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Abstract
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Background: Human brain structural connectivity is an important imaging quantitative trait for brain development and aging.
Mapping the network connectivity to the phenotypic variation provides fundamental insights in understanding the relationship
between detailed brain topological architecture, function, and dysfunction. However, the underlying neurobiological mechanism
from gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes over time, remain unclear.

Methods: This study analyzes diffusion-weighted imaging data from two age-specific neuroimaging cohorts, extracts structural
connectome topological network measures, performs genome-wide association studies of the measures, and examines the
causality of genetic influences on phenotypic outcomes mediated via connectivity measures.

Results: Our empirical study has yielded several significant findings:

1) It identified genetic makeup underlying structural connectivity changes in the human brain connectome for both age groups.
Specifically, it revealed a novel association between the minor allele (G) of rs7937515 and the decreased network segregation
measures of the left middle temporal gyrus across young and elderly adults, indicating a consistent genetic effect on brain
connectivity across the lifespan.

2) It revealed rs7937515 as a genetic marker for body mass index in young adults but not in elderly adults.

3) It discovered brain network segregation alterations as a potential neuroimaging biomarker for obesity.

4) It demonstrated the hemispheric asymmetry of structural network organization in genetic association analyses and outcome-
relevant studies.

Discussion: These imaging genetic findings underlying brain connectome warrant further investigation for exploring their
potential influences on brain-related complex diseases, given the significant involvement of altered connectivity in neurological,
psychiatric and physical disorders.

Contribution to the field

The major contributions of this study are fivefold: (1) We elucidate the neurobiological pathway from SNPs to brain connectome,
and to phenotypic outcomes. By integrating connectomics and genetics, this study provides new genetic mechanism insights into
understanding detailed brain topological architecture and encoding (or mapping) inter-regional connectivity in the genome. (2) We
validate the study outcomes by examining genetic consistency and discrepancy for complex-network attributes between young
adult cohort and elderly adult cohort, which illustrates genetic basis for human connectome in different life stages. (3) We
demonstrate that body mass index (BMI, which is a well-known factor related to multiple complex diseases) is influenced by a locus
rs7937515128 with network segregation attributes measured at the left middle temporal gyrus as mediators, which reveals the
intermediate effects of brain connectivity in the pathway of outcome-relevant genetics. (4) We discover network segregation as
important neuroimaging biomarker for BMI and weight-related issues, and illustrate the importance of the left middle temporal
gyrus for BMI. (5) We demonstrate the hemispheric asymmetry of structural network organization in genetic association analyses
and outcome-relevant studies.

Funding statement



This work (including open access publication fees) was supported in part by NIH RO1 EB022574, RO1 LM013463 and R21 AG066135; by
NSF 1837964, 1942394, and 1755836; and Dr. Shen's research fund at University of Pennsylvania.

Ethics statements

Studies involving animal subjects
Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects
Generated Statement: The studies involving human participants were reviewed and approved by Institutional Review Boards (IRB)
at University of Pennsylvania. The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data
Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: Publicly available datasets were analyzed in this study. This data can be found here: the ADNI website
(http://adni.loni.usc.edu/) and the HCP website (https://www.humanconnectome.org/)..



1

N

0 N O o~ W

11
12
13
14
15
16

l\' frontiers

Genetic Influence underlying Brain
Connectivity Phenotype: A Study on Two
Age-Specific Cohorts

Shan Cong !'f, Xiaohui Yao T, Linhui Xie 2, Jingwen Yan 3, Li Shen *, for the
Alzheimer’s Disease Neuroimaging Initiative *

! Department of Biostatistics, Epidemiology and Informatics, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

2Department of Electrical and Computer Engineering, School of Engineering,
Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.

3 Department of BioHealth Informatics, School of Informatics and Computing,
Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.

* The Alzheimer’s Disease Neuroimaging Initiative: Data used in preparation of
this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data, but did
not participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.usc.edu

T These authors have contributed equally to this work and share first authorship
Correspondence™:

Li Shen, PhD

B306 Richards Building

3700 Hamilton Walk

Philadelphia, PA 19104

(+1) 215-573-2956
li.shen@pennmedicine.upenn.edu

ABSTRACT

Background: Human brain structural connectivity is an important imaging quantitative trait
for brain development and aging. Mapping the network connectivity to the phenotypic variation
provides fundamental insights in understanding the relationship between detailed brain topological
architecture, function, and dysfunction. However, the underlying neurobiological mechanism from
gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes
over time, remain unclear.

Methods: This study analyzes diffusion-weighted imaging data from two age-specific
neuroimaging cohorts, extracts structural connectome topological network measures, performs
genome-wide association studies of the measures, and examines the causality of genetic
influences on phenotypic outcomes mediated via connectivity measures.

Results: Our empirical study has yielded several significant findings: 1) It identified genetic
makeup underlying structural connectivity changes in the human brain connectome for both age
groups. Specifically, it revealed a novel association between the minor allele (G) of rs7937515
and the decreased network segregation measures of the left middle temporal gyrus across
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young and elderly adults, indicating a consistent genetic effect on brain connectivity across the
lifespan. 2) It revealed rs7937515 as a genetic marker for body mass index in young adults
but not in elderly adults. 3) It discovered brain network segregation alterations as a potential
neuroimaging biomarker for obesity. 4) It demonstrated the hemispheric asymmetry of structural
network organization in genetic association analyses and outcome-relevant studies.

Discussion: These imaging genetic findings underlying brain connectome warrant further
investigation for exploring their potential influences on brain-related complex diseases, given the
significant involvement of altered connectivity in neurological, psychiatric and physical disorders.

Keywords:Human Connectomics; Network Segregation; Genome-Wide Association Study; Body Mass Index; Causal inference

1 INTRODUCTION

Brain structural connectivity is a major organizing principle of the nervous system. Estimating interregional
neural connectivity, reconstructing geometric structure of fiber pathways, and mapping the network
connectivity to corresponding inter-individual variabilities provide fundamental insights in understanding
detailed brain topological architecture, function and dysfunction. A large body of research has been
devoted to extracting and investigating macro-scale brain networks from diffusion-weighted imaging (DWI)
data (Xie et al., 2018; Jiang et al., 2019; van den Heuvel et al., 2019; Elsheikh et al., 2020; Bertolero
et al., 2019), and various behavioral, neurological and neuropsychiatric disorders have been linked to the
disrupted brain connectivity (Jiang et al., 2019; van den Heuvel et al., 2019). As structural changes of brain
connectivity are phenotypically associated with massive complex traits across different categories, the
brain-wide connectome has been extensively studied.

It is worth noting that human brain connectome re-configures its network structure dynamically and
adaptively in response to genetic, lifestyle, environmental factors (Cauda et al., 2018; Cohen and D’Esposito,
2016), brain development and aging (Sala-Llonch et al., 2015; Alloza et al., 2018; Varangis et al., 2019).
However, the underlying neurobiological mechanism from gene to brain connectome, and to cognitive and
behavioral outcomes, and whether this mechanism changes over time, remain unclear. To bridge this gap,
we perform a genetic study of brain connectome phenotypes on two different age-specific cohorts: one
contains healthy young adults (age: 28.7 4= 3.6), and the other contains elderly participants (age: 73.8 == 7.0).
Our goal is to identify genetic factors affecting brain connectivity and examine their consistency and
discrepancy between these two age-specific groups.

Emerging advances in multimodal brain imaging, high throughput genotyping and sequencing techniques
provide exciting new opportunities to ultimately improve our understanding of brain structure and neural
dynamics, their genetic architecture and their influences on cognition and behavior (Shen and Thompson,
2020). Present studies investigating direct associations among human connectomics, genomics and clinical
phenotyping are primarily focused on four aspects: (1) estimating genetic heritability of basic connectome
measures such as number of fibers, length of fibers and fractional anisotropy (FA) (Jahanshad et al.,
2013; Thompson et al., 2013; Elliott et al., 2018); (2) discovering pairwise univariate associations between
single nucleotide polymorphisms (SNPs) and imaging phenotypic traits such as above mentioned basic
connectome measures at each edge (Jahanshad et al., 2013; Karwowski et al., 2019) and white matter
properties at each voxel (Alloza et al., 2018; Kochunov et al., 2010; Guo et al., 2020); (3) discovering
pairwise univariate associations between SNPs and clinical phenotypes such as cognitive or behavioral
outcomes (Jahanshad et al., 2013; Elsheikh et al., 2020); and (4) discovering pairwise univariate associations
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between basic connectome measures and clinical phenotypes (Jiang et al., 2019; van den Heuvel et al.,
2019).

Among the studies mentioned above, there exist two major limitations. First, these studies were conducted
based on basic connectome measures such as number of fibers, length of fibers and FA, but the complex-
network attributes were overlooked, which included network segregation, integration, centrality and
resilience and important network components such as hubs, communities, and rich clubs (Sporns, 2013).
These attributes were extensively adopted to detect network integration and segregation, quantitatively
measure the centrality of network regions and pathways, characterize patterns of local anatomical circuitry,
and test resilience of networks to insult (Rubinov and Sporns, 2010). Second, these studies performed
analyses by examining the association between an independent variable (e.g. SNP) and a dependent
variable (e.g. cognitive or behavioral outcome), without taking into consideration the mediator(s) linking
these variables (Baron and Kenny, 1986). Mediation analysis can help identify the underlying mechanism
of outcome-relevant genetic effects implicitly mediated by neuroimaging phenotypes (e.g. connectome
measures). Of note, mediation analysis requires the independent variable to be significantly associated
with both the dependent variable and the mediator. This makes applying it in brain neuroimaging studies a
challenge due to the modest effect size of an individual genetic variant on both behavioral and imaging
phenotypes (Saykin et al., 2015; Cong et al., 2018), as well as limited size of the sample with all diagnostic,
imaging and genetic data available.

With the demand of measuring complex-network attributes, a few recent genome-wide association
studies (GWAS) (Elsheikh et al., 2020; Bertolero et al., 2019) recognized the first problem mentioned
above and adopted quantitative measurement approaches for complex-network attributes , and treated the
attributes as neuroimaging traits for the explorations of complex imaging genomic associations. They
successfully identified a number of loci susceptible for Alzheimer’s Disease (Elsheikh et al., 2020), and
demonstrated the associations between loci and segregated network patterns, which may be involved in
brain development, evolution, and disease (Bertolero et al., 2019). However, a notable limitation is that
these studies only focus on the brain networks of either young or elderly participants, as a result, their
study outcomes are lack of validations in multiple data sets. Since there is an age-related discrepancy
for genetic effects on human connectome alterations across lifespan (Varangis et al., 2019), it remains
an under-explored topic to examine genetic consistency and discrepancy for complex-network attributes
among cohorts different in age. Another factor that may cause discrepancy in the network architecture is
the hemispheric asymmetry (Jiang et al., 2019), and the hemispheric asymmetry of network organization
has been linked to development processes (Zhong et al., 2017) and neuropsychiatric disorders (Sun et al.,
2017). It remains a challenge to understand the genetic basis for the network attributes of two hemispheres
as they may be distinctively correlated to cognition level, physical and psychological development.

Among a large number of complex-network attributes, it has been well documented in recent
literatures (Xie et al., 2018; Cohen and D’Esposito, 2016) that segregation of neural information such as
modularity, transitivity, clustering coefficients and local efficiency represent the connectivity of local
network communities that are intrinsically densely connected and strongly coupled. A converging
evidence (Cohen and D’Esposito, 2016; Karwowski et al., 2019) is shown that local, within-network
communication is critical for motor execution, whereas integrative, between-network communication
is critical for measuring connectome (Bertolero et al., 2019). Thus, network segregation is thought
to be essential for describing and understanding of complex neural connectome systems (Sporns,
2013). In addition, segregation measures are highly reliable and heritable network attributes (Xie et al.,
2018), and these measures have been linked to the disruption of neural network connectivity in brain
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development, evolution, disease (Bertolero et al., 2019; Cohen and D’Esposito, 2016; Mak et al., 2016),
and immunodeficiency (Bell et al., 2018). Given the importance of network segregation, in this study, we
first focus on quantifying measures of network segregation, analyzing heritability of segregation measures
and performing genetic association analyses by treating them as neuroimaging traits. Then, our next priority
is to explore the genetic basis for the rest of the complex-network attributes (e.g. integration, centrality and
resilience).

To overcome the challenges mentioned above, this study aims to develop and implement computational
and statistical strategies for a systematic characterization of structural connectome optimized for imaging
genetic studies, and to determine genetic basis of structural connectome. Specifically, the framework
is organized and described in Figure 1, and the primary goals are to address the following six critical
issues: (a) construction of basic network connectivity with diffusion tractography, (b) systematic extraction
of complex-network attributes, (c) heritability analysis of complex-network attributes, (d) genome-wide
association studies of quantitative endophenotypes, (€) examination of mediation effect that intermediately
bridges genes and outcomes, and (f) identification of outcome-relevant neuroimaging biomarkers. Given
the enormously broad scope of brain connectome, our focus is on studying (1) static tractography-based
structural connectome and complex-network attributes characterizing segregation, integration, centrality
and resilience; (2) genetic consistency and discrepancy for complex-network attributes among cohorts
different in age; and (3) mediation effects of network attributes on outcome-relevant genetics.

The major contributions of this study are fivefold:

e New challenges in human connectome: we elucidate the neurobiological pathway from SNPs to
brain connectome, and to phenotypic outcomes. By integrating connectomics and genetics, this study
provides new genetic mechanism insights into understanding detailed brain topological architecture,
and encoding (or mapping) inter-regional connectivity in the genome.

e New genetic insights for brain phenotype: we validate the study outcomes by examining genetic
consistency and discrepancy for complex-network attributes between young adult cohort and elderly
adult cohort, which illustrates the genetic basis for human connectome in different life stages.

¢ Biological findings: we treat network segregation measures as imaging quantitative traits (iQT), and
demonstrate that body mass index (BMI, which is related to multiple complex diseases (Emmerzaal
et al., 2015; Stenholm et al., 2017)) is influenced by a locus rs7937515 with network segregation
attributes (e.g. clustering coefficient and local efficiency) measured at the left middle temporal gyrus
as mediators, which reveals the intermediate effects of brain connectivity in the pathway of outcome-
relevant genetics.

¢ Biological findings: we discover network segregation as an important neuroimaging biomarker for
BMI and weight-related disorders, and illustrate the importance of the left middle temporal gyrus for
BMI.

¢ Biological findings: we demonstrate the hemispheric asymmetry of structural network organization in
genetic association analyses and outcome-relevant studies.

2 MATERIALS AND METHODS
2.1 Study datasets

With the purpose of examining genetic consistency and discrepancy for complex-network attributes
between young and elderly adults, and illustrating genetic basis for human connectome in different life
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stages, our analysis was respectively conducted on Human Connectome Project (HCP) database for young
adults and Alzheimer’s Disease Neuroimaging Initiative (ADNI) database for elderly adults.

2.1.1  HCP young adult dataset

HCP (Van Essen et al., 2013) is a major endeavor to map macroscopic human brain circuits and
their relationship to behavior in a large population. It aims to reveal the neural pathways that underlie
brain function and behavior, by acquiring and analyzing human brain connectivity from high-quality
neuroimaging data in healthy young adults. The HCP datasets serve as a key resource for the neuroscience
research community, as it provides valuable resources for characterizing human brain connectivity and
function, their relationship to behavior, and their heritability and genetic underpinnings, which enables
discoveries of how the brain is wired and how it functions in different individuals.

2.1.2 ADNI elderly adults data set

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database was initially launched in 2004 as a
public-private partnership, and led by the Principal Investigator Michael W. Weiner, MD. One primary aim
of ADNI has been to examine whether serial imaging biomarkers extracted from MRI, positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early AD. For up-to-date
information, see www.adni-info.org.

2.2 Demographics

We initially downloaded 981 subjects from HCP database, including a part of twin subjects, then one
individual from each family was randomly selected and excluded. As a result, 275 unrelated participants
were selected for further population-based genetic analyses. ADNI data were collected by selecting the
participants who had both genotype data and baseline DWI data at their first visit, family relationship
was also removed in the same way as described above for HCP data filtration. Detailed characteristic
information and the number of subjects in each data cohort are shown in Table 1. In this study, we
analyzed a total of 275 participants (age: 28.7 + 3.6; gender: 137 male, 138 female; education: 15.1 £ 1.6)
from the HCP database, and a total of 178 participants (age: 73.8 £ 7.0; gender: 108 male, 70 female;
education: 16.0 £ 2.8) from the ADNI database. This study was approved by institutional review boards of
all participating institutions, and written informed consent was obtained from all participants or authorized
representatives.

2.3 Genotyping data acquisition and processing
2.3.1 HCP young adults dataset

HCP samples were genotyped using MEGA array with PsychChip and ImmunoChip content. 1,141
genotype data was downloaded from dbGAP. Quality control was performed in PLINK v1.90 (Purcell et al.,
2007) using the following criteria: 1) call rate per marker > 98%, 2) minor allele frequency (MAF) > 5%,
3) Hardy Weinberg Equilibrium (HWE) test P < 1.0E-6, and 4) call rate per participant > 98%. Variants
with no “rs” number, and samples with evidence of identity-by-descent (IBD) > 0.25 or heterozygosity
rate +3 standard deviations from the mean were further excluded. Following quality control process, the
number of samples with genotype data reduced to 327, we then checked the missing data by matching
subjects information between phenotype and genotype data. As a result, this study comprised a total of 327
unrelated subjects and 515,956 SNPs.

Frontiers 5
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2.3.2 ADNI elderly adults dataset

Genotyping data were obtained from the ADNI database (adni.loni.usc.edu). They were quality-
controlled as described in (Yao et al., 2020; Cong et al., 2020). We then performed imputation to maximize
the number of overlaps between HCP GWAS findings and ADNI SNPs, see (Yao et al., 2019) for details.
Briefly, genotyping was performed on all ADNI participants following the manufacturer’s protocol using
blood genomic DNA samples and Illumina GWAS arrays (610-Quad, OmniExpress, or HumanOmni2.5-
4v1) (Saykin et al., 2010). Quality control was performed in PLINK v1.90 (Purcell et al., 2007) using
the following criteria: 1) call rate per marker > 95%, 2) minor allele frequency (MAF) > 5%, 3) Hardy
Weinberg Equilibrium (HWE) test P < 1.0E-6, and 4) call rate per participant > 95%. In total, 5,574,300
SNPs were included for further targeted genetic association analysis.

2.4 Tractography and network construction
2.4.1 Tractography

We downloaded high spatial resolution DWI data and genotype data from both HCP and ADNI databases.
DWI data from HCP was processed following the MRtrix3 guidelines (Tournier et al., 2012), detailed
procedures have been previously reported (Xie et al., 2018) and are briefly described below: (1) generating
a tissue-segmented image; (2) estimating the multi-shell multi-tissue response function and performing
the multi-shell multi-tissue constrained spherical deconvolution; (3) generating the initial tractogram
and applying the successor of Spherical-deconvolution Informed Filtering of Tractograms (SIFT2)
methodology (Smith et al., 2015); and (4) mapping the SIFT2 output streamlines onto the MarsBaR
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) with 90 ROIs to produce the
structural connectome with edge value equal to the mean fractional anisotropy (FA).

DWI data from ADNI was acquired following the scanning protocols described in (Elsheikh et al., 2020),
and processed following the procedures discussed in (Yan et al., 2018). Tractography was performed in
Camino (Cook et al., 2006) based on white matter fiber orientation distribution function (ODF). As Camino
adopted a deterministic approach, streamlines were modeled with a multi-tensor modeling approach (voxels
fitted up to three fiber orientations, this way accounting for most of the fiber-crossings) of the ODF data.
To generate a comparable tractography, the streamlines were also mapped onto AAL atlas with 90 ROIs to
produce the structural connectome with edge value equal to the mean FA.

2.4.2 Network construction

Network was created and defined by connectivity matrix M where M;; stores the connectivity measure
between ROIs 7 and j. As described in the previous section, we considered FA for defining M;;. Since
the diffusion tensor is a symmetric 3 X 3 matrix, it can be described by its eigenvalues (A1, A2 and \3)
and eigenvectors (v, v2 and v3) for tractography analysis. FA at edge-level is an index for the amount of
diffusion asymmetry within a voxel, defined in terms of its eigenvalues:

ey

a2 o = 29 4 (= M)
2(N2+ M+ 23) '

Thus, mean FA is a normalized measure of the fraction of the tensor’s magnitude due to anisotropic
diffusion, corresponding to the degree of anisotropic diffusion or directionality.

This is a provisional file, not the final typeset article 6
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2.5 Complex-network attributes

With an undirected and weighted connectivity matrix M (defined in Section 2.4.2), we assessed a
comprehensive set of network features such as segregation (e.g. transitivity, clustering coefficients,
local efficiency and modularity), integration (e.g. global efficiency), centrality (e.g. eigen centrality)
and resilience (e.g. assortativity) of the structural connectome using Brain Connectivity Toolbox
(BCT) (Rubinov and Sporns, 2010). Given the importance and priority of segregation measures in this study,
we only introduced the definitions of segregation measures, and the definitions of the rest complex-network
attributes were explained in (Rubinov and Sporns, 2010).

For the following sub-sections, we define /V as the set of all nodes in the network, n as the number of
nodes, t; as geometric mean of triangles around node 7 (¢; = % > JhEN (MijMih]\/[ jh) Y 3), k; as weighted
degree of i (k; = > jEN M;;), a;j as the connection status between ¢ and j (a;; = 1 when link (7, j) exists,
a;; = 0 otherwise), d;; as shortest weighted path length between 4 and j (d;; = ) v €ics, f (Myy), where
f is a map from weight to length and g;,; is the shortest weighted path between 7 and j).

2.5.1 Transitivity

Transitivity measures the ratio of triangles to triplets in the network. By following the definition
in (Newman, 2003):
ZieN 2t

ZieN ki (kz > 1)’

where 7' is the transitivity measured at network level.

T = 2)

2.5.2 Clustering coefficient

Clustering coefficient measures the degree to which nodes in a network tend to cluster together by
evaluating the fraction of triangles around a node and is equivalent to the fraction of node’s neighbors that
are neighbors of each other. By following the definition in (Onnela et al., 2005):

1 1 2t;

C=- Ci=— —_— 3

nz ‘ Tle'iUﬂ—l)’ ()
1EN 1eEN

where C; is the clustering coefficient of node ¢ and C' is the clustering coefficient measured at network

level.

2.5.3 Local efficiency

Local efficiency measures the efficiency of information transfer limited to neighboring nodes by evaluating
the global efficiency computed on node neighborhoods. By following the definition in (Latora and Marchiori,
2001):

1 > 5 he (Mg My [djn (N3)] ™)/

Eoc:_ 5 4
l n ki(/{i—l) ()

ieN
where Fj,. is the local efficiency of node 7, and d;;, (V;) is the length of the shortest path between j and h,
that contains only neighbors of <.
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2.5.4 Modularity

Modularity measures network segregation into distinct networks, and it is a statistic that quantifies the
degree to which the network may be subdivided into such clearly delineated groups (Newman, 2006):

1 kik;
Q=72 [Mij - —J} Srmym; )

£ )
1,JEN

where () is the modularity measured at network level, m; is the module containing node ¢, and 5m7:,mj =1
if m; = m;, and 0 otherwise.

2.6 Heritability Analysis

Heritability analysis focused on identifying highly heritable measures of structural brain networks, and it
was a commonly adopted and critical measurement to describe properties of the inheritance of 1QT. An 1QT
such as network attributes must be heritable, which was defined as the proportion of phenotypic variance
due to genetic differences between individuals (Jgrstad and Naevdal, 1996). In this study, we estimated
heritability of four segregation measures from twin subjects in the HCP young adult cohort (N = 350,
232 mono-zygotic twins, 118 di-zygotic twins) and SOLAR-Eclipse software (Kochunov et al., 2015) was
employed for this task. The inputs to this software included phenotype traits, covariates measures and a
kinship matrix indicating the pairwise relationship between twin individuals. A maximum likelihood
variance decomposition method was applied to estimate the variance explained by additive genetic
factors and environmental factors respectively. The output from SOLAR-Eclipse included heritability (h2),
standard error and the corresponding significance p-value for each feature. We estimated the heritability of
connectomic features, including transitivity, clustering coefficients, local efficiency and modularity. Since
many previous studies had reported the effect of age (linear nonlinear), gender and their interactions on
structural brain connectivity (Zhao et al., 2015; Lopez-Larson et al., 2011; Gong et al., 2011; Burzynska
et al., 2010), all heritability analyses were performed with age, age?, sex, agexsex and age” xsex as
covariates. In addition, we extracted the total variance explained by all covariate variables.

2.7 Brain connectome genetic association analysis

HCP cohort: GWAS on the brain network segregation measures of the 90 ROIs were performed
using linear regression under an additive genetic model in PLINK v1.90 (Purcell et al., 2007). Age,
gender and education were included as covariates. Our GWAS was focused on analyzing the following
network segregation measures: (1) modularity and transitivity, which were network-level measures; and
(2) clustering coefficient and local efficiency, which were node-level measures. As a result, in total, we
have 2 4+ 90 x 2 = 182 measures. Our post-hoc analysis used Bonferroni correction for correcting the
genome-wide significance (GWS) for the number of quantitative traits (i.e.,5E-8/182=2.75E-10).

ADNI cohort: Genetic findings of the segregation measures from HCP young adult dataset were treated
as genotypic candidates and segregation measures at specific ROIs as phenotypic candidates, we further
examined in ADNI elderly adult dataset regarding their associations. Apart from including age, gender
and education as covariates, we also added diagnostic status into the linear regression model, as a large
part of ADNI participants suffered from cognitive disorders. By validating the genetic findings from HCP
data using ADNI participants, we examined genetic consistency and discrepancy for network segregation
attributes between young and elderly adults, which illustrated the consistency and discrepancy of genetic
basis for human connectome in different life stages.

This is a provisional file, not the final typeset article 8
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In addition, the validated genetic findings were used to further explore connectivity variances with all
important complex-network attributes excepting segregation measures such as integration (e.g. global
efficiency and network density), centrality (e.g. eigen centrality) and resilience (e.g. assortativity), and we
examined the targeted genetic basis on certain brain ROIs (e.g. middle temporal gyrus). As previously
stated, linear regression models were used. In particular, we applied additive genetic models implemented
in PLINK v1.90, with age, gender, education as covariates.

2.8 Mediation analysis

To examine the causal assumption, we followed the Baron-Kenny procedure (Baron and Kenny, 1986) to
perform standard mediation analysis to identify the mediated effect, and we treated iQTs (e.g. network
segregation measures) as mediating variables, which intermediately linked the pathological path from
genetic findings to clinical phenotypes. Specifically, we constructed a set of candidate SNPs which were
found significantly associated to segregation measures in both young and elderly participants, and we
constructed a set of candidate clinical phenotyping information by extracting overlapped clinical outcomes
collected in both HCP and ADNI databases. We then employed the mediation model to detect the indirect
effect of loci on clinical outcomes via iQT.

Specifically, mediation analysis was performed using the non-parametric bootstrap approximation with
the R ‘mediation’ package developed by Imai et al. (2010). Let y be the dependent variable which was a
clinical outcome in our study, x be the independent variable which was a candidate SNP, 2 be the covariates
(age, gender and education), and M be the mediating variable which was brain iQT. The mediation analysis
was conducted in 3 steps:

1) fit a linear model to regress the mediating variable M against SNP x while controlling for z;
2) fit a linear model to regress the clinical outcome y against SNP x while controlling for z;

3) adopted the non-parametric bootstrap approximation to estimate the direct effect, mediation effect,
proportion of total effect via mediation, their 95% confidence intervals (CI) and p values, by conducting
1,000 simulations.

2.9 Outcome-relavent brain connectome association analysis

To discover the outcome-relevant biomarkers which mapped brain connectivity alterations to cognitive or
behavioral outcomes, we performed pairwise univariate association analysis between network segregation
attributes and outcome data. We selected BMI and Mini-Mental State Examination (MMSE) as outcomes
as they were not only measures available in both HCP and ADNI cohorts but also important quantitative
traits related to complex diseases such as weight-related disorders as well as neurological and psychiatric
disorders. We used linear regression to regress the phenotypic outcomes against network segregation
measures for both HCP and ADNI datasets, and explored outcome-relevant brain neuroimaging biomarkers.
By comparing young and elderly participants, we illustrated the consistency and discrepancy of human
brain connectome in different ages regarding on BMI and MMSE variations.

3 RESULTS
3.1 Heritability of network segregation

As illustrated in Figure 1, we examined segregation measures estimated at both network-level and node-
level prior to GWAS. All of the segregation measures such as clustering coefficients (node-level), local
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efficiencies (node-level), transitivity (network-level) and modularity (network-level) showed significantly
high heritability after Bonferroni correction (p< 0.05/182 =2.75E-04). The mean (+std) heritability of
182 segregation measures (h2 score) was 0.81(%£0.05), and more detailed results of heritability analysis
were listed in Supplementary Table. We included all 182 segregation measures in the subsequent GWAS
analysis.

3.2 GWAS of network segregation in HCP young adults

In the HCP cohort, genome-wide associations between 515,956 SNPs and 182 structural network
segregation measures were assessed under the additive genetic model and controlled for age, gender and
education. GWAS identified 20 significant associations between 10 SNPs and 7 segregation measures
(Table 2), after correcting the genome-wide significance (GWS) for the number of phenotypes using
Bonferroni method (i.e., p< 5E-08 /182 =2.75E-10). Respectively shown in Figure 2 were Manhattan plots
of GWAS results of clustering coefficient and local efficiency measured in left middle temporal gyrus.
GWAS of HCP data showed high consistency for clustering coefficient and local efficiency, where nine
SNP-ROI associations were discovered for these two segregation measures. After Bonferroni correction,
there was no significant finding for the network level segregation measures (i.e., transitivity and modularity).

3.3 Targeted genetic association of segregation in ADNI elderly adults

Given the list of significant findings from the aforementioned GWAS of HCP segregation measures, we
further examined their statistical significance in the ADNI cohort to identify brain network relevant genetic
variants which were consistent for brain aging. We assessed the associations of 15 out of 20 HCP GWAS
findings in ADNI cohort, as three SNPs (rs4841664, rs1461192 and rs147446959 are corresponding to
5 associations in Table 2) were not included in ADNI genotyping data. Associations of rs7937515 with
clustering coefficient and local efficiency measured in left middle temporal gyrus were duplicated and
validated in ADNI cohort with p values of 1.63E-03 and 1.34E-03, respectively, where the Bonferroni
corrected significant level p < 0.05/15=3.33E-03 was applied (Table 2).

The minor allele G of rs7937515 (rs7937515-G) was associated with lower level of both clustering
coefficient and local efficiency, compared to its major allele A (Figure 3). We will discuss the risk effect of
rs7937515-G on brain function and dysfunction in the discussion section.

3.4 Mediation analysis

According to the genetic association results from the HCP and ADNI subjects, we identified a common
genetic finding SNP rs7937515, which was associated with two segregation measures in left middle
temporal gyrus (e.g. clustering coefficient and local efficiency). In addition, we extracted two common
behavioral and cognitive outcome measures (e.g. BMI and MMSE) by comparing the outcome evaluation
methods across the HCP and ADNI databases. Thus, in this section, we had two major focuses: (1)
exploring the genetic effect of SNP rs7937515 on outcomes including BMI and MMSE, and gaining deeper
insights to the molecular mechanisms of the identified genetic variant, and (2) examining the mediated
effect of iIQT's (e.g. segregation measures) and illustrating their implicit effects in (1).

To achieve those two goals, mediation analysis of outcome was performed for evaluating both the direct
and implicit effects of rs7937515 on outcomes (i.e., BMI and MMSE) through segregation measurements
in left middle temporal gyrus. Mediation analysis required the independent variable (i.e., rs7937515) to
be significantly associated with both the dependent variable (i.e., BMI or MMSE) and the mediator (i.e.,
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segregation measurements). Below we respectively reported the mediation results analyzed from both HCP
and ADNI data.

For the first focus, the minor allele G of rs7937515 was significantly associated with the increased BMI
in HCP cohort (p = 1.62E-03; Figure 4A). The same increasing trend was also observed from the ADNI
data, although the association between rs7937515 and BMI was not significant (p = 0.22; Figure 4B). For
the second focus, Figure 5 illustrated the results of mediation analysis with BMI as an outcome measure,
from which both clustering coefficient and local efficiency of the left middle temporal gyrus demonstrated
the significant intermediate roles between rs7937515 and BMI, with mediation effects of 0.98 (95%CI
=[0.06,2.29], p = 3.60E-02) and 0.99 (95%CI = [0.02, 2.11], p = 4.60E-02), respectively. There was no
significant association between rs7937515 with MMSE in the HCP young adult dataset, so no mediation
analysis regarding MMSE was performed. In the ADNI elderly adult dataset, there were no significant
associations observed between rs7937515 with BMI nor MMSE; therefore it was not necessary to further
examine mediation effects.

Since the brain can be viewed as a predictor, a mediator, or outcome of a health condition (e.g., obesity)
(Lowe et al., 2019), it is unclear whether the brain regulates the condition (e.g., structural connectome
alteration considered as a mediator for a physical condition such as BMI), or, conversely, brain is affected
by the condition. For completeness, we also explored the potential reciprocal relationship from the other
direction. The above experiment was repeated with BMI as a mediator and connectivity measures as
outcomes. No significant findings were identified, and thus no evidence was observed for BMI as a
significant mediator between gene and brain connectivity.

3.5 Outcome-relevant neuroimaging biomaker discoveries

On one hand, for the HCP cohort, we respectively identified significantly negative associations (p<
0.05/4 = 1.25E-02) between BMI with clustering coefficient (p= 3.92E-05) and local efficiency (p=
4.57E-05) measured in left middle temporal gyrus. On the other hand, for the ADNI cohort, we examined
the associations between BMI and the above mentioned segregation measures in a pair-wise manner, but
there was no significant findings satisfying the corrected p threshold. Regarding the relationship between
cognitive score (e.g. MMSE) and network segregation measures, there was no significant associations
identified for both HCP and ADNI cohorts.

3.6 Targeted genetic association of other important network attributes in the left
middle temporal gyrus

To review the genetic effect of SNP rs7937515 from different aspects of network connectivity attributes of
the left middle temporal gyrus, we assessed the relationship between rs7937515 and additional node-level
measures on reported brain ROI (i.e., left middle temporal gyrus) as well as network-level measures in both
HCP and ADNI datasets. Table 3 showed association statistics of rs7937515 with segregation, integration,
centrality and resilience measures. After correcting for the number of examined network measures (i.e.,
P< 0.05/9=>5.56e-03), both HCP and ADNI identified significant associations between the targeted SNP
with global efficiency (integration) and transitivity (resilience), together with our previous finding that
rs7937515 was associated with segregation measures such as clustering coefficient and local efficiency,
our results showed the consistent genetic effect of rs7937515 on brain structural network segregation,
integration and resilience across aging. Besides the common findings between young and elderly adults,
rs7937515 was associated with several other node-level and network-level attributes including network
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density (integration) and eigenvector centrality (centrality) in HCP data, but not in ADNI. Our results
suggested the possible genetic discrepancy for certain brain connectivities in different life stages.

3.7 Hemispheric asymmetry of brain connectome

In this study, we noticed a hemispheric asymmetry of outcome-relevant brain connectivity alterations in
the left and right middle temporal gyrus (Table 3). Due to two brain regions (e.g. left and right MTG), two
segregation measures (e.g. clustering coefficient and local efficiency) and one outcome measure (e.g. BMI),
we applied a Bonferroni corrected p threshold in this section (p< 5E-02/8 =6.25E-03). In the HCP young
adult cohort, for the left MTG, we respectively identified significant associations of BMI with clustering
coefficient (p=3.92E-05), and with local efficiency (p=4.57E-05); for the right MTG, even though there
were no significant associations of BMI with clustering coefficient (p=2.24E-02), and with local efficiency
(p= 2.90E-02), both clustering coefficient and local efficiency in left and right MTG showed negative
associations with BMI. In the ADNI cohort, as reported in the previous section, network segregation was
not associated with BMI, so it was not necessary and proper to conduct analyses regarding ADNI data in
this section.

4 DISCUSSION

As summarized in Figure 1, prior to GWAS, we first performed heritability analysis for network attributes
screening, and only heritable measures of network segregation were treated as iQT for GWAS. Based on
experimental outcomes, all of the segregation measures were highly heritable: transitivity and modularity
were heritable at network level, clustering coefficient and local efficiency were heritable at all nodes,
which suggested segregation measures were suitable for genetic analyses. Then, we performed GWAS of
segregation attributes in 275 HCP subjects, and identified several pairwise associations between SNPs and
1QTs as listed in Table 2. These GWAS findings were validated in 178 ADNI subjects. As a validation result,
we identified several genetic consistency and discrepancy patterns for human connectome in different
life stages (as shown in Table 2). As common findings in both HCP young adult and ADNI elderly adult
cohorts, rs7937515 was negatively associated with clustering coefficient and local efficiency respectively
measured at left middle temporal gyrus. To the best of our knowledge, this was among the first GWAS
of human brain high-level network measures across both young and elderly participants. As shown in
Figure 3(a,c), the minor allele G of rs7937515 was associated with decreased clustering coefficient and
local efficiency of the left middle temporal gyrus in both young and elderly participants. As concluded
in (Varangis et al., 2019; Karwowski et al., 2019; Keown et al., 2017; Rudie et al., 2013), the weakness of
segregated network connectivity (e.g. modularity, clustering coefficient, and local efficiency) was linked
to multiple brain disorders such as age-related cognitive declines and autism spectrum disorder. Thus,
our GWAS findings for HCP young adults demonstrated that rs7937515 played a risk effect on human
network segregation. This neurorisk effect was also confirmed in a targeted genetic association analysis
for ADNI elderly participants (as shown in Figure 3 (b,d)), these common discoveries between HCP and
ADNI datasets suggested a consistent genetic risk effect across young and old life stages.

This study was further conducted by performing several post-hoc analyses in the following three aspects
(shown as bottom sections in Figure 1): 1) examining genetic mechanisms for common outcome measures
in the HCP and ADNI studies, and elucidating the mediated effect of iQTs for such outcome-relevant
genetic association, 2) discovering outcome-relevant imaging biomarkers, and 3) exploring the genetic
mechanisms of other important complex-network attributes.
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443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484
485
486
487

Cong et al. Genetic Influence underlying Brain Connectivity

For the first aspect, our goal was to elucidate the neurobiological pathway from SNPs to brain connectome,
and to phenotypic outcome. In addition, we aimed to discover the role of iQTs in the outcome-relevant
genetic associations by performing mediation analyses in both HCP and ADNI datasets. For the HCP young
participants, we identified that BMI was positively associated with rs7937515 in the first step of mediation
analysis, demonstrating a risk effect. rs7937515 located in the regions of FAM86C1/FOLR3 was previously
discussed in literatures (Gao et al., 2015; Gao, 2017) and positively linked to waist circumference in the
meta-analysis based on the Insulin Resistance Atherosclerosis Family Study (IRASFS) (Palmer et al.,
2015), which was designed to investigate the genetic and environmental basis of insulin resistance and
adiposity. FAM86C1 (Family With Sequence Similarity 86 Member C1) and FOLR3 (Folate Receptor
Gamma) had been reported for their associations with various weight-related phenotypes such as bone
mineral density (Li et al., 2019) and BMI (Mrozikiewicz et al., 2019; Hair, 2014), which closely related
to osteoporosis (Li et al., 2019; Mrozikiewicz et al., 2019) and obesity (Gémez-Ambrosi et al., 2004).
In the second and third steps of mediation analysis, we illustrated that BMI was indirectly influenced
by rs7937515 (Figures 4 and 5), and 1QTs such as clustering coefficient and local efficiency measured
at the left middle temporal gyrus respectively played a mediating role. We also examined the genetic
association with MMSE, but no evidence indicated any genetic associations to MMSE. In contrary, for the
ADNI elderly participants, neither significant associations between rs7937515 and BMI nor MMSE were
identified in the first step of mediation analysis, so there was not a necessary to examine mediated effect in
this dataset. Our results demonstrated a disappearance of outcome-relevant genetic effect in the elderly
participants, this discrepancy from young to elderly participants might due to the dominated influences
from life style, environment or other non-genetic factors.

For the second aspect, recent studies (Lowe et al., 2019; Azevedo et al., 2019) showed that structural
changes in brain tissues could affect food consumption behaviors and mediate BMI, which implied
connectome alteration could be a causal agent and a promising imaging biomarker in this study. Thus,
our goal was set to reveal the mapping between connectivity alterations and phenotypic outcome, and
discover outcome-relevant imaging biomarkers. For young adult participants, segregation measures (e.g.
clustering coefficient or local efficiency measured at left middle temporal gyrus) previously demonstrated
their potential to play a mediating role in genetic association discoveries, in this step, we focused on
examining their direct associations to the outcomes. Thus, we performed a targeted association analysis
between the mentioned segregation measures and the common outcomes (e.g. BMI or MMSE) evaluated in
both HCP and ADNI studies (Table 2) by employing linear regression models. For the young participants,
clustering coefficient and local efficiency measured at left middle temporal gyrus were negatively associated
with BMI. Similar observation was obtained in (Chen et al., 2018) which linked lower structural network
segregation to obesity (higher BMI). Our findings suggested that there was a mapping between brain
network segregation attributes and human physical conditions, and segregation features of the left middle
temporal gyrus showed their potential as neuroimaging biomarkers to detect BMI-associated complex
diseases such as dementias (Emmerzaal et al., 2015), cardiovascular disease, cancer, respiratory disease
and diabetes (Stenholm et al., 2017). For elderly adult participants, no significant associations were
identified between segregation measures and any outcomes, which suggested an interesting topic for further
explorations.

Multiple regression analyses demonstrated that middle temporal gyrus was linked to weight-related issues.
For example, Veit et al. (Veit et al., 2014) and Goémez-Apo et al. (Gémez-Apo et al., 2018) revealed that
BMLI, visceral fat and age were negatively associated with cortical thickness of the left middle temporal
gyrus, Ou et al. (Ou et al., 2015) indicated that greater adiposity was associated with lower gray matter
(GM) volumes in the middle temporal gyrus, Yokum et al. (Yokum et al., 2012) found positive correlation
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between BMI and white matter (WM) volume in the middle temporal gyrus, Rapuano et al. (Rapuano et al.,
2016) illustrated left middle temporal gyrus was detected significantly greater activation in response to
food commercials than to non-food commercials, Salzwedel et al. (Salzwedel et al., 2019) concluded that
maternal adiposity influenced neonatal brain functional connectivity in middle temporal gyrus, and Peven
et al. (Peven et al., 2019) identified that cardiorespiratory fitness was negatively associated with functional
connectivity in the right middle temporal gyrus. To the best of our knowledge, our investigations for the
association between structural connectivity in the middle temporal gyrus and BMI was among the first
weight-related studies with high-level imaging features measured from structural network connectivity, and
our results confirmed several previous findings analyzed from thickness data, T1-weighted MRI data, and
fMRI data.

For the third aspect, since there was an emerging interest in understanding the segregation and the
integration of brain networks (Cohen and D’Esposito, 2016; Mohr et al., 2016) as well as other important
network attributes such as centrality (Zuo et al., 2012) and resilience (Karwowski et al., 2019), our goal
was to expand our focus on comprehensively discussed segregation attributes to a more complete set
of network attributes including segregation, integration, centrality and resilience. For both node level
network attributes measured at left and right middle temporal gyrus and global network attributes, we
applied targeted genetic association analyses on global efficiency and density (integration, network level),
betweeness and eigenvector centrality (centrality, node level) and assortativity coefficient (resilience,
network level) of the structural connectivity. We identified several pairwise associations between rs7937515
and these network attributes in both HCP and ADNI datasets (Table 3), and noticed a significant association
between rs7937515 and global efficiency in both datasets, which suggested that rs7937515 was involved
into the dynamic fluctuations of segregation and integration of neural information. This finding partially
answered an elusive question of revealing genetic basis for brain mechanisms of balancing network
segregation and integration. Another worth noting finding was that rs7937515 was associationed density
and eigenvector centrality respectively in our targeted analyses, while such associations were vanished in
elderly participants, which suggested inconsistent genetic influences across different life stages.

With the awareness of the hemispheric asymmetry of network organization, a genetic basis to explain the
differences in connectome between two hemispheres were under discovered. In this work, we identified an
obvious inconsistency of genetic influences on human connectome in different brain hemispheres (Table 3).
As reported in several recent studies (Jiang et al., 2019; Shu et al., 2015; Tian et al., 2011), the topological
organizations of structural networks were not uniformly affected across brain hemispheres, which lead to a
non-uniformly distributed destruction on neural network of the left and right hemispheres. Our finding gave
an explanation from the point-view of genetics, with the potential for further investigations as many of the
destruction on neural network (as 1QT) were linked to cognitive and behavioral functions and dysfunctions,
and their genetic mechanisms were still under discovered.

5 CONCLUSIONS

In this work, we constructed the structural network connectivity, extracted complex-network attributes and
examined the heritability of network segregation measures. Then, we revealed a novel association between
the minor allele (G) of rs7937515 and decreased network segregation measures of the left middle temporal
gyrus across HCP young participants and ADNI elderly participants, which demonstrated a consistent
genetic risk effect on brain network connectivity across lifespan. We elucidated the neurobiological pathway
from SNP rs7937515 and genes FAM86C1/FOLR3 to brain network segregation, and to BMI. In such
pathway, we concluded a genetic risk effect on BMI due to their positive association, examined the
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mediated effect of network segregation measures, and discovered network segregation of the left middle
temporal gyrus as BMI-related neuroimaging biomarkers by identifying a negative association between
them. We also examined genetic associations of a more complete set of important network attributes
including integration, centrality and resilience, and demonstrated the consistency and discrepancy in
genetic associations in brain aging. At last, we illustrated hemispheric asymmetry of network organization
in both datasets in the aspect of genetic effect.

In sum, with the awareness that BMI is directly and indirectly associated to multiple complex diseases,
this study performed a systematic analysis that integrated genetics, connectomics and phenotypic outcome
data, with the goal of revealing biological mechanisms from the genetic determinant to intermediate brain
connectomic traits and to the BMI phenotype at two different life stages. We identified the genetic effect
of r1s7937515 on human brain network segregation in both young and elderly participants and on BMI in
young adult cohort. Our findings confirmed several previous genetic and imaging biomarker discoveries.
Moreover, we provided outcome-relevant genetic insights in the aspect of complex-network attributes of
human brain connectome. Similar analytical strategies can be applied to future integrative studies linking
genomics with connectomics, including the analyses of structural and functional connectivity measures,
additional network attributes, longitudinal or dynamic connectomic features, as well as other types of brain
imaging genomic data.
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TABLES

Table 1. Participant characteristics in HCP and ADNI genetic association analyses.

Cohort HCP ADNI P
Number 275 178 -
Gender(M/F) 137/138 108/70 3.02E-02
Age 28.69 £3.64 | 73.76 £ 6.95 | 5.56E-175
Education 15.14 +£1.64 | 16.03 £2.78 | 1.41E-04
MMSE 29.09 £1.04 | 27.37 +2.54 | 2.28E-15
Weight 77.70 £17.06 | 77.71 4+ 15.92 1.00
BMI 25.99 +£4.73 | 27.28 +5.24 | 8.87E-03
clus coef ROI 087 | 0.51 £ 0.05 0.29+0.13 | 1.41E-55
loc effi ROI 087 0.52 £ 0.05 0.39+£0.17 | 1.20E-18

P-values were assessed because of significant
differences among diagnosis groups, and were
computed using one-way ANOVA (except for
gender using x? test). The p values < 0.05 are
shown in bold. HC = Healthy Control; EMCI =
Early Mild Cognitive Complaint; LMCI = Late
Mild Cognitive Complaint; AD = Alzheimer’s

Disease
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Table 3. Associations between rs7937515 and brain network measures.

Class QT ROI or HCP ADNI
Global Beta P Beta P

Clustering coefficient | TPMid_L | -0.37 | 1.09E-10 | -0.24 | 1.63E-03

Clustering coefficient | TPMid R | -0.20 | 3.53E-04 | -0.22 | 3.94E-03

. Local efficiency TPMid_L | -0.38 | 4.22E-11 | -0.24 | 1.34E-03

Segregation

Local efficiency TPMid R | -0.22 | 7.05E-05 | -0.22 | 2.92E-03

Transitivity Global | -0.23 | 3.65E-05 | -0.24 | 1.17E-03

Modularity Global 0.20 | 5.32E-04 | -0.12 | 9.32E-02

. Global efficiency Global | -0.29 | 1.63E-07 | -0.24 | 1.48E-03
Integration -

Density Global | -0.26 | 2.64E-06 | 0.03 | 7.11E-01

Betweenness centrality | TPMid L | -0.09 | 1.28E-01 | -0.05 | 5.28E-01

Centrality Betweenness centrality | TPMid_R | -0.06 | 3.24E-01 | -0.03 | 6.75E-01

Eigenvector centrality | TPMid_L | -0.32 | 9.58E-08 | -0.13 | 7.85E-02

Eigenvector centrality | TPMid R | -0.20 | 6.11E-04 | -0.03 | 6.98E-01

Resilience | Assortativity coefficient | Global 0.10 | 1.14E-01 | 0.06 | 3.95E-01

Table 3. Abbreviations: F = frontal, TP = temporal pole, Mid = middle, Med = medial,
Orb = orbital, L = left, R = right, QT = quantitative trait.
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FIGURE CAPTIONS

Figure 1. Flowchart of brain connectome GWAS design. Abbreviations: SNPs, single nucleotide
polymorphisms; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HCP, Human Connectome Project;
dbGaP, database of Genotypes and Phenotypes; QC, quality control; ROI, region of interest; iQT: imaging
quantitative trait; BMI, body mass index.

Figure 2. Manhattan plot of GWAS results in the HCP dataset. Top and bottom plots show the GWAS
results of clustering coefficient and local efficiency on left middle temporal gyrus, respectively. Red and
blue lines correspond to the p-value of SE-08 and 2.75E-10, respectively.

Figure 3. Association of rs7937515 on clustering coefficient and local efficiency of the left middle
temporal gyrus. (A-B) Mean clustering coefficient with standard errors are plotted against the rs7937515
genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. (C-D) Mean local
efficiency with standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG)
for the HCP and ADNI cohorts, respectively. p values are calculated from GWAS (HCP) and targeted
analysis (ADNI), and significant p values are marked in bold.

Figure 4. Association of rs7937515 on BMI in the HCP and ADNI cohorts. (A) Mean BMI with
standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP
cohort. (B) Mean BMI with standard errors are plotted against the rs7937515 genotype groups (i.e., AA,
AG and GG) for the ADNI cohort. p values are calculated from mediation analysis, and significant p values
are marked in bold.

Figure 5. Direct and mediation effect of rs7937515 on BMI through left middle temporal gyrus. (A-
B) illustrate the effect size, 95% CI and p value from rs7937515 mediation analysis of BMI via left middle
temporal clustering coefficient. (C-D) illustrate the effect size, 95% confidence interval and p value from
rs7937515 mediation analysis of BMI via left middle temporal local efficient. TE = total effect; DE = direct
effect; ME = mediation effect.

This is a provisional file, not the final typeset article 24



Phenotype Data

Diffusion weighted imaging
(DWI) data from HCP:
981 participants

!

Connectivity matrix
construction with
tractography:
mean fractional anisotropy
(FA)

!

Brain connectivity toolbox
(BCT): Segregation

Figure 1.JPEG

Heritability Analysis

Genotype Data

Data preparation:
350 participants (232 mono-

(transitivity, modularity,
clustering coefficient, and
local efficiency)

>

zygotic twins, 118 di-zygotic
twins)

* Transitivity and
modularity were heritable
at network level

* Clustering coefficient and
local efficiency were
heritable at node level

Genotyping data from dbGAP:
e 1141 participants

* Including twins and non-
twins data

2,119,803 SNPs

l

Genotyping data after QC:
e 327 participants
* No family relationships
515,956 SNPs

A 4

Genome-wide association analysis (GWAS) of segregation measures (N = 275, 137 male, 138 female, age 28.69 + 3.64)
Several associations between ROI-measure ~ SNP were identified (corrected p threshold = 2.75E-10)

A 4

Targeted analysis of segregation phenotype from ADNI (N = 178, 108 male, 70 female, age 73.76 + 6.95)
Common associations were identified across HCP and ADNI datasets (corrected p threshold = 3.3E-03):
rs7937515 ~ clustering coefficient measured at left middle temporal gyrus
rs7937515 ~ local efficiency measured at left middle temporal gyrus

.

Mediation analysis for pathway of
SNP rs7937515 ~ segregation
measures (iQT) ~ common
phenotypic outcome in both
datasets:

e HCP: BMI was influenced by
rs7937515 with clustering
coefficient and local efficiency as
mediators

* ADNI: no such mediation effect
was identified.

Targeted analysis of network
segregation measures (iQT) and
phenotypic outcome:

* HCP: clustering coefficient and
local efficiency measured at left
middle temporal gyrus were
associated with BMI

* ADNI: no such association was
identified

Targeted analysis of SNP

rs7937515 and other important

connectivity attributes (iQT):
HCP: rs7937515 associated with
global efficiency, eigen centrality,
assortativity, density, number of
edge, and strength
ADNI: rs7937515 associated with
global efficiency, transitivity, and
strength




-logyo(p)

-log10(p)

12
10

o N B O o

Figure 2.JPEG

rs10032124 o 151461192
rs9994092, S FsT841000g 157937515

2 3 4 5 6 7 8, A9 NIN/13 15 17 20
Chromosome

(a) GWAS results of clustering coefficient.

rs10032124 rs1461192

9994092 aga1664. 7271
rs g IS 84166 \. Y rsl47446959\‘

2 3 4 5 6 7 8 9 11 13 15 17 20
Chromosome

(b) GWAS results of local efficiency.



Figure 3.JPEG

7
o L
g N |
W O
= O
<
i
1
o
—
=
- ! -
7
z g%
<
in
n
—
- 1l
I
<
<

o snJA3 |esodwial S|ppiw 13| JO JUSIDIYS0I SulAISN|D

e o
1 1l
E ilm
o ©
- (V)
1
[«
\Iﬁ
o
m
Il__—/
£
e QN
H S
o
<
o
Sl
I £

w ¥ Mmoo o 9
o o o o o o
<L snJAS |esodwial 3|ppiw Y| JO BP0 Sulaisn|)

GG(n=3)

p=1.12E-03

=32)
rs7937515

AG(n:

AA(n=155)

o o ~ — o
a © o o o IS
SNJAS |esodwial 3jppiw 13| Jo AdudId1Y4S 8207

=4.22E-11
GG(n=3)

32)

rs7937515

AG(n:

I I p
240)

AA(n :

< N o
o o o o
snJAS |esodwa) S|ppiw Y3| JO AduaIdIYa |80



Figure 4.JPEG
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Figure 5.JPEG
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