aid with process monitoring e�orts. To do this, a control-assisted approach will be used that is similar

in concept to that described in Section 3 (though without being rigorously designed to meet all control-

theoretic conditions needed for guaranteeing safety during the data-gathering process). Speci�cally, a set of
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rival mechanistic models will be identi�ed where the available data for discrimination between these models

is insu�cient for selecting which is the most accurate because most of the available dataset was developed

when operating at a steady-state, and the data from dynamic operation is limited. We desire to use EMPC

to aid in discriminating between the rival mechanistic model candidates online. Particularly, the control

objective is to select a suitable mechanistic model candidate within the set Mc to be used by the controller.

The �rst question to be addressed is which models will be in the set Mc. We consider that the plant

engineers have hypothesized that the reactor may have bypass and dead zone, but that they do not know

if it has both or only one of these non-ideal scenarios. Therefore, the model structures for the mechanistic

models consider that both dead zone and bypass may occur (as in Eq. 29), that only dead zone may occur,

or that only bypass may occur. However, though this �xes several potential model structures, it does not

�x their parameters, and the strategy presented in Section 3 for control-assisted model structure selection

requires that the model parameters already be identi�ed or postulated for every model in Mc. We note,

however, that because some operating data is available (primarily at steady-state) and some data on the

physical process is available (e.g., knowledge of V ), it is not possible for all possible model parameters to

be valid. Consider, for example, a model structure of the following form, representing a system with bypass

only (with a bypass �ow rate of F0 − F̄m):

dCAm

dt
=

F̄m

V
(CA0 − CAm)− k̄0e

−Ē0
RTm C2

Am (30a)

CA =
F0 − F̄m

F0
CA0 +

F̄m

F0
CAm (30b)

dTm

dt
=

F̄m

V
(T̄0 − Tm) +

−∆H

ρLCp
k̄0e

−Ē0
RTm C2

Am
+

Q

ρLCpV
(30c)

T =
F̄m(Tm − T̄0) + F0T̄0

F0
(30d)

In these equations, F̄m, T̄0, k̄0, and Ē0 (the bypass �ow rate, feed temperature, pre-exponential factor, and

activation energy) are considered to be parameters that, based on the sensing/monitoring setup in place for

this process described above, could be values di�erent from what is expected. However, because we know

that when CAms = 1.22 kmol/m3 and Tms = 438.2 K, then CA0s = 3.888 kmol/m3 and Qs = 6.387 × 103

kJ/h, we can attempt to check whether di�erent values of the unknown parameters are consistent with

the steady-state data. For example, consider the case where k̄0 = k0 and Ē0 = E0 in Table 1 (i.e., only

F̄m and T̄0 are considered to be unknown). In this case, values of F̄m and T̄0 that satisfy the steady-

23



state form of Eq. 30 when CAm = CAms, Tm = Tms, CA0 = CA0s, and Q = Qs, obtained using fsolve

in MATLAB R2016b with an initial guess of F̄m = 5 m3/h and T̄0 = 300 K, are F̄m = 5.21 m3/h and

T̄0 = 300.3 K. However, we would discard these potential values of the parameters because though they

are consistent with the steady-state data, they are not consistent with our knowledge that F0 is 5 m3/h, so

that the maximum possible value of the bypass �ow rate (which is a fraction of this) must be less than 5

m3/h. This demonstrates that even with limited data available, the physics of the system can set bounds

on potential allowable values of parameters in potential mechanistic model structures based on di�erent

physics postulates, aiding in forming the set Mc.

For the purposes of illustration, we will utilize a limited set of models (only three mechanistic model

candidates) in the remainder of this example, though more could be developed. One is the mechanistic

model of Eq. 29 (which is close to the �actual� process dynamics but still di�ers from these dynamics because

there are disturbances added to the right-hand side of Eq. 29 for the �actual� process), one is a mechanistic

model assuming only a dead zone in the reactor (no bypass), and one is a mechanistic model assuming only

bypass through the reactor (and no dead zone). All three consider the second-order, exothermic, irreversible

reaction (A→ B) to be occurring in the CSTR. Based on attempts like that described in the prior paragraph

to obtain model candidates for which there is a steady-state with the measured values of concentration and

temperature in any well-mixed portion of a reactor set to CAms and Tms when CA0 = CA0s and Q = Qs,

parameters for the dead space and bypass �ow rates, as well as some kinetics and feed data, are di�erent

between the models. Fig. 2 illustrates the di�erent physics considered for the three model candidates.

Below, the three mechanistic model candidates are numbered/ordered for use in an EMPC with a similar

form to that in Eq. 11.

The �rst mechanistic model candidate (Model 1; i = 1 in the original set Mc), which is represented by

Fig. 2a, is a non-ideal CSTR with bypass (Fb = F0 − Fm1), but without considering dead space, and can

be described by the following equations:

dCAm

dt
=

Fm1

V
(CA0 − CAm)− k0e

−E01
RTm C2

Am (31a)

CA =
F0 − Fm1

F0
CA0 +

Fm1

F0
CAm (31b)

dTm

dt
=

Fm1

V
(T0 − Tm) +

−∆H

ρLCp
k0e

−E01
RTm C2

Am
+

Q

ρLCpV
(31c)

24



= 1

)
) )

= (1 )
= (1 )

= 1

Figure 2: Mechanistic CSTR model candidates (a) has only bypass, (b) has bypass and a dead zone, and (c) has only a dead
zone. For the model candidate in (a), Fm1 represents the volumetric �ow rate into and out of the well-mixed portion of the
CSTR, and Fb1 represents the bypass �ow rate (which is a fraction b of the inlet volumetric �ow rate F0). For the model
candidate in (b), Fm represents the volumetric �ow rate into and out of the well-mixed portion of the CSTR, which is a
fraction (1− c) of the total volumetric �ow rate F0 into the CSTR (the fraction c of the total volumetric �ow rate is Fb). Vd

represents the volume of the dead zone, which is a fraction (1− a) of V (the fraction a of the total volume is the well-mixed
part Vm). For the model candidate in (c), the dead zone Vd3 is a fraction (1− d) of the total volume, with Vm3 representing
the volume of the well-mixed part of the CSTR.

T =
Fm1(Tm − T0) + F0T0

F0
(31d)

The second mechanistic model candidate (Model 2; i = 2 in the original set Mc) is represented by

Fig. 2b and has the dynamics in Eq. 29. The third mechanistic model candidate (Model 3; i = 3 in the

original set Mc), which is represented by Fig. 2c, is a non-ideal CSTR with dead space (V = Vd + Vm3),

but without considering bypass, and can be described by the equations below:

dCA

dt
=

F0

Vm3
(CA0 − CA)− k0e

−E0
RT C2

A (32a)

dT

dt
=

F0

Vm3
(T03 − T ) +

−∆H

ρLCp
k0e

−E0
RT C2

A +
Q

ρLCpVm3
(32b)

The parameters of the three mechanistic model candidates described above are shown in Table 1. All three

process models, and the actual plant dynamics, are numerically integrated using the explicit Euler method

with an integration step size of 10−4 h. We note that because CA and T di�er in the three mechanistic model

candidates, the sensor placement in this case makes the discrimination challenging with the steady-state

operating data (if, for example, the sensor was placed at the outlet stream of the reactors (i.e., CA and T

were obtained for every case in Fig. 2), a di�erence may be observed between the expected measurements

from the three models when the steady-state inputs are applied, and the models could be discriminated

while operating at steady-state).

The EMPC formulation to be used for control-assisted online model discrimination will have a form
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similar to that in Eq. 11 (though the constraints will not be designed to meet the control-theoretic condi-

tions). Therefore, it is necessary to design operating regions for the di�erent models to use in constructing

the constraints. To do this, a Lyapunov function V̂1 = xTq,iPxq,i, i = 1, 2, 3, where P = [1200 5; 5 0.1],

was selected. To nest the stability regions, the stability region using Model 1 was set to ρ1 = 300 (i.e.,

Ωρ1 = {x ∈ R2 : V̂1(x) ≤ ρ1}) with ρe,1 = 275; the stability region using Model 2 was set to ρ2 = 370

with ρe,2 = 325; and the stability region using Model 3 was set to ρ3 = 470 with ρe,3 = 380. We note that

in general, nesting of stability regions may not imply that the models with the larger stability regions can

stabilize the closed-loop system under a Lyapunov-based controller from a larger portion of state-space,

but rather that a more conservative subset of that region is selected for one of the regions than might oth-

erwise be chosen to facilitate the nesting. However, it makes sense to place stability regions that are more

conservative due to the region of state-space from which a given model can be stabilized within stability

regions corresponding to models that can be stabilized from a larger region of state-space, to avoid excessive

conservatism in the stability region design.

A practical consideration for control-assisted model discrimination is that there need to be subsets of

the stability regions where at least some models give su�ciently di�erent state predictions from one another

so that some will be able to be pruned from Mc. It is possible to check if this is a possibility using an

a priori analysis of the model candidates to see if there are possible initial conditions within the smallest

stability region and inputs within the input bounds which can maintain the closed-loop state in the smallest

stability region (in case the i = 1 model is correct so that the closed-loop state may not exit this region)

and also indicate that the models will make noticeably di�erent state predictions. To demonstrate this, we

performed a discretization of the state and input spaces within a small range of the steady-state values,

initialized each model from the discretized state values under the inputs in the input discretization, and

simulated the three models for 0.01 h (checking that the Lyapunov function value did not exceed 300, which

corresponds to ρ1; the need to evaluate this over only 0.01 h of operation is because ∆ = 0.01 h will be

used in the EMPC, and it is necessary that the state predictions from the di�erent models are su�ciently

di�erent from one another after a sampling period that the models can be discriminated between at the end

of a sampling period). The discretization used involved the following: initial conditions were developed by

setting a variable Idiscretize that varied in increments of 0.1 between 0 and 0.5. Each initial condition for
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CAm was then obtained by dividing the value of Idiscretize being used by 5, and each initial condition for

Tm was then obtained by multiplying the value of Idiscretize being used by 20. The inputs were discretized

so that CA0 varied from 2.5 to 5.5 kmol/m3 in increments of 0.1 kmol/m3 and Q varied from -10000 to

10000 kJ/h in increments of 1000 kJ/h. Examples of two sets of trajectories for CAm and Tm are shown in

Fig. 3, corresponding to two di�erent sets of initial conditions and inputs selected within the discretization.

Speci�cally, the top plots correspond to initial conditions of CAm = 1.2231 kmol/m3 and Tm = 438.25 K

with inputs of CA0 = 3.9 kmol/m3 and Q = 6000 kJ/h, whereas the bottom plots correspond to initial

conditions of CAm = 1.3231 kmol/m3 and Tm = 448.25 K with inputs of CA0 = 5.5 kmol/m3 and Q = 10000

kJ/h. This �gure shows that whereas it is di�cult to discriminate between the models visually from the

top plots, Model 1 is noticeably less accurate compared to the other two in the bottom plots. In particular,

the absolute value of the di�erence between Model 1 and Model 2 at the end of the 0.1 h of operation in

the top plots is 2.702 × 10−5 kmol/m3 in CAm and 0.0007 K in Tm, whereas it is 0.001 kmol/m3 in CAm

and 0.218 K in Tm in the bottom plots. The absolute value of the di�erence between Model 3 and Model 2

at the end of the 0.1 h of operation in the top plots is 3.657× 10−7 kmol/m3 in CAm and 0.0002 K in Tm,

whereas it is 5.486 × 10−6 in CAm and 0.0019 K in Tm in the bottom plots. This indicates that at least

one of the models may eventually be able to be dropped from Mc under the control-assisted online model

discrimination strategy, depending on the model error threshold set (if Model 1 is su�ciently accurate, it

would be expected that the sensor measurements will be consistent with its trajectory and that the other

two models could be dropped; if Models 2 or 3 are instead su�ciently accurate, it would be expected that

the sensor measurements will be consistent with those trajectories and that Model 1 could be dropped).

To see whether Models 2 and 3 and could be discriminated between if Model 1 was determined not to be

su�ciently accurate and only those two models were left, further analysis would need to be performed.

There is no guarantee that two models will be su�ciently di�erent to be discriminated from one another

online in the presence of measurement noise.

The EMPC is designed in a similar form to Eq. 11, in the sense that it uses the i = 1 model at t0

to establish constraints related to the Lyapunov function. Constraints in the spirit of Eqs. 11f-11g are

formulated for this problem, where if V̂1(x(tk)) ≤ ρe,1, a constraint of the form in Eq. 11f is enforced at

the end of each sampling period in the prediction horizon. If instead V̂1(x(tk)) > ρe,1, a constraint of the
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Figure 3: Maximum (plots from the bottom) and minimum (plots from the top) di�erence between the predicted state
trajectories of the models over three sampling periods among a set of di�erent initial conditions and inputs. The y-axis range
is larger in the bottom plots than the top plots. Except in the upper right plot where the trajectory for Model 2 is somewhat
visible on its own, the trajectories for Models 2 and 3 are overlaid.

form in Eq. 11g is used at tk, and then a constraint of the form in Eqs. 11f is enforced at the end of each

sampling period. Since the goal is to select a suitable mechanistic model in Mc, we explore the use of the

form of the objective function of Eq. 11 with β1 = 0, β2 = 1, and γij = 1, i = 1, 2 and j > i + 1 up to

|Mc|, to attempt to maximize the distance between the state predictions from the three mechanistic model

candidates in Mc (i.e., the LEMPC is implemented in data-gathering mode only). Particularly, the EMPC

computes control actions (CA0 and Q) in a manner that seeks to maximize the following cost function:

∫ tk+N

tk

10−12
2

∑

i=1

3
∑

j=i+1

[(x̃q,1,i(τ)− x̃q,1,j(τ))
2 + (x̃q,2,i(τ)− x̃q,2,j(τ))

2] dτ (33)

where x̃q,1,i and x̃q,2,i correspond to the predicted concentration of species A leaving the reactor and the

outlet temperature of the reactor based on the i-th mechanistic model, respectively. The double sum in the

objective function above was multiplied by 10−12 to avoid making the objective function magnitude too

large.

To demonstrate aspects of EMPC-assisted model discrimination, the process state was initialized at

the steady-state (xinit = [0 kmol/m3 0 K]T ) and the simulation was performed over 0.04 h of operation

using a computer with an Lenovo model 80XN x64-based ideapad 320 with an Intel(R) Core(TM) i7-

7500U CPU at 2.70 GHz, 2904 Mhz, running Windows 10 Enterprise, in MATLAB R2016b. N was set

to 10. To simulate process disturbance and noise, the function �randn()� was used, with a seed to the

random number generator, through the MATLAB function rng, of 10. To discriminate between the rival

mechanistic models, we computed the following distance-based indexDi =
√

(x̃q,i(t)− x(t))2 (which re�ects
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Figure 4: Measured closed-loop system trajectories (�Process�) and predicted state trajectories (�Model 1,� �Model 2,� and
�Model 3�) using di�erent mechanistic model candidates under the EMPC with the objective function in Eq. 33 from 0 to 0.01
h of operation (top plots) and from 0.01 to 0.02 h of operation (bottom plots). The predictions from Model 2 and Model 3
are almost overlaid.

the di�erence between the predicted closed-loop states, x̃q,i(t), based on the i-th model, i = 1, 2, 3, and

the measured states, x(t)) to evaluate the impact of setting di�erent metrics for model discrimination and

di�erent thresholds ϵM on these metrics for discarding models during the model discrimination task. Fig. 4

shows the state predictions over the �rst and second 0.01 h of operation, re�ecting di�erences between

Model 1 and Models 2 and 3; however, due to the measurement noise and disturbances, the model which

provides the best ��t� (or alternatively, which provides an insu�cient ��t�) to the process behavior is less

clear visually. The controller drove the closed-loop state to operating data points o� steady-state. The

control actions computed by fmincon were not guaranteed to be global minima. In addition, over 0.04 h,

the state predictions are kept inside their respective stability regions, which can be visualized in Fig. 6.

For comparison, to evaluate whether any of the models might visually appear to be more accurate than

others if the sensor noise is neglected, the predicted state trajectories from 0 to 0.01 h and 0.01 to 0.02 h

are plotted against the process dynamic behavior in the absence of measurement noise (disturbances only)

in Fig. 5. This �gure indicates that Model 1 deviates more signi�cantly from the process behavior than do

the Model 2 and 3 predictions, indicating that understanding whether the EMPC-assisted technique could

aid in distinguishing this in the presence of the measurement noise is desirable.

Because it is not clear visually which model, if any, provides a potential explanation for the process

behavior in the presence of measurement noise, we return to the case with measurement noise and analyze

the impact of di�erent metrics on discriminating between the di�erent models. The metrics to be analyzed

are the norm of the di�erence between the state prediction from a model and the state measurement at the
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Figure 5: Measured closed-loop system trajectories in the absence of measurement noise (�Process�) and predicted state
trajectories (�Model 1,� �Model 2,� and �Model 3�) using di�erent mechanistic model candidates under the EMPC with the
objective function in Eq. 33 from 0 to 0.01 h of operation (top plots) and from 0.01 to 0.02 h of operation (bottom plots).
The predictions from Model 2 and Model 3 are almost overlaid.
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Figure 6: Trajectories of the state predictions for the three process models, initialized from a noisy measurement of the process
state at the beginning of every sampling time, over 0.04 h for the three mechanistic model candidates under the EMPC with
the objective function in Eq. 33.
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end of a sampling period (Error Metric 1), the maximum value of the di�erence between the state prediction

from a model and the state measurement at any point during a sampling period (Error Metric 2), and the

average value of the di�erence between the state prediction from a model and the state measurement across

a sampling period (Error Metric 3). Table 2 presents the results of using each metric in each of the four

sampling periods simulated. It can be seen that in the �rst and second sampling periods, all three error

metrics give a higher value for Model 1 compared to Models 2 and 3, though it is not as clear in the �rst

sampling period with Error Metric 2. However, in later sampling periods, this is not always the case. For

example, in sampling period 3 for Error Metric 2, Model 3 gives the largest value of the error metric. Except

in the �rst sampling period for Error Metric 3, the value of the error metric for Model 2 is lower than the

error metrics for the other models. However, the fact that this is not true in one sampling period indicates

that error metrics and the thresholds on them must be carefully selected in practice to prevent discarding

potentially reasonable models from Mc. These results also demonstrate that the measurement noise can

make it challenging to discriminate between the models. Regarding the selection of thresholds, the data

in Table 2 indicates that with di�erent thresholds on the error, di�erent models may have been kept or

discarded from Mc. This discussion indicates that if the plant/model mismatch is large for all mechanistic

models, various indexes for attempting to discriminate between models may all be large and potentially

close to each other (from a theoretical perspective, it would have to be questioned whether any of them

would then provide plant/model mismatch or bounded disturbances that are small enough to meet the

stability requirements in Theorem 1).

To analyze the extent to which the di�culty in model discrimination in this example depends on the

sensor noise, we can examine Error Metric 1 for the process with disturbances only (no measurement noise).

In the �rst sampling period, it would evaluate to 1.537 for Model 1, 0.0105 for Model 2, and 0.251 for Model

3, and at the second sampling period it would be 1.659 for Model 1, 0.010 for Model 2, and 0.200 for Model

3, indicating that there is a large di�erence between Model 1 and Models 2 and 3 at these sampling periods.

However, this di�erence is less noticeable in the third sampling period, where Error Metric 1 is 0.328 for

Model 1, 0.180 for Model 2, and 0.345 for Model 3. This again indicates that working with model error

and setting thresholds on model error when none of the process models postulated exactly replicates the

dynamics, even in the absence of sensor noise, can be challenging in practice.
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Table 2: Error metrics for di�erent models for the four sampling periods from 0 to 0.04 h of operation using the EMPC with
the objective function of Eq. 33 and the process with both measurement noise and disturbances considered.

Sampling

Period

1 2 3 4

Error

Metric 1

Model 1: 1.854;
Model 2: 0.308;
Model 3: 0.568

Model 1: 2.209;
Model 2: 0.583;
Model 3: 0.767

Model 1: 1.372;
Model 2: 1.177;
Model 3: 1.353

Model 1: 1.237;
Model 2: 1.115;
Model 3: 1.232

Error

Metric 2

Model 1: 2.795;
Model 2: 2.467;
Model 3: 2.495

Model 1: 3.096;
Model 2: 2.322;
Model 3: 2.413

Model 1: 2.621;
Model 2: 2.482;
Model 3: 2.632

Model 1: 2.563;
Model 2: 2.536;
Model 3: 2.580

Error

Metric 3

Model 1: 0.986;
Model 2: 0.785;
Model 3: 0.783

Model 1: 1.025;
Model 2: 0.784;
Model 3: 0.789

Model 1: 0.929;
Model 2: 0.921;
Model 3: 0.939

Model 1: 0.684;
Model 2: 0.680;
Model 3: 0.684

The example above used the EMPC only in data-gathering mode; to attempt to avoid pro�t loss during

the model discrimination task, we can evaluate whether an economics-based objective function can be used

instead. To evaluate this case, an EMPC using an economics-based objective function (to be referred to

subsequently as �standard EMPC� because it uses an economics-based objective function which is a standard

goal of EMPC when model discrimination is not in view) may be implemented to attempt to obtain the

desired mechanistic model discrimination. Conceptually, if a standard LEMPC operates the process in a

manner that causes a dynamic/transient system behavior, pro�t-maximizing operation may already impose

enough �excitation� to the system so that new information can be gathered for model discrimination. In this

case, the objective function based solely on data collection (β2 = 1) may not be needed to select a suitable

mechanistic model in Mc, which could lead to pro�t loss compared to the case where an economics-based

objective function is used throughout the time of operation.

To investigate this with the set of models Mc de�ned above, we carried out the process simulation

under the standard LEMPC over 0.04 h of operation with xinit = [0 kmol/m3 0 K]T . For this control

formulation, ∆ and N were again set to 0.01 h and 10, respectively, and the Lyapunov-based stability

constraints were designed using the same method as described above for when the objective function was

given by Eq. 33. The standard LEMPC's economics-based objective function was formulated to maximize

sum of the production rates from each model as follows:

∫ tk+N

tk

[

3
∑

i=1

k0e
−E/(R(x̃q,2,i+Tms))(x̃q,1,i + CAms)

2] dτ (34)
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Over the �rst 0.04 h of operation, Error Metric 1 evaluated to the same values at the end of the sampling

periods as it did in Table 2 for the case that the EMPC with the objective function in Eq. 33 was used.

In general, this can happen, because the inputs which maximize one objective function may also maximize

another. This motivates attempting to start model discrimination with β1 = 1 and β2 = 0, and then using

β2 = 1 if the data when β2 = 0 is insu�cient for model discrimination.

5. Conclusion

This work highlights a capability of LEMPC to operate a process in a �exible and potentially non-

routine fashion to meet online operating goals, in particular for discriminating between mechanistic model

candidates. The LEMPC developed for this task determines what desired data should be gathered for

model discrimination and can collect the required information while maintaining closed-loop stability even

when it is unknown which of a set of model candidates may be su�ciently accurate. A chemical process

example was used to demonstrate practical considerations for EMPC-assisted online model discrimination.
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