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Integrative Analysis of Summary Data from

Abstract

Background: Although genome-wide association
studies (GWAS) have successfully located various
genetic variants susceptible to Alzheimer’s Disease
(AD), it is still unclear how specific variants
interact with genes and tissues to elucidate
pathologies associated with AD.
Summary-data-based Mendelian Randomization
(SMR) addresses this problem through an
instrumental variable approach that integrates data
from independent GWAS and expression
quantitative trait locus (eQTL) studies in order to
infer a causal effect of gene expression on a trait.

Results: Our study employed the SMR approach
to integrate a set of meta-analytic cis-eQTL
information from the Genotype-Tissue Expression
(GTEx), CommonMind Consortium (CMC), and
Religious Orders Study and Rush Memory and
Aging Project (ROS/MAP) consortiums with three
sets of meta-analysis AD GWAS results.

Conclusions: Our analysis identified twelve total
gene probes (associated with twelve distinct genes)
with a significant association with AD. Four of
these genes survived a test of pleiotropy from
linkage (the HEIDI test).

Three of these genes — RP11-385F7.1, PRSS36,
and AC012146.7 — have not yet been reported
differentially expressed in the brain in the context
of AD, and thus are the novel findings warranting
further investigation.

Keywords: GWAS; eQTL,; transcriptomics;
Alzheimer's Disease
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Differentially Expressed in Alzheimer's Disease
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Background

Alzheimer’s disease (AD) is a complex neurodegenera-
tive disease commonly characterized by memory im-
pairments, cognitive problems, and the presence of
both tau and ApS plaques [1]. As the leading cause
of dementia, AD is influenced by environmental and
genetic factors [2]. There is no current cure for AD,
necessitating larger-scale approaches.

Since genetic factors play an important role in AD,
genome-wide association studies (GWAS) have been
employed to find specific loci and genes that may be
instrumental in both AD treatments and prognosis.
So far, GWAS has successfully identified numerous loci
susceptible for AD [3]. However, translating these find-
ings has proven extremely difficult. GWAS provides
insights into potential genetic risk loci likely to har-
bour causal variants. Despite having multiple analyt-
ical techniques including fine-mapping, advanced an-
notation tools, and colocalization, difficulties remain
in inferring which variants are truly causal in AD. Un-
derstanding the mechanisms by which these variants
influence disease phenotypes including AD provides
additional challenges [4]. These challenges arise from
factors such as complex linkage disequilibrium and po-
tential effects on distant genes. Additionally, the dy-
namic, context-specific effect of variants are likely to
vary depending on the time, cell type, and the context
being studied.

In addition to direct genetic analyses, studying gene
expression of AD-relevant genes may provide more
information about the mechanism of AD. Unfortu-
nately, however, this is extremely difficult as there is
a lack of in-vivo Alzheimer’s studies involving human
brain tissue. As such, we resort to data from land-
mark projects such as the Genotype-Tissue Expression
(GTEx) project [5] — an ongoing effort to build a com-
prehensive public resource to study tissue-specific gene
expression and regulation. Researchers can now ac-
cess increasingly large amounts of valuable information
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that connect significant variants with the expression
of specific genes in various tissues. The findings that
make up these datasets are often referred to as expres-
sion quantitative trait loci (eQTL). Various projects
including the GTEx project and ROS/MAP [6, 7],
which refers collectively to both the Religious Or-
ders Study and the Rush Memory and Aging Project,
find and store significant eQTL’s for several tissues
throughout the human body, including the brain. How-
ever, almost none of this information incorporates
knowledge currently known about pathologies or dis-
eases — including AD — in highlighting specific genes or
variants. Currently, many GWAS hits for diseases in-
cluding AD reside in intronic or intergenic regions and
as such may not make attractive druggable targets.
Outside of rare missense or nonsense coding variants,
moving from GWAS findings into druggable targets
has not proven extremely successful. As such, integrat-
ing eQTL studies with previous GWAS hits may prove
to be more successful. With the advent of Summary-
Data-Based Mendelian Randomization (SMR), it is
possible to employ an instrumental variable approach
in integrating independent GWAS and eQTL studies
[8]. Doing so is especially powerful in that it allows for
researchers to find specific genes with a strong func-
tional component in the context of a specific disease
—e.g., Alzheimer’s. Through this analytical technique,
we aim to identify novel genes that are differentially
expressed in AD, which may help reveal the biological
pathway from genetic determinants to transcriptomic
features to phenotypic outcomes and help disease mod-
eling and therapeutic target discovery.

Results
Using the above specified ADNI genotyping data, three
sets of meta-analytic GWAS summary statistics, and
one set of meta-analysis cis-eQTL information, three
SMR analyses were performed. Given that each SMR
analysis reports the significance of each proposed gene-
phenotype association in terms of a P-value, a stan-
dard Bonferroni correction was used to determine sig-
nificance given the occurrence of multiple trials. For
each analysis performed, given the varying number of
relevant SNP’s and gene expression probes that passed
the program’s strict eligibility thresholds, the Bonfer-
roni correction was determined by the number of gene
probes tested per analysis. As such, this threshold fluc-
tuated slightly among the three analyses, and is as fol-
lows: for the SMR based on Lambert et al., 2013 [9],
the threshold is 6.90 x 10~%; for the SMR based on
Jansen et al., 2019 [10], the threshold is 6.89 x 10~5;
for the SMR based on Kunkle et al., 2019 [11], the
threshold is 6.85 x 1076.

Figure 2 shows a heatmap visualizing our statisti-
cally significant findings. Our analysis highlighted 12
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gene probes linked to 12 distinct genes between the
three summary GWAS studies using the single meta-
eQTL. Some findings, such as TOMM40 and CRI,
have been explicitly studied as top AD genes. For ref-
erence, we also wish to examine the significant GWAS
and eQTL relationships that lead to these significant
SMR results. We start by comparing the GWAS p-
values and eQTL p-values for each of our twelve sig-
nificant genes and the SNP with the highest eQTL and
GWAS p-values that is less than 1 Mb away from the
gene (Table 1).

Of note, we are more interested in identifying
pleiotropic associations, where the same underlying
causal variant affects the gene expression and the
trait. In contrast, we are less interested in the LD-
based associations, which could also be detected by
SMR. In these associations, the relevant cis-eQTL
is in LD with one causal variant affecting gene ex-
pression and the other affecting the trait. Thus, to
confirm the significance of our results and test for a
pleiotropic association versus a LD-based association,
we performed a HEIDI test using a p-value thresh-
old of 0.05 as used in [8]. Out of the twelve original
genes highlighted, we detected heterogeneity for eight
genes with Pprpr < 0.05. The four remaining genes
passed the HEIDI test, leading us to not reject the
null hypothesis that there is a single causal variant
affecting both gene expression and the AD diagnosis
outcome phenotype. Hence, these four remaining genes
— NDUFS2, RP11-385F7.1, PRSS36, and AC012146.7
— are the most functionally relevant genes underly-
ing the GWAS hits and may be prioritized in future
functional studies.

Additionally, we searched multiple sources to deter-
mine the roles these four genes may play in leading to
AD or other diseases. As such, we initially attempted
to discover if these genes have been previously de-
clared to be differentially expressed in the brain in
relation to AD in the studies [12, 13, 14]. The gene
NDUFS2 was reported as differentially expressed in
[14]. The other three genes have never been reported
differentially expressed in Alzheimer’s: RP11-385F7.1,
PRSS36, and AC012146.7. These novel findings war-
rants further replication studies in independent co-
horts. To visualize the results of our SMR analysis, we
created locus plots for the above three novel findings:
RP11-385F7.1 (Figure 3), AC012146.7 (Figure 4), and
PRSS36 (Figure 5) . These three figures show that the
SMR and eQTL P-values instrumental in highlighting
the significance of these genes in AD in particular.

Furthermore, we also wished to confirm the direc-
tionality of the effects found via this SMR analysis
between specific genes and our phenotype of AD. As
such, we provide the effect plots in Figures 6, 7, and
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8. They show the correlation between the eQTL ef-
fect sizes and GWAS effect sizes for our novel findings
(RP11-385F7.1, AC012146.7, and PRSS36) with the
GWAS summary data sets from Jansen et al., 2019 and
our single source of meta-analysis cis-eQTL data from
Qi et al., 2018. Each plot shows the correlation be-
tween GWAS effect sizes and our set of meta-analysis
cis-eQTL’s. In particular, we are comparing the ef-
fect sizes of SNPs (used for the SMR and the rele-
vant HEIDI tests) from GWAS plotted against those
for SNP’s from our meta-analysis cis-eQTL data. No-
tably, from these plots one can see the existence of
negative correlations between our GWAS effect sizes
and eQTL effect sizes in Figures 6, 7, and 8.

Discussion

In this section, we provide a brief discussion on our
three novel findings to determine the larger context of
their significance in AD. RP11-385F7.1 is a long inter-
genic non-coding RNA (LinkRNA) gene on Chromo-
some 6. According to the GTEx Portal’s page for this
gene, although we have seen that this gene is decently
expressed in the brain tissues, it is most strongly ex-
pressed in the kidneys and pituitary gland [15]. This
locus has also been found by [16] to likely have a func-
tional effect within AD, which corroborates the find-
ings of this study.

PRSS36 is a protein-coding gene on chromosome 16.
According to OMIM, it codes for Serine Protease 36, a
protease that may be instrumental in hydrolyzing ser-
ine protease substrates. Additionally, a northern blot
analysis shows a 5 kb transcript of this gene in fetal
kidney and adult skeletal muscle, the liver, the pla-
centa, and the heart [17]. To confirm if this gene’s na-
tive protein, serine protease 36, plays a role in AD, a
search in the Open Targets Platform was performed.
PRSS36 has been highlighted in [10] and [18] for its
high genetic association with AD (p =4 x 1078 in the
former; p = 3 x 1078 in the latter.) This is the only
one of our findings found in the Open Targets Plat-
form; perhaps as these gene targets are studied more,
more significant correlations may be found in the fu-
ture.

AC012146.7 is another non-coding gene (specifically,
processed transcript) located on chromosome 17. Not
much is known about its function or clinical signif-
icance, though it is located near the protein coding
genes USP6 and ZNF232 [19]. ZNF232 is a protein
encoding gene that encodes for Zinc Finger Protein
232. Zinc finger proteins are involved in the regula-
tion of several cellular processes, including transcrip-
tional regulation, signal transduction, and DNA re-
pair [20]. Meanwhile, USP6 encodes Ubiquitin-specific
Peptidase 6, which is commonly associated with psue-
dosarcomatous fibromatosis and fasciitis [21].
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With the above observations, these genes can be
studied in more detail going forward. SMR-based repli-
cation studies can be performed in independent co-
horts. The potential of these genes to serve as molecu-
lar targets for AD studies within specific tissues of the
brain as determined by these causal analyses also war-
rants further biological investigations, potentially in-
cluding but not limited to the analysis of brain-related
functional data, brain ATAC, brain-related HiC, and
brain-related pcHiC in an independent cohort. These
additional analyses may demonstrate the regulatory
mechanism by which these variants- and genes-of-
interest act or elucidate an underlying function these
variants play in AD pathogenesis.

Our approach using Summary-data-based Mendelian
Randomization has allowed for the inclusion of inde-
pendently collected and curated GWAS and cis-eQTL
data. This has provided our study a significant amount
of statistical power it may not have had otherwise due
to the small number of samples that include AD diag-
nosis data, full genotyping data, and extensive gene ex-
pression data. Implementing an instrumental variables
estimation using meta-anlaysis GWAS and eQTL data
in particular has allowed us to analyze an unprece-
dented number of individuals in a very short amount
of time. However, one limitation of our approach is
that our implementation of the instrumental variable
estimation has included the use of stringent Bonfer-
roni method for multiple comparison correction. As a
result, it is likely some significant signals were missed
in our analyses. Alternatively, it may be possible to in-
stead employ corrections based on the false-discovery
rates (FDR) provided by the SMR analyses to deter-
mine significance in a less conservative fashion [22].

Conclusions

We have performed an SMR analysis that inte-
grated meta-analytic cis-eQTL summary statistics
from GTEx, CMC, and ROS/MAP studies with three
sets of meta-analysis GWAS results in AD. We aim
to discover genes differentially expressed in AD for
better understanding of the molecular mechanism of
the disease. Our analysis identified twelve total gene
probes (associated with twelve distinct genes) with a
significant association with AD. Four of these genes
survived a test of pleiotropy from linkage (the HEIDI
test). One of the four genes, NDUFS2, has been previ-
ously reported as differentially expressed in the brain
in the context of AD. The remaining three genes —
RP11-385F7.1, PRSS36, and AC012146.7 — have not
yet been reported differentially expressed in the brain
in the context of AD. However, there exist prior stud-
ies suggesting some indirect connections between these
genes and AD. Thus, further investigations, including
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performing SMR-based replication studies in indepen-
dent cohorts and/or conducting molecular validation
using brain-related tissues in AD research, may study
these genes in more detail.

Methods

Genotyping Reference Data

To assist in checking the consistency of allele frequency
and effect-allele information between the GWAS and
eQTL datasets in each respective SMR analysis, the
SMR program by default requires a reference panel
of genetic data. In our analysis, we used the genome-
wide genotyping data sourced from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [23,
24]. This data is publicly accessible on the ADNI Data
Archive at http://adni.loni.usc.edu/.

ADNI was launched in 2003 as a public-private
partnership led by Principal Investigator Michael W.
Weiner, MD to test whether serial MRI, PET, and
biological markers can be combined with clinical and
neuropsychological assessments to accurately measure
the progression of mild cognitive impairment (MCTI)
and early AD. For more information about the ADNI
project, please see [23, 24].

Participants were limited to individuals who were
subjects of the ADNI cohort. To reduce the likelihood
of population stratification effects, only non-Hispanic
Caucasian participants were involved. As such, there
were 1,576 individuals whose genotyping data were in-
cluded. 521 of these individuals are healthy controls
and the remaining 1,055 individuals are patients with
AD or mild cognitive impairment (MCI, a prodromal
stage of AD), and are all coded as cases in this study.

Genotyping data were quality-controlled, imputed
using the 1000 Genomes Project reference genomes,
and combined as described in [25, 26]. Briefly, genotyp-
ing was performed on all ADNI participants following
the manufacturer’s protocol using blood genomic DNA
samples and llumina GWAS arrays (610-Quad, Omni-
Express, or HumanOmni2.5-4v1) [27]. Quality control
was performed in PLINK v1.90 [28] using the following
criteria: 1) call rate per marker > 95%, 2) minor allele
frequency (MAF) > 5%, 3) Hardy Weinberg Equilib-
rium (HWE) test P < 1.0E-6, and 4) call rate per
participant > 95%. As a result, a total of 5,574,300
SNPs were included in our analysis.

GWAS Summary Data

To ensure the highest levels of statistical power, we
opted to utilize the results of large-scale meta-GWAS
studies in AD in our analysis. As such, there are three
best-known landmark AD GWAS analyses we exam-
ined in our study.
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The first is a meta-analysis of 74,046 individuals
which studied 7,055,881 directly genotyped or imputed
SNPs, which summarized the results of the Interna-
tional Genomics of Alzheimer’s Project (IGAP) [9].
This project included 17,008 AD cases and 37,154 con-
trols, which represent the synthesis of 4 previously
published GWAS data sets and has found 11 loci
newly associated with AD. Summary statistics from
this study included SNP chromosome, position, and
effect /non-effect allele information along with statis-
tics summarizing GWAS linear regression results (i.e.
effect size, standard error of this effect size, and the
meta-analysis p-value using regression coefficients).
The SMR analytical program also required frequency
information for the effect alleles reported. As the IGAP
chose to not share allele frequency data due to privacy
concerns, however, we instead extracted this informa-
tion using PLINK v1.90 [28] from the genotyping refer-
ence panel data discussed above. The summary statis-
tics for the IGAP study can be found at https://
www.niagads.org/datasets/ng00036. To maximize
the power of our analyses, the most updated combined
Stage 1 and Stage 2 data was used.

The second analysis used in this work conducts a
meta-analysis that included clinically-diagnosed AD as
well as AD-by-proxy, which included a total of 71,880
cases and 383,378 controls [10]. As [10] is not specif-
ically an AD study, AD status of individuals in their
cohort was determined by examining their family his-
tory. If one or more biological parents were diagnosed
with late-onset AD sometime in their life, the individ-
ual (child) would be coded as AD-positive. This is pos-
sible given the strong genetic basis of AD. Given that
this study did not/could not directly assess an individ-
ual’s AD status, AD results from this study have been
termed ‘AD-by-proxy.” AD-by-proxy has been shown
to have very strong genetic ties to clinical AD with
a ry = 0.81; thus, individuals who have AD-by-proxy
may be coded as ‘case’ individuals similar to those
with a clinical AD diagnosis from a genetics stand-
point. This greatly enlarges the number of individu-
als included in the study and thus increases statistical
power. With this significantly larger data set, this anal-
ysis was able to identify 29 risk loci for AD. The sum-
mary statistics used for this study can be found at [29]
under the heading ‘Summary statistics for Alzheimer’s
dementia from Iris Jansen et al., 2019.” Our analyses
utilized the most updated version of the data, which
was published in December 2019.

The third analysis used is also a meta-analysis
[11]; this is a continuation of the first analysis noted
above. In addition to expanding the population size
from individuals of European descent to non-Hispanic



O J o U bW

AT UTUTUTUTUTUTUTOTE BB DB DD DSDNWWWWWWWWWWNNNONNNMNNNNNNRE R PR ERRRRP R R
O WNRPOWVWOUJdANT D WNRPRPOW®O-TAURWNROWOWO®-JdANUD™WNRFROW®OW-JIOUD™WNR OW®W-IO U B WN R O W

Lee et al.

Whites, this analysis uses a larger discovery sam-
ple which has implemented 17 new datasets, lead-
ing to a total n = 21,982 with 41,944 cognitively
normal controls. The main projects involved with
this meta-analysis include the Alzheimer Disease Ge-
netics Consortium (ADGC), Cohorts for Heart and
Aging Research in Genomic Epidemiology Consor-
tium (CHARGE), The European Alzheimer’s Disease
Initiative (EADI), and Genetic and Environmental
Risk in AD/Defining Genetic, Polygenic and Envi-
ronmental Risk for Alzheimer’s Disease Consortium
(GERAD/PERADES). The genotypic datasets were
imputed using a 1,000 Genomes reference panel to in-
clude a total 36,648,992 SNP’s; 1,380,736 indels; and
13,805 structural variants; this analysis leads to the
identification of five novel genome-wide loci associated
with AD, two of which have also been found in the
second analysis. The summary statistics can be found
on NIAGADS at [30]. The most recent version of this
data, which was published in February 2019, was used
in the analysis.

cis-eQTL Summary Data

cis-eQTL data used in this study was derived from
a meta-analysis of cis-eQTL’s between independent
brain and blood samples [31]. The exact meta-analysis
cis-eQTL information in the format required by the
SMR tool can be downloaded in full at
https://bit.ly/3gRNbGC.

This study integrated eQTL information from mul-
tiple sources, including the GTEx project gene expres-
sion data derived from both the blood and ten separate
brain tissues, CommonMind Consortium gene expres-
sion data derived from the dorsolateral prefrontal cor-
tex, and ROS/MAP gene expression data. cis-eQTL’s,
as defined by having the distance between a SNP and
gene probe being less than 1 Mb, were chosen in favor
of trans-eQTL data because trans-eQTL data was not
available for most of the data sets chosen by the study.

In their study, due to the use of biomarkers from
the blood as well as the brain from several differ-
ent cohorts, Qi et al. quantitatively established the
similarity of genetic effects at the top-associated cis-
eQTLs between blood and brain-derived measures.
They show the correlation of cis-eQTLs between brain
and blood is fairly high, with r, ~ 0.79 between the
GTEx WholeBlood and Hippocampus cis-eQTL’s, for
instance. This allows for the integration of cis-eQTL’s
taken from blood-derived tissues in our analysis.

Such a meta-analysis is extremely powerful due to
the enlarged sample size of such an analysis. Previ-
ous analyses utilizing gene expression data from any
one of these three sources alone, especially those that
studied brain tissues, were somewhat hindered by the
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small sample sizes of each respective study. However,
synthesizing these data sets and including the blood-
based biomarkers from the GTEx project would al-
low for an adequately large and statistically power-
ful analysis. As such, it was important to determine
if this could be properly done and if these individual
cis-eQTL’s lead to similar conclusions despite being
sourced from very different tissues. Fortunately, this
was proven to be possible, as shown by a 7, = 0.70
for cis-eQTL’s, which show that there is a high corre-
lation between independent brain and blood samples,
allowing for the combination of these cis-eQTL’s and
our proposed analysis.

Given these reassurances, the meta-analysis of cis-
eQTL data was performed with n ranging from 526 to
1194. The meta-analysis of these cis-eQTL’s has been
calculated using a program called MeCS [8], which
uses the summary-level cis-eQTL data provided from
these three consortiums to perform meta-analyses of
cis-eQTLs. In the MeCS calculation, cis-eQTL’s were
selected based on a definition of locality limited to
only SNP’s within 1 Mb of the gene probe in ques-
tion, as defined above. More information can be found
about MeCS, including a copy of the software, at
https://cnsgenomics.com/software/smr/#MeCS.

The SMR Method

Summary-data-based Mendelian Randomization (SMR)
uses an instrumental variable estimation in order to
accurately integrate independent GWAS and eQTL
summary data. A diagram visualizing the vital rela-
tionships this approach utilizes is shown in Figure 1.
Briefly, an instrumental variable estimation can be
used to better understand the correlation between an
independent variable and a dependent variable, espe-
cially when our independent and dependent variables
are endogenous [32]. Mendelian Randomization (MR)
as a whole is a biological adaptation of this approach
[33, 34].

The scientific basis of MR relies on a variant of
the central dogma of biochemistry: the ideal that ge-
netic variations (DNA) affect how certain genes are
expressed (RNA), which in turn affect the proteins
produced by the cell, potentially leading to changes
on a systemic level (phenotype). It has been previ-
ously shown that if a specific genetic variant (i.e. one
of the SNP’s studied in the meta-analysis cis-eQTL)
were to affect the expression of a gene — a relation-
ship potentially found via a cis-eQTL analysis [35] —
then there will be differences in gene expression levels
among individuals with different genetic ‘versions’ of
the studied SNP (i.e. heterozygous versus homozygous
dominant versus homozygous recessive). These differ-
ences, in turn, are analogous to the overexpression (in
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our case, positive AD diagnosis, assuming our SNP
and gene are risk factors for AD) and/or suppression
(a lack of a diagnosis) of the phenotype studied [8]. A
MR analysis takes a very similar approach, in using
a SNP as an instrumental variable to test the magni-
tude and presence of a causal effect of the expression
of a specific gene on our outcome of interest. In princi-
ple, it is thus possible to use a MR approach to search
for the genes at the loci of the SNP’s highlighted in
our summary GWAS that have the highest functional-
ity in AD. In finding highly significant/impactful gene
probes, this analysis may lead to the discovery of cer-
tain genes that have yet to be declared differentially
expressed in AD.

Up until recently, it was highly likely that in order
to perform an accurate Mendelian Randomization ap-
proach, a full set of data involving GWAS, eQTL, and
phenotype data for a large cohort was necessary to
produce statistically robust results. With the work of
Zhu et al. [8], it is now possible to perform a Mendelian
Randomization using only summary data potentially
using GWAS and eQTL data from different studies.
Their approach makes this possible using a series of
corrections and assumptions about the input data,
which allows for maximum efficiency while implement-
ing conservative screens that ensure only the most sta-
tistically significant correlations between gene expres-
sion and phenotype are highlighted.

First, as the given genetic variants are the primary
bridge between the comparisons with phenotype and
gene expression data, the program performs a quality-
control effect allele frequency check to verify the SNP
information used in both the eQTL and GWAS stud-
ies are congruous. Next, given the need for a signifi-
cant SNP-eQTL relationship to exist in order to per-
form the Mendelian Randomization analysis as men-
tioned above, only cis-eQTL’s (as defined by the stan-
dard 1 Mb radius from the gene probe) with a top
Peorr <5 1073 are included for the SMR analysis.
Furthermore, SNP’s with eQTL minor, effect, and/or
GWAS allele frequencies < 0.01 were also removed.
Then, only SNP’s with eQTL p-values that survive
a Bonferroni-corrected p threshold as defined by the
number of SMR calculations ran per command are
fully analyzed. Lastly, to correct for linkage disequi-
librium scattering results, SNP’s with a r? > 0.90 or
r?2 < 0.05 with the top SNP for that cis-eQTL are
excluded, with one result of every pair of SNP’s that
satisfy these LD requirements also being excluded.

With this procedure, it is possible to gain insight
as to the significance of certain genes relevant to AD.
However, an SMR analysis is not all that is needed to
confirm the causal relationship between gene expres-
sion and phenotype.
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Of note, a strong association in a SMR test doesn’t
necessarily mean that gene expression and the trait in
question are both directly affected by the same under-
lying genetic variant. It is possible that the association
is due to the top associated cis-eQTL variant being
in linkage disequilibrium with two separate variants,
one of which may influence gene expression and the
other which may affect our phenotypic outcome. This
type of linkage is significantly less powerful than the
pleiotropic relationships we wish to find instead.

To differentiate between the pleotropic relationships
we wish to find and the linkage relationships we wish
to avoid, Zhu et al [8] created the Heterogeneity in
Dependent Instruments (HEIDI) test. This technique
specifically tests against the null hypothesis that there
is a single null variant, which is biologically equivalent
to testing if there is heterogeneity in the effect sizes es-
timated for SNP’s in the cis-eQTL region of interest.
Since the HEIDI test has been shown to help identify
variants that are most likely to have a strong effect on
both gene expression and our AD phenotype, it was
used to distinguish pleiotropy from linkage in the con-
text of our analyses, similar to the work presented in
[8]. Of course, variants highlighted by the SMR tech-
nique and HEIDI test also warrant further biological
investigation.

We have performed an SMR analysis that inte-
grated meta-analytic cis-eQTL summary statistics
from GTEx, CMC, and ROS/MAP studies with three
sets of meta-analysis GWAS results in AD. We aim
to discover genes differentially expressed in AD for
better understanding of the molecular mechanism of
the disease. Our analysis identified twelve total gene
probes (associated with twelve distinct genes) with a
significant association with AD. Four of these genes
survived a test of pleiotropy from linkage (the HEIDI
test). One of the four genes, NDUFS2, has been previ-
ously reported as differentially expressed in the brain
in the context of AD. The remaining three genes —
RP11-385F7.1, PRSS36, and AC012146.7 — have not
yet been reported differentially expressed in the brain
in the context of AD. However, there exist prior stud-
ies suggesting some indirect connections between these
genes and AD. Thus, further investigations, including
performing SMR-based replication studies in indepen-
dent cohorts and/or conducting molecular validation
using brain-related tissues in AD research, may study
these genes in more detail.
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Figures

Figure 1 Flowchart outlining the instrumental variable
procedure of SMR. Known relationships represented by eQTL
between genetic variants and gene expression and GWAS
between genetic variants and AD are represented by solid
arrows. The gene expression - AD (causal) relationship that we
are trying to establish via SMR is represented by a dotted-line
arrow.

Page 8 of 9

Figure 2 This heatmap shows the p-values of our SMR
analyses. Along the x-axis are the three GWAS studies
implemented in our GWAS; along the y-axis are the genes with
associations to our phenotype (AD diagnosis) that have
survived the corresponding Bonferroni significance thresholds.
The heatmap is employing a negative logarithmic scale.

Figure 3 A locus plot showing the significant gene
RP11-385F7.1, its location within chromosome 6, and the
negative log of the significant p-values instrumental in
deeming this locus significant in the SMR analysis using Qi et
al., 2018 meta-analysis eQTL data and Jansen et al., 2019
GWAS data. The SMR p-value noted in this visualization for
the gene RP11-385F7.1 is 6.61 x 10~ Y-axis represents the
negative log of the p-values; x-axis represents BP location.

Figure 4 A locus plot showing the significant gene
AC012146.7, its location within chromosome 17, and the
negative log of the significant p-values instrumental in
deeming this locus significant in the SMR analysis using Qi et
al., 2018 meta-analysis eQTL data and Jansen et al., 2019
GWAS data. The SMR p-value noted in this visualization for
the gene AC012146.7 is 9.77 x 10~7. Y-axis represents the
negative log of the p-values; x-axis represents BP location.

Figure 5 A locus plot showing the significant gene PRSS36,
its location within chromosome 16, and the negative log of the
significant p-values instrumental in deeming this locus
significant in the SMR analysis using Qi et al., 2018
meta-analysis eQTL data and Jansen et al., 2019 GWAS data.
The SMR p-value noted in this visualization for the gene
PRSS36 is 4.55 x 1076, Y-axis represents the negative log of
the p-values; x-axis represents BP location.

Figure 6 SMR Effect Plot for RP11-385F7.1 using Qi et al.,
2018 cis-eQTL data and Jansen et al., 2019 meta-GWAS data.
X-axis represents cis-eQTL effect sizes while the y-axis
represents GWAS effect sizes.

Figure 7 SMR Effect Plot for AC012146.7 using Qi et al.,
2018 cis-eQTL data and Jansen et al., 2019 meta-GWAS data.
X-axis represents cis-eQTL effect sizes while the y-axis
represents GWAS effect sizes.

Figure 8 SMR Effect Plot for PRSS36 using Qi et al., 2018
cis-eQTL data and Jansen et al., 2019 meta-GWAS data.
X-axis represents cis-eQTL effect sizes while the y-axis
represents GWAS effect sizes.

Tables
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Table 1 This table shows the relevant cis-eQTL and summary GWAS p-values factored in to our SMR analysis. The index/leftmost
column includes both the gene analyzed along with the SNP with the strongest associations with both gene expression and our AD
phenotype; these are the gene and SNP directly analyzed via SMR via the instrumental variables estimation. The first data column
(denoted cis-eQTL?) contains the cis-eQTL p-values used from [31]; the final three data columns (denoted GWASP, GWAS®, and

GWAS?) contain the summary GWAS p-values used (from [11], [10], and [9], respectively); note these are different.

Gene SNP cis-eQTL? GWASP GWASE GWASH
PVR rs11540084 2.57E-30 5.12E-8 1.87E-8 1.90E-6
TOM M40 rs7259620 4.05E-22 4 99E-148 5.78E-216 3.25E-125
NDUFS2 rs4379692 4.12E-19 3.02E-2 7.84E-8 8.07E-2
Z N F296 rs8100183 4 81E-11 4 52E-10 2.21E-8 8.25E-6
SNX32 rs17854357 <1.00E-300 3.50E-1 3.12E-6 1.33E-1
PRSS36 rs1549299 3.36E-18 1.14E-2 6.87E-8 3.21E-3
CEACAMI19 rs714948 7.00E-20 1.35E-16 1.14E-25 6.26E-13
HLA-DRB1 rs9271069 1.79E-95 1.10E-3 2.26E-2 7.53E-8
CR1 rs679515 2.10E-18 1.55E-16 6.83E-19 4.10E-15
AC012146.7 rs73976310 6.19E-31 2.14E-2 6.50E-8 5.92E-4
CTB171A8.1 rsb5710026 <1.00E-300 9.32E-13 5.59E-16 8.00E-16
RP11-385F'7.1 rs9473119 2.67E-13 1.87E-7 1.02E-8 4 59E-8
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