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Abstract: Brain imaging genetics examines associations between imaging quantitative traits (QTs) 1

and genetic factors such as single nucleotide polymorphisms (SNPs) to provide important insights 2

into the pathogenesis of Alzheimer’s disease (AD). The individual level SNP-QT signals are high 3

dimensional and typically have small effect sizes, making them hard to be detected and replicated. 4

To overcome this limitation, this work proposes a new approach that identifies high-level imaging 5

genetic associations through applying multigraph clustering to the SNP-QT association maps. Given 6

an SNP set and a brain QT set, the association between each SNP and each QT is evaluated using a 7

linear regression model. Based on the resulting SNP-QT association map, five SNP-SNP similarity 8

networks (or graphs) are created using five different scoring functions respectively. Multigraph 9

clustering is applied to these networks to identify SNP clusters with similar association patterns with 10

all the brain QTs. After that, functional annotation is performed for each identified SNP cluster and 11

its corresponding brain association pattern. We applied this pipeline to an AD imaging genetic study, 12

which yielded promising results. For example, in an association study between 54 AD SNPs and 13

116 amyloid QTs, we identified two SNP clusters with one responsible for amyloid beta clearances 14

and the other regulating amyloid beta formation. These high-level findings have the potential to 15

provide valuable insights into relevant genetic pathways and brain circuits, which can help form new 16

hypotheses for more detailed imaging and genetics studies in independent cohorts. 17

Keywords: Brain imaging genetics, multigraph clustering, Alzheimer’s disease. 18

1. Introduction 19

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder characterized by 20

continuous cognitive impairment and eventual amyloid plaques, neurofibrillary tangles 21

and atrophy patterns in the brain [1–3]. As the most common type of demantia, AD is 22

responsible for approximately 5.8 million demantia cases in US [4]. AD has a heritability 23

ranging from 60% to 80% estimated from the twin study [5]. The most widely used 24

approach to identify AD genetic basis is to perform a genome-wide association study 25

(GWAS) or GWAS-based meta-analysis on case-control phenotypes. Over 50 AD-related 26

single nucleotide polymorphisms (SNPs) have been identified [6,7]. 27

Many previous AD studies use GWAS and pathway enrichment analysis to explore 28

the genetic basis of the AD diagnosis [3,8–15]. However, these case-control genetic asso- 29

ciation studies cannot directly reveal the biological pathways from genetic determinants, 30

molecular signatures, brain traits to cognitive and clinical outcomes. To bridge this gap, 31
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brain imaging genetics [16–18] is emerging as a new research field, where quantitative 32

traits (QTs) extracted from brain imaging data are used as intermediate phenotypes to 33

study genetics. These imaging QTs have the potential to not only link genetics with disease 34

outcomes but also capture neuropathological heterogeneity of AD [19,20]. 35

Conventional brain imaging genetics studies perform massive pairwise association 36

analyses between each SNP-QT pair. These individual level SNP-QT signals are high dimen- 37

sional and typically have small effect sizes, making them hard to be detected and replicated. 38

To bridge this gap, some studies attempt to interpret these results on a macroscopic level or 39

derive high-level understandings. For example, Yao et al. used a two-dimensional enrich- 40

ment analysis to address this challenge, grouping similar brain regions and genes together 41

via a biclustering approach [21]. Yao’s work identified various high-level two-dimensional 42

imaging genetic modules, which were predefined based on the brain transcriptome data 43

from Allen Human Brain Atlas. 44

In this work, instead of using the knowledge-driven, predefined imaging genetic 45

modules, we propose an alternative data-driven approach to identify high-level imaging 46

genetic patterns. Based on the detailed SNP-QT associations, we develop a graph-cut 47

algorithm to cluster similar SNPs together so that SNPs within the same cluster tend to 48

have similar associations with QTs across the brain. We construct multiple SNP networks 49

based on different similarity measurements. Each similarity network can be viewed as 50

a weighted graph with a specific similarity measure defined as the edge weight. We 51

employ a multigraph clustering method derived from min-max graph cut to discover 52

SNP clusters that take into consideration of all the studied similarity measures. After that, 53

functional annotation is performed for each identified SNP cluster and its corresponding 54

brain association pattern to provide valuable biological insights at a high level. 55

We applied this pipeline to an AD imaging genetic study, which yielded promising 56

results. For example, in an association study between 54 AD SNPs and 116 amyloid QTs, 57

we identified two SNP clusters with one responsible for amyloid beta clearances and the 58

other regulating amyloid beta formation. These high-level findings have the potential to 59

provide valuable insights into relevant genetic pathways and brain circuits, which can help 60

form new hypotheses for subsequent imaging and genetics studies in independent cohorts. 61

2. Material and Methods 62

2.1. Data Description 63

Data used in the preparation of this article were obtained from the Alzheimer’s 64

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [22]. The ADNI was 65

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 66

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 67

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 68

and neuropsychological assessment can be combined to measure the progression of mild 69

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni- 70

info.org. In this study, participants (N=971) include 202 AD, 218 late MCI (LMCI), 296 71

early MCI (EMCI), and 255 healthy control (HC) subjects. The baseline structural magnetic 72

resonance imaging (MRI) scans, AV45 and FDG positron-emission tomography (PET) scans, 73

genotyping data, demographic information, and clinical assessments are downloaded from 74

the ADNI database (adni.loni.usc.edu). Table A1 shows participant characteristics. 75

2.2. Data Preprocessing 76

The genotyping data are downloaded and analyzed using PLINK v1.90 [23]. We 77

perform quality control using the following criteria: genotyping call rate > 95%, minor 78

allele frequency > 5%, and Hardy Weinberg Equilibrium > 1.00 × 10−6. Then, we select 54 79

risk variants identified by recent AD genome-wide association studies (GWAS) or GWAS 80

meta-analysis [3,6,7]. Table A2 shows the list of risk variants investigated in this study. 81

Structural MRI scans are processed with voxel-based morphometry (VBM) using the 82

Statistical Parametric Mapping (SPM) software. All scans are aligned to a T1-weighted 83
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Figure 1. Flowchart of our analysis pipeline. Step 1 generates detailed SNP-QT association maps (54
SNPs by 116 QTs) for five different subject sets examined in our previous study [24], respectively. Step
2 transforms the SNP-QT map to SNP networks by applying different similarity scoring functions to
each pair of 116-dimensional SNP vectors. Step 3 uses multigraph min-max cut algorithm to generate
an optimal clustering result scoring analysis in Step 4. In Step 5, the SNPs in each cluster are mapped
to nearest genes and uploaded to enrichR for Elsevier pathway analysis to identify relevant biological
pathways. In Step 6, Neurovault and Neurosynth are used to functionally annotate the average brain
association pattern for all the SNPs in each cluster.

template image, segmented into gray matter (GM), white matter (WM) and cerebrospinal 84

fluid (CSF) maps, normalized to the standard Montreal Neurological Institute (MNI) space 85

as 2×2×2 mm3 voxels. The GM maps are extracted and smoothed with an 8mm FWHM 86

kernel. We then extract the average regional GM measurements from 116 regions-of- 87

interests (ROIs) defined by the automated anatomical labeling (AAL) atlas. 88

Preprocessed F-18 florbetapir (AV45) PET scans are collected and aligned to the Mon- 89

treal Neurological Institute space as 2 × 2 × 2 mm voxels using SPM. Standard uptake 90

value ratio is computed by intensity normalization based on a cerebellar crus reference 91

region. We then extract the average regional AV45 measurements from 116 AAL ROIs. 92

The (18)F-fluorodeoxyglucose (FDG) PET measurements are also registered into the 93

same MNI space as 2×2×2 mm3 voxels by SPM. We then extract the average regional FDG 94

measurements from 116 AAL ROIs. 95

2.3. Method Overview 96

Fig. 1 shows the flowchart of the analyses performed in this study, including six steps. 97

Step 1 generates detailed SNP-QT association maps for five different subject sets examined 98

in our prior study [24], respectively. Step 2 constructs five SNP similarity networks using 99

different scoring functions. Step 3 performs multigraph clustering on the five SNP networks 100

with a range of cluster numbers. Step 4 examines the clustering quality of each cluster 101

through Silhouette analysis. Based on the Silhouette scoring results, two cluster groups are 102

selected for the subsequent analysis in Steps 5 and 6. We perform functional annotation for 103

(1) each identified SNP cluster in Step 5 using pathway analysis and (2) its corresponding 104

brain association pattern in Step 6 using Neurosynth and Neurovault. 105
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2.4. Step 1: Imaging Genetic Association Analysis 106

The relationship between each ROI-based imaging QT and each SNP can be obtained
by performing a linear regression. Let G be a set of SNPs and Y be a set of imaging QTs
(AV45, FDG, and VBM). We perform a linear regression model to estimate the additive
effect of each SNP g ∈ G on each QT y ∈ Y. The analysis is performed for all possible
SNP-QT pairs for each of the five comparison groups (i.e., EMCI vs HC, LMCI vs HC, AD
vs HC, MCI vs HC, ALL vs HC) within each of the three imaging modalities (i.e., AV45,
FDG, and VBM). The regression is repeated 54 × 116 times. The linear regression model is
defined as follows:

y = αg + ΓZ + ϵ,

where Z = (z1, · · · , zk)
T includes the variables whose effects we want to exclude, such as 107

age, sex, and education; α and Γ = (γ1, · · · , γk) are the coefficients; and ϵ is the error term. 108

Our goal is to estimate α and also test if the SNP g has a significant effect (i.e. α ̸= 0) on 109

each QT y ∈ Y. 110

Thus, in Step 1 we generate an ROI-based p-value map to quantify the significance 111

of SNP effects on imaging data. Specifically, in this work, each element of the significance 112

map records the “negative log p-value” −log10(p) at the corresponding ROI. At the end of 113

this step, we have 5 SNP-QT maps of size 54 (number of studied SNPs) × 116 (number of 114

ROIs) for each of the three modalities. 115

2.5. Step 2: SNP Networks with Different Similarity Measurements 116

Step 1 explores the lower level relationship between imaging and genetic data. In order 117

to aggregate the individual effects of multiple SNP-ROI pairs to high level imaging genetic 118

patterns, we transform the SNP-QT maps to an SNP network that models the SNP similarity 119

in terms of their effects on all the QTs across the entire brain. From Step 1, a 54-by-116 120

SNP-QT map is constructed for each of the five comparison groups within each of the three 121

modalities. For each SNP, there is a 116 dimensional feature representation that maps its 122

effect on the brain. The similarity measurement is applied on all pairs of 116-dimensional 123

normalized SNP vectors to create a 54-by-54 SNP network. Five scoring functions shown in 124

Table 1 are used, resulting in five distinct 54-by-54 SNP networks for each comparison group. 125

The three SNP networks formed by the Pearson correlation, the Spearman correlation and 126

the cosine similarity are normalized by taking the absolute value of the entry, respectively. 127

The two SNP networks formed by the Manhattan and Euclidean distances are transformed 128

to normalized similarity networks by taking a Gaussian radial basis function centered at 129

distance = 0 with a standard deviation of (maximum-minimum)/3, respectively. After 130

normalization, all the entries in each 54-by-54 SNP network have a value between 0 and 1. 131

2.6. Step 3: Multigraph Min-Max Graph Clustering 132

While an SNP network describes the similarity between each pair of SNPs, a high 133

level understanding can be obtained by grouping similar SNPs together and study their 134

collective effects. From Step 2, five 54-by-54 normalized similarity SNP networks are cre- 135

ated for each comparison group within each of the three modalities. The network can be 136

viewed as a graph so that the connected components output from graph cut algorithms 137

are viewed as network clusters. Ding et al. proposed a min-max graph cut algorithm that 138

improves cluster quality and balance by minimizing similarity between pairwise subgraphs 139

and maximizing similarity within each subgraph [25]. The min-max graph cut takes a 140

single similarity network as input, so it clusters one network and examines the effect of 141

one scoring function. Wang et al. generalized the single-graph min-max graph cut into 142

multigraph min-max graph cut, which is used in this study to evaluate the combined effect 143

of five scoring functions [26]. The objective functions of both min-max graph cut models are 144

shown in Table 2. In this study, multigraph min-max graph cut algorithm is implemented 145

through a gradient descent method with convergence conditions. The implication of multi- 146
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Table 1. Assume the 54-by-116 genetic-imaging matrix is X. Scoring functions are applied to Xi

and Xj ∈ R116, 116-dimensional row vectors of X that maps the effect of a given SNP to 116 brain
regions of interest (ROIs). Assume Xik denotes the i-th row and k-th column entry of X. Note that the
Manhanttan distance and Euclidean distance need to be transformed to the corresponding similarity
measures using a Gaussian radial basis function in the third column.

Measurement Scoring Function Normalized Similarity

Pearson correlation r(i, j) = ∑n
k=1(Xik−Xi)(Xjk−Xj)√

∑n
k=1(Xik−Xi)2(Xjk−Xj)2

|r(i, j)|

Spearman correlation ρ(i, j) = 1 − 6 ∑n
k=1(rank(Xik)−rank(Xjk))

2

n(n2−1) |ρ(i, j)|

Manhattan distance d(i, j) = ||Xi − Xj||1 e
−0.5

(
d(i,j)−dmin

(dmax−dmin)/3

)2

Euclidean distance d(i, j) = ||Xi − Xj||2 e
−0.5

(
d(i,j)−dmin

(dmax−dmin)/3

)2

Cosine cos(i, j) =
Xi ·Xj

||Xi ||·||Xi ||
|cos(i, j)|

Table 2. Objective functions of single graph and multigraph clustering. A is the adjacency matrix,
which is equivalent to the similarity network in this study. D is the diagonal matrix of A. Q is the
output clustering labels. K is the number of clusters.

Graph cut algorithm for cluster analysis Objective Function

Single-graph min-max cut minQT Q=IΣ
K
k=1

qT
k Dqk

qT
k Aqk

Multigraph min-max cut minQT Q=IΣ
m
v=1ΣK

k=1
qT

k Dvqk
qT

k Avqk

graph min-max clustering is that it combines the effects of multiple scoring functions at 147

the same time. The clustering results of multigraph min-max graph cut algorithm have 148

features that resemble the clustering results of single-graph min-max clustering from the 149

best scoring function. Multigraph min-max clustering with five 54-by-54 SNP networks 150

as inputs is performed on the number of clusters ranged from 2 to 9 to produce clustering 151

results for each comparison group within each modality. 152

153

2.7. Step 4: Silhouette Scoring Analysis 154

The goal of this step is to determine the optimal number of clusters. Silhouette refers 155

to a method of interpretation and validation of consistency within clusters of data and 156

provides a graphical representation of cluster quality [27]. The Silhouette value has a range 157

between -1 and 1. A value close to 1 indicates good clustering quality: the objects are 158

close to assigned clusters and far from neighbor clusters. A value close to -1 suggests 159

that the number of clusters selected is not appropriate. The scoring functions are listed in 160

Table 3. The Silhouette scoring analysis is performed on the clustering results of multigraph 161

clustering with number of cluster ranged from 2 to 9. The normalized similarity networks 162

in Step 3 are transformed to distance matrices by converting a similarity measure of x 163

into a distance measure of 1 − x. For a given number of clusters, there are 5 similarity 164

measurements × 5 comparison groups within each of the three modalities. The 5 × 5 = 25 165

Silhouette scores are averaged for comparison. The clustering result with the highest 166

averaged Silhouette score is selected for further analysis. The Silhouette scoring analysis is 167

also performed on the clustering results of single-graph clustering with number of cluster 168

ranging from 2 to 9. The 5 Silhouette scores from 5 comparison groups are averaged and 169

compared with the averaged Silhouette score of the multigraph clustering to analyze the 170

effectiveness of multigraph clustering. 171
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Table 3. Silhouette scoring functions. Let CI be the cluster which node i belongs to.

Measure Calculation
mean distance a(i) = 1

|CI |−1 Σj∈CI ,i ̸=jd(i, j)

mean dissimilarity b(i) = minJ ̸=I
1

|CJ |
Σj∈CJ d(i, j)

Silhouette value s(i) = b(i)−a(i)
max(a(i),b(i))

AV45

FDG

VBM

EMCI vs. HC LMCI vs. HC AD vs. HC MCI vs. HC All vs. HC

Figure 2. Detailed imaging genetic association maps (54 SNPs by 116 ROIs) with each entry as a
normalized −log10(p-value) from linear regression of ROI vs SNP within each comparison group.
Normalization was performed so that each row has a squared norm of 1. The vertical axis follows the
SNP order listed in Table A2. The horizontal axis follows the ROI order listed in Table A3.

2.8. Step 5: EnrichR Elsevier Pathway Analysis 172

A high level result of two SNP groups is produced from previous analysis. The genetic 173

domain of each SNP group can be analyzed through the pathway analysis using Enrichr. 174

Enrichr is an integrative web-based and mobile software application that includes new 175

gene-set libraries, an alternative approach to rank enriched terms, and various interactive 176

visualization approaches to display enrichment results using the JavaScript library, Data 177

Driven Documents (D3) [28–30]. The software can also be embedded into any tool that 178

performs gene list analysis. The 54 AD-related SNPs in this study are mapped to their 179

closest gene, upstream or downstream. The SNP cluster from multigraph clustering are 180

mapped to a group of genes and uploaded to EnrichR for pathway analysis. The elsevier 181

pathway analysis results of each SNP cluster are recorded and compared because it contains 182

various AD-related pathways. 183

184

2.9. Step 6: Neurovault Brain Region Analysis 185

After analyzing the genetic domain, the brain pattern corresponding to each SNP 186

cluster can be analyzed through mapping the average effect of each SNP group onto the 187

brain. This brain association pattern can be analyzed by Neurovault and Neurosynth 188

[31], which gives us functional and structural information of the affected brain regions. 189

NeuroVault is an open-science neuroinformatics online repository of brain statistical maps 190

atlases and parcellations [31]. Neurosynth is a platform for large-scale, automated synthesis 191

of functional magnetic resonance imaging (fMRI) data. It takes thousands of published 192

articles reporting the results of fMRI studies and outputs brain maps with calculated cor- 193

relation coefficients given the uploaded MRI data. The SNPs that are grouped together 194

are expected to affect similar brain regions. Thus, the averaged SNP effect on 116 QTs 195
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Figure 3. Averaged Silhouette scoring of single-graph and multigraph clustering results across 5
scoring functions × 5 comparison groups at each number of cluster. The results of analyzing AV45,
FDG and VBM data are shown from left to right. In the subsequent analyses, we report the multigraph
results of clustering SNPs into 2 groups, which is the optimal case for both AV45 and VBM.

from each SNP group is calculated and mapped onto the brain. The resulting brain map is 196

functionally annotated using NeuroVault and Neurosynth. 197

198

3. Result 199

3.1. Imaging Genetic Association Maps 200

Fig. 2 shows all 15 resulting imaging genetic association maps, arranged by three 201

modalities (AV45, FDG, VBM) against five comparisons (EMCI vs HC, LMC vs HC, AD 202

vs HC, MCI vs HC, All vs HC). Each map consists of 54 SNPs on the vertical axis and 116 203

ROIs on the horizontal axis. The order of SNPs on the vertical axis follows the list shown in 204

Table A2. The order of ROIs on the horizontal axis follows the list shown in Table A3. 205

Each entry of the map corresponds to −log10(p-value) from the linear regression 206

before normalization. After an initial SNP-QT map is created, each 116-dimensional vector 207

of a given SNP is normalized such that the Euclidean norm is 1. This step is performed so 208

that each SNP is represented as a directional unit vector to facilitate subsequent analysis. 209

While such an imaging genetic map describes detailed associations for each SNP-QT 210

pair, it is not straightforward to detect any general trend in these maps. The goal of the 211

subsequent steps is to extract high level information from these maps and help provide 212

biological interpretation to aid biomarker discovery and therapeutic target identification. 213

3.2. Multigraph vs Single-graph Silhouette analysis 214

The multigraph vs single graph averaged Silhouette scores are shown in Fig. 3. The 215

multigraph averaged Silhouette score is calculated by taking the mean of 25 Silhouette 216

scores (5 scoring functions × 5 comparison groups) from the multigraph clustering result 217

at a given number of clusters for a given modality. The single graph averaged Silhouette 218

score is calculated by also taking the mean of 5 × 5 = 25 Silhouette scores. Instead of using 219

the same clustering result across five scoring functions for the multigraph case, a single 220

graph clustering is performed on each of the scoring functions. The Silhouette scores are 221

calculated based on the clustering result of a specific scoring function. 222

A higher Silhouette score indicates a better clustering quality. A lower number of 223

clusters is preferred in this study when the Silhouette scores are similar since our goal is 224

to provide a high level understanding. As a result, cluster number = 2 is chosen for the 225

subsequent analyses. 226

3.3. Clustering Results 227

The SNP networks constructed by the normalized cosine scoring function are shown 228

in Fig. 4. The two resulting SNP clusters are separated by two black lines. The cluster with 229

a smaller number of SNPs is reordered in the top left corner with the cluster with a larger 230

number of SNPs in the bottom right corner. 231

The similarity network entries are normalized so that the minimum is 0 and the 232

maximum is 1. Each SNP has a maximum similarity of 1 with itself as observed from the 233
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AV45

FDG

VBM

EMCI vs. HC LMCI vs. HC AD vs. HC MCI vs. HC All vs. HC

Figure 4. The SNP networks (54 by 54) constructed by the normalized cosine scoring function. Each
entry is the cosine similarity of two corresponding SNP representations (measuring their association
patterns with 116 ROIs in the brain). The black line indicates the partition of two clusters.

diagonal. Good partition of SNPs is indicated by strong similarity within each cluster and 234

weak similarity between the clusters. A balanced size of the two clusters is preferred so that 235

we can identify multiple high level patterns instead of one single high level pattern coupled 236

with a small number of outliers. Therefore, the clustering result on the AV45 measures for 237

the LMCI vs HC comparison group as well as the clustering result on the VBM measures 238

for the AD vs HC comparison group are selected for subsequent analysis. 239

3.4. Case study: Example AV45 Result 240

Among all the results in modality AV45, the most balanced one is generated by analyz- 241

ing the LMCI vs HC comparison group, and this result is shown in Table A4. The functional 242

annotation and pathway analysis of the identified SNP clusters and the corresponding brain 243

maps are shown in Fig. 5. The SNPs in each of the two groups are mapped to their closest 244

genes and uploaded as two gene sets to enrichR. The Elsevier pathway analysis is used in 245

this study because multiple AD related pathways are included in this pathway, which is 246

helpful for understanding AD pathogenesis. The average normalized brain significance 247

maps corresponding to two SNP groups are shown in Fig. 5(c). Neurosynth analysis results 248

of these two brain maps are shown in Fig. 5(d). 249

3.5. Case study: Example VBM Result 250

Among all the results in modality VBM, the most significant and balanced result is 251

generated by analyzing the AD vs HC comparison group, and this result is shown in 252

Table A5. The functional annotation and pathway analysis of the identified SNP clusters 253

and the corresponding brain maps are shown in Fig. 6. The analysis is similar to the 254

previous case study on the AV45 measures for the LMCI vs HC comparison group. This 255

clustering result has a lower Silhouette score (0.158) than that in the previous case study 256

(0.293). So a less distinct pattern is observed in the network, along with less differentiated 257

pathways, brain regions and brain map visualization. 258
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Figure 5. a) Cosine SNP network derived from genetic analysis of the AV45 data in the LMCI vs
HC comparison. b) The Elsevier pathway analysis from EnrichR of SNP group 1 (20 SNPs) and SNP
group 2 (34 SNPs). c) The average normalized brain significance maps corresponding to SNP group
1 (left) and SNP group 2 (right) respectively. d) Neurosynth analysis results of the two brain maps
shown in (c).

4. Discussion 259

4.1. Comparison between single-graph and multigraph clusterings 260

In this study, multiple scoring functions have been selected to evaluate the similar- 261

ity between different AD-related SNPs in terms of their effects on 116 ROIs across the 262

brain. Each scoring function quantifies the similarity between SNPs from a specific per- 263

spective. Multigraph clustering is used to output a clustering result that combines the 264

effects of multiple scoring functions. The purpose of building SNP-SNP networks through 265

different scoring methods is to evaluate the SNP similarity in terms of their effects on 266

116 ROIs traits across the brain from multiple perspectives. Given two vectors [1,2,3] and 267

[0.001,0.002,0.003], their Pearson correlation, Spearman correlation, and cosine similarity 268

are all 1 (corresponding to the largest similarity), since they focus on comparing the vector 269

directionality instead of the vector magnitude. However, their Manhattan distance and 270

Euclidean distance are very sensitive to the vector magnitude, and thus are both large, 271

leading to very small similarity. Our multi-graph approach combines the effects of all these 272

scoring functions, and takes into consideration both vector directionality and magnitude 273

when performing multi-graph clustering. 274

Several single-graph and multigraph clusterings with a varying number of clusters 275

from 2 to 9 are performed. Averaged Silhouette analysis scores are used to quantify 276

clustering quality under a given cluster condition. In Fig. 3, the plot of averaged Silhouette 277

analysis for single-graph shows that clustering quality improves in general as the number of 278

clusters increases for FDG and VBM. However, for AV45 a higher number of clusters leads 279

to a lower cluster quality. There is an inconsistency in the optimal number of clusters for 280

different imaging modalities. The goal of this study is to acquire a high-level understanding 281

of imaging genetic associations. Despite the inconsistency of clustering quality, a large 282

number of clusters also makes subsequent analysis complicated. Only a few brain regions 283

and pathways will be present when the number of SNPs in each cluster decreases, which 284

downgrades the high-level understanding back to individual level analysis. 285

With these difficulties addressed in single graph clustering, the use of multigraph clus- 286

tering is very promising for various reasons. The first advantage of multigraph clustering is 287
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Figure 6. a) Cosine SNP network derived from analyzing VBM data in the AD vs HC comparison. b)
The Elsevier pathway analysis from EnrichR of SNP group 1 (16 SNPs) and SNP group 2 (38 SNPs). c)
The average normalized brain significance maps corresponding to SNP group 1 (left) and SNP group
2 (right) respectively. d) Neurosynth analysis results of the two brain maps shown in (c).

that at a given number of clusters, it is able to selectively use scoring functions that behave 288

well. For example, at cluster number = 2, the Pearson and Spearman methods have low 289

Silhouette scores (< 0.062) across all three modalities, while the Manhattan, Euclidean, and 290

cosine methods have high ones (> 0.11). In this case, the multigraph clustering yields an 291

average Silhouette score of 0.1016 (Fig. 3), resulting in prominent patterns when mapped to 292

Manhattan, Euclidean, and cosine networks (e.g., Fig. 5(a)). 293

The second advantage of multigraph clustering for this study is that it behaves the 294

best for AV45 and VBM at the number of clusters = 2 (see Fig. 3). As discussed above, a 295

small number of clusters is great for high-level analysis. For FDG, the Silhouette score for 296

the cluster number of 2 is also close to the score for the cluster number of 8. So the result 297

for the cluster number of 2 is reported for all three modalities in this study and coupled 298

with subsequent functional annotation and pathway analysis. 299

The third advantage of multigraph clustering is that the analysis is more efficient 300

and consistent than a collection of single-graph clusterings. Instead of doing 5 single- 301

graph clusterings with inconsistent results among different scoring functions, multigraph 302

clustering is able to return a single set of clustering result. This feature provides a novel 303

way of analysis for future studies with a large number of candidate evaluation functions 304

and no prior knowledge of their performances. 305

4.2. AV45 Clustering Result 306

In the AV45 row of Fig. 4, comparison group AD vs HC and ALL vs HC both have 307

one cluster group of 1 SNP and another cluster group of 53 SNPs. The two clusters can 308

be viewed as one group because the multigraph clustering algorithm explicitly enforces 309

each cluster to be nonempty. While these two results are not significant, rs11278892 with its 310

minor allele G is classified to be the most distant from the other 53 SNPs. 311

Comparison group EMCI vs HC has one cluster group of 2 SNPs and another cluster 312

group of 52 SNPs. Again, this can be roughtly viewed as a single group. The smaller 313

cluster group contains rs4575098 and rs4663105. There is no prior research of rs4575098, but 314

rs4663105 mapped to BINI gene was identified as having a significant association among 315
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APOE ϵ4+ and ϵ4− subjects [32]. Future research can be conducted on the association 316

between rs4575098 and rs4663105 as well as their collective role in early MCI development. 317

Comparison group LMCI vs HC has the most balanced cluster group for AV45 with 318

one cluster of 20 SNPs and another cluster of 34 SNPs (with APOE rs429358). The partition 319

will provide us with insights of how two groups of SNPs each plays a different role in the 320

LMCI stage. This finding is promising given that 1) LMCI is the transitional stage between 321

EMCI and AD, 2) there are no significant partitions at EMCI and AD, and 3) there is a 322

significant pattern at LMCI. This suggests a potential stage-specific imaging genetic pattern 323

during AD progression, which warrants further investigation. See Section 4.5 for additional 324

discussion on the functional annotation of this high level imaging genetic pattern. 325

4.3. FDG clustering result 326

In the FDG row of Fig. 4, for the smaller cluster group, EMCI vs HC group has 327

rs10498633 and rs12881735, LMCI vs HC group has rs10498633 and rs12881735, and AD vs 328

HC group has rs6656401, rs2093760, and rs4844610. The MCI vs HC group has 8 SNPs and 329

the ALL vs HC group has 6 SNPs. In general, the clustering patterns in the networks don’t 330

seem as significant as AV45 and VBM. The Silhouette score of FDG (0.076) is also lower 331

than AV45 (0.102) and VBM (0.0879). Yet there is one observation of the results: rs10498633 332

present in both EMCI and LMCI smaller cluster groups. Previous studies have shown that 333

rs10498633 in SLC24A4 was significantly associated with anisotropy, total number and 334

length of fibers, including some connecting brain hemispheres [33]. 335

4.4. VBM clustering result 336

In the VBM row of Fig. 4, comparison group MCI vs HC has one group of 2 SNPs 337

(rs4236673 and rs9331896) and another group of 52 SNPs. Comparison group ALL vs HC 338

has one group of 1 SNP (rs9271058) and another group of 53 SNPs. These cases can be 339

viewed as having one group instead of two partitions. 340

Comparison group EMCI vs HC has a smaller group of 6 SNPs: rs10808026, rs7810606, 341

rs10498633, rs12881735, rs12590654, and rs113260531. Comparison group LMCI vs HC 342

has a smaller group of 5 SNPs: rs4236673, rs9331896, rs10498633, rs12881735, rs12590654. 343

The SNPs rs10498633, rs12881735, rs12590654 lie in the intersection of these two groups, 344

potentially having an impact throughout the MCI stage. As mentioned in the FDG section, 345

rs10498633 is also found to be distant from the other AD-related SNPs for VBM modality, 346

which reinforces its unique role associated with anisotropy in the MCI stage. 347

Comparison group AD vs HC has the most balanced cluster result with one group of 348

16 SNPs and another group of 38 SNPs. This provides us with insights about how the two 349

groups of AD-related SNPs each play a different role in AD patients. Functional annotation 350

of this high level imaging genetic pattern will be discussed in Section 4.6. 351

4.5. AV45 case study 352

In Fig. 5(a,b), the Elsevier pathway analysis reveals some promising results on our 353

genetic analysis of AV45 measures in the LMCI vs HC comparison: (1) the pathway of 354

amyloid beta clearance in AD is enriched by genes associated with the SNP Group 1, and 355

(2) the pathway of amyloid beta formation in AD is enriched by genes associated with the 356

SNP Group 2. AD pathogenesis is widely believed to be driven by the production and 357

decomposition of β-amyloid peptide [34]. The disease state of AD is closely related to the 358

solubility and the quantity of β-amyloid. Our pathway analysis suggests that the SNPs in 359

Group 1 have potential to be related to the decomposition of amyloid beta while the SNPs 360

in Group 2 to be related to its production. Since AD is characterized by accumulation of 361

β-amyloid, it warrants further investigation that the SNPs involved here can be studied as 362

suppressors and/or promoters to minimize the amount of β-amyloid present [35]. 363

A relevant observation from our pathway analysis is Group 1’s association with amy- 364

loid beta and APP intracellular transport in AD and amyloid beta traffic and degradation 365

in extracellular matrix in AD and Group 2’s association with APP processing. β-amyloid is 366
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released by sequential proteolytic processing of the amyloid precursor protein, so the inhibi- 367

tion of APP processing and the excitation of intracellular transport, traffic, and degradation 368

together minimize the accumulation of β-amyloid in the extracellular matrix. 369

Another indicator of Group 1’s role on β-amyloid is the MBP immunal pathway, which 370

is responsible for amyloid beta degradation [36]. The most correlated pathway of Group 2 371

is complement activation in AD. Complement proteins are integral components of amyloid 372

plaques and cerebral vascular amyloid in AD patient brains, which can be found at the 373

earliest of amyloid deposition [37]. The complement activation also coincides with the 374

clinical expression of Alzheimer’s demantia. Aside from the two group’s direct associations 375

with β-amyloid, the pathway analysis also shows that AD is correlated with different 376

diseases including Tangier Disease, cancer, psoriasis, and asthma. Previous studies have 377

shown that Tangier Disease is caused by mutations of ABAC1, which is closely related to 378

β-amyloid [38]. 379

In Fig. 5(c,d), The most correlated brain regions associated with SNP Group 1 include 380

cerebellar, cerebellum, vi, lobules, and vermis (see https://neurosynth.org/analyses/ 381

terms/ for definition of these terms). Cerebellar and cerebellum are responsible for motor 382

functions and balance. It is also associated with the visual system. Vermis and some 383

subsequent correlated brain regions are also associated with maintaining posture. So this 384

group is primarily associated with brain regions that are responsible for balance, motor 385

functions, and visual functions. Group 2 is correlated with prefrontal, medial prefrontal, 386

medial, prefrontal cortex, and social. All these regions control cognitive ability, memory 387

management, and emotional impulse. The affected brain regions and their respective 388

functions of two groups of SNPs show a great difference, demonstrating the promise of our 389

clustering result. 390

4.6. VBM Case Study 391

Fig. 6(a,b) shows the results of Elsevier pathway analysis on our genetic study of 392

VBM measures in the AD vs HC comparison. SNP Group 1 is associated with complement 393

activation in AD and various pathways that is associated with the immune system and 394

systematic lupus erythematosus, which is a disease categorized by the immune system 395

attacking its own tissues. SNP Group 2 is associated with amyloid clearance and formation 396

pathways, which has an ambiguous downstream function compared with the AV45 results. 397

Thus previous AV45 result shows a better partition, which can also be verified by visually 398

inspecting the SNP networks and comparing the averaged Silhouette scores (0.1015 vs 399

0.0879). 400

In Fig. 6(c,d), the brain association pattern corresponding to SNP Group 1 includes 401

cerebellum, cerebellar, vi, lobules, and putamen. Cerebullum and cerebellar govern motor 402

functions and balance (see https://neurosynth.org/analyses/terms/ for definition of 403

these terms). The putamen is involved in learning and motor control, including speech 404

articulation, language functions, and cognitive functions. Similar to the Group 1 result 405

of the AV45 analysis above, this group is associated with balance, motor functions, and 406

visual functions. The brain association pattern corresponding to SNP Group 2, on the other 407

hand, is related to premotor, parietal motor, movements, and primary motor. The primary 408

function of the premotor cortex is to assist in integration of sensory and motor information 409

of the performance of an action. The parietal lobes integrate somatosensory signals and 410

information from different modalities. The difference between the two brain maps in this 411

case is less significant than the AV45 analysis above. 412

5. Conclusion 413

A data-driven analysis pipeline has been proposed in this work to identify high- 414

level imaging genetic patterns. Based on the detailed SNP-QT associations, we develop a 415

graph-cut algorithm to cluster similar SNPs together so that SNPs within the same cluster 416

tend to have similar associations with QTs across the brain. We construct multiple SNP 417

networks based on different similarity measurements. Each similarity network can be 418

https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/


Version August 12, 2022 submitted to Genes 13 of 18

viewed as a weighted graph with a specific similarity measure defined as the edge weight. 419

We employ a multigraph clustering method derived from min-max graph cut to discover 420

SNP clusters that take into consideration of all the studied similarity measures. After that, 421

functional annotation is performed for each identified SNP cluster and its corresponding 422

brain association pattern to provide valuable biological insights at a high level. 423

Our genetic analysis of the AV45 imaging QTs in the LMCI vs HC comparison yields 424

a prominent clustering pattern in the cosine SNP network. The pathway analysis shows 425

that the identified SNP Group 1 is associated with amyloid beta clearances while the SNP 426

Group 2 is related to amyloid beta formation. The functional annotation using Neurosynth 427

shows that the brain regions associated with SNP Group 1 are related to motor and balance 428

functions while the brain regions associated with SNP Group 2 are related to memory 429

and cognitive functions. These high-level findings have the potential to provide valuable 430

insights into relevant genetic pathways and brain circuits, which can help form new 431

hypotheses for more detailed imaging and genetics studies in independent cohorts. 432
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Abbreviations 471

The following abbreviations are used in this manuscript: 472

473

AD Alzheimer’s Disease
GWAS genome-wide association study
SNP single nucleotide polymorphism
QT quantitative traits
ROI region of interest
MRI magnetic resonance imaging
PET positron emission tomography
HC healthy control
EMCI early mild cognitive impairment
LMCI late mild cognitive impairment
AV45 F-18 florbetapir
FDG (18)F-fluorodeoxyglucose
VBM voxel-based morphometry

474

Appendix A 475

Table A1. Participant characteristics.

HC EMCI LMCI AD Total
Number of subject 255 296 218 202 971

Age 76.35 ± 6.54 71.78 ± 7.28 74.71 ± 8.39 75.85 ± 7.67 74.48 ± 7.67
Sex (Male/Female) 132/123 167/129 129/89 123/79 551/420

Education (Year) 16.37 ± 2.64 12.12 ± 2.64 16.12 ± 2.94 15.83 ± 2.81 16.13 ± 2.75

Table A2. Selected AD-related SNPs. The list includes 54 susceptibility loci identified by recent
landmark AD genetic studies [3,6,7]. The SNP-QT association maps shown in Figure 2 have a vertical
axis that follows the order below.

rs-ID Chromosome Position Gene Symbol rs-ID Chromosome Position Gene Symbol
rs4575098 chr1 161155392 ADAMTS4 rs7920721 chr10 11720308 ECHDC3
rs6656401 chr1 207692049 CR1 rs3740688 chr11 47380340 SPI1
rs2093760 chr1 207786828 CR1 rs10838725 chr11 47557871 CELF1
rs4844610 chr1 207802552 CR1 rs983392 chr11 59923508 MS4A6A
rs4663105 chr2 127891427 BIN1 rs7933202 chr11 59936926 MS4A2
rs6733839 chr2 127892810 BIN1 rs2081545 chr11 59958380 MS4A6A
rs10933431 chr2 233981912 INPP5D rs867611 chr11 85776544 PICALM
rs35349669 chr2 234068476 INPP5D rs10792832 chr11 85867875 PICALM
rs6448453 chr4 11026028 CLNK rs3851179 chr11 85868640 PICALM
rs190982 chr5 88223420 MEF2C-AS1 rs17125924 chr14 53391680 FERMT2

rs9271058 chr6 32575406 HLA-DRB1 rs17125944 chr14 53400629 FERMT2
rs9473117 chr6 47431284 CD2AP rs10498633 chr14 92926952 SLC24A4
rs9381563 chr6 47432637 CD2AP rs12881735 chr14 92932828 SLC24A4
rs10948363 chr6 47487762 CD2AP rs12590654 chr14 92938855 SLC24A4
rs2718058 chr7 37841534 GPR141 rs442495 chr15 59022615 ADAM10
rs4723711 chr7 37844263 GPR141 rs59735493 chr16 31133100 KAT8
rs1859788 chr7 99971834 PILRA rs113260531 chr17 5138980 SCIMP
rs1476679 chr7 100004446 ZCWPW1 rs28394864 chr17 47450775 ABI3
rs12539172 chr7 100091795 NYAP1 rs111278892 chr19 1039323 ABCA7
rs10808026 chr7 143099133 EPHA1 rs3752246 chr19 1056492 ABCA7
rs7810606 chr7 143108158 EPHA1-AS1 rs4147929 chr19 1063443 ABCA7
rs11771145 chr7 143110762 EPHA1-AS1 rs41289512 chr19 45351516 PVRL2
rs28834970 chr8 27195121 PTK2B rs3865444 chr19 51727962 CD33
rs73223431 chr8 27219987 PTK2B rs6024870 chr20 54997568 CASS4
rs4236673 chr8 27464929 CLU rs6014724 chr20 54998544 CASS4
rs9331896 chr8 27467686 CLU rs7274581 chr20 55018260 CASS4
rs11257238 chr10 11717397 ECHDC3 rs429358 chr19 45411941 APOE
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Table A3. Region of interest order. This table includes 116 regions of interest in the brain. The
SNP-QT association maps shown in Figure 2 have a horizontal axis that follows the order below.

index name index name index name index name
1 Precentral_L 30 Insula_R 59 Parietal_Sup_L 88 Temporal_Pole_Mid_R
2 Precentral_R 31 Cingulum_Ant_L 60 Parietal_Sup_R 89 Temporal_Inf_L
3 Frontal_Sup_L 32 Cingulum_Ant_R 61 Parietal_Inf_L 90 Temporal_Inf_R
4 Frontal_Sup_R 33 Cingulum_Mid_L 62 Parietal_Inf_R 91 Cerebelum_Crus1_L
5 Frontal_Sup_Orb_L 34 Cingulum_Mid_R 63 SupraMarginal_L 92 Cerebelum_Crus1_R
6 Frontal_Sup_Orb_R 35 Cingulum_Post_L 64 SupraMarginal_R 93 Cerebelum_Crus2_L
7 Frontal_Mid_L 36 Cingulum_Post_R 65 Angular_L 94 Cerebelum_Crus2_R
8 Frontal_Mid_R 37 Hippocampus_L 66 Angular_R 95 Cerebelum_3_L
9 Frontal_Mid_Orb_L 38 Hippocampus_R 67 Precuneus_L 96 Cerebelum_3_R

10 Frontal_Mid_Orb_R 39 ParaHippocampal_L 68 Precuneus_R 97 Cerebelum_4_5_L
11 Frontal_Inf_Oper_L 40 ParaHippocampal_R 69 Paracentral_Lobule_L 98 Cerebelum_4_5_R
12 Frontal_Inf_Oper_R 41 Amygdala_L 70 Paracentral_Lobule_R 99 Cerebelum_6_L
13 Frontal_Inf_Tri_L 42 Amygdala_R 71 Caudate_L 100 Cerebelum_6_R
14 Frontal_Inf_Tri_R 43 Calcarine_L 72 Caudate_R 101 Cerebelum_7b_L
15 Frontal_Inf_Orb_L 44 Calcarine_R 73 Putamen_L 102 Cerebelum_7b_R
16 Frontal_Inf_Orb_R 45 Cuneus_L 74 Putamen_R 103 Cerebelum_8_L
17 Rolandic_Oper_L 46 Cuneus_R 75 Pallidum_L 104 Cerebelum_8_R
18 Rolandic_Oper_R 47 Lingual_L 76 Pallidum_R 105 Cerebelum_9_L
19 Supp_Motor_Area_L 48 Lingual_R 77 Thalamus_L 106 Cerebelum_9_R
20 Supp_Motor_Area_R 49 Occipital_Sup_L 78 Thalamus_R 107 Cerebelum_10_L
21 Olfactory_L 50 Occipital_Sup_R 79 Heschl_L 108 Cerebelum_10_R
22 Olfactory_R 51 Occipital_Mid_L 80 Heschl_R 109 Vermis_1_2
23 Frontal_Sup_Medial_L 52 Occipital_Mid_R 81 Temporal_Sup_L 110 Vermis_3
24 Frontal_Sup_Medial_R 53 Occipital_Inf_L 82 Temporal_Sup_R 111 Vermis_4_5
25 Frontal_Med_Orb_L 54 Occipital_Inf_R 83 Temporal_Pole_Sup_L 112 Vermis_6
26 Frontal_Med_Orb_R 55 Fusiform_L 84 Temporal_Pole_Sup_R 113 Vermis_7
27 Rectus_L 56 Fusiform_R 85 Temporal_Mid_L 114 Vermis_8
28 Rectus_R 57 Postcentral_L 86 Temporal_Mid_R 115 Vermis_9
29 Insula_L 58 Postcentral_R 87 Temporal_Pole_Mid_L 116 Vermis_10

Table A4. SNP clustering result on the AV45 measures for the LMCI vs HC comparison. The SNP
and the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2
Index SNP Gene Index SNP Gene

1 rs4575098_A ADAMTS4 1 rs6656401_A CR1
2 rs4663105_C RP11-138I18.2 2 rs2093760_A CR1
3 rs6733839_T RP11-138I18.2 3 rs4844610_A CR1
4 rs6448453_A AP001257.1 4 rs10933431_G SPI1
5 rs9381563_C RNU6-560P 5 rs35349669_T CELF1
6 rs2718058_G FERMT2 6 rs190982_G MS4A6A
7 rs11257238_C PVRL2 7 rs9271058_A MS4A6A
8 rs7920721_G APOE 8 rs9473117_C PICALM
9 rs10838725_C BIN1 9 rs10948363_G RNU6-560P

10 rs983392_G BIN1 10 rs4723711_T FERMT2
11 rs7933202_C INPP5D 11 rs1859788_A SLC24A4
12 rs2081545_A INPP5D 12 rs1476679_C SLC24A4
13 rs867611_G CASS4 13 rs12539172_T SLC24A4
14 rs10792832_A CASS4 14 rs10808026_A ADAM10
15 rs3851179_T CASS4 15 rs7810606_T KAT8
16 rs10498633_T HLA-DRB1 16 rs11771145_A RP11-333E1.1
17 rs12881735_C AL355353.1 17 rs28834970_C RP11-81K2.1
18 rs12590654_A AL355353.1 18 rs73223431_T CNN2
19 rs113260531_A EPDR1 19 rs4236673_A ABCA7
20 rs28394864_A GPR141 20 rs9331896_C ABCA7
21 21 rs3740688_G CD33
22 22 rs17125924_G RP11-61G19.1
23 23 rs17125944_C MEF2C-AS1
24 24 rs442495_C CD2AP
25 25 rs59735493_A GPR141
26 26 rs111278892_G EPDR1
27 27 rs3752246_G PILRA
28 28 rs4147929_A ZCWPW1
29 29 rs41289512_G NYAP1
30 30 rs3865444_A EPHA1
31 31 rs6024870_A EPHA1-AS1
32 32 rs6014724_G EPHA1-AS1
33 33 rs7274581_C PTK2B
34 34 rs429358_C PTK2B
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Table A5. SNP clustering result on the VBM measures for the AD vs HC comparison. The SNP and
the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2
Index SNP Gene Index SNP Gene

1 rs6656401_A CR1 1 rs4575098_A ADAMTS4
2 rs2093760_A CR1 2 rs4663105_C RP11-138I18.2
3 rs4844610_A CR1 3 rs6733839_T RP11-138I18.2
4 rs1859788_A SLC24A4 4 rs10933431_G SPI1
5 rs1476679_C SLC24A4 5 rs35349669_T CELF1
6 rs12539172_T SLC24A4 6 rs6448453_A AP001257.1
7 rs11771145_A RP11-333E1.1 7 rs190982_G MS4A6A
8 rs28834970_C RP11-81K2.1 8 rs9271058_A MS4A6A
9 rs73223431_T CNN2 9 rs9473117_C PICALM

10 rs4236673_A ABCA7 10 rs9381563_C RNU6-560P
11 rs9331896_C ABCA7 11 rs10948363_G RNU6-560P
12 rs3740688_G CD33 12 rs2718058_G FERMT2
13 rs113260531_A EPDR1 13 rs4723711_T FERMT2
14 rs3752246_G PILRA 14 rs10808026_A ADAM10
15 rs4147929_A ZCWPW1 15 rs7810606_T KAT8
16 rs3865444_A EPHA1 16 rs11257238_C PVRL2
17 17 rs7920721_G APOE
18 18 rs10838725_C BIN1
19 19 rs983392_G BIN1
20 20 rs7933202_C INPP5D
21 21 rs2081545_A INPP5D
22 22 rs867611_G CASS4
23 23 rs10792832_A CASS4
24 24 rs3851179_T CASS4
25 25 rs17125924_G RP11-61G19.1
26 26 rs17125944_C MEF2C-AS1
27 27 rs10498633_T HLA-DRB1
28 28 rs12881735_C AL355353.1
29 29 rs12590654_A AL355353.1
30 30 rs442495_C CD2AP
31 31 rs59735493_A GPR141
32 32 rs28394864_A GPR141
33 33 rs111278892_G EPDR1
34 34 rs41289512_G NYAP1
35 35 rs6024870_A EPHA1-AS1
36 36 rs6014724_G EPHA1-AS1
37 37 rs7274581_C PTK2B
38 38 rs429358_C PTK2B
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