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Abstract: Brain imaging genetics examines associations between imaging quantitative traits (QTs)
and genetic factors such as single nucleotide polymorphisms (SNPs) to provide important insights
into the pathogenesis of Alzheimer’s disease (AD). The individual level SNP-QT signals are high
dimensional and typically have small effect sizes, making them hard to be detected and replicated.
To overcome this limitation, this work proposes a new approach that identifies high-level imaging
genetic associations through applying multigraph clustering to the SNP-QT association maps. Given
an SNP set and a brain QT set, the association between each SNP and each QT is evaluated using a
linear regression model. Based on the resulting SNP-QT association map, five SNP-SNP similarity
networks (or graphs) are created using five different scoring functions respectively. Multigraph
clustering is applied to these networks to identify SNP clusters with similar association patterns with
all the brain QTs. After that, functional annotation is performed for each identified SNP cluster and
its corresponding brain association pattern. We applied this pipeline to an AD imaging genetic study,
which yielded promising results. For example, in an association study between 54 AD SNPs and
116 amyloid QTs, we identified two SNP clusters with one responsible for amyloid beta clearances
and the other regulating amyloid beta formation. These high-level findings have the potential to
provide valuable insights into relevant genetic pathways and brain circuits, which can help form new
hypotheses for more detailed imaging and genetics studies in independent cohorts.

Keywords: Brain imaging genetics, multigraph clustering, Alzheimer’s disease.

1. Introduction

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder characterized by
continuous cognitive impairment and eventual amyloid plaques, neurofibrillary tangles
and atrophy patterns in the brain [1-3]. As the most common type of demantia, AD is
responsible for approximately 5.8 million demantia cases in US [4]. AD has a heritability
ranging from 60% to 80% estimated from the twin study [5]. The most widely used
approach to identify AD genetic basis is to perform a genome-wide association study
(GWAS) or GWAS-based meta-analysis on case-control phenotypes. Over 50 AD-related
single nucleotide polymorphisms (SNPs) have been identified [6,7].

Many previous AD studies use GWAS and pathway enrichment analysis to explore
the genetic basis of the AD diagnosis [3,8-15]. However, these case-control genetic asso-
ciation studies cannot directly reveal the biological pathways from genetic determinants,
molecular signatures, brain traits to cognitive and clinical outcomes. To bridge this gap,
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brain imaging genetics [16-18] is emerging as a new research field, where quantitative
traits (QTs) extracted from brain imaging data are used as intermediate phenotypes to
study genetics. These imaging QTs have the potential to not only link genetics with disease
outcomes but also capture neuropathological heterogeneity of AD [19,20].

Conventional brain imaging genetics studies perform massive pairwise association
analyses between each SNP-QT pair. These individual level SNP-QT signals are high dimen-
sional and typically have small effect sizes, making them hard to be detected and replicated.
To bridge this gap, some studies attempt to interpret these results on a macroscopic level or
derive high-level understandings. For example, Yao et al. used a two-dimensional enrich-
ment analysis to address this challenge, grouping similar brain regions and genes together
via a biclustering approach [21]. Yao’s work identified various high-level two-dimensional
imaging genetic modules, which were predefined based on the brain transcriptome data
from Allen Human Brain Atlas.

In this work, instead of using the knowledge-driven, predefined imaging genetic
modules, we propose an alternative data-driven approach to identify high-level imaging
genetic patterns. Based on the detailed SNP-QT associations, we develop a graph-cut
algorithm to cluster similar SNPs together so that SNPs within the same cluster tend to
have similar associations with QTs across the brain. We construct multiple SNP networks
based on different similarity measurements. Each similarity network can be viewed as
a weighted graph with a specific similarity measure defined as the edge weight. We
employ a multigraph clustering method derived from min-max graph cut to discover
SNP clusters that take into consideration of all the studied similarity measures. After that,
functional annotation is performed for each identified SNP cluster and its corresponding
brain association pattern to provide valuable biological insights at a high level.

We applied this pipeline to an AD imaging genetic study, which yielded promising
results. For example, in an association study between 54 AD SNPs and 116 amyloid QTs,
we identified two SNP clusters with one responsible for amyloid beta clearances and the
other regulating amyloid beta formation. These high-level findings have the potential to
provide valuable insights into relevant genetic pathways and brain circuits, which can help
form new hypotheses for subsequent imaging and genetics studies in independent cohorts.

2. Material and Methods
2.1. Data Description

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [22]. The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-
info.org. In this study, participants (N=971) include 202 AD, 218 late MCI (LMCI), 296
early MCI (EMCI), and 255 healthy control (HC) subjects. The baseline structural magnetic
resonance imaging (MRI) scans, AV45 and FDG positron-emission tomography (PET) scans,
genotyping data, demographic information, and clinical assessments are downloaded from
the ADNI database (adni.loni.usc.edu). Table A1 shows participant characteristics.

2.2. Data Preprocessing

The genotyping data are downloaded and analyzed using PLINK v1.90 [23]. We
perform quality control using the following criteria: genotyping call rate > 95%, minor
allele frequency > 5%, and Hardy Weinberg Equilibrium > 1.00 x 10~°. Then, we select 54
risk variants identified by recent AD genome-wide association studies (GWAS) or GWAS
meta-analysis [3,6,7]. Table A2 shows the list of risk variants investigated in this study.

Structural MRI scans are processed with voxel-based morphometry (VBM) using the
Statistical Parametric Mapping (SPM) software. All scans are aligned to a T1-weighted
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Figure 1. Flowchart of our analysis pipeline. Step 1 generates detailed SNP-QT association maps (54
SNPs by 116 QTs) for five different subject sets examined in our previous study [24], respectively. Step
2 transforms the SNP-QT map to SNP networks by applying different similarity scoring functions to
each pair of 116-dimensional SNP vectors. Step 3 uses multigraph min-max cut algorithm to generate
an optimal clustering result scoring analysis in Step 4. In Step 5, the SNPs in each cluster are mapped
to nearest genes and uploaded to enrichR for Elsevier pathway analysis to identify relevant biological
pathways. In Step 6, Neurovault and Neurosynth are used to functionally annotate the average brain
association pattern for all the SNPs in each cluster.

template image, segmented into gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) maps, normalized to the standard Montreal Neurological Institute (MNI) space
as 2x2x2 mm? voxels. The GM maps are extracted and smoothed with an 8mm FWHM
kernel. We then extract the average regional GM measurements from 116 regions-of-
interests (ROIs) defined by the automated anatomical labeling (AAL) atlas.

Preprocessed F-18 florbetapir (AV45) PET scans are collected and aligned to the Mon-
treal Neurological Institute space as 2 x 2 X 2 mm voxels using SPM. Standard uptake
value ratio is computed by intensity normalization based on a cerebellar crus reference
region. We then extract the average regional AV45 measurements from 116 AAL ROlIs.

The (18)F-fluorodeoxyglucose (FDG) PET measurements are also registered into the
same MNI space as 2 x2x2 mm? voxels by SPM. We then extract the average regional FDG
measurements from 116 AAL ROIs.

2.3. Method Overview

Fig. 1 shows the flowchart of the analyses performed in this study, including six steps.
Step 1 generates detailed SNP-QT association maps for five different subject sets examined
in our prior study [24], respectively. Step 2 constructs five SNP similarity networks using
different scoring functions. Step 3 performs multigraph clustering on the five SNP networks
with a range of cluster numbers. Step 4 examines the clustering quality of each cluster
through Silhouette analysis. Based on the Silhouette scoring results, two cluster groups are
selected for the subsequent analysis in Steps 5 and 6. We perform functional annotation for
(1) each identified SNP cluster in Step 5 using pathway analysis and (2) its corresponding
brain association pattern in Step 6 using Neurosynth and Neurovault.
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2.4. Step 1: Imaging Genetic Association Analysis

The relationship between each ROI-based imaging QT and each SNP can be obtained
by performing a linear regression. Let G be a set of SNPs and Y be a set of imaging QTs
(AV45, FDG, and VBM). We perform a linear regression model to estimate the additive
effect of each SNP ¢ € G on each QT y € Y. The analysis is performed for all possible
SNP-QT pairs for each of the five comparison groups (i.e., EMCI vs HC, LMCI vs HC, AD
vs HC, MCI vs HC, ALL vs HC) within each of the three imaging modalities (i.e., AV45,
FDG, and VBM). The regression is repeated 54 x 116 times. The linear regression model is
defined as follows:

y=oag+IZ+e,

where Z = (z1,- -+ ,z;) T includes the variables whose effects we want to exclude, such as
age, sex, and education; « and I' = (1, -+, vk) are the coefficients; and € is the error term.
Our goal is to estimate & and also test if the SNP g has a significant effect (i.e. « # 0) on
eachQTycY.

Thus, in Step 1 we generate an ROI-based p-value map to quantify the significance
of SNP effects on imaging data. Specifically, in this work, each element of the significance
map records the “negative log p-value” —log1o(p) at the corresponding ROI. At the end of
this step, we have 5 SNP-QT maps of size 54 (number of studied SNPs) x 116 (number of
ROIs) for each of the three modalities.

2.5. Step 2: SNP Networks with Different Similarity Measurements

Step 1 explores the lower level relationship between imaging and genetic data. In order
to aggregate the individual effects of multiple SNP-ROI pairs to high level imaging genetic
patterns, we transform the SNP-QT maps to an SNP network that models the SNP similarity
in terms of their effects on all the QTs across the entire brain. From Step 1, a 54-by-116
SNP-QT map is constructed for each of the five comparison groups within each of the three
modalities. For each SNP, there is a 116 dimensional feature representation that maps its
effect on the brain. The similarity measurement is applied on all pairs of 116-dimensional
normalized SNP vectors to create a 54-by-54 SNP network. Five scoring functions shown in
Table 1 are used, resulting in five distinct 54-by-54 SNP networks for each comparison group.
The three SNP networks formed by the Pearson correlation, the Spearman correlation and
the cosine similarity are normalized by taking the absolute value of the entry, respectively.
The two SNP networks formed by the Manhattan and Euclidean distances are transformed
to normalized similarity networks by taking a Gaussian radial basis function centered at
distance = 0 with a standard deviation of (maximum-minimum)/3, respectively. After
normalization, all the entries in each 54-by-54 SNP network have a value between 0 and 1.

2.6. Step 3: Multigraph Min-Max Graph Clustering

While an SNP network describes the similarity between each pair of SNPs, a high
level understanding can be obtained by grouping similar SNPs together and study their
collective effects. From Step 2, five 54-by-54 normalized similarity SNP networks are cre-
ated for each comparison group within each of the three modalities. The network can be
viewed as a graph so that the connected components output from graph cut algorithms
are viewed as network clusters. Ding et al. proposed a min-max graph cut algorithm that
improves cluster quality and balance by minimizing similarity between pairwise subgraphs
and maximizing similarity within each subgraph [25]. The min-max graph cut takes a
single similarity network as input, so it clusters one network and examines the effect of
one scoring function. Wang et al. generalized the single-graph min-max graph cut into
multigraph min-max graph cut, which is used in this study to evaluate the combined effect
of five scoring functions [26]. The objective functions of both min-max graph cut models are
shown in Table 2. In this study, multigraph min-max graph cut algorithm is implemented
through a gradient descent method with convergence conditions. The implication of multi-
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Table 1. Assume the 54-by-116 genetic-imaging matrix is X. Scoring functions are applied to X;
and X; € R116, 116-dimensional row vectors of X that maps the effect of a given SNP to 116 brain
regions of interest (ROIs). Assume Xj; denotes the i-th row and k-th column entry of X. Note that the
Manhanttan distance and Euclidean distance need to be transformed to the corresponding similarity
measures using a Gaussian radial basis function in the third column.

Measurement Scoring Function Normalized Similarity
Pearson correlation r(i,j) = Zk:l(X’k_f)(Xjk_)@ lr(i, )]
\/22:1(Xikfxi)2(xj -X;)?
n o) . 2
Spearman correlation | p(i,j) =1 — 6):":1(mni((f;kzl)mnk(xjk)) lo(i,7)|
—0. ( (i) =Amin )
Manhattan distance d(i,j) = [1Xi — XjlI1 e (@max—dyi) /3
,0.5( (i) =Amin )
Euclidean distance d(i, j) = [IXi = Xjl|2 e (Amax =dpin)/3
Cosine cos(i, ) = m |cos(i, f)|

Table 2. Objective functions of single graph and multigraph clustering. A is the adjacency matrix,
which is equivalent to the similarity network in this study. D is the diagonal matrix of A. Q is the
output clustering labels. K is the number of clusters.

Graph cut algorithm for cluster analysis Objective Function
. . . D
Single-graph min-max cut mingro— =K, Z?TZ:
; ; i m yK 9Dk
Multigraph min-max cut mingro_ 2yl 1 X 1A,

graph min-max clustering is that it combines the effects of multiple scoring functions at
the same time. The clustering results of multigraph min-max graph cut algorithm have
features that resemble the clustering results of single-graph min-max clustering from the
best scoring function. Multigraph min-max clustering with five 54-by-54 SNP networks
as inputs is performed on the number of clusters ranged from 2 to 9 to produce clustering
results for each comparison group within each modality.

2.7. Step 4: Silhouette Scoring Analysis

The goal of this step is to determine the optimal number of clusters. Silhouette refers
to a method of interpretation and validation of consistency within clusters of data and
provides a graphical representation of cluster quality [27]. The Silhouette value has a range
between -1 and 1. A value close to 1 indicates good clustering quality: the objects are
close to assigned clusters and far from neighbor clusters. A value close to -1 suggests
that the number of clusters selected is not appropriate. The scoring functions are listed in
Table 3. The Silhouette scoring analysis is performed on the clustering results of multigraph
clustering with number of cluster ranged from 2 to 9. The normalized similarity networks
in Step 3 are transformed to distance matrices by converting a similarity measure of x
into a distance measure of 1 — x. For a given number of clusters, there are 5 similarity
measurements X 5 comparison groups within each of the three modalities. The 5 x 5 = 25
Silhouette scores are averaged for comparison. The clustering result with the highest
averaged Silhouette score is selected for further analysis. The Silhouette scoring analysis is
also performed on the clustering results of single-graph clustering with number of cluster
ranging from 2 to 9. The 5 Silhouette scores from 5 comparison groups are averaged and
compared with the averaged Silhouette score of the multigraph clustering to analyze the
effectiveness of multigraph clustering.
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Table 3. Silhouette scoring functions. Let C; be the cluster which node i belongs to.

Measure Calculation
mean distance a(i) = ICI i ]ecll#] adi, j)

mean dissimilarity | b(i) = mzn]?g'C | Zjec,d(i, )

Silhouette value s(i) = %

EMCI vs. HC LMCl vs. HC AD vs. HC MCl vs. HC All vs. HC

Figure 2. Detailed imaging genetic association maps (54 SNPs by 116 ROIs) with each entry as a
normalized —logyg(p-value) from linear regression of ROI vs SNP within each comparison group.
Normalization was performed so that each row has a squared norm of 1. The vertical axis follows the
SNP order listed in Table A2. The horizontal axis follows the ROI order listed in Table A3.

2.8. Step 5: EnrichR Elsevier Pathway Analysis 172

A high level result of two SNP groups is produced from previous analysis. The genetic 173
domain of each SNP group can be analyzed through the pathway analysis using Enrichr. 17s
Enrichr is an integrative web-based and mobile software application that includes new 175
gene-set libraries, an alternative approach to rank enriched terms, and various interactive 17e
visualization approaches to display enrichment results using the JavaScript library, Data 177
Driven Documents (D3) [28-30]. The software can also be embedded into any tool that 17s
performs gene list analysis. The 54 AD-related SNPs in this study are mapped to their 17
closest gene, upstream or downstream. The SNP cluster from multigraph clustering are  1s0
mapped to a group of genes and uploaded to EnrichR for pathway analysis. The elsevier s
pathway analysis results of each SNP cluster are recorded and compared because it contains  1e2
various AD-related pathways. 183

2.9. Step 6: Neurovault Brain Region Analysis 185

After analyzing the genetic domain, the brain pattern corresponding to each SNP  1s6
cluster can be analyzed through mapping the average effect of each SNP group onto the s
brain. This brain association pattern can be analyzed by Neurovault and Neurosynth s
[31], which gives us functional and structural information of the affected brain regions. 1es
NeuroVault is an open-science neuroinformatics online repository of brain statistical maps  1e0
atlases and parcellations [31]. Neurosynth is a platform for large-scale, automated synthesis 102
of functional magnetic resonance imaging (fMRI) data. It takes thousands of published e
articles reporting the results of fMRI studies and outputs brain maps with calculated cor- 1es
relation coefficients given the uploaded MRI data. The SNPs that are grouped together 104
are expected to affect similar brain regions. Thus, the averaged SNP effect on 116 QTs 105
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Figure 3. Averaged Silhouette scoring of single-graph and multigraph clustering results across 5
scoring functions X 5 comparison groups at each number of cluster. The results of analyzing AV45,
FDG and VBM data are shown from left to right. In the subsequent analyses, we report the multigraph
results of clustering SNPs into 2 groups, which is the optimal case for both AV45 and VBM.

from each SNP group is calculated and mapped onto the brain. The resulting brain map is
functionally annotated using NeuroVault and Neurosynth.

3. Result
3.1. Imaging Genetic Association Maps

Fig. 2 shows all 15 resulting imaging genetic association maps, arranged by three
modalities (AV45, FDG, VBM) against five comparisons (EMCI vs HC, LMC vs HC, AD
vs HC, MCI vs HC, All vs HC). Each map consists of 54 SNPs on the vertical axis and 116
ROIs on the horizontal axis. The order of SNPs on the vertical axis follows the list shown in
Table A2. The order of ROIs on the horizontal axis follows the list shown in Table A3.

Each entry of the map corresponds to —logio(p-value) from the linear regression
before normalization. After an initial SNP-QT map is created, each 116-dimensional vector
of a given SNP is normalized such that the Euclidean norm is 1. This step is performed so
that each SNP is represented as a directional unit vector to facilitate subsequent analysis.

While such an imaging genetic map describes detailed associations for each SNP-QT
pair, it is not straightforward to detect any general trend in these maps. The goal of the
subsequent steps is to extract high level information from these maps and help provide
biological interpretation to aid biomarker discovery and therapeutic target identification.

3.2. Multigraph vs Single-graph Silhouette analysis

The multigraph vs single graph averaged Silhouette scores are shown in Fig. 3. The
multigraph averaged Silhouette score is calculated by taking the mean of 25 Silhouette
scores (5 scoring functions x 5 comparison groups) from the multigraph clustering result
at a given number of clusters for a given modality. The single graph averaged Silhouette
score is calculated by also taking the mean of 5 x 5 = 25 Silhouette scores. Instead of using
the same clustering result across five scoring functions for the multigraph case, a single
graph clustering is performed on each of the scoring functions. The Silhouette scores are
calculated based on the clustering result of a specific scoring function.

A higher Silhouette score indicates a better clustering quality. A lower number of
clusters is preferred in this study when the Silhouette scores are similar since our goal is
to provide a high level understanding. As a result, cluster number = 2 is chosen for the
subsequent analyses.

3.3. Clustering Results

The SNP networks constructed by the normalized cosine scoring function are shown
in Fig. 4. The two resulting SNP clusters are separated by two black lines. The cluster with
a smaller number of SNPs is reordered in the top left corner with the cluster with a larger
number of SNPs in the bottom right corner.

The similarity network entries are normalized so that the minimum is 0 and the
maximum is 1. Each SNP has a maximum similarity of 1 with itself as observed from the
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Figure 4. The SNP networks (54 by 54) constructed by the normalized cosine scoring function. Each
entry is the cosine similarity of two corresponding SNP representations (measuring their association
patterns with 116 ROlIs in the brain). The black line indicates the partition of two clusters.

diagonal. Good partition of SNPs is indicated by strong similarity within each cluster and
weak similarity between the clusters. A balanced size of the two clusters is preferred so that
we can identify multiple high level patterns instead of one single high level pattern coupled
with a small number of outliers. Therefore, the clustering result on the AV45 measures for
the LMCI vs HC comparison group as well as the clustering result on the VBM measures
for the AD vs HC comparison group are selected for subsequent analysis.

3.4. Case study: Example AV45 Result

Among all the results in modality AV45, the most balanced one is generated by analyz-
ing the LMCI vs HC comparison group, and this result is shown in Table A4. The functional
annotation and pathway analysis of the identified SNP clusters and the corresponding brain
maps are shown in Fig. 5. The SNPs in each of the two groups are mapped to their closest
genes and uploaded as two gene sets to enrichR. The Elsevier pathway analysis is used in
this study because multiple AD related pathways are included in this pathway, which is
helpful for understanding AD pathogenesis. The average normalized brain significance
maps corresponding to two SNP groups are shown in Fig. 5(c). Neurosynth analysis results
of these two brain maps are shown in Fig. 5(d).

3.5. Case study: Example VBM Result

Among all the results in modality VBM, the most significant and balanced result is
generated by analyzing the AD vs HC comparison group, and this result is shown in
Table A5. The functional annotation and pathway analysis of the identified SNP clusters
and the corresponding brain maps are shown in Fig. 6. The analysis is similar to the
previous case study on the AV45 measures for the LMCI vs HC comparison group. This
clustering result has a lower Silhouette score (0.158) than that in the previous case study
(0.293). So a less distinct pattern is observed in the network, along with less differentiated
pathways, brain regions and brain map visualization.



Version August 12, 2022 submitted to Genes 90f18

SNP Group 1 SNP Group 2
Patl P-value |Pathway P-value

[Amyloid beta clearance in Alzheimer Disease [ 3.50E-03 |Complement activation in Alzheimer Disease | 9.07E-03

Genes with mutations associated with
vascular dementia

[Amyloid beta and APP intracellular transport | o .o . [Microglia and motor neuron interaction
in Alzheimer Disease ) dysregulation

Androgen receptor coregulator ARASS
(TGFB1I1) in prostate cancer

3.50E-03 |Amyloid beta formation in Alzheimer Disease | 9.07E-03

5.18€-04

Proteins involved in Tangier Disease 5.59E-03 1.04E-02

Genes with mutations in cancer immune

7.68E-03 |APP processing in Alzheimer Disease 1.16E-02
escape

MBP/MOG/PLP in immune system activation | 8.37€-03 |Proteins involved in osteopetrosis 1.236-03
Natural killer cell activation through integrins

D01 8.67E-04 1.62€-03
I cancer immune escape and non-ITAM-Containing receptors

(Genes with mutations associated with 1.32E-02 [TRPMS effects in prostate cancer (hypothesis) | 1.93€-02

psoriasis

Genes with mutations associated with 139E-02 Imr.nun‘uglabulln genes transcriptional 1936-02

asthma activation

[Amyloid beta traffic and degradation in L67-02 | COH2 activation promotes cancer cell AP

extracellular matrix in Alzheimer Disease migration and survival

(b)
Group 1 Group 2
analysis correlation analysis correlation
cerebellar 0.465 prefrontal 0.216
cerebellum 0.462 medial prefrontal 0.201
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(d)

Figure 5. a) Cosine SNP network derived from genetic analysis of the AV45 data in the LMCI vs
HC comparison. b) The Elsevier pathway analysis from EnrichR of SNP group 1 (20 SNPs) and SNP
group 2 (34 SNPs). c) The average normalized brain significance maps corresponding to SNP group
1 (left) and SNP group 2 (right) respectively. d) Neurosynth analysis results of the two brain maps
shown in (c).

4. Discussion
4.1. Comparison between single-graph and multigraph clusterings

In this study, multiple scoring functions have been selected to evaluate the similar-
ity between different AD-related SNPs in terms of their effects on 116 ROIs across the
brain. Each scoring function quantifies the similarity between SNPs from a specific per-
spective. Multigraph clustering is used to output a clustering result that combines the
effects of multiple scoring functions. The purpose of building SNP-SNP networks through
different scoring methods is to evaluate the SNP similarity in terms of their effects on
116 ROlIs traits across the brain from multiple perspectives. Given two vectors [1,2,3] and
[0.001,0.002,0.003], their Pearson correlation, Spearman correlation, and cosine similarity
are all 1 (corresponding to the largest similarity), since they focus on comparing the vector
directionality instead of the vector magnitude. However, their Manhattan distance and
Euclidean distance are very sensitive to the vector magnitude, and thus are both large,
leading to very small similarity. Our multi-graph approach combines the effects of all these
scoring functions, and takes into consideration both vector directionality and magnitude
when performing multi-graph clustering.

Several single-graph and multigraph clusterings with a varying number of clusters
from 2 to 9 are performed. Averaged Silhouette analysis scores are used to quantify
clustering quality under a given cluster condition. In Fig. 3, the plot of averaged Silhouette
analysis for single-graph shows that clustering quality improves in general as the number of
clusters increases for FDG and VBM. However, for AV45 a higher number of clusters leads
to a lower cluster quality. There is an inconsistency in the optimal number of clusters for
different imaging modalities. The goal of this study is to acquire a high-level understanding
of imaging genetic associations. Despite the inconsistency of clustering quality, a large
number of clusters also makes subsequent analysis complicated. Only a few brain regions
and pathways will be present when the number of SNPs in each cluster decreases, which
downgrades the high-level understanding back to individual level analysis.

With these difficulties addressed in single graph clustering, the use of multigraph clus-
tering is very promising for various reasons. The first advantage of multigraph clustering is
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Group 1 Group 2
analysis correlation analysis correlation
cerebellum 0.302 premotor 0.179
cerebellar 0.296 parietal 0.179
vi 0.287 motor 0.175
lobules 0.266 movements 0.173
putamen 0.214 primary motor 0.172

Figure 6. a) Cosine SNP network derived from analyzing VBM data in the AD vs HC comparison. b)
The Elsevier pathway analysis from EnrichR of SNP group 1 (16 SNPs) and SNP group 2 (38 SNPs). c)
The average normalized brain significance maps corresponding to SNP group 1 (left) and SNP group
2 (right) respectively. d) Neurosynth analysis results of the two brain maps shown in (c).

that at a given number of clusters, it is able to selectively use scoring functions that behave
well. For example, at cluster number = 2, the Pearson and Spearman methods have low
Silhouette scores (< 0.062) across all three modalities, while the Manhattan, Euclidean, and
cosine methods have high ones (> 0.11). In this case, the multigraph clustering yields an
average Silhouette score of 0.1016 (Fig. 3), resulting in prominent patterns when mapped to
Manbhattan, Euclidean, and cosine networks (e.g., Fig. 5(a)).

The second advantage of multigraph clustering for this study is that it behaves the
best for AV45 and VBM at the number of clusters = 2 (see Fig. 3). As discussed above, a
small number of clusters is great for high-level analysis. For FDG, the Silhouette score for
the cluster number of 2 is also close to the score for the cluster number of 8. So the result
for the cluster number of 2 is reported for all three modalities in this study and coupled
with subsequent functional annotation and pathway analysis.

The third advantage of multigraph clustering is that the analysis is more efficient
and consistent than a collection of single-graph clusterings. Instead of doing 5 single-
graph clusterings with inconsistent results among different scoring functions, multigraph
clustering is able to return a single set of clustering result. This feature provides a novel
way of analysis for future studies with a large number of candidate evaluation functions
and no prior knowledge of their performances.

4.2. AV45 Clustering Result

In the AV45 row of Fig. 4, comparison group AD vs HC and ALL vs HC both have
one cluster group of 1 SNP and another cluster group of 53 SNPs. The two clusters can
be viewed as one group because the multigraph clustering algorithm explicitly enforces
each cluster to be nonempty. While these two results are not significant, rs11278892 with its
minor allele G is classified to be the most distant from the other 53 SNPs.

Comparison group EMCI vs HC has one cluster group of 2 SNPs and another cluster
group of 52 SNPs. Again, this can be roughtly viewed as a single group. The smaller
cluster group contains rs4575098 and rs4663105. There is no prior research of rs4575098, but
rs4663105 mapped to BINI gene was identified as having a significant association among



Version August 12, 2022 submitted to Genes 110f18

APOE €4+ and e4— subjects [32]. Future research can be conducted on the association s
between rs4575098 and rs4663105 as well as their collective role in early MCI development.  s17

Comparison group LMCI vs HC has the most balanced cluster group for AV45 with s
one cluster of 20 SNPs and another cluster of 34 SNPs (with APOE rs429358). The partition s
will provide us with insights of how two groups of SNPs each plays a different role in the sz
LMClI stage. This finding is promising given that 1) LMCl is the transitional stage between sz
EMCI and AD, 2) there are no significant partitions at EMCI and AD, and 3) there isa sz
significant pattern at LMCI. This suggests a potential stage-specific imaging genetic pattern = szs
during AD progression, which warrants further investigation. See Section 4.5 for additional = 24
discussion on the functional annotation of this high level imaging genetic pattern. 325

4.3. FDG clustering result 326

In the FDG row of Fig. 4, for the smaller cluster group, EMCI vs HC group has sr
rs10498633 and rs12881735, LMCI vs HC group has rs10498633 and rs12881735, and AD vs  szs
HC group has rs6656401, rs2093760, and rs4844610. The MCI vs HC group has 8 SNPs and  s2s
the ALL vs HC group has 6 SNPs. In general, the clustering patterns in the networks don’t = sso
seem as significant as AV45 and VBM. The Silhouette score of FDG (0.076) is also lower s
than AV45 (0.102) and VBM (0.0879). Yet there is one observation of the results: rs10498633 32
present in both EMCI and LMCI smaller cluster groups. Previous studies have shown that s
rs10498633 in SLC24A4 was significantly associated with anisotropy, total number and  s3a
length of fibers, including some connecting brain hemispheres [33]. 335

4.4. VBM clustering result 336

In the VBM row of Fig. 4, comparison group MCI vs HC has one group of 2 SNPs a7
(rs4236673 and rs9331896) and another group of 52 SNPs. Comparison group ALL vs HC = 33s
has one group of 1 SNP (rs9271058) and another group of 53 SNPs. These cases can be 330
viewed as having one group instead of two partitions. 340

Comparison group EMCI vs HC has a smaller group of 6 SNPs: rs10808026, rs7810606, sa1
1510498633, rs12881735, rs12590654, and rs113260531. Comparison group LMCI vs HC = ss2
has a smaller group of 5 SNPs: rs4236673, rs9331896, rs10498633, rs12881735, rs12590654. 343
The SNPs rs10498633, 1512881735, rs12590654 lie in the intersection of these two groups, s
potentially having an impact throughout the MCI stage. As mentioned in the FDG section, sas
rs10498633 is also found to be distant from the other AD-related SNPs for VBM modality, s4s
which reinforces its unique role associated with anisotropy in the MCI stage. 247

Comparison group AD vs HC has the most balanced cluster result with one group of s
16 SNPs and another group of 38 SNPs. This provides us with insights about how the two 34
groups of AD-related SNPs each play a different role in AD patients. Functional annotation sso
of this high level imaging genetic pattern will be discussed in Section 4.6. 351

4.5. AV45 case study 352

In Fig. 5(a,b), the Elsevier pathway analysis reveals some promising results on our sss
genetic analysis of AV45 measures in the LMCI vs HC comparison: (1) the pathway of ss
amyloid beta clearance in AD is enriched by genes associated with the SNP Group 1, and  sss
(2) the pathway of amyloid beta formation in AD is enriched by genes associated with the sse
SNP Group 2. AD pathogenesis is widely believed to be driven by the production and s
decomposition of f-amyloid peptide [34]. The disease state of AD is closely related to the sse
solubility and the quantity of B-amyloid. Our pathway analysis suggests that the SNPs in 50
Group 1 have potential to be related to the decomposition of amyloid beta while the SNPs 360
in Group 2 to be related to its production. Since AD is characterized by accumulation of  se:
B-amyloid, it warrants further investigation that the SNPs involved here can be studied as ez
suppressors and/or promoters to minimize the amount of f-amyloid present [35]. 363

A relevant observation from our pathway analysis is Group 1’s association with amy-  ses
loid beta and APP intracellular transport in AD and amyloid beta traffic and degradation ses
in extracellular matrix in AD and Group 2’s association with APP processing. f-amyloid is  ses
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released by sequential proteolytic processing of the amyloid precursor protein, so the inhibi-
tion of APP processing and the excitation of intracellular transport, traffic, and degradation
together minimize the accumulation of f-amyloid in the extracellular matrix.

Another indicator of Group 1’s role on f-amyloid is the MBP immunal pathway, which
is responsible for amyloid beta degradation [36]. The most correlated pathway of Group 2
is complement activation in AD. Complement proteins are integral components of amyloid
plaques and cerebral vascular amyloid in AD patient brains, which can be found at the
earliest of amyloid deposition [37]. The complement activation also coincides with the
clinical expression of Alzheimer’s demantia. Aside from the two group’s direct associations
with B-amyloid, the pathway analysis also shows that AD is correlated with different
diseases including Tangier Disease, cancer, psoriasis, and asthma. Previous studies have
shown that Tangier Disease is caused by mutations of ABAC1, which is closely related to
B-amyloid [38].

In Fig. 5(c,d), The most correlated brain regions associated with SNP Group 1 include
cerebellar, cerebellum, vi, lobules, and vermis (see https://neurosynth.org/analyses/
terms/ for definition of these terms). Cerebellar and cerebellum are responsible for motor
functions and balance. It is also associated with the visual system. Vermis and some
subsequent correlated brain regions are also associated with maintaining posture. So this
group is primarily associated with brain regions that are responsible for balance, motor
functions, and visual functions. Group 2 is correlated with prefrontal, medial prefrontal,
medial, prefrontal cortex, and social. All these regions control cognitive ability, memory
management, and emotional impulse. The affected brain regions and their respective
functions of two groups of SNPs show a great difference, demonstrating the promise of our
clustering result.

4.6. VBM Case Study

Fig. 6(a,b) shows the results of Elsevier pathway analysis on our genetic study of
VBM measures in the AD vs HC comparison. SNP Group 1 is associated with complement
activation in AD and various pathways that is associated with the immune system and
systematic lupus erythematosus, which is a disease categorized by the immune system
attacking its own tissues. SNP Group 2 is associated with amyloid clearance and formation
pathways, which has an ambiguous downstream function compared with the AV45 results.
Thus previous AV45 result shows a better partition, which can also be verified by visually
inspecting the SNP networks and comparing the averaged Silhouette scores (0.1015 vs
0.0879).

In Fig. 6(c,d), the brain association pattern corresponding to SNP Group 1 includes
cerebellum, cerebellar, vi, lobules, and putamen. Cerebullum and cerebellar govern motor
functions and balance (see https://neurosynth.org/analyses/terms/ for definition of
these terms). The putamen is involved in learning and motor control, including speech
articulation, language functions, and cognitive functions. Similar to the Group 1 result
of the AV45 analysis above, this group is associated with balance, motor functions, and
visual functions. The brain association pattern corresponding to SNP Group 2, on the other
hand, is related to premotor, parietal motor, movements, and primary motor. The primary
function of the premotor cortex is to assist in integration of sensory and motor information
of the performance of an action. The parietal lobes integrate somatosensory signals and
information from different modalities. The difference between the two brain maps in this
case is less significant than the AV45 analysis above.

5. Conclusion

A data-driven analysis pipeline has been proposed in this work to identify high-
level imaging genetic patterns. Based on the detailed SNP-QT associations, we develop a
graph-cut algorithm to cluster similar SNPs together so that SNPs within the same cluster
tend to have similar associations with QTs across the brain. We construct multiple SNP
networks based on different similarity measurements. Each similarity network can be


https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/

Version August 12, 2022 submitted to Genes 13 0f 18

viewed as a weighted graph with a specific similarity measure defined as the edge weight.
We employ a multigraph clustering method derived from min-max graph cut to discover
SNP clusters that take into consideration of all the studied similarity measures. After that,
functional annotation is performed for each identified SNP cluster and its corresponding
brain association pattern to provide valuable biological insights at a high level.

Our genetic analysis of the AV45 imaging QTs in the LMCI vs HC comparison yields
a prominent clustering pattern in the cosine SNP network. The pathway analysis shows
that the identified SNP Group 1 is associated with amyloid beta clearances while the SNP
Group 2 is related to amyloid beta formation. The functional annotation using Neurosynth
shows that the brain regions associated with SNP Group 1 are related to motor and balance
functions while the brain regions associated with SNP Group 2 are related to memory
and cognitive functions. These high-level findings have the potential to provide valuable
insights into relevant genetic pathways and brain circuits, which can help form new
hypotheses for more detailed imaging and genetics studies in independent cohorts.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer’s Disease

GWAS  genome-wide association study
SNP single nucleotide polymorphism
QT quantitative traits

ROI region of interest

MRI magnetic resonance imaging
PET positron emission tomography
HC healthy control

EMCI  early mild cognitive impairment
LMCI  late mild cognitive impairment
AV45  F-18 florbetapir

FDG (18)F-fluorodeoxyglucose

VBM voxel-based morphometry
Appendix A

Table A1l. Participant characteristics.

HC EMCI LMCI AD Total
Number of subject 255 296 218 202 971
Age 7635+ 654 7178 £7.28 7471x£839 7585k£7.67 7448767
Sex (Male/Female) 132/123 167/129 129/89 123/79 551/420
Education (Year) 1637 £2.64 1212+264 16.12+294 1583 +£281 16.13+2.75

Table A2. Selected AD-related SNPs. The list includes 54 susceptibility loci identified by recent
landmark AD genetic studies [3,6,7]. The SNP-QT association maps shown in Figure 2 have a vertical

axis that follows the order below.

rs-1D Chromosome  Position = Gene Symbol rs-ID Chromosome  Position ~Gene Symbol
154575098 chrl 161155392  ADAMTS4 157920721 chr10 11720308 ECHDC3
rs6656401 chrl 207692049 CR1 rs3740688 chrll 47380340 SPI1
1rs2093760 chrl 207786828 CR1 rs10838725 chrll 47557871 CELF1
rs4844610 chrl 207802552 CR1 rs983392 chrll 59923508 MS4A6A
rs4663105 chr2 127891427 BIN1 17933202 chrll 59936926 MS4A2
rs6733839 chr2 127892810 BIN1 rs2081545 chrll 59958380 MS4A6A
rs10933431 chr2 233981912 INPP5D rs867611 chrll 85776544 PICALM
135349669 chr2 234068476 INPP5D rs10792832 chrll 85867875 PICALM
rs6448453 chr4 11026028 CLNK rs3851179 chrll 85868640 PICALM
rs190982 chr5 88223420  MEF2C-AS1 | rs17125924 chr14 53391680 FERMT2
rs9271058 chr6 32575406  HLA-DRB1 | rs17125944 chr14 53400629 FERMT2
159473117 chré 47431284 CD2AP 1510498633 chrl4 92926952 SLC24A4
rs9381563 chré 47432637 CD2AP rs12881735 chrl4 92932828 SLC24A4
rs10948363 chré 47487762 CD2AP rs12590654 chr14 92938855 SLC24A4
rs2718058 chr7 37841534 GPR141 rs442495 chrl5 59022615  ADAMI10
rs4723711 chr7 37844263 GPR141 rs59735493 chr16 31133100 KAT8
rs1859788 chr7 99971834 PILRA rs113260531 chr17 5138980 SCIMP
rs1476679 chr7 100004446 ~ ZCWPW1 rs28394864 chrl7 47450775 ABI3
rs12539172 chr7 100091795 NYAP1 15111278892 chr19 1039323 ABCA7
rs10808026 chr7 143099133 EPHAL1 13752246 chr19 1056492 ABCA7
rs7810606 chr7 143108158 EPHA1-AS1 | 1s4147929 chr19 1063443 ABCA7
rs11771145 chr7 143110762 EPHA1-AS1 1541289512 chr19 45351516 PVRL2
rs28834970 chr8 27195121 PTK2B rs3865444 chr19 51727962 CD33
1573223431 chr8 27219987 PTK2B 156024870 chr20 54997568 CASS4
rs4236673 chr8 27464929 CLU rs6014724 chr20 54998544 CASS4
rs9331896 chr8 27467686 CLU 17274581 chr20 55018260 CASS4
1511257238 chr10 11717397 ECHDC3 15429358 chr19 45411941 APOE
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Table A3. Region of interest order. This table includes 116 regions of interest in the brain. The

SNP-QT association maps shown in Figure 2 have a horizontal axis that follows the order below.

index name index name index name index name
1 Precentral_L 30 Insula_R 59 Parietal_Sup_L 88 Temporal_Pole_Mid_R
2 Precentral_R 31 Cingulum_Ant_L 60 Parietal_Sup_R 89 Temporal_Inf_L
3 Frontal_Sup_L 32 Cingulum_Ant_R 61 Parietal_Inf_L 90 Temporal_Inf_R
4 Frontal_Sup_R 33 Cingulum_Mid_L 62 Parietal_Inf_R 91 Cerebelum_Crusl_L
5 Frontal_Sup_Orb_L 34 Cingulum_Mid_R 63 SupraMarginal_L 92 Cerebelum_Crus1_R
6 Frontal_Sup_Orb_R 35 Cingulum_Post_L 64 SupraMarginal_R 93 Cerebelum_Crus2_L
7 Frontal_Mid_L 36 Cingulum_Post_R 65 Angular_L 94 Cerebelum_Crus2_R
8 Frontal_Mid_R 37 Hippocampus_L 66 Angular_R 95 Cerebelum_3_L
9 Frontal_Mid_Orb_L 38 Hippocampus_R 67 Precuneus_L 96 Cerebelum_3_R
10 Frontal_Mid_Orb_R 39  ParaHippocampal L 68 Precuneus_R 97 Cerebelum_4_5_L
11 Frontal_Inf_Oper_L 40 ParaHippocampal R 69 Paracentral_Lobule_L 98 Cerebelum_4_5_R
12 Frontal_Inf_Oper_R 41 Amygdala_L 70 Paracentral_Lobule_R 99 Cerebelum_6_L
13 Frontal_Inf Tri_ L 42 Amygdala_R 71 Caudate_L 100 Cerebelum_6_R
14 Frontal_Inf _Tri_R 43 Calcarine_L 72 Caudate_R 101 Cerebelum_7b_L
15 Frontal_Inf_Orb_L 44 Calcarine_R 73 Putamen_L 102 Cerebelum_7b_R
16 Frontal_Inf_Orb_R 45 Cuneus_L 74 Putamen_R 103 Cerebelum_8_L
17 Rolandic_Oper_L 46 Cuneus_R 75 Pallidum_L 104 Cerebelum_8_R
18 Rolandic_Oper_R 47 Lingual L 76 Pallidum_R 105 Cerebelum_9_L
19 Supp_Motor_Area_L 48 Lingual R 77 Thalamus_L 106 Cerebelum_9_R
20 Supp_Motor_Area_R 49 Occipital_Sup_L 78 Thalamus_R 107 Cerebelum_10_L
21 Olfactory_L 50 Occipital_Sup_R 79 Heschl_L 108 Cerebelum_10_R
22 Olfactory_R 51 Occipital_Mid_L 80 Heschl_R 109 Vermis_1_2
23 Frontal_Sup_Medial_L 52 Occipital_Mid_R 81 Temporal_Sup_L 110 Vermis_3
24 Frontal_Sup_Medial R 53 Occipital_Inf_L 82 Temporal_Sup_R 111 Vermis_4_5
25 Frontal Med_Orb_L 54 Occipital_Inf_R 83 Temporal_Pole_Sup_L 112 Vermis_6
26 Frontal_Med_Orb_R 55 Fusiform_L 84 Temporal_Pole_Sup_R 113 Vermis_7
27 Rectus_L 56 Fusiform_R 85 Temporal_Mid_L 114 Vermis_8
28 Rectus_R 57 Postcentral _L 86 Temporal_Mid_R 115 Vermis_9
29 Insula_L 58 Postcentral_R 87 Temporal_Pole_Mid_L 116 Vermis_10

Table A4. SNP clustering result on the AV45 measures for the LMCI vs HC comparison. The SNP
and the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2
Index SNP Gene Index SNP Gene

1 rs4575098_A ADAMTS4 1 rs6656401_A CR1

2 rs4663105_C  RP11-138118.2 2 rs2093760_A CR1

3 rs6733839_ T  RP11-138118.2 3 rs4844610_A CR1

4 rs6448453_A AP001257.1 4 rs10933431_G SPI1

5 rs$9381563_C RNU6-560P 5 rs35349669_T CELF1

6 rs2718058_G FERMT2 6 rs190982_G MS4A6A
7 rs11257238_C PVRL2 7 rs9271058_A MS4A6A
8 rs7920721_G APOE 8 rs9473117_C PICALM
9 rs10838725_C BIN1 9 rs10948363_G RNU6-560P
10 rs983392_G BIN1 10 rs4723711_T FERMT2
11 rs7933202_C INPP5D 11 rs1859788_A SLC24A4
12 rs2081545_A INPP5D 12 rs1476679_C SLC24A4
13 rs867611_G CASS4 13 rs12539172_T SLC24A4
14 rs10792832_A CASS4 14 rs10808026_A ADAM10
15 rs3851179_T CASS4 15 rs7810606_T KAT8

16 rs10498633_T HLA-DRB1 16 rs11771145_A  RP11-333E1.1
17 rs12881735_C AL355353.1 17 rs28834970_C  RP11-81K2.1
18 rs12590654_A AL355353.1 18 rs73223431_T CNN2

19 rs113260531_A EPDR1 19 rs4236673_A ABCA7
20 rs28394864_A GPR141 20 rs9331896_C ABCA7
21 21 rs3740688_G CD33
22 22 rs17125924_ G  RP11-61G19.1
23 23 rs17125944_C  MEF2C-AS1
24 24 rs442495_C CD2AP
25 25 rs59735493_A GPR141
26 26 rs111278892_G EPDRI1
27 27 rs3752246_G PILRA
28 28 rs4147929_A ZCWPW1
29 29 rs41289512_G NYAP1
30 30 rs3865444_A EPHA1
31 31 rs6024870_A EPHA1-AS1
32 32 rs6014724_G EPHA1-AS1
33 33 rs7274581_C PTK2B
34 34 rs429358_C PTK2B
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Table A5. SNP clustering result on the VBM measures for the AD vs HC comparison. The SNP and

the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2

Index SNP Gene Index SNP Gene
1 rs6656401_A CR1 1 rs4575098_A ADAMTS4
2 rs2093760_A CR1 2 rs4663105_C  RP11-138118.2
3 rs4844610_A CR1 3 rs6733839_T  RP11-138I18.2
4 rs1859788_A SLC24A4 4 rs10933431_G SPI1
5 rs1476679_C SLC24A4 5 rs35349669_T CELF1
6 rs12539172_T SLC24A4 6 rs6448453_A AP001257.1
7 rs11771145_A  RP11-333E1.1 7 rs190982_G MS4A6A
8 rs28834970_C RP11-81K2.1 8 rs9271058_A MS4A6A
9 1s73223431_T CNN2 9 rs9473117_C PICALM
10 rs4236673_A ABCA7 10 rs9381563_C RNU6-560P
11 rs9331896_C ABCA7 11 rs10948363_G RNU6-560P
12 rs3740688_G CD33 12 rs2718058_G FERMT2
13 rs113260531_A EPDR1 13 rs4723711_T FERMT2
14 rs3752246_G PILRA 14 1s10808026_A ADAMI10
15 rs4147929_A ZCWPW1 15 rs7810606_T KAT8
16 rs3865444_A EPHA1 16 rs11257238_C PVRL2
17 17 rs7920721_G APOE
18 18 rs10838725_C BIN1
19 19 rs983392_G BIN1
20 20 rs7933202_C INPP5D
21 21 rs2081545_A INPP5D
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38 38 rs429358_C PTK2B
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