Genomics transformer for diagnosing Parkinson’s
disease
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Abstract—Parkinson’s disease (PD) is the second most common
neurodegenerative disease and presents a complex etiology with
genomic and environmental factors and no recognized cures.
Genotype data, such as single nucleotide polymorphisms (SNPs),
could be used as a prodromal factor for early detection of PD.
However, the polygenic nature of PD presents a challenge as the
complex relationships between SNPs towards disease develop-
ment are difficult to model. Traditional assessment methods such
as polygenic risk scores and machine learning approaches strug-
gle to capture the complex interactions present in the genotype
data, thus limiting their discriminative capabilities in diagnosis.
On the other hand, deep learning models are better suited for
this task. Nevertheless, they encounter difficulties of their own
such as a lack of interpretability. To overcome these limitations,
in this work, a novel transformer encoder-based model is in-
troduced to classify PD patients from healthy controls based
on their genotype. This method is designed to effectively model
complex global feature interactions and enable increased inter-
pretability through the learned attention scores. The proposed
framework outperformed traditional machine learning models
and multilayer perceptron (MLP) baseline models. Moreover,
visualization of the learned SNP-SNP associations provides not
only interpretability to the model but also valuable insights into
the biochemical pathways underlying PD development, which
are corroborated by pathway enrichment analysis. Our results
suggest novel SNP interactions to be further studied in wet lab
and clinical settings.

Index Terms—Parkinson’s disease, Genomics, Deep learning

I. INTRODUCTION

Parkinson’s disease (PD) has a severe personal impact
and economic burden on millions of people every year [1].
Coupled with its progressively debilitating nature, there are
currently no recognized cures for PD [2]. While there have
been major efforts to research the pathophysiologies of PD,
our understanding of the disease and related disorders is
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still limited. Several studies agree that the combination of
a person’s genes and environment contributes to the risk of
developing a neurodegenerative disease [3]. However, these
findings are based on retrospective studies and the actual
mechanisms remain to be described. Furthermore, aging is
recognized as a top risk factor for most neurodegenerative
diseases [4] and with an increasingly predominant aging
population, neurodegenerative diseases are expected to grow
in incidence and prevalence.

Parkinson’s disease, like many other neurodegenerative dis-
eases, has a complex etiology and is currently diagnosed
under a differential diagnosis [5] which mainly focuses on the
characteristic motor symptoms. Nevertheless, these would not
appear until at least at an intermediate stage of PD. Therefore,
it is key to improve the disease understanding and diagnosis
ability based on prodromal factors. A very promising factor
for PD diagnosis is the genotype. Nevertheless, using genotype
data for the diagnosis of PD can be very challenging due to
the polygenic nature of PD.

Machine learning methods have been widely employed in
the genetic studies of neurodegenerative disorders [6]. Such
methods can help identify disease-related genes with promis-
ing performance. However, the existing studies primarily focus
on examining the main effect of individual genetic variations
on the disease outcome with limited understanding of the co-
occurring effects between genetic markers. Explicitly captur-
ing the complex interactions in the genetic data contributing
to the disorders is significantly under-explored. Thus, it is
essential to develop new approaches to leverage the complex
interactions in the genetic assessment of the disease, that, in
turn, allow us to gain a deeper understanding of the biological
pathways underlying Parkinson’s disease. The model proposed
in this work aims to bridge this gap. The complexity of the
interactions between single nucleotide polymorphisms (SNPs)
in a polygenic disease such as PD is a major challenge
for traditional machine learning models. On the other hand,



neural network-based models, such as multilayer perceptron
(MLP), have been shown to outperform the traditional machine
learning models for PD patient classification [7]. Nevertheless,
MLPs present a black-box structure limiting the interpretabil-
ity of the predictive model. The community needs more
advanced deep neural network models to capture these non-
linear relationships in the genotype.

To bridge the gap, in this work, we propose a transformer
neural network architecture for disease phenotype prediction
based on the genotype data, more specifically the SNPs.
The proposed transformer-based model is able to efficiently
represent the data in a high-dimensional space that explicitly
captures the complex interactions between the SNPs to classify
PD patients from controls. The self-attention mechanism in
the transformer enables to “look inside” the model, which not
only increases the interpretability of the deep learning model
but also provides insights to the co-occurring effects between
genetic markers.

The main methodological contribution of this work is that
the proposed model introduces transformers into the polygenic
disease analysis domain. The designed transformer encoder
efficiently learns and explicitly identifies the complex genomic
interaction structure and increases the interpretability of the
deep learning model.

In our empirical study, we applied the proposed model to
two landmark PD biobanks: the Parkison’s Progression Mark-
ers Initiative (PPMI) and the Parkinson’s Disease Biomarkers
Program (PDBP). The proposed model was able to achieve
highly promising prediction accuracy in the PD patient classi-
fication task, outperforming traditional machine learning and
deep learning methods. At the same time, our model explicitly
identified a set of biologically meaningful SNP-SNP interac-
tion patterns. These findings are highly innovative, provide
valuable insights into the genetic mechanisms of PD, and can
help form new hypotheses to guide subsequent molecular and
clinical investigations.

II. MATERIALS AND METHODS

Polygenic diseases, such as PD, present complex data
patterns and feature interactions. Traditional statistical models
and machine learning models struggle at capturing the high-
dimensional feature interactions present in the data. Deep
learning models excel at these tasks but present challenges
of their own. First, the complex SNP interactions towards
PD development are challenging for models to learn due to
multi-factorial conditions in regulatory and coding regions in
the genome related to disease development. Second, while
traditional neural networks can model some of the high-
dimensional feature interactions and achieve high perfor-
mance, these models present limited interpretability.

In this work, to address the above challenges, we introduce
the transformer to the genotype encoding domain to differenti-
ate PD patients from controls, as it is specialized in capturing
long-range semantic dependencies just like the ones present in
the genome. Fig. 1 shows the overall developed framework.

Using SNPs as input to the framework, the proposed trans-
former model for PD patient classification effectively learns
and identifies the complex interactions between SNPs and
provides insights into the learned SNPs relationship through
the visualization of these connections. SNP data is usually
encoded in an allele dosage additive representation (AA-0,
AB-1, BB-2). This discrete representation is not ideal for deep
learning models as it limits the level of finer details captured in
the data. Thus, the first module of our framework first converts
each SNP from the original additive discrete representation to
a continuous variable and concurrently removes confounding
effects. This is applied right after the initial quality control
and PD GWAS-related SNP selection.

The second module of our framework is the proposed
transformer model as shown in Fig. 1. It learns the essential
relationships between SNPs towards PD phenotype prediction
by constructing a meaningful high-dimensional representation
of the data to classify the subjects. This module addresses the
aforementioned challenges through the capabilities of trans-
former in capturing the long-range semantic dependencies in
the genome. It helps gain deeper insight into the learned SNP
relationships due to their multi-head attention mechanism.
Here, the learned attention by the transformer captures the
correlation between SNPs, thus reflecting the co-occurring
effects between these towards PD detection. Then, the learned
relationships can be used to perform downstream biological
analysis, allowing for increased interpretability of the model.
We then analyze and visualize the learned connectivity patterns
to illustrate the interpretability of the predictions supported by
known biological mechanisms. The details of our work are
provided as follows.

A. SNP Representation and Filtering

In our work, SNP representation and filtering was imple-
mented through the data munging module of the GenoML
pipeline developed by [8]. Data quality control and PD-related
SNP filtering are provided in Section III-A together with
the dataset. The SNP representation module aims to convert
the original allele-dosage discrete encoding to a continuous
format and remove the confounding effects in the data. It
first computes the principal components and then fits a linear
regression using those components to represent each sample.
The residual difference between the original sample and the
regressed approximation is used as the final representation of
data samples to input to the networks. The intuition behind
this process is to remove the latent population substructure and
experimental covariates with the residual variance representing
the more generalizable and relevant data.

Specifically, let G = {g; € RN|i = [1,..., M]}, where
M is the number of SNPs after data preprocessing and N
is the number of subjects. The SNP representation module
then applies principal component analysis (PCA) to project
G onto its first 10 principal components. We denote the
projected data with Gp = {g7}1°,. Next, for the i-th SNP,
the SNP representation module linearly regresses g; with
Gp: g’ = WIGE + bi, where W and b are the weight
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Fig. 1. Proposed framework. Module for data preparation prior to transformer model classifier, and the proposed genotype transformer encoder framework

for PD patient classification.

and intercept respectively, and calculates the residual of the
regression results: 7; = g;' — g;. The final representation of
the ¢-th SNP is computed as the normalized r; with mean of
0 and standard deviation of 1. The SNP filtering module was
implemented through the GenoML pipeline [8] to reduce the
number of features to the most relevant ones using an extra
tree classifier [9] to rank feature importance and select the
most relevant towards PD classification.

B. Transformer Encoder Model

Our transformer consists of three modules. First, each
of the pre-processed scalar SNPs is embedded into a high
dimensional vector by a fully connected (FC) layer. Then,
taking these vectors as input, a multi-layer transformer encoder
extracts features for data representation. Finally, based on
the features, an MLP with a sigmoid classifier makes PD
phenotype predictions.

Let * = {z;}/2,,2; € R represents the input of our
transformer, where m is the number of selected SNPs. The
embedding stage can be formulated as: e; = W, x;+b., where
e; € R denotes the embedded d. dimensional vectors of the
i-th SNP, W, € R%>1 and b, € R% are learnable parameters
shared across all SNPs.

The transformer encoder is constructed by several layers
with identical components, as illustrated in Fig. 1 by the
two light gray boxes inside the pink box. Each of these
layers contains two sub-layers comprised in part a layer of
normalization and residual connection (denoted by the addition
symbol). In further detail, the first sub-layer contains a multi-
head attention block, and the second sub-layer a feed-forward
block (denoted as the bottleneck icon). Each head in a multi-
head attention block first generates query, key, and value

vectors for each SNP. Then, for each query, an output is
calculated as a weighted sum of all value vectors, where the
weights are computed as the similarity between the query and
each key. Such an operation enables the multi-head attention
block to aggregate information across all SNPs according to
the query. Let F' = {f;}1,, fi € R¥medet denotes the features
of SNPs input to the attention block. For the j-th attention
head, the query Q7 = {q/}",, key K/ = {k]}7, and
value V7 = {v]}™, vectors of each SNPs is calculated by
q; = Wi fi, ki = Wi fi, and v] = Wy f; respectively,
where Wé,Wf( € RrXdmodel  and W{, € Rv*dmoder gre
learnable parameters. The output of the j-th attention head on
the i-th query is computed as:

Vdy,

The outputs of all attention heads are then concatenated
and projected to get the final output of the multi-head
attention block on the i-th token, MHA(q!, K7,V7) =
concat(head?, ..., head")Wo, where Wy € RIdvXdmodet jg
a learnable projection matrix. Since each head has respec-
tive parameters, the multi-head attention block is able to
jointly consider different types of correlations in the input
feature [10]. The feed-forward block is an inverse bottleneck
structure composed by two FC layers with a swish activation
function [11] in between layers: The output dimension of the
first FC layer dy is larger than dj,0qe1. The full process of
the [-th layer in our transformer encoder is formulated as:

o i
head! (g}, K7, V7) = softmax (q’ K) VT, (1

F/ = MA(LN(Fi-1)) + Fi-1,
Fi = FR(LN() + I,

(@)
(€)



where LN(-) is the layer normalization [12].

The output of the transformer encoder is a matrix in
dimension of d,,,qe; X M. It is flattened into a vector and fed
to an MLP with two FC layers to produce the final prediction.

The framework was trained using a focal loss [13] and
AdamW [14] optimizer. Focal loss was used for this frame-
work due to its great capability of dealing with imbalanced
datasets using weighting parameter oy, and its capacity to
focus on hard negative samples with the modulating factor
(1 —py)” and focusing parameter 7. The focal loss is defined
as

FL(p:) = —a(1 — pi)og(pe), (€]

where p; is the predicted probability of the ground truth class.

III. RESULTS
A. Datasets

Two datasets were used to train and evaluate the proposed
model and baselines, these are Parkison’s Progression Markers
Initiative (PPMI) and Parkinson’s Disease Biomarkers Pro-
gram (PDBP). PPMI is a well-established consortium that
has collected de-identified clinical, imaging, ’omics, genetic,
sensor, and biomarker data from patients with onset Parkin-
son’s disease, at the prodromal stage, and healthy controls.
Genotype data obtained from PPMI corresponded to whole-
genome sequencing from whole-blood extracted DNA sam-
ples. PDPB is a study sponsored by the National Institute
of Neurological Disorders and Stroke (NINDS) containing
a collection of ’omics studies with the goal of accelerating
the discovery of promising new diagnostic and progression
biomarkers for PD. According to PDBP documentation, SNP
genotyping data was obtained through the Illumina NeuroX
array including exonic and additional custom variants designed
for neurological disease studies.

Both datasets were made available on their corresponding
websites after standard processing pipelines following current
best practices. Details on the cohorts demographic distribu-
tions can be seen in Table I. It is important to notice the strong
imbalance in the PPMI dataset as the ratio of PD to healthy
controls (HC) participants is close to 2:1. Moreover, the age
distribution between PD and HC is considerably similar, while
gender presents a higher proportion of males than females.
Nevertheless, no X or Y chromosome SNPs were used in the
final dataset. PDBP presents a more balanced distribution of
PD vs HC subjects, with a slightly higher reported age in HC
subjects. Moreover, in terms of gender, the PD subjects have
close to double the number of male than female subjects, while
for the HC distribution the opposite case is observed.

QC on genotype data was perform current best practices
for PPMI as described in [7]. SNP representation and filter-
ing were implemented using the GenoML [8] data munging
pipeline as described in Section II-A. For the SNP repre-
sentation 10 principal components (PCs) were used for the
PPMI dataset. The resulting dataset contained genotype data
for 510 subjects and 61 SNPs. For the PDBP dataset, 1154
subjects had genotype (269,476 variants) and phenotype data

TABLE I
SUBJECT DATA DISTRIBUTION

PD HC
Participants 349 161
PPMI | Age 61.50 + 9.56  61.27 + 10.7
Gender M:227 F:122 M:104 F:57
Participants 574 496
PDBP | Age 65.64 = 119 6997 + 12.0
Gender M:379 F:195  M:190 F:306

available for processing. The same SNP filtering and QC
pipeline from PPMI was applied to the PDBP dataset, with
the only difference being it used 2 PCs. Only 2 PCs were
used for PDBP as this captured an equivalent proportion of
explained variance as 10 PCs in PPMI. After this process, the
PDBP dataset contained 1068 subjects and 58 SNPs. Finally,
the SNP overlap between both datasets was found to be 13
SNPs. The overlapping SNPs were chosen for common ground
comparison across models; thus, blocking the confounding
variable to have the same features used in each experimental
setting. Therefore, the final datasets used as input to the models
consisted of 510 subjects and 13 SNPs for PPMI, and 1068
subjects and 13 SNPs for PDBP.

B. Evaluation Strategy

The proposed transformer encoder model was compared
against several well-established traditional machine learning
models - random forest, support vector machine (SVM) with
radial-basis function (RBF) kernel and logistic regression
(LR), as well as a multi-layer perceptron (MLP) and long
short-term memory (LSTM) for the deep learning models.
The machine learning models, namely random forest rbf-
SVM and LR, were implemented using sci-Kit learn python
implementations and tuned using an exhaustive grid-search
using the sklearn GridSearchCV APIL

On the other hand, deep learning models, namely MLP,
LSTM and Transformer, were implemented using Tensorflow-
Keras API and tuned manually as the hyperparameter search
space was too large for an exhaustive cross-validation grid-
search approach. In short the manual tuning consisted of
progressively choosing the best performing hyperparameters
by modifying one category at a time. First, learning rate
and loss parameters were tuned, then number of layers and
units, to finally progressing to lower impact hyperparameters
such as the dropout rate. Hyperparameters for the proposed
transformer-based model and baseline models were deter-
mined using a 10-fold cross-validation approach applied to
the training portion of an 80/20 train-test split. The described
hyperparameter tuning process allowed for an unbiased tuning
process to find near to optimal configurations for deep learning
models and the optimal settings for all machine learning
models. The area under the receiver operating characteristic
curve (AUROC) and the area under the precision-recall curve
(AUPRC) were calculated for all evaluated models using the
Sci-Kit learn. It is noteworthy that all machine learning models



were trained with a balanced class weight parameter to mimic
the functionality of the focal loss on the proposed model. On
the other hand, all deep learning models were trained using
focal loss for fair comparison amongst them. Hyperparameter
configurations for all models, and further details on the manual
tuning process will be made available together with the code
after acceptance.

Due to the small sample sizes, classification results vary
considerably depending on the samples used for testing. In
order to alleviate this confounding variable, the proposed
transformer-based model and baseline models were evaluated
using a 10-fold stratified cross-validation framework applied to
each complete dataset to ensure accurate results, with special
focus to the PPMI dataset due to its small size and imbalance.
It is noteworthy that, a limitation of this work is the presence
of so called data leakage as there is an overlap present between
the samples used for the hyperparameter search and the
10-fold cross validation evaluation framework. Nevertheless,
the impact of the confounding variability in classification
results due to the testing samples used at different partitions
is considerably higher. Moreover, it is noteworthy that the
random states of the data splits are different at the tuning and
evaluation stages; in other words, the grouping of samples vary
between the tuning and evaluation stages. Therefore, a certain
degree of stochasticity is introduced for the hyperparameter
settings at the evaluation stage. Similarly, as the process is the
same for all models, there is no unfair advantage introduced
for any model. Random states for the data splitting were set
to the same value across models to ensure fair comparison
by training/testing on the same data splits, with different
random states between hyperparameter search and the evalua-
tion stages. The AUROC and AUPRC at each test partition
were calculated for each one of the 10-fold experimental
units, then the mean and standard deviations were reported as
the final results. Significance testing comparing the proposed
transformer and baseline models was performed using paired
samples Wilcoxon test through the SciPy Python library.

C. PD Prediction Results

The classification results from the proposed networks can
be seen in Table II. As shown in the table, the PDBP
dataset showed to be considerably more challenging for all the
models, this was surprising as both machine learning and deep
learning models tend to perform better with larger datasets.
However, the lower performances could be due to the different
technologies used to obtain the genotype data.

In terms of the model comparisons, the proposed
transformer-based model significantly outperformed all the
baseline models (AUROC and AUPRC) in both PPMI and
PDBP experiments. The propsed transformer model achieves
higher classification results due to its design, with special
focus to the self-attention, to efficiently capture the complex
interactions between the SNPs towards PD development. The
random forest model performed second best in all experiments,
this is expected as ensemble models are very effective at
classification tasks using tabular data as these can find optimal

TABLE I

10-FOLD CROSS-VALIDATION PERFORMANCE OF THE PROPOSED MODEL
AND BASELINES. SIGNIFICANT IMPROVEMENT WAS FOUND USING THE
TRANSFORMER MODEL COMPARED TO THE ALL BASELINE MODELS FOR
THE PPMI AND PDPB DATASETS. VALUES WITH SIGNIFICANT
DIFFERENCE (@ = 0.05) DENOTED WITH **’ AND "**” FOR o« = 0.005

Dataset Model Mean AUROC + SD Mean AUPRC + SD
RF 0.656 £ 0.095 * 0.797 £+ 0.073 *
SVM 0.595 4 0.063 ** 0.769 4 0.073 **
PPMI LR 0.588 4 0.062 ** 0.764 £ 0.060 **
MLP 0.605 £ 0.066 * 0.774 £ 0.065 **
LSTM 0.568 4 0.081 ** 0.737 4 0.068 **
Transformer 0.708 + 0.106 0.835 + 0.078
RF 0.538 £ 0.043 * 0.566 £ 0.044 *
SVM 0.505 =+ 0.033 * 0.557 4 0.045 **
PDBP LR 0.468 £ 0.052 ** 0.525 £ 0.045 **
MLP 0.480 4= 0.040 ** 0.524 4 0.047 **
LSTM 0.509 =+ 0.042 * 0.542 =+ 0.039 *
Transformer 0.581 + 0.048 0.611 £ 0.030

combinations of input features for the task at hand. The
remaining models had varied performances depending on the
dataset, as the MLP and SVM achieved third and fourth best
results on the PPMI dataset respectively. MLP could capture
some of the feature interactions, but not as efficiently as the
more complex models, such as the proposed transformer-based
model. Note that, the proposed transformer-based model uses
MLP to perform the outcome prediction based on the learned
representations. With the transformer encoder, it is able to
capture the complex SNP interactions that will allow for the
higher performance by the proposed model.

On the machine learning models, the SVM uses an RBF
kernel to find complex high-dimensional boundaries that al-
lows it to perform well at classification tasks with complex
interactions; however, as seen in the results, it is not as efficient
as deep learning models such as the proposed transformer and
MLP models. Finally, the LSTM model is a natural precursor
to the transformer model to aggregate information from the
input features and it is able to achieve the third highest
performance in the PDBP dataset.

D. Interpretability of Predictions

In addition to the PD patients and healthy controls clas-
sification, this section presents a deeper insight to increase
the interpretability of the models. A key advantage of trans-
former models is the ability to analyze the self-attention
scores produced from the key-query matrix multiplication.
These attention scores provide a numeric interpretation of the
relationship between features. In the case of the transformer
model in this work, the attention scores are used to describe
the learned SNP-SNP relationships towards the patient clas-
sification task. In order to provide a clear visualization of
the learned relationships, chord plots were drawn using the
circlize R library [15]. The top transformer-based models
(i.e. highest AUROC in the test set) from the 10-fold cross-
validation evaluation were visualized from each dataset. The
learned attention scores were averaged across all subjects in
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Fig. 2. Transformer learned SNP interactions on the PPMI dataset.

the corresponding test set, resulting in a mean attention matrix
per head. As each head learns a different set of attention
relationships, max pooling then was applied in the channel
dimension of the mean attention matrices, i.e. across the heads,
to summarize the most relevant learned connections for the
model.

For downstream analysis of the learned SNPs relationships,
the enrichment analysis tool, Enrichr, was employed to identify
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways enriched by our genetic findings. The first gene set was
determined from the top three performing models trained with
the PPMI dataset, from which the highest performing model
can be seen in Fig. 2. In this gene set, two enriched KEGG
pathways were observed (p | 0.05). First, the “Carbohydrate
digestion and absorption” pathway was enriched with the
smallest raw p-value of 0.019 and odds ratio of 61.49. Second,
the “taste induction” pathway was found to be enriched with a
raw p-value of 0.034 and odds ratio of 33.46. Nevertheless, it
is noteworthy that the genes corresponding to the SNPs with
strongest learned relationships had no previously associated
enriched KEGG pathways, namely TMEM72-AS1, SLC2A13
and MIPOLI1. Further investigation to evaluate the potential
of these genes as PD biomarkers is needed.

For the PDBP gene set, the “Hippo signaling pathway” was
found to be enriched with p-value of 0.032 and odds ratio of
40.81. Similarly, the “tight junction” had p-value of 0.033 and
odds ratio of 39.34. These two pathways were also found to be
enriched in the first gene set ranking the 3rd and 4th. While the
hippo signaling pathway has traditionally been associated with
cancer, recent studies have shifted their attention towards this
pathway’s connection with neurodegenerative diseases [16].
Moreover, Recently, dysfunction in the tight junctions and
their interaction with microbiota in the intestinal barrier have
linked with gut dysbiosis in PD [17]. Recent studies in this
field have focused on the gut-to-brain PD approach [18]. Our
model found relevant connections between SNPs associated

to gut-related pathways such as the carbohydrate digestion
and absorption tight junction. A key area of further research
would look into the connections between these pathways and
elucidate on the putative genomic biomarkers.

Moreover, the individual main effects were analyzed for the
proposed transformer-based model and the best performing
baseline model, namely random forest. For the former an Out
of Bag Feature Importance approach is taken to evaluate the
impact on the performance of the model by removing one
feature at a time. For the latter, the sklearn built-in feature
importance, which implements gini importance, is used to
rank the SNPs relevance towards the classification task. Both
approaches are applied on the models trained on the highest
performing folds of the 10-fold cross validation evaluation
framework. For random forest, the top three SNPs in PPMI
corresponded to the genes TMEM175, MIPOL1, MMRNI;
while for PDBP matched LINCO02331, DSG3, TMEM175.
On the other, hand for the proposed transformer-based model
the top three in PPMI were OCA2, DLG2 and TMEMI175,
while for the PDBP dataset were found to be MMRNI,
SLC2A13 and TMEMI175. The shared top feature across
both models and both datasets, namely the Transmembrane
protein 175 (TMEM175) gene, has been previously associated
with PD pathogensis through a critical role in lysosomal and
mitochondrial function, as neurons with TMEM175 deficiency
have shown increased phosphorylated and detergent-insoluble
a-synuclein deposits [19].

IV. DISCUSSION AND CONCLUSION

The proposed transformer model for genotype encoding
and PD patient classification outperformed traditional machine
learning and deep learning baseline models. Deep learning
methods have been on the edge of clinical analysis due to their
black box implementation. However, novel methods such as
the transformer model presented in this work provide a behind-
the-scenes of the deep learning model. Thus, it allows for
increased interpretability of the underlying feature associations
towards patient classification. The proposed transformer model
learned the key relationships between the SNPs to produce
a high-dimensional representation of each genotype profile
to then classify it as PD or HC. The visualization from
the transformer-based model attention scores showed key
connections between SNPs increasing the interpretability of
the model predictions in conjunction with known mechanisms.
Similarly, feature relevance scores obtained from the random
forest provided complementary insight towards the key SNPs
that lead towards PD according to the predictive models.

While the proposed framework achieved the best perfor-
mance, there are some exciting research areas to further probe
with challenges to solve. A limitation of this study is the use of
a small subset of PD-related SNPs. The SNP filtering process
uses an extra-trees classifier to rank SNP importance in the
PPMI dataset. While it could be argued that data leakage was
present due to the SNP ranking process on the full dataset,
the goal of this study is not to identify PD-related SNPs
rather than developing predictive models that can capture the
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Fig. 3. Transformer learned SNP interactions on the PDBP dataset.

complex relationships in the selected SNPs. SNP filtering and
SNP identification at large scale unprocessed genomic data is
an exciting area of opportunity that could be integrated with
predictive models, such as the one introduced in this work for
sequencing-to-diagnosis pipelines.

Another limitation of this work is the small sample size. An
essential challenge for biomedical data is the limited sample
size, as it restrict the generalization capabilities of the deep
learning networks. Current cohorts are continuously recruiting
more subjects, this will aid to address the small sample sizes
for training the networks. Likewise, novel training processes,
such as pretraining and domain adaptation methods, could
alleviate the limited sample size challenge. Modules of the net-
work could be pretrained on larger non-PD genotype datasets
for an alternative classification task, such as for ancestry
prediction, and then fine-tuned towards the final outcome
prediction with the specialized dataset (PPMI). This approach
would model the building blocks for complex interactions in
the genotype and then focus the network only on the key
connections for PD.

Another exciting area of opportunity in the field is the
inclusion of endophe post-transcriptional modification data
that would provide the missing link between the genotype and
phenotypical expression of PD. Incorporating other modalities
will increase the network’s ability to differentiate PD patients
from controls and improve the description of the underlying
mechanisms leading to PD. For example, imaging biomarkers
would be another key addition to the input data. Imaging
biomarkers have succeeded at differentiating PD patients from
controls in previous works [6]. Lewy bodies and other imaging
traits are often indicators of PD. In future work, we will
integrate imaging biomarkers to further improve the proposed
framework performance.
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