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ABSTRACT
Parkinson’s disease (PD) is the second most prevalent neurodegen-
erative disease in the United States. The structural or functional
connectivity between regions of interest (ROIs) in the brain and
their changes captured in brain connectomes could be potential
biomarkers for PD. To effectively model the complex non-linear
characteristic connectomic patterns related to PD and exploit the
long-range feature interactions between ROIs, we propose a connec-
tome transformer model for PD patient classification and biomarker
identification. The proposed connectome transformer learns the key
connectomic patterns by leveraging the global scope of the atten-
tion mechanism guided by an additional skip-connection from the
input connectome and the local level focus of the CNN techniques.
Our proposed model significantly outperformed the benchmark-
ing models in the classification task and was able to visualize key
feature interactions between ROIs in the brain.
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1 INTRODUCTION
Parkinson’s disease (PD) is the second most prevalent neurodegen-
erative disease in the United States, affecting 2-3% of the population
≥ 65 years of age [14]. Brain imaging has increasingly been used
for PD and related disorders diagnosis [2], from which brain con-
nectomes can be extracted and used to study brain disorders [19].
The alterations in the connectivity patterns could be indicative of
an underlying disease such as PD [6]. However, brain connectiv-
ity analysis can be very challenging due to its complexity, large
size and sparsity. Traditional computational approaches such as
machine learning (ML), multi-layer perceptrons (MLP) and convo-
lutional neural networks (CNN) struggle when dealing with highly
sparse data with many input features. Therefore, in this work, we
propose a novel transformer model for PD diagnosis and biomarker
identification from structural connectome data.

The proposed model integrates a connectome-encoding con-
volutional layer and a joint attention mechanism incorporating
anatomical guidance, in order to capture critical PD-related brain
connectivity patterns and create highly representative embeddings
from brain connectivity data. Combining both techniques allows
the proposed model to capture local and global patterns in the data.
Previous approaches using CNNs have achieved good results [9].
However, CNNs have a limited receptive field and struggle to cap-
ture meaningful patterns in long-range connections. Similarly, tradi-
tional MLPs become prohibitively computationally expensive when
dealing with very large inputs due to their fully connected archi-
tecture. On the other hand, transformer models have the potential
to learn complex structures from brain connectivity data due to
their ability of capturing long-range interactions among the input
features. Nevertheless, transformer models struggle to capture local

https://orcid.org/0000-0003-2180-3251
https://orcid.org/0000-0002-0785-4514
https://orcid.org/0000-0001-5973-2343
https://orcid.org/0000-0002-5443-0503
https://orcid.org/0000-0002-9779-2141
https://doi.org/10.1145/3535508.3545544
https://doi.org/10.1145/3535508.3545544


BCB ’22, August 7–10, 2022, Northbrook, IL, USA Machado Reyes, et al.

Outcome prediction
PD

Controls

Transformer Encoder

…

Edge-to-Node

Input Size: 90x90

90 x m
90 x m

90x9090x90

Connectome
ROIs = 90

Dense, Swish

Dropout

Dense, Sigmoid 

Layer Normalization

Multiheaded Attention

Addition

Flatten

Layer Key

Bottleneck Matmul

Q

KT

V

90 x m

90x90
90x90

90x90

90 x mSoftmax

Concat

Linear 
projection 

W0

m: embedding 
dimensions

m x 90

90 x m

90 x m

Attention block Attention block
MLP Classifier

Figure 1: Proposed connectome transformer encoder model and classifier.

patterns due to the lack of induction bias. More recent visual trans-
former methods have incorporated techniques from CNN models,
such as convolutional filters and pooling [12].

A key challenge in the field is to quantify the learned relation-
ships between ROIs to understand the underlying disease mecha-
nisms; moreover it is relevant to capture the local level structures
from the information-rich connectome to maximize the learned
patterns. In order to alleviate these challenges, our proposed model
implements the following technical contributions. (1) Our method
introduces transformers into brain network analysis to efficiently
learn and explicitly identify the complex relationships between
regions of interest, which also provides interpretability of the DL
model. (2) Our method integrates brain connectivity-specific CNN
techniques into the transformer model to leverage the local focus
capabilities of CNNs and enhance the global feature learning pro-
cess of transformers. (3) A joint attention mechanism is proposed
to directly include the essential features from the original anatom-
ical input into the computed attention to fully utilize the brain
connectivity.

Our proposed method was used to classify PD patients from
healthy controls and the learned biomarkers connections were
corroborated in the literature. Our method was validated using
a landmark PD biobank: the Parkison’s Progression Markers Ini-
tiative (PPMI). Our model was able to achieve promising imaging
biomarker identification and prediction accuracy in the PD clas-
sification task, outperforming traditional ML methods and CNNs.
More importantly, the interpretability of our model enables identi-
fying a set of clinically relevant imaging biomarkers and interaction
patterns that provide valuable insights into the underlying biolog-
ical mechanisms of PD. It may lead the community to form new
hypotheses for subsequent molecular and clinical investigations.

2 CONNECTOME TRANSFORMER
The proposed connectome transformer encoder and classifier con-
sist of three main stages as shown in Fig. 1. First, each input con-
nectome is encoded into an initial representation through an edge-
to-node layer [9]. Next, in order to learn PD-relevant connectivity

patterns, the connectome encoded representation is used as input
to the transformer encoder. In this module, we use skip connec-
tions from the input connectome to the multi-head attention (MHA)
mechanisms (shown in green) which directly incorporate connec-
tivity data to the attention mechanisms. Finally, an MLP is used
to classify the learned embedded representations from each input
connectome as PD or healthy control (HC).

2.1 Connectivity Tokenization
Let 𝑿 ∈ R𝑛×𝑛 represent the input of our transformer, where 𝑛 is
the number of ROIs. The edge-to-node layer aims to obtain highly
informative tokens (i.e. feature/ROI representations) from the input
connectomes. The edge-to-node layer was implemented following
the published code [10]. This implementation can be simply re-
garded as a column-wise 1D convolution with kernel size 1 × 𝑛
over the input connectome with 𝑚 filters to obtain 𝑛 tokens of
embedding dimension𝑚. The tokenization can be formulated as:
𝒕𝒊 =𝑊𝑡𝒙𝑖,· + b where𝑊𝑡 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 .

2.2 Transformer Encoder
The transformer encoder is constructed by several repeated atten-
tion blocks (see Fig. 1). Each of these blocks contains a normalization
layer followed by a multi-head joint attention layer and a skip con-
nection from the normalization layer to the output of the attention
block. Then, a second normalization layer is applied and the output
is passed to a feed-forward block (denoted as the bottleneck icon).

Each head 𝑗 in a MHA block first generates query 𝑄 𝑗 = {𝒒 𝑗
𝑖
}𝑛
𝑖=1,

key 𝐾 𝑗 = {𝒌 𝑗
𝑖
}𝑛
𝑖=1, and value 𝑉 𝑗 = {𝒗 𝑗

𝑖
}𝑛
𝑖=1 vectors for each of
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are learnable parameters. Moreover, each head 𝑗 receives the input
connectome 𝑋 through a skip connection. Then, for each query,
an output is calculated as a weighted sum of all the value vectors,
where the weights are computed as the similarity between the query
and each key plus the input connectome. Such an operation enables
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the MHA block to aggregate information across all ROIs according
to the query. The output of the 𝑗-th attention head is computed as:

head𝑗 (𝒒 𝑗
𝑖
, 𝐾 𝑗 ,𝑉 𝑗 , 𝑋 ) = softmax

(
𝒒 𝑗

𝑖

𝑇
𝐾 𝑗

√
𝑑𝑘

+ 𝑋
)
𝑉𝑇 .

The input connectomes are added to the raw attention scores
obtained from the query and key multiplication at the MHA layer
as illustrated in Fig. 1 and described in the equation above. This
anatomically-guided joint attention is applied at each of the atten-
tion blocks of the transformer encoder. The intuition behind the
skip connections from the input connectome is to keep the relevant
features that could be lost at deeper stages of the network, consid-
ering that the connectomes already contain key feature interaction
information similar to the raw attention. Thus, an anatomically
guided joint attention can be obtained. This process is analogous to
the U-Net [17], where the low-level image features can be directly
passed to later part of the decoder to keep the information.

The outputs of all attention heads are then concatenated and pro-
jected to get the final output of the MHA block,MHA(𝒒 𝑗

𝑖
, 𝐾 𝑗 ,𝑉 𝑗 ) =

concat(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 , where𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑚 is a learnable
projection matrix. Since each head has respective parameters, the
MHA block is able to jointly consider different types of correla-
tions in the input feature [18]. The feed-forward block is an in-
verse bottleneck structure composed of two dense layers with one
Swish [16] activation function in between layers. The full pro-
cess of the 𝑙-th layer in our transformer encoder is formulated as:
𝐹 ′
𝑙
= MHA(LN(𝐹𝑙−1)) + 𝐹𝑙−1, 𝐹𝑙 = FF(LN(𝐹 ′

𝑙
)) + 𝐹 ′

𝑙
, where LN(·) is

the normalization layer [1]. The output of the transformer encoder
is flattened into a vector and fed to an MLP classifier.

3 RESULTS AND DISCUSSION
3.1 Dataset
Our study used the diffusion tensor imaging (DTI) data and the
corresponding PD diagnosis from 153 participants from PPMI. The
dataset presented a considerable imbalance with 112 PD patients
and the remaining 41 as HC. The mean age for the PD patients
was 61.05±9.28 and for the HC was 61.15±10.44. We processed
the data using the tractography algorithm implemented in FSL
probtrackX to extract fiber information and construct structural
connectivity matrices (connectomes). Moreover, in order to remove
the confounding variables from the population substructure, the
mean connectivity matrix of the combined training and validation
sets was calculated and subtracted from the training, validation, and
testing set. Data augmentation using the local synthetic instances
(LSI) method [3] was performed on the training set.

3.2 Classification results
Evaluation StrategyWeused the area under the receiver operating
characteristic curve (AUC) for performance evaluation. We ran
10×10-fold stratified cross-validation to ensure accurate results for
the small and imbalanced dataset used to train the network (70%
train, 10% validation 20% test). Random states for the data splitting
were set for fair comparison across models by evaluating on the
same data splits. Mean AUCs on the test partition were calculated
for each one of the 10-fold experimental units and an overall mean
of the mean AUCs is reported together with standard deviations.

Table 1: Comparison over 10 rounds of 10-fold cross-
validation. Mean AUCs with significant difference (𝛼=0.05
and 0.005) are denoted with ‘*’ and ‘**’, respectively.

Model Mean AUC ± SD Median AUC

PCA + RF 0.520 ± 0.035 ** 0.509
PCA + SVM 0.527 ± 0.043 ** 0.516
BrainNetCNN [9] 0.540 ± 0.021 ** 0.538
Our model 0.631 ± 0.039 0.644

- Joint Attention 0.588 ± 0.029 * 0.604
- E2N layer 0.563 ± 0.028 ** 0.568
- E2N, - Joint attention 0.570 ± 0.052 ** 0.558
- LSI 0.530 ± 0.032 ** 0.532

Paired samples Wilcoxon test was used for significance testing for
comparison between proposed and baseline models (𝛼 = 0.05).
Baselines The proposed transformer encoder model was compared
against well-established ML and recent DL models. The former in-
cludes random forest (RF) and support vector machine (SVM) as
classifiers, where principal component analysis (PCA) was first
applied for feature dimensionality reduction. RF and SVM were
implemented using Sci-Kit Learn [15] and a basic systematic hyper-
paramter tuning. On the other hand, BrainNetCNN [9] was used for
the DL category, following the public Keras-TensorFlow implemen-
tation [5]. Our proposed model was trained using focal loss [11]
and AdamW [13] optimizer. In our work, focal loss was employed
to handle the imbalance in positive and negative cases. The focal
loss has a great capability of dealing with imbalanced datasets and
focusing on hard negative samples for more robust feature learn-
ing. The model architecture was implemented using 2 attention
blocks with 12 heads each, bottleneck embedding dimensions of
512, learning rate of 0.00001, and weight decay of 0.0001. The model
was trained with batch size of 8, and 100 epochs. The model was
implemented using Keras Tensorflow v.2.4.
Results Table 1 shows the proposed model performed significantly
better than the competing methods, achieving a mean AUC of 0.633
and median AUC of 0.644, almost a 10% increase over the highest
performing baseline model. BrainNetCNN achieved the next best
performance with a mean AUC of 0.540, followed by SVM and RF.
The classification results show the proposed model can effectively
learn informative representations and capture PD-related patterns
from the connectomes. This is expected as traditional ML models
such as RF and SVM struggle at capturing complex non-linear
interaction patterns. Furthermore, BrainNetCNN did not perform
as well as our proposed model probably due to its limitation to a
local level focus and the lack of capabilities for capturing long-range
interactions between the ROIs. Our model is able to capture the
complex patterns and feature interactions at local and global levels
due to its transformer backbone and convolutional tokenization.

3.3 Ablation studies
The ablated components were the edge-to-node (E2N) tokenizer,
the skip connections from input connectomes to the MHA modules
(denoted as joint attention), and the data augmentation technique
LSI. As it can be seen in the bottom section of Table 1, while the
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Figure 2: Chord plots of attention scores for the top fold
showing the learned ROI interactions.

absence of the joint attention decreases the performance of the
model, the model performs its lower when the E2N layer is removed.
This is expected as the joint attention should aid the model to
maintain key features from the input connectome in the deeper
stages of the network; however, it is not essential to the feature
relationship learning at the MHA mechanism. On the other hand,
the E2N layer, plays a vital role in the network, as it provides the
original feature encodings. While transformers are highly proficient
at capturing the global interactions in the feature set, they struggle
at the local level. Moreover, the lack of both E2N and joint attention
layers performs better than the absence of the E2N layer alone.
The lack of E2N layer would lead to using the original connectome
as input, rendering the skip connections less useful. Therefore,
the absence of both strategies could lead to a simplified model that
performs better than the onewithout the E2N layer but that includes
the connectome skip connection. Finally, as transformer models
are known to be data-hungry due to their very large number of
parameters, the sample size is key to their performance. The absence
of the data augmentation technique, LSI, significantly hurdles the
proposed model performance.

3.4 Support by known mechanisms
The visualization of the learned attention scores by our model
allowed for key insight into the learned relationships between fea-
tures. The top performing model (i.e. highest AUC in the test set)
from the 10×10-fold cross-validation framework is visualized in
Fig. 2. The joint attention scores were first averaged across the sam-
ples in the test set and then the maximum values from the resulting
mean attention matrices were selected for a final model joint atten-
tion matrix. Chord plot was drawn using the circlize R library [7].
Fig. 2 shows several key feature connections captured by the model
signaling possible biological relationships between ROIs towards
PD development. The proposed model detected strong connections
between the angular gyrus (AG - left and right) and the superior
frontal gyrus (F1O - left and right). Previous clinical literature has
associated these regions with altered glucose metabolism for PD pa-
tients and general cognitive decline [4]. Moreover, previous findings
indicate that the amygdala (AMYG) and parahippocampal gyrus
(PHIP) may play a key role in PD patients’ cognitive-emotional

deficits [20]. Finally, the proposed model found multiple strong
connections involving the supramarginal gyrus (SMG) and ROIs in
the frontal lobe (i.e., PCL, F1O, F2), which have been shown to be
important biomarkers for PD pathophysiology [8].

4 CONCLUSION
The ever-growing number of people affected by PD coupled with
the limited understanding of the pathogenesis and biomarkers for
PD detection raises the importance of developing models that allow
for PD detection while providing insight into the key biomarkers
behind PD development. In this work, a transformer encoder cou-
pled with CNN techniques is proposed to classify PD patients from
healthy controls, while simultaneously providing insight into the
learned relationships between the ROIs analyzed. While few studies
have been done for PD patient classification and biomarker identifi-
cation using diffusion MRI-derived connectomes; our results show
the predictive power of the structural connectivity data and shed
light on future directions integrating connectomes with other data
modalities for robust PD detection and biomarker identification.

One limitation of this work is the small sample size that limits the
capability of the models to learn multiple generalizable features and
consequently the limited classification capabilities of the models.
Nevertheless, the proposed model was able to provide key insights
into the underlying mechanisms for PD development and putative
biomarkers for further clinical analysis. For future work, we will
integrate different data modalities to achieve an enhanced view of
the PD landscape.
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