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Abstract
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Background: Human brain structural connectivity is an important imaging quantitative trait for brain development and aging.
Mapping the network connectivity to the phenotypic variation provides fundamental insights in understanding the relationship
between detailed brain topological architecture, function, and dysfunction. However, the underlying neurobiological mechanism
from gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes over time, remain unclear.

Methods: This study analyzes diffusion-weighted imaging data from two age-specific neuroimaging cohorts, extracts structural
connectome topological network measures, performs genome-wide association studies of the measures, and examines the
causality of genetic influences on phenotypic outcomes mediated via connectivity measures.

Results: Our empirical study has yielded several significant findings:
1) It identified genetic makeup underlying structural connectivity changes in the human brain connectome for both age groups.
Specifically, it revealed a novel association between the minor allele (G) of rs7937515 and the decreased network segregation
measures of the left middle temporal gyrus across young and elderly adults, indicating a consistent genetic effect on brain
connectivity across the lifespan.
2) It revealed rs7937515 as a genetic marker for body mass index in young adults but not in elderly adults.
3) It discovered brain network segregation alterations as a potential neuroimaging biomarker for obesity.
4) It demonstrated the hemispheric asymmetry of structural network organization in genetic association analyses and outcome-
relevant studies.

Discussion: These imaging genetic findings underlying brain connectome warrant further investigation for exploring their
potential influences on brain-related complex diseases, given the significant involvement of altered connectivity in neurological,
psychiatric and physical disorders.

  

 
Contribution to the field

The major contributions of this study are fivefold: (1) We elucidate the neurobiological pathway from SNPs to brain connectome,
and to phenotypic outcomes. By integrating connectomics and genetics, this study provides new genetic mechanism insights into
understanding detailed brain topological architecture and encoding (or mapping) inter-regional connectivity in the genome. (2) We
validate the study outcomes by examining genetic consistency and discrepancy for complex-network attributes between young
adult cohort and elderly adult cohort, which illustrates genetic basis for human connectome in different life stages. (3) We
demonstrate that body mass index (BMI, which is a well-known factor related to multiple complex diseases) is influenced by a locus
rs7937515128 with network segregation attributes measured at the left middle temporal gyrus as mediators, which reveals the
intermediate effects of brain connectivity in the pathway of outcome-relevant genetics. (4) We discover network segregation as
important neuroimaging biomarker for BMI and weight-related issues, and illustrate the importance of the left middle temporal
gyrus for BMI. (5) We demonstrate the hemispheric asymmetry of structural network organization in genetic association analyses
and outcome-relevant studies.
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ABSTRACT2

Background: Human brain structural connectivity is an important imaging quantitative trait3
for brain development and aging. Mapping the network connectivity to the phenotypic variation4
provides fundamental insights in understanding the relationship between detailed brain topological5
architecture, function, and dysfunction. However, the underlying neurobiological mechanism from6
gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes7
over time, remain unclear.8
Methods: This study analyzes diffusion-weighted imaging data from two age-specific9
neuroimaging cohorts, extracts structural connectome topological network measures, performs10
genome-wide association studies of the measures, and examines the causality of genetic11
influences on phenotypic outcomes mediated via connectivity measures.12
Results: Our empirical study has yielded several significant findings: 1) It identified genetic13
makeup underlying structural connectivity changes in the human brain connectome for both age14
groups. Specifically, it revealed a novel association between the minor allele (G) of rs793751515
and the decreased network segregation measures of the left middle temporal gyrus across16
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young and elderly adults, indicating a consistent genetic effect on brain connectivity across the17
lifespan. 2) It revealed rs7937515 as a genetic marker for body mass index in young adults18
but not in elderly adults. 3) It discovered brain network segregation alterations as a potential19
neuroimaging biomarker for obesity. 4) It demonstrated the hemispheric asymmetry of structural20
network organization in genetic association analyses and outcome-relevant studies.21
Discussion: These imaging genetic findings underlying brain connectome warrant further22
investigation for exploring their potential influences on brain-related complex diseases, given the23
significant involvement of altered connectivity in neurological, psychiatric and physical disorders.24

Keywords:Human Connectomics; Network Segregation; Genome-Wide Association Study; Body Mass Index; Causal inference25

1 INTRODUCTION

Brain structural connectivity is a major organizing principle of the nervous system. Estimating interregional26
neural connectivity, reconstructing geometric structure of fiber pathways, and mapping the network27
connectivity to corresponding inter-individual variabilities provide fundamental insights in understanding28
detailed brain topological architecture, function and dysfunction. A large body of research has been29
devoted to extracting and investigating macro-scale brain networks from diffusion-weighted imaging (DWI)30
data (Xie et al., 2018; Jiang et al., 2019; van den Heuvel et al., 2019; Elsheikh et al., 2020; Bertolero31
et al., 2019), and various behavioral, neurological and neuropsychiatric disorders have been linked to the32
disrupted brain connectivity (Jiang et al., 2019; van den Heuvel et al., 2019). As structural changes of brain33
connectivity are phenotypically associated with massive complex traits across different categories, the34
brain-wide connectome has been extensively studied.35

It is worth noting that human brain connectome re-configures its network structure dynamically and36
adaptively in response to genetic, lifestyle, environmental factors (Cauda et al., 2018; Cohen and D’Esposito,37
2016), brain development and aging (Sala-Llonch et al., 2015; Alloza et al., 2018; Varangis et al., 2019).38
However, the underlying neurobiological mechanism from gene to brain connectome, and to cognitive and39
behavioral outcomes, and whether this mechanism changes over time, remain unclear. To bridge this gap,40
we perform a genetic study of brain connectome phenotypes on two different age-specific cohorts: one41
contains healthy young adults (age: 28.7±3.6), and the other contains elderly participants (age: 73.8±7.0).42
Our goal is to identify genetic factors affecting brain connectivity and examine their consistency and43
discrepancy between these two age-specific groups.44

Emerging advances in multimodal brain imaging, high throughput genotyping and sequencing techniques45
provide exciting new opportunities to ultimately improve our understanding of brain structure and neural46
dynamics, their genetic architecture and their influences on cognition and behavior (Shen and Thompson,47
2020). Present studies investigating direct associations among human connectomics, genomics and clinical48
phenotyping are primarily focused on four aspects: (1) estimating genetic heritability of basic connectome49
measures such as number of fibers, length of fibers and fractional anisotropy (FA) (Jahanshad et al.,50
2013; Thompson et al., 2013; Elliott et al., 2018); (2) discovering pairwise univariate associations between51
single nucleotide polymorphisms (SNPs) and imaging phenotypic traits such as above mentioned basic52
connectome measures at each edge (Jahanshad et al., 2013; Karwowski et al., 2019) and white matter53
properties at each voxel (Alloza et al., 2018; Kochunov et al., 2010; Guo et al., 2020); (3) discovering54
pairwise univariate associations between SNPs and clinical phenotypes such as cognitive or behavioral55
outcomes (Jahanshad et al., 2013; Elsheikh et al., 2020); and (4) discovering pairwise univariate associations56
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between basic connectome measures and clinical phenotypes (Jiang et al., 2019; van den Heuvel et al.,57
2019).58

Among the studies mentioned above, there exist two major limitations. First, these studies were conducted59
based on basic connectome measures such as number of fibers, length of fibers and FA, but the complex-60
network attributes were overlooked, which included network segregation, integration, centrality and61
resilience and important network components such as hubs, communities, and rich clubs (Sporns, 2013).62
These attributes were extensively adopted to detect network integration and segregation, quantitatively63
measure the centrality of network regions and pathways, characterize patterns of local anatomical circuitry,64
and test resilience of networks to insult (Rubinov and Sporns, 2010). Second, these studies performed65
analyses by examining the association between an independent variable (e.g. SNP) and a dependent66
variable (e.g. cognitive or behavioral outcome), without taking into consideration the mediator(s) linking67
these variables (Baron and Kenny, 1986). Mediation analysis can help identify the underlying mechanism68
of outcome-relevant genetic effects implicitly mediated by neuroimaging phenotypes (e.g. connectome69
measures). Of note, mediation analysis requires the independent variable to be significantly associated70
with both the dependent variable and the mediator. This makes applying it in brain neuroimaging studies a71
challenge due to the modest effect size of an individual genetic variant on both behavioral and imaging72
phenotypes (Saykin et al., 2015; Cong et al., 2018), as well as limited size of the sample with all diagnostic,73
imaging and genetic data available.74

With the demand of measuring complex-network attributes, a few recent genome-wide association75
studies (GWAS) (Elsheikh et al., 2020; Bertolero et al., 2019) recognized the first problem mentioned76
above and adopted quantitative measurement approaches for complex-network attributes , and treated the77
attributes as neuroimaging traits for the explorations of complex imaging genomic associations. They78
successfully identified a number of loci susceptible for Alzheimer’s Disease (Elsheikh et al., 2020), and79
demonstrated the associations between loci and segregated network patterns, which may be involved in80
brain development, evolution, and disease (Bertolero et al., 2019). However, a notable limitation is that81
these studies only focus on the brain networks of either young or elderly participants, as a result, their82
study outcomes are lack of validations in multiple data sets. Since there is an age-related discrepancy83
for genetic effects on human connectome alterations across lifespan (Varangis et al., 2019), it remains84
an under-explored topic to examine genetic consistency and discrepancy for complex-network attributes85
among cohorts different in age. Another factor that may cause discrepancy in the network architecture is86
the hemispheric asymmetry (Jiang et al., 2019), and the hemispheric asymmetry of network organization87
has been linked to development processes (Zhong et al., 2017) and neuropsychiatric disorders (Sun et al.,88
2017). It remains a challenge to understand the genetic basis for the network attributes of two hemispheres89
as they may be distinctively correlated to cognition level, physical and psychological development.90

Among a large number of complex-network attributes, it has been well documented in recent91
literatures (Xie et al., 2018; Cohen and D’Esposito, 2016) that segregation of neural information such as92
modularity, transitivity, clustering coefficients and local efficiency represent the connectivity of local93
network communities that are intrinsically densely connected and strongly coupled. A converging94
evidence (Cohen and D’Esposito, 2016; Karwowski et al., 2019) is shown that local, within-network95
communication is critical for motor execution, whereas integrative, between-network communication96
is critical for measuring connectome (Bertolero et al., 2019). Thus, network segregation is thought97
to be essential for describing and understanding of complex neural connectome systems (Sporns,98
2013). In addition, segregation measures are highly reliable and heritable network attributes (Xie et al.,99
2018), and these measures have been linked to the disruption of neural network connectivity in brain100
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development, evolution, disease (Bertolero et al., 2019; Cohen and D’Esposito, 2016; Mak et al., 2016),101
and immunodeficiency (Bell et al., 2018). Given the importance of network segregation, in this study, we102
first focus on quantifying measures of network segregation, analyzing heritability of segregation measures103
and performing genetic association analyses by treating them as neuroimaging traits. Then, our next priority104
is to explore the genetic basis for the rest of the complex-network attributes (e.g. integration, centrality and105
resilience).106

To overcome the challenges mentioned above, this study aims to develop and implement computational107
and statistical strategies for a systematic characterization of structural connectome optimized for imaging108
genetic studies, and to determine genetic basis of structural connectome. Specifically, the framework109
is organized and described in Figure 1, and the primary goals are to address the following six critical110
issues: (a) construction of basic network connectivity with diffusion tractography, (b) systematic extraction111
of complex-network attributes, (c) heritability analysis of complex-network attributes, (d) genome-wide112
association studies of quantitative endophenotypes, (e) examination of mediation effect that intermediately113
bridges genes and outcomes, and (f) identification of outcome-relevant neuroimaging biomarkers. Given114
the enormously broad scope of brain connectome, our focus is on studying (1) static tractography-based115
structural connectome and complex-network attributes characterizing segregation, integration, centrality116
and resilience; (2) genetic consistency and discrepancy for complex-network attributes among cohorts117
different in age; and (3) mediation effects of network attributes on outcome-relevant genetics.118

The major contributions of this study are fivefold:119

• New challenges in human connectome: we elucidate the neurobiological pathway from SNPs to120
brain connectome, and to phenotypic outcomes. By integrating connectomics and genetics, this study121
provides new genetic mechanism insights into understanding detailed brain topological architecture,122
and encoding (or mapping) inter-regional connectivity in the genome.123

• New genetic insights for brain phenotype: we validate the study outcomes by examining genetic124
consistency and discrepancy for complex-network attributes between young adult cohort and elderly125
adult cohort, which illustrates the genetic basis for human connectome in different life stages.126

• Biological findings: we treat network segregation measures as imaging quantitative traits (iQT), and127
demonstrate that body mass index (BMI, which is related to multiple complex diseases (Emmerzaal128
et al., 2015; Stenholm et al., 2017)) is influenced by a locus rs7937515 with network segregation129
attributes (e.g. clustering coefficient and local efficiency) measured at the left middle temporal gyrus130
as mediators, which reveals the intermediate effects of brain connectivity in the pathway of outcome-131
relevant genetics.132

• Biological findings: we discover network segregation as an important neuroimaging biomarker for133
BMI and weight-related disorders, and illustrate the importance of the left middle temporal gyrus for134
BMI.135

• Biological findings: we demonstrate the hemispheric asymmetry of structural network organization in136
genetic association analyses and outcome-relevant studies.137

2 MATERIALS AND METHODS

2.1 Study datasets138

With the purpose of examining genetic consistency and discrepancy for complex-network attributes139
between young and elderly adults, and illustrating genetic basis for human connectome in different life140
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stages, our analysis was respectively conducted on Human Connectome Project (HCP) database for young141
adults and Alzheimer’s Disease Neuroimaging Initiative (ADNI) database for elderly adults.142

2.1.1 HCP young adult dataset143

HCP (Van Essen et al., 2013) is a major endeavor to map macroscopic human brain circuits and144
their relationship to behavior in a large population. It aims to reveal the neural pathways that underlie145
brain function and behavior, by acquiring and analyzing human brain connectivity from high-quality146
neuroimaging data in healthy young adults. The HCP datasets serve as a key resource for the neuroscience147
research community, as it provides valuable resources for characterizing human brain connectivity and148
function, their relationship to behavior, and their heritability and genetic underpinnings, which enables149
discoveries of how the brain is wired and how it functions in different individuals.150

2.1.2 ADNI elderly adults data set151

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database was initially launched in 2004 as a152
public-private partnership, and led by the Principal Investigator Michael W. Weiner, MD. One primary aim153
of ADNI has been to examine whether serial imaging biomarkers extracted from MRI, positron emission154
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be155
combined to measure the progression of mild cognitive impairment (MCI) and early AD. For up-to-date156
information, see www.adni-info.org.157

2.2 Demographics158

We initially downloaded 981 subjects from HCP database, including a part of twin subjects, then one159
individual from each family was randomly selected and excluded. As a result, 275 unrelated participants160
were selected for further population-based genetic analyses. ADNI data were collected by selecting the161
participants who had both genotype data and baseline DWI data at their first visit, family relationship162
was also removed in the same way as described above for HCP data filtration. Detailed characteristic163
information and the number of subjects in each data cohort are shown in Table 1. In this study, we164
analyzed a total of 275 participants (age: 28.7± 3.6; gender: 137 male, 138 female; education: 15.1± 1.6)165
from the HCP database, and a total of 178 participants (age: 73.8 ± 7.0; gender: 108 male, 70 female;166
education: 16.0± 2.8) from the ADNI database. This study was approved by institutional review boards of167
all participating institutions, and written informed consent was obtained from all participants or authorized168
representatives.169

2.3 Genotyping data acquisition and processing170

2.3.1 HCP young adults dataset171

HCP samples were genotyped using MEGA array with PsychChip and ImmunoChip content. 1,141172
genotype data was downloaded from dbGAP. Quality control was performed in PLINK v1.90 (Purcell et al.,173
2007) using the following criteria: 1) call rate per marker ≥ 98%, 2) minor allele frequency (MAF) ≥ 5%,174
3) Hardy Weinberg Equilibrium (HWE) test P ≤ 1.0E-6, and 4) call rate per participant ≥ 98%. Variants175
with no “rs” number, and samples with evidence of identity-by-descent (IBD) ≥ 0.25 or heterozygosity176
rate ±3 standard deviations from the mean were further excluded. Following quality control process, the177
number of samples with genotype data reduced to 327, we then checked the missing data by matching178
subjects information between phenotype and genotype data. As a result, this study comprised a total of 327179
unrelated subjects and 515,956 SNPs.180
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2.3.2 ADNI elderly adults dataset181

Genotyping data were obtained from the ADNI database (adni.loni.usc.edu). They were quality-182
controlled as described in (Yao et al., 2020; Cong et al., 2020). We then performed imputation to maximize183
the number of overlaps between HCP GWAS findings and ADNI SNPs, see (Yao et al., 2019) for details.184
Briefly, genotyping was performed on all ADNI participants following the manufacturer’s protocol using185
blood genomic DNA samples and Illumina GWAS arrays (610-Quad, OmniExpress, or HumanOmni2.5-186
4v1) (Saykin et al., 2010). Quality control was performed in PLINK v1.90 (Purcell et al., 2007) using187
the following criteria: 1) call rate per marker ≥ 95%, 2) minor allele frequency (MAF) ≥ 5%, 3) Hardy188
Weinberg Equilibrium (HWE) test P ≤ 1.0E-6, and 4) call rate per participant ≥ 95%. In total, 5,574,300189
SNPs were included for further targeted genetic association analysis.190

2.4 Tractography and network construction191

2.4.1 Tractography192

We downloaded high spatial resolution DWI data and genotype data from both HCP and ADNI databases.193
DWI data from HCP was processed following the MRtrix3 guidelines (Tournier et al., 2012), detailed194
procedures have been previously reported (Xie et al., 2018) and are briefly described below: (1) generating195
a tissue-segmented image; (2) estimating the multi-shell multi-tissue response function and performing196
the multi-shell multi-tissue constrained spherical deconvolution; (3) generating the initial tractogram197
and applying the successor of Spherical-deconvolution Informed Filtering of Tractograms (SIFT2)198
methodology (Smith et al., 2015); and (4) mapping the SIFT2 output streamlines onto the MarsBaR199
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) with 90 ROIs to produce the200
structural connectome with edge value equal to the mean fractional anisotropy (FA).201

DWI data from ADNI was acquired following the scanning protocols described in (Elsheikh et al., 2020),202
and processed following the procedures discussed in (Yan et al., 2018). Tractography was performed in203
Camino (Cook et al., 2006) based on white matter fiber orientation distribution function (ODF). As Camino204
adopted a deterministic approach, streamlines were modeled with a multi-tensor modeling approach (voxels205
fitted up to three fiber orientations, this way accounting for most of the fiber-crossings) of the ODF data.206
To generate a comparable tractography, the streamlines were also mapped onto AAL atlas with 90 ROIs to207
produce the structural connectome with edge value equal to the mean FA.208

2.4.2 Network construction209

Network was created and defined by connectivity matrix M where Mij stores the connectivity measure210
between ROIs i and j. As described in the previous section, we considered FA for defining Mij . Since211
the diffusion tensor is a symmetric 3 × 3 matrix, it can be described by its eigenvalues (λ1, λ2 and λ3)212
and eigenvectors (v1, v2 and v3) for tractography analysis. FA at edge-level is an index for the amount of213
diffusion asymmetry within a voxel, defined in terms of its eigenvalues:214

FA =

√
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ1 − λ3)

2

2
(
λ21 + λ22 + λ23

) . (1)

Thus, mean FA is a normalized measure of the fraction of the tensor’s magnitude due to anisotropic215
diffusion, corresponding to the degree of anisotropic diffusion or directionality.216
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2.5 Complex-network attributes217

With an undirected and weighted connectivity matrix M (defined in Section 2.4.2), we assessed a218
comprehensive set of network features such as segregation (e.g. transitivity, clustering coefficients,219
local efficiency and modularity), integration (e.g. global efficiency), centrality (e.g. eigen centrality)220
and resilience (e.g. assortativity) of the structural connectome using Brain Connectivity Toolbox221
(BCT) (Rubinov and Sporns, 2010). Given the importance and priority of segregation measures in this study,222
we only introduced the definitions of segregation measures, and the definitions of the rest complex-network223
attributes were explained in (Rubinov and Sporns, 2010).224

For the following sub-sections, we define N as the set of all nodes in the network, n as the number of225

nodes, ti as geometric mean of triangles around node i (ti = 1
2

∑
j,h∈N

(
MijMihMjh

)1/3), ki as weighted226
degree of i (ki =

∑
j∈N Mij), aij as the connection status between i and j (aij = 1 when link (i, j) exists,227

aij = 0 otherwise), dij as shortest weighted path length between i and j (dij =
∑

auv∈gi↪→j
f (Muv), where228

f is a map from weight to length and gi↪→j is the shortest weighted path between i and j).229

2.5.1 Transitivity230

Transitivity measures the ratio of triangles to triplets in the network. By following the definition231
in (Newman, 2003):232

T =

∑
i∈N 2ti∑

i∈N ki (ki − 1)
, (2)

where T is the transitivity measured at network level.233

2.5.2 Clustering coefficient234

Clustering coefficient measures the degree to which nodes in a network tend to cluster together by235
evaluating the fraction of triangles around a node and is equivalent to the fraction of node’s neighbors that236
are neighbors of each other. By following the definition in (Onnela et al., 2005):237

C =
1

n

∑
i∈N

Ci =
1

n

∑
i∈N

2ti
ki (ki − 1)

, (3)

where Ci is the clustering coefficient of node i and C is the clustering coefficient measured at network238
level.239

2.5.3 Local efficiency240

Local efficiency measures the efficiency of information transfer limited to neighboring nodes by evaluating241
the global efficiency computed on node neighborhoods. By following the definition in (Latora and Marchiori,242
2001):243

Eloc =
1

n

∑
i∈N

∑
j,h∈N,j 6=i(MijMih

[
djh (Ni)

]−1
)1/3

ki (ki − 1)
, (4)

where Eloc is the local efficiency of node i, and djh (Ni) is the length of the shortest path between j and h,244
that contains only neighbors of i.245
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2.5.4 Modularity246

Modularity measures network segregation into distinct networks, and it is a statistic that quantifies the247
degree to which the network may be subdivided into such clearly delineated groups (Newman, 2006):248

Q =
1

l

∑
i,j∈N

[
Mij −

kikj
l

]
δmi,mj , (5)

where Q is the modularity measured at network level, mi is the module containing node i, and δmi,mj = 1249
if mi = mj , and 0 otherwise.250

2.6 Heritability Analysis251

Heritability analysis focused on identifying highly heritable measures of structural brain networks, and it252
was a commonly adopted and critical measurement to describe properties of the inheritance of iQT. An iQT253
such as network attributes must be heritable, which was defined as the proportion of phenotypic variance254
due to genetic differences between individuals (Jørstad and Næevdal, 1996). In this study, we estimated255
heritability of four segregation measures from twin subjects in the HCP young adult cohort (N = 350,256
232 mono-zygotic twins, 118 di-zygotic twins) and SOLAR-Eclipse software (Kochunov et al., 2015) was257
employed for this task. The inputs to this software included phenotype traits, covariates measures and a258
kinship matrix indicating the pairwise relationship between twin individuals. A maximum likelihood259
variance decomposition method was applied to estimate the variance explained by additive genetic260
factors and environmental factors respectively. The output from SOLAR-Eclipse included heritability (h2),261
standard error and the corresponding significance p-value for each feature. We estimated the heritability of262
connectomic features, including transitivity, clustering coefficients, local efficiency and modularity. Since263
many previous studies had reported the effect of age (linear nonlinear), gender and their interactions on264
structural brain connectivity (Zhao et al., 2015; Lopez-Larson et al., 2011; Gong et al., 2011; Burzynska265
et al., 2010), all heritability analyses were performed with age, age2, sex, age×sex and age2×sex as266
covariates. In addition, we extracted the total variance explained by all covariate variables.267

2.7 Brain connectome genetic association analysis268

HCP cohort: GWAS on the brain network segregation measures of the 90 ROIs were performed269
using linear regression under an additive genetic model in PLINK v1.90 (Purcell et al., 2007). Age,270
gender and education were included as covariates. Our GWAS was focused on analyzing the following271
network segregation measures: (1) modularity and transitivity, which were network-level measures; and272
(2) clustering coefficient and local efficiency, which were node-level measures. As a result, in total, we273
have 2 + 90 × 2 = 182 measures. Our post-hoc analysis used Bonferroni correction for correcting the274
genome-wide significance (GWS) for the number of quantitative traits (i.e.,5E-8/182=2.75E-10).275

ADNI cohort: Genetic findings of the segregation measures from HCP young adult dataset were treated276
as genotypic candidates and segregation measures at specific ROIs as phenotypic candidates, we further277
examined in ADNI elderly adult dataset regarding their associations. Apart from including age, gender278
and education as covariates, we also added diagnostic status into the linear regression model, as a large279
part of ADNI participants suffered from cognitive disorders. By validating the genetic findings from HCP280
data using ADNI participants, we examined genetic consistency and discrepancy for network segregation281
attributes between young and elderly adults, which illustrated the consistency and discrepancy of genetic282
basis for human connectome in different life stages.283
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In addition, the validated genetic findings were used to further explore connectivity variances with all284
important complex-network attributes excepting segregation measures such as integration (e.g. global285
efficiency and network density), centrality (e.g. eigen centrality) and resilience (e.g. assortativity), and we286
examined the targeted genetic basis on certain brain ROIs (e.g. middle temporal gyrus). As previously287
stated, linear regression models were used. In particular, we applied additive genetic models implemented288
in PLINK v1.90, with age, gender, education as covariates.289

2.8 Mediation analysis290

To examine the causal assumption, we followed the Baron-Kenny procedure (Baron and Kenny, 1986) to291
perform standard mediation analysis to identify the mediated effect, and we treated iQTs (e.g. network292
segregation measures) as mediating variables, which intermediately linked the pathological path from293
genetic findings to clinical phenotypes. Specifically, we constructed a set of candidate SNPs which were294
found significantly associated to segregation measures in both young and elderly participants, and we295
constructed a set of candidate clinical phenotyping information by extracting overlapped clinical outcomes296
collected in both HCP and ADNI databases. We then employed the mediation model to detect the indirect297
effect of loci on clinical outcomes via iQT.298

Specifically, mediation analysis was performed using the non-parametric bootstrap approximation with299
the R ‘mediation’ package developed by Imai et al. (2010). Let y be the dependent variable which was a300
clinical outcome in our study, x be the independent variable which was a candidate SNP, z be the covariates301
(age, gender and education), and M be the mediating variable which was brain iQT. The mediation analysis302
was conducted in 3 steps:303

1) fit a linear model to regress the mediating variable M against SNP x while controlling for z;304

2) fit a linear model to regress the clinical outcome y against SNP x while controlling for z;305

3) adopted the non-parametric bootstrap approximation to estimate the direct effect, mediation effect,306
proportion of total effect via mediation, their 95% confidence intervals (CI) and p values, by conducting307
1,000 simulations.308

2.9 Outcome-relavent brain connectome association analysis309

To discover the outcome-relevant biomarkers which mapped brain connectivity alterations to cognitive or310
behavioral outcomes, we performed pairwise univariate association analysis between network segregation311
attributes and outcome data. We selected BMI and Mini-Mental State Examination (MMSE) as outcomes312
as they were not only measures available in both HCP and ADNI cohorts but also important quantitative313
traits related to complex diseases such as weight-related disorders as well as neurological and psychiatric314
disorders. We used linear regression to regress the phenotypic outcomes against network segregation315
measures for both HCP and ADNI datasets, and explored outcome-relevant brain neuroimaging biomarkers.316
By comparing young and elderly participants, we illustrated the consistency and discrepancy of human317
brain connectome in different ages regarding on BMI and MMSE variations.318

3 RESULTS

3.1 Heritability of network segregation319

As illustrated in Figure 1, we examined segregation measures estimated at both network-level and node-320
level prior to GWAS. All of the segregation measures such as clustering coefficients (node-level), local321
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efficiencies (node-level), transitivity (network-level) and modularity (network-level) showed significantly322
high heritability after Bonferroni correction (p<0.05/182=2.75E-04). The mean (±std) heritability of323
182 segregation measures (h2 score) was 0.81(±0.05), and more detailed results of heritability analysis324
were listed in Supplementary Table. We included all 182 segregation measures in the subsequent GWAS325
analysis.326

3.2 GWAS of network segregation in HCP young adults327

In the HCP cohort, genome-wide associations between 515, 956 SNPs and 182 structural network328
segregation measures were assessed under the additive genetic model and controlled for age, gender and329
education. GWAS identified 20 significant associations between 10 SNPs and 7 segregation measures330
(Table 2), after correcting the genome-wide significance (GWS) for the number of phenotypes using331
Bonferroni method (i.e., p<5E-08/182=2.75E-10). Respectively shown in Figure 2 were Manhattan plots332
of GWAS results of clustering coefficient and local efficiency measured in left middle temporal gyrus.333
GWAS of HCP data showed high consistency for clustering coefficient and local efficiency, where nine334
SNP-ROI associations were discovered for these two segregation measures. After Bonferroni correction,335
there was no significant finding for the network level segregation measures (i.e., transitivity and modularity).336

3.3 Targeted genetic association of segregation in ADNI elderly adults337

Given the list of significant findings from the aforementioned GWAS of HCP segregation measures, we338
further examined their statistical significance in the ADNI cohort to identify brain network relevant genetic339
variants which were consistent for brain aging. We assessed the associations of 15 out of 20 HCP GWAS340
findings in ADNI cohort, as three SNPs (rs4841664, rs1461192 and rs147446959 are corresponding to341
5 associations in Table 2) were not included in ADNI genotyping data. Associations of rs7937515 with342
clustering coefficient and local efficiency measured in left middle temporal gyrus were duplicated and343
validated in ADNI cohort with p values of 1.63E-03 and 1.34E-03, respectively, where the Bonferroni344
corrected significant level p < 0.05/15=3.33E-03 was applied (Table 2).345

The minor allele G of rs7937515 (rs7937515-G) was associated with lower level of both clustering346
coefficient and local efficiency, compared to its major allele A (Figure 3). We will discuss the risk effect of347
rs7937515-G on brain function and dysfunction in the discussion section.348

3.4 Mediation analysis349

According to the genetic association results from the HCP and ADNI subjects, we identified a common350
genetic finding SNP rs7937515, which was associated with two segregation measures in left middle351
temporal gyrus (e.g. clustering coefficient and local efficiency). In addition, we extracted two common352
behavioral and cognitive outcome measures (e.g. BMI and MMSE) by comparing the outcome evaluation353
methods across the HCP and ADNI databases. Thus, in this section, we had two major focuses: (1)354
exploring the genetic effect of SNP rs7937515 on outcomes including BMI and MMSE, and gaining deeper355
insights to the molecular mechanisms of the identified genetic variant, and (2) examining the mediated356
effect of iQTs (e.g. segregation measures) and illustrating their implicit effects in (1).357

To achieve those two goals, mediation analysis of outcome was performed for evaluating both the direct358
and implicit effects of rs7937515 on outcomes (i.e., BMI and MMSE) through segregation measurements359
in left middle temporal gyrus. Mediation analysis required the independent variable (i.e., rs7937515) to360
be significantly associated with both the dependent variable (i.e., BMI or MMSE) and the mediator (i.e.,361
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segregation measurements). Below we respectively reported the mediation results analyzed from both HCP362
and ADNI data.363

For the first focus, the minor allele G of rs7937515 was significantly associated with the increased BMI364
in HCP cohort (p = 1.62E-03; Figure 4A). The same increasing trend was also observed from the ADNI365
data, although the association between rs7937515 and BMI was not significant (p = 0.22; Figure 4B). For366
the second focus, Figure 5 illustrated the results of mediation analysis with BMI as an outcome measure,367
from which both clustering coefficient and local efficiency of the left middle temporal gyrus demonstrated368
the significant intermediate roles between rs7937515 and BMI, with mediation effects of 0.98 (95%CI369
= [0.06,2.29], p = 3.60E-02) and 0.99 (95%CI = [0.02, 2.11], p = 4.60E-02), respectively. There was no370
significant association between rs7937515 with MMSE in the HCP young adult dataset, so no mediation371
analysis regarding MMSE was performed. In the ADNI elderly adult dataset, there were no significant372
associations observed between rs7937515 with BMI nor MMSE; therefore it was not necessary to further373
examine mediation effects.374

Since the brain can be viewed as a predictor, a mediator, or outcome of a health condition (e.g., obesity)375
(Lowe et al., 2019), it is unclear whether the brain regulates the condition (e.g., structural connectome376
alteration considered as a mediator for a physical condition such as BMI), or, conversely, brain is affected377
by the condition. For completeness, we also explored the potential reciprocal relationship from the other378
direction. The above experiment was repeated with BMI as a mediator and connectivity measures as379
outcomes. No significant findings were identified, and thus no evidence was observed for BMI as a380
significant mediator between gene and brain connectivity.381

3.5 Outcome-relevant neuroimaging biomaker discoveries382

On one hand, for the HCP cohort, we respectively identified significantly negative associations (p<383
0.05/4 = 1.25E-02) between BMI with clustering coefficient (p= 3.92E-05) and local efficiency (p=384
4.57E-05) measured in left middle temporal gyrus. On the other hand, for the ADNI cohort, we examined385
the associations between BMI and the above mentioned segregation measures in a pair-wise manner, but386
there was no significant findings satisfying the corrected p threshold. Regarding the relationship between387
cognitive score (e.g. MMSE) and network segregation measures, there was no significant associations388
identified for both HCP and ADNI cohorts.389

3.6 Targeted genetic association of other important network attributes in the left390
middle temporal gyrus391

To review the genetic effect of SNP rs7937515 from different aspects of network connectivity attributes of392
the left middle temporal gyrus, we assessed the relationship between rs7937515 and additional node-level393
measures on reported brain ROI (i.e., left middle temporal gyrus) as well as network-level measures in both394
HCP and ADNI datasets. Table 3 showed association statistics of rs7937515 with segregation, integration,395
centrality and resilience measures. After correcting for the number of examined network measures (i.e.,396
P< 0.05/9=5.56e-03), both HCP and ADNI identified significant associations between the targeted SNP397
with global efficiency (integration) and transitivity (resilience), together with our previous finding that398
rs7937515 was associated with segregation measures such as clustering coefficient and local efficiency,399
our results showed the consistent genetic effect of rs7937515 on brain structural network segregation,400
integration and resilience across aging. Besides the common findings between young and elderly adults,401
rs7937515 was associated with several other node-level and network-level attributes including network402
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density (integration) and eigenvector centrality (centrality) in HCP data, but not in ADNI. Our results403
suggested the possible genetic discrepancy for certain brain connectivities in different life stages.404

3.7 Hemispheric asymmetry of brain connectome405

In this study, we noticed a hemispheric asymmetry of outcome-relevant brain connectivity alterations in406
the left and right middle temporal gyrus (Table 3). Due to two brain regions (e.g. left and right MTG), two407
segregation measures (e.g. clustering coefficient and local efficiency) and one outcome measure (e.g. BMI),408
we applied a Bonferroni corrected p threshold in this section (p<5E-02/8=6.25E-03). In the HCP young409
adult cohort, for the left MTG, we respectively identified significant associations of BMI with clustering410
coefficient (p=3.92E-05), and with local efficiency (p=4.57E-05); for the right MTG, even though there411
were no significant associations of BMI with clustering coefficient (p=2.24E-02), and with local efficiency412
(p= 2.90E-02), both clustering coefficient and local efficiency in left and right MTG showed negative413
associations with BMI. In the ADNI cohort, as reported in the previous section, network segregation was414
not associated with BMI, so it was not necessary and proper to conduct analyses regarding ADNI data in415
this section.416

4 DISCUSSION

As summarized in Figure 1, prior to GWAS, we first performed heritability analysis for network attributes417
screening, and only heritable measures of network segregation were treated as iQT for GWAS. Based on418
experimental outcomes, all of the segregation measures were highly heritable: transitivity and modularity419
were heritable at network level, clustering coefficient and local efficiency were heritable at all nodes,420
which suggested segregation measures were suitable for genetic analyses. Then, we performed GWAS of421
segregation attributes in 275 HCP subjects, and identified several pairwise associations between SNPs and422
iQTs as listed in Table 2. These GWAS findings were validated in 178 ADNI subjects. As a validation result,423
we identified several genetic consistency and discrepancy patterns for human connectome in different424
life stages (as shown in Table 2). As common findings in both HCP young adult and ADNI elderly adult425
cohorts, rs7937515 was negatively associated with clustering coefficient and local efficiency respectively426
measured at left middle temporal gyrus. To the best of our knowledge, this was among the first GWAS427
of human brain high-level network measures across both young and elderly participants. As shown in428
Figure 3(a,c), the minor allele G of rs7937515 was associated with decreased clustering coefficient and429
local efficiency of the left middle temporal gyrus in both young and elderly participants. As concluded430
in (Varangis et al., 2019; Karwowski et al., 2019; Keown et al., 2017; Rudie et al., 2013), the weakness of431
segregated network connectivity (e.g. modularity, clustering coefficient, and local efficiency) was linked432
to multiple brain disorders such as age-related cognitive declines and autism spectrum disorder. Thus,433
our GWAS findings for HCP young adults demonstrated that rs7937515 played a risk effect on human434
network segregation. This neurorisk effect was also confirmed in a targeted genetic association analysis435
for ADNI elderly participants (as shown in Figure 3 (b,d)), these common discoveries between HCP and436
ADNI datasets suggested a consistent genetic risk effect across young and old life stages.437

This study was further conducted by performing several post-hoc analyses in the following three aspects438
(shown as bottom sections in Figure 1): 1) examining genetic mechanisms for common outcome measures439
in the HCP and ADNI studies, and elucidating the mediated effect of iQTs for such outcome-relevant440
genetic association, 2) discovering outcome-relevant imaging biomarkers, and 3) exploring the genetic441
mechanisms of other important complex-network attributes.442
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For the first aspect, our goal was to elucidate the neurobiological pathway from SNPs to brain connectome,443
and to phenotypic outcome. In addition, we aimed to discover the role of iQTs in the outcome-relevant444
genetic associations by performing mediation analyses in both HCP and ADNI datasets. For the HCP young445
participants, we identified that BMI was positively associated with rs7937515 in the first step of mediation446
analysis, demonstrating a risk effect. rs7937515 located in the regions of FAM86C1/FOLR3 was previously447
discussed in literatures (Gao et al., 2015; Gao, 2017) and positively linked to waist circumference in the448
meta-analysis based on the Insulin Resistance Atherosclerosis Family Study (IRASFS) (Palmer et al.,449
2015), which was designed to investigate the genetic and environmental basis of insulin resistance and450
adiposity. FAM86C1 (Family With Sequence Similarity 86 Member C1) and FOLR3 (Folate Receptor451
Gamma) had been reported for their associations with various weight-related phenotypes such as bone452
mineral density (Li et al., 2019) and BMI (Mrozikiewicz et al., 2019; Hair, 2014), which closely related453
to osteoporosis (Li et al., 2019; Mrozikiewicz et al., 2019) and obesity (Gómez-Ambrosi et al., 2004).454
In the second and third steps of mediation analysis, we illustrated that BMI was indirectly influenced455
by rs7937515 (Figures 4 and 5), and iQTs such as clustering coefficient and local efficiency measured456
at the left middle temporal gyrus respectively played a mediating role. We also examined the genetic457
association with MMSE, but no evidence indicated any genetic associations to MMSE. In contrary, for the458
ADNI elderly participants, neither significant associations between rs7937515 and BMI nor MMSE were459
identified in the first step of mediation analysis, so there was not a necessary to examine mediated effect in460
this dataset. Our results demonstrated a disappearance of outcome-relevant genetic effect in the elderly461
participants, this discrepancy from young to elderly participants might due to the dominated influences462
from life style, environment or other non-genetic factors.463

For the second aspect, recent studies (Lowe et al., 2019; Azevedo et al., 2019) showed that structural464
changes in brain tissues could affect food consumption behaviors and mediate BMI, which implied465
connectome alteration could be a causal agent and a promising imaging biomarker in this study. Thus,466
our goal was set to reveal the mapping between connectivity alterations and phenotypic outcome, and467
discover outcome-relevant imaging biomarkers. For young adult participants, segregation measures (e.g.468
clustering coefficient or local efficiency measured at left middle temporal gyrus) previously demonstrated469
their potential to play a mediating role in genetic association discoveries, in this step, we focused on470
examining their direct associations to the outcomes. Thus, we performed a targeted association analysis471
between the mentioned segregation measures and the common outcomes (e.g. BMI or MMSE) evaluated in472
both HCP and ADNI studies (Table 2) by employing linear regression models. For the young participants,473
clustering coefficient and local efficiency measured at left middle temporal gyrus were negatively associated474
with BMI. Similar observation was obtained in (Chen et al., 2018) which linked lower structural network475
segregation to obesity (higher BMI). Our findings suggested that there was a mapping between brain476
network segregation attributes and human physical conditions, and segregation features of the left middle477
temporal gyrus showed their potential as neuroimaging biomarkers to detect BMI-associated complex478
diseases such as dementias (Emmerzaal et al., 2015), cardiovascular disease, cancer, respiratory disease479
and diabetes (Stenholm et al., 2017). For elderly adult participants, no significant associations were480
identified between segregation measures and any outcomes, which suggested an interesting topic for further481
explorations.482

Multiple regression analyses demonstrated that middle temporal gyrus was linked to weight-related issues.483
For example, Veit et al. (Veit et al., 2014) and Gómez-Apo et al. (Gómez-Apo et al., 2018) revealed that484
BMI, visceral fat and age were negatively associated with cortical thickness of the left middle temporal485
gyrus, Ou et al. (Ou et al., 2015) indicated that greater adiposity was associated with lower gray matter486
(GM) volumes in the middle temporal gyrus, Yokum et al. (Yokum et al., 2012) found positive correlation487
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between BMI and white matter (WM) volume in the middle temporal gyrus, Rapuano et al. (Rapuano et al.,488
2016) illustrated left middle temporal gyrus was detected significantly greater activation in response to489
food commercials than to non-food commercials, Salzwedel et al. (Salzwedel et al., 2019) concluded that490
maternal adiposity influenced neonatal brain functional connectivity in middle temporal gyrus, and Peven491
et al. (Peven et al., 2019) identified that cardiorespiratory fitness was negatively associated with functional492
connectivity in the right middle temporal gyrus. To the best of our knowledge, our investigations for the493
association between structural connectivity in the middle temporal gyrus and BMI was among the first494
weight-related studies with high-level imaging features measured from structural network connectivity, and495
our results confirmed several previous findings analyzed from thickness data, T1-weighted MRI data, and496
fMRI data.497

For the third aspect, since there was an emerging interest in understanding the segregation and the498
integration of brain networks (Cohen and D’Esposito, 2016; Mohr et al., 2016) as well as other important499
network attributes such as centrality (Zuo et al., 2012) and resilience (Karwowski et al., 2019), our goal500
was to expand our focus on comprehensively discussed segregation attributes to a more complete set501
of network attributes including segregation, integration, centrality and resilience. For both node level502
network attributes measured at left and right middle temporal gyrus and global network attributes, we503
applied targeted genetic association analyses on global efficiency and density (integration, network level),504
betweeness and eigenvector centrality (centrality, node level) and assortativity coefficient (resilience,505
network level) of the structural connectivity. We identified several pairwise associations between rs7937515506
and these network attributes in both HCP and ADNI datasets (Table 3), and noticed a significant association507
between rs7937515 and global efficiency in both datasets, which suggested that rs7937515 was involved508
into the dynamic fluctuations of segregation and integration of neural information. This finding partially509
answered an elusive question of revealing genetic basis for brain mechanisms of balancing network510
segregation and integration. Another worth noting finding was that rs7937515 was associationed density511
and eigenvector centrality respectively in our targeted analyses, while such associations were vanished in512
elderly participants, which suggested inconsistent genetic influences across different life stages.513

With the awareness of the hemispheric asymmetry of network organization, a genetic basis to explain the514
differences in connectome between two hemispheres were under discovered. In this work, we identified an515
obvious inconsistency of genetic influences on human connectome in different brain hemispheres (Table 3).516
As reported in several recent studies (Jiang et al., 2019; Shu et al., 2015; Tian et al., 2011), the topological517
organizations of structural networks were not uniformly affected across brain hemispheres, which lead to a518
non-uniformly distributed destruction on neural network of the left and right hemispheres. Our finding gave519
an explanation from the point-view of genetics, with the potential for further investigations as many of the520
destruction on neural network (as iQT) were linked to cognitive and behavioral functions and dysfunctions,521
and their genetic mechanisms were still under discovered.522

5 CONCLUSIONS

In this work, we constructed the structural network connectivity, extracted complex-network attributes and523
examined the heritability of network segregation measures. Then, we revealed a novel association between524
the minor allele (G) of rs7937515 and decreased network segregation measures of the left middle temporal525
gyrus across HCP young participants and ADNI elderly participants, which demonstrated a consistent526
genetic risk effect on brain network connectivity across lifespan. We elucidated the neurobiological pathway527
from SNP rs7937515 and genes FAM86C1/FOLR3 to brain network segregation, and to BMI. In such528
pathway, we concluded a genetic risk effect on BMI due to their positive association, examined the529
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mediated effect of network segregation measures, and discovered network segregation of the left middle530
temporal gyrus as BMI-related neuroimaging biomarkers by identifying a negative association between531
them. We also examined genetic associations of a more complete set of important network attributes532
including integration, centrality and resilience, and demonstrated the consistency and discrepancy in533
genetic associations in brain aging. At last, we illustrated hemispheric asymmetry of network organization534
in both datasets in the aspect of genetic effect.535

In sum, with the awareness that BMI is directly and indirectly associated to multiple complex diseases,536
this study performed a systematic analysis that integrated genetics, connectomics and phenotypic outcome537
data, with the goal of revealing biological mechanisms from the genetic determinant to intermediate brain538
connectomic traits and to the BMI phenotype at two different life stages. We identified the genetic effect539
of rs7937515 on human brain network segregation in both young and elderly participants and on BMI in540
young adult cohort. Our findings confirmed several previous genetic and imaging biomarker discoveries.541
Moreover, we provided outcome-relevant genetic insights in the aspect of complex-network attributes of542
human brain connectome. Similar analytical strategies can be applied to future integrative studies linking543
genomics with connectomics, including the analyses of structural and functional connectivity measures,544
additional network attributes, longitudinal or dynamic connectomic features, as well as other types of brain545
imaging genomic data.546
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TABLES

Table 1. Participant characteristics in HCP and ADNI genetic association analyses.

Cohort HCP ADNI P

Number 275 178 -

Gender(M/F) 137/138 108/70 3.02E-02

Age 28.69± 3.64 73.76± 6.95 5.56E-175

Education 15.14± 1.64 16.03± 2.78 1.41E-04

MMSE 29.09± 1.04 27.37± 2.54 2.28E-15

Weight 77.70± 17.06 77.71± 15.92 1.00

BMI 25.99± 4.73 27.28± 5.24 8.87E-03

clus coef ROI 087 0.51± 0.05 0.29± 0.13 1.41E-55

loc effi ROI 087 0.52± 0.05 0.39± 0.17 1.20E-18

P-values were assessed because of significant
differences among diagnosis groups, and were
computed using one-way ANOVA (except for
gender using χ2 test). The p values < 0.05 are
shown in bold. HC = Healthy Control; EMCI =
Early Mild Cognitive Complaint; LMCI = Late
Mild Cognitive Complaint; AD = Alzheimer’s
Disease
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Table 3. Associations between rs7937515 and brain network measures.
HCP ADNI

Class QT
ROI or
Global Beta P Beta P

Clustering coefficient TPMid L -0.37 1.09E-10 -0.24 1.63E-03
Clustering coefficient TPMid R -0.20 3.53E-04 -0.22 3.94E-03

Local efficiency TPMid L -0.38 4.22E-11 -0.24 1.34E-03
Local efficiency TPMid R -0.22 7.05E-05 -0.22 2.92E-03

Transitivity Global -0.23 3.65E-05 -0.24 1.17E-03

Segregation

Modularity Global 0.20 5.32E-04 -0.12 9.32E-02

Global efficiency Global -0.29 1.63E-07 -0.24 1.48E-03
Integration

Density Global -0.26 2.64E-06 0.03 7.11E-01

Betweenness centrality TPMid L -0.09 1.28E-01 -0.05 5.28E-01
Betweenness centrality TPMid R -0.06 3.24E-01 -0.03 6.75E-01
Eigenvector centrality TPMid L -0.32 9.58E-08 -0.13 7.85E-02

Centrality

Eigenvector centrality TPMid R -0.20 6.11E-04 -0.03 6.98E-01

Resilience Assortativity coefficient Global 0.10 1.14E-01 0.06 3.95E-01

Table 3. Abbreviations: F = frontal, TP = temporal pole, Mid = middle, Med = medial,
Orb = orbital, L = left, R = right, QT = quantitative trait.
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FIGURE CAPTIONS

Figure 1. Flowchart of brain connectome GWAS design. Abbreviations: SNPs, single nucleotide
polymorphisms; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HCP, Human Connectome Project;
dbGaP, database of Genotypes and Phenotypes; QC, quality control; ROI, region of interest; iQT: imaging
quantitative trait; BMI, body mass index.

Figure 2. Manhattan plot of GWAS results in the HCP dataset. Top and bottom plots show the GWAS
results of clustering coefficient and local efficiency on left middle temporal gyrus, respectively. Red and
blue lines correspond to the p-value of 5E-08 and 2.75E-10, respectively.

Figure 3. Association of rs7937515 on clustering coefficient and local efficiency of the left middle
temporal gyrus. (A-B) Mean clustering coefficient with standard errors are plotted against the rs7937515
genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. (C-D) Mean local
efficiency with standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG)
for the HCP and ADNI cohorts, respectively. p values are calculated from GWAS (HCP) and targeted
analysis (ADNI), and significant p values are marked in bold.

Figure 4. Association of rs7937515 on BMI in the HCP and ADNI cohorts. (A) Mean BMI with
standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP
cohort. (B) Mean BMI with standard errors are plotted against the rs7937515 genotype groups (i.e., AA,
AG and GG) for the ADNI cohort. p values are calculated from mediation analysis, and significant p values
are marked in bold.

Figure 5. Direct and mediation effect of rs7937515 on BMI through left middle temporal gyrus. (A-
B) illustrate the effect size, 95% CI and p value from rs7937515 mediation analysis of BMI via left middle
temporal clustering coefficient. (C-D) illustrate the effect size, 95% confidence interval and p value from
rs7937515 mediation analysis of BMI via left middle temporal local efficient. TE = total effect; DE = direct
effect; ME = mediation effect.
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