DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

DPM: Towards Accurate Drone Position
Manipulation

Wenxin Chen, Yingfei Dong, Senior Member, IEEE, and Zhenhai Duan, Senior Member, IEEE

Abstract—While existing methods can disrupt drone invasions in a protected airspace, none of them is able to accurately guide a
drone to a desired location for safe handling. To address this issue, the Drone Position Manipulation (DPM) attack is proposed in this
paper to utilize weaknesses in common navigation algorithms of consumer drones. The main advantage of DPM is that it can
accurately redirect an invading drone to a desired location, by carefully crafting the spoofed guidance inputs of the drone to exploit the
adjustment in the path-following navigation algorithms. Compared with existing methods, this is the first work to achieve such accurate

quantitative control. Another main contribution of this work is that it explores three fundamental components (i.e., guidance sensing,
state estimation, and navigation control) together to enable the quantitative manipulation of flight paths, different from all existing
methods. Furthermore, a formal analysis of the attack range is presented for investigating where a drone can be redirected from its
target under given constraints. The evaluation on the Software-in-the-loop (SITL) module of ArduPilot system shows that the proposed
attack is able to not only accurately lead a drone to a redirected destination but also make it fairly far away from its target. Lastly, the
proposed attack can be applied to many autopiloted systems, because it exploits common weaknesses in these systems.

Index Terms—autonomous vehicle, drone security, navigation algorithms, UAS

1 INTRODUCTION

S many emerging autonomous robotic vehicles, consumer

drones have enabled numerous new applications [1], such as
search-and-rescue, aerial imaging, and package delivery. However,
they have also been abused in many incidents [2]: a drone crashed
into the White House ground [3]; malicious drones disturbed
1000+ flights with 140,000+ passengers around Gatwick airport
for three days; drones were deployed in an assassination attempt
on Iraq prime minister on Nov. 7, 2021. Therefore, it is urgent
to develop effective drone countermeasures. This paper focuses
on “consumer drones” because of their low costs and broad
availability, and this paper does not consider expensive high-
end mission-critical drones because they have more on-board
resources and different requirements. In the following, “drones”
mean consumer drones.

Existing drone countermeasures are mostly developed by in-
dustry using direct physical methods, such as jamming a drone’s
radio control channels to trigger it into a fail-safe mode to land,
shooting it down with a projectile, or capturing it with a net. While
such brute-force physical methods work well in many cases, they
have serious limitations, e.g., they usually do not handle collateral
damages well. If a drone carries a malicious payload, it is certainly
undesirable to land it in a protected area. The best solution for this
case is to guide the drone away to a designated area for safe
handling. While several projects [4], [5], [6], [7], [8], [9], [10],
[11] have demonstrated the feasibility of such attacks, none of
them is able to provide quantitative control on practical systems.
Different from all these existing methods, this paper focuses
on accurate quantitative control by systematically investigating

o W. Chen and Y. Dong are with the Department of Electrical and Computer
Engineering, University of Hawaii, Honolulu, HI 96822 USA. e-mail:
wenxinc @hawaii.edu, and yingfei @ hawaii.edu.

e 7. Duan is with Department of Computer Science, Florida State University,
Tallahassee, FL 32306. e-mail: duan@cs.fsu.edu.

three fundamental components of the control stack together for
a specific goal, i.e., redirecting a drone to a given destination.

An ideal attack is to gain the complete control of an invading
drone, e.g., if attackers can take over its control channel (by crack-
ing its encryption) or hack into its control software. While several
methods have been developed to exploit specific drone settings,
they require directly compromising drone software, sensors, or
communication channels [8], [12], [13], [14], [15], [16], which
are often difficult to achieve in practice. While these methods
may work well on weak systems with known vulnerabilities,
it is impractical to solely rely on such methods because the
vulnerabilities can be easily patched.

Therefore, different from these methods, this paper focuses on
a new challenge: how to accurately manipulate a drone without
depending on directly compromising its software or hardware. To
achieve this goal, the paper proposes to exploit the three funda-
mental components of autopiloting (i.e., guidance sensing, state
estimation, and navigation control) together, as presented in the
following. First, almost all consumer drones depend on guidance
inputs such as civil GPS that can be easily spoofed. We have
utilized existing software-defined radio (SDR) tools to achieve this
on real drones [17]. Furthermore, assume existing methods [18],
[19], [20] can help identify the model of an invading drone, we
can further identify its state estimation and navigation algorithms
based on previous analysis. As these common algorithms are
designed mainly for better control without considering security
concerns, they are vulnerable to attacks as demonstrated in this
paper. After carefully analyzing them, the guidance inputs of a
drone are identified as the attack surface in the proposed solution.
This paper then focuses on carefully constructing spoofed GPS
signals to exploit both the limitations of state estimation and
navigation algorithms for manipulating a drone’s position. Such
a holistic solution integrates the vulnerabilities at three levels
together and achieves accurate quantitative position control.

In summary, the main contributions of this paper are as

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

follows: (1) The DPM attack with a theoretical model is developed
to achieve accurate manipulation of a drone’s position, while
existing methods are only able to disrupt a drone’s mission but
did not provide a clear model and cannot achieve quantitative
control. (2) Three fundamental components in the control loop
are explored together, while existing methods mostly focus on one
or two. (3) The proposed attack is validated on ArduPilot, arguably
the most popular open-source flight control system (compared to
Paparazzi [21] and OpenPilot/LibrePilot [22]), to show its effec-
tiveness in practical settings; while existing methods are mostly
evaluated numerically, not on real systems. (4) The proposed
attack does not require to directly compromise the software or
hardware of a drone as many existing methods requires [8], [15],
[16].

While the initial idea was discussed in [11], now a complete
framework with in-depth analysis and detailed evaluation on prac-
tical settings are developed in this paper. To validate the proposed
ideas, the proposed attacks are evaluated on the Software-in-the-
loop (SITL) module of a stable release of ArduCopter [23], which
runs the same code as a firmware on a real drone. The results
show that the proposed attack is able to accurately lead a drone to
a redirected destination. Furthermore, the feasible range of such
redirected destination is analyzed to show where the proposed
attack can redirect a drone away from its target.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem statement, common drone control
algorithms, and the attack methods. Then the proposed basic
DPM (bDPM) attack and the practical measurement-based DPM
(mDPM) attack are presented in Section 3 and Section 4, respec-
tively. The system instrumentation and performance evaluation are
discussed in Section 5. Related work is presented in Section 6, and
Section 7 concludes this paper and also points out future research
directions.

2 PROBLEM STATEMENT AND BACKGROUND
2.1 Problem Statement

As shown in Figure 1, a restricted area is set up around a
critical asset to protect it from drone invasions. When an invading
drone flies towards the critical asset, a preferred defense scheme
is to lead it away from the asset to a desired location for safe
handling, e.g., a blast containment chamber. Assume existing
approaches (via radar, radio or traffic profiling, or image pro-
cessing [18], [19], [20]) help the defense recognize the invading
drone; as a result, its sensors (e.g., GPS receivers) and firmware
(including its state estimation and navigation algorithms) can also
be identified. Because the defense can obtain the same model
of drone and analyze it ahead of time, it is able to utilize the
weaknesses of the drone’s GPS receiver, state estimation, and
navigation algorithms to manipulate the drone’s position states
and flight paths towards a desired location, by carefully spoofing
the GPS signals. As a result, the defense does not require to
compromise the drone’s software or hardware, as some existing
methods requires.

To address this challenge, in this paper we carefully explore
the fundamental components of the control loop (i.e., guidance
sensing, state estimation, and navigation control) together to
achieve quantitative control. In particular, the following prob-
lems need to be solved: (1) First, the defense needs to make a
drone locking on the spoofed GPS signals. We rely on existing
methods to achieve this, e.g., using the covert attack proposed

Restricted Area

Invading| N
Drone | S

Redirected
destination

Critical Assets

Fig. 1. Restricted Area around a critical asset.

in [4]. Although this is not the focus of this paper, we have
successfully made a drone’s GPS receiver locking on the spoofed
signals transmitted with a BladeRF SDR card [17]. In addition,
on the ArduPilot SITL platform, we have also discovered different
methods to spoof GPS signals in simulation, in order to understand
how to spoof GPS signals without triggering detection schemes.
(2) Second, we need to determine how to construct the spoofed
GPS position inputs, e.g., based on the drone’s original flight
path and a redirected destination in a given attack duration (or
dynamically adjusting the injections based on measurements). This
is the focus of this paper as presented in the following.

The process of constructing spoofed GPS signals can be fur-
ther divided into two steps: First, the shifted distance of the drone’s
position in each GPS cycle is determined in order to make the
navigation algorithm to adjust its flight path towards the redirected
destination. Second, the spoofed GPS inputs are carefully con-
structed based on the shifted distance in each GPS cycle (normally
0.1 second). The challenge is that, because the maximum spoofing
distance in a cycle is limited by a bad data detection threshold
(see Section 2.2) and the physical limitation of a GPS receiver,
the spoofing inputs have to be carefully constructed within proper
ranges in order to shift the drone position inputs as much as we
can, while not triggering GPS-failure alarms. Furthermore, a drone
cannot be arbitrarily redirected to any destination due to various
constraints, such as the maximum redirection distance per cycle
and the attack duration. In Sections 3 and 4, the detailed attack
procedures and their feasible ranges are presented.

2.2 Drone Control Background

The related drone control background and the basic ideas of
addressing the above research problems are introduced in this
subsection.

Without loss of generality, assume that an invading drone is
on autopilot to simplify the proposed model. The autopilot is
often achieved in four steps as in many feedback-control systems.
Starting with sensor measurements, a drone then estimates related
system states and then passes the states to its navigation algo-
rithms to determine how to adjust actuators for real-time control.
Such a loop is usually completed in a fixed period, e.g., the default
state update on ArduPilot is set to every 10 ms, triggered by
the data from Inertial-Measurement-Unit (IMU) sensors. In the

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

following, the most popular state estimation algorithm and the
common adjustment in navigation control are introduced.

Common State Estimation Algorithms. A drone usually
uses state estimation methods to process sensor readings from
accelerometers, gyroscopes, magnetometers, GPS signals, and
barometers. Extended Kalman Filters (EKF) and its variants are
the most popular state estimation methods [24], [25], [26], [27].
ArduPilot EKF system estimates 24 states for drone control. This
paper focuses on the position and velocity estimation because the
goal is to manipulate drone positions to affect flight paths. Readers
interested in the details of these EKF algorithms can refer to [9].

Several common assumptions are adopted in this paper. First,
assume that the defense is able to determine the parameters used
in the control system, e.g., the bad-data detection threshold 7 (see
below). Many parameters on a drone are usually configured to
default values based on experiences and its physical properties
(e.g., weight or acceleration limit), which can be easily learned
by examining the open-source code or reverse-engineering the
firmware of the same model. In addition, this paper considers
that the proposed attack is performed when the system is in a
steady state, such that it is feasible to draw concrete conclusions
to illustrate the attack effects. This is a common assumption in
examining EKF-based control systems, and usually achieved in
real systems [25], [28], [29].

Bad Data Detection. The ArduPilot EKF uses a common
anomaly detection algorithm to determine if a sensor reading is
acceptable, by checking if the following condition is true:

)T, ey

where 7 is a pre-set threshold, inny and inng are the innovations
(i.e., differences) between position predictions and position mea-

surements in the North and East directions, varﬁ(,"’ and varfE”" are

the variances of innp and inng, respectively. The values of varj\',’"
and var'" are obtained based on the covariance matrix of the EKF
and the GPS position accuracy information; they are regarded as
constants in a steady-state system, based on our observations and
many papers such as [4], [25], [28], [29], [30], [31], [32].

Navigation Adjustment. The navigation of ArduPilot uses
a linear-track-based algorithm, which is the most popular path-
following algorithm on drones, more accurate than others [33].
Because a drone may drift away slightly from its scheduled flight
track, due to various factors (e.g., wind disturbances), it usually
runs a path-following algorithm to trace the track, as shown in
Figure 2. Here, as the drone’s track is from the bottom left to the
upper right, the algorithm should keep the drone close to the track,
i.e., its position states (estimated via EKF) should be close to the
track. In order to achieve this, the navigation frequently adjusts
the drone’s movements to make it close to the track.

In each time interval, the navigation calculates a position
called track_desired for the next interval based on its cur-
rent position estimation and its scheduled velocity. Assume its
position estimation is PEXF (¢t — 1) in the interval (+ — 1). In
interval ¢, the navigation finds itself at the position PEKF (1),
drifting away from the track, and it then performs the follow-
ing adjustment. First, the distance between PEKF(¢) and its
projection on the track PLEI(r) is defined as a track_error.
Next, the algorithm determines a track_leash_length based on
its velocity, acceleration, and current position, and uses it to
choose how the drone should fly back to the original track as
follows. The algorithm first identifies a position on the track
called track_desired_max (which is the farthest distance along

inny? +inng? < (vary" +varg"

Flight track

“\track_leash_length
»

PN

Ve \\\
track_error
track_desired ——

PEKF (1-1)

Fig. 2. Adjustment in path-following.

the track that the leash will allow), and then compares it with
track_desired position to decide which position the drone should
fly back to. In particular, if track_leash_length < track_error,
then track_desired_max is the projection of the current position
PEKF (1) on the track; otherwise, track_desired_max is the
position on the track that has the distance of track_leash_length
from the current position PEKF(f), as shown in the fig-
ure. Furthermore, if track_desired_max is closer to the des-
tination than track_desired, as in this example, the drone
will fly to track_desired; otherwise, the drone will fly to
track_desired_max. The proposed attack exploits this adjust-
ment to achieve drone position manipulation.

2.3 Attack Methods: Smart GPS Spoofing

After an invading drone enters the restricted zone, GPS spoof-
ing is used to compromise its GPS position and velocity readings,
to feed carefully crafted inputs to the drone state estimation
algorithms in order to mislead its navigation control. This paper
focuses on manipulating the drone position in a 2D plane of
longitude and latitude!. In ArduPilot simulations, we pass the
GPS inputs with MAVLink GPS_input messages [34] to emulate
a covert spoofing, such that the proposed attacks on the navigation
control can be evaluated, which are the focus of this paper.

In addition, we have also verified the feasibility of practical
GPS spoofing on real drones. Using existing SDR tools, we have
conducted GPS spoofing on a SkyViper GPS drone for testing,
whose firmware is a variant of ArduPilot. In the experiment, the
civil GPS signals are overpowered by the shifted GPS signals
transmitted via a BladeRF A9 card from a moderate distance [17].
On a warm boot, the drone usually locks on the spoofed GPS
signals after a short delay. This is verified by reading the GPS raw
inputs from the drone via its MAVLink interface [34].

3 Basic DPM (BDPM) ATTACK

In this section, we introduce the basic Drone Position Ma-
nipulation (bDPM) attack that directly uses the EKF estimated
position states of a drone to craft spoofed GPS positions. Although
obtaining the EKF states is impractical on a real system, this

IBecause the altitude control is more critical than longitude and latitude,
a drone usually uses both GPS and barometer for altitude control. To the
best of our knowledge, we did not find a practical method to remotely attack
barometers accurately for spoofing attacks. So, the attack on altitude is delayed
for future investigation.

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

method helps us better understand the proposed attack on a
complicated control system in order to build a baseline analysis
model of the attack. To further develop a practical solution, in
the next section, we will introduce the measurement-based Drone
Position Manipulation (mDPM) attack that uses measured drone
positions to craft spoofed GPS position inputs. In the following,
we present the bDPM attack and then show its capability by
formally analyzing where a drone can be redirected from its target.

3.1 Theoretical Foundation of bDPM

Notations. First, the related notations are defined as shown in
Table 1. Because the proposed attack focuses on the drone position
in a horizontal 2D plane, the drone’s real velocity is considered as
a 2D vector V" = (V% Vi), with a sub-component to the North,
vy, meter/second (m/s), and a sub-component to the East, Vg m/s;
e.g., when a drone moves at 4 m/s to the Northeast, a velocity
vector V" as (2.81, 2.81) m/s is observed. In bDPM, for each GPS
cycle, the spoofed GPS position inputs are built by first obtaining
the estimated EKF position state and then adding a shift to it
with an injection vector of I = (In,Ig) m/s, which has a sub-
component to the North /5 and a sub-component to the East /.
For example, when applying I = (0,10) m/s to the drone flying
to the Northeast with V", i.e., injecting O m/s to the GPS position
input in the North direction and 10 m/s to the GPS position input
in the East, it is observed that the drone’s real velocity V" is
quickly stabilized at (2.81, 2.37) m/s. In other words, the drone
drifts away at a stable velocity Vgri , at (0, -0.44) m/s, i.e., the
drone drifts to the West at 0.44 m/s as the result of the injections.
With these notations, we introduce the theoretical foundation of
bDPM, consisting of three important propositions.

Proposition 1. In a bDPM attack, the drift velocity V) . f due
to injections is proportional to injection rate I with an attack
coefficient C“ defined as follows:

Cc = (Cu ,ng) = (Vg”‘f;,N/IN’Vgr,-f[’E/IE) 2
for Iy #0and Ig # 0. If Iy (or Ig) == 0, Cy, (or Cg) = 0.

Proposition 2. For attacks on the same drone in the same
environment, C¢ keeps unchanged for any injection size in any
direction that can pass the bad data detection scheme.

Justifications. Proposition 1 and Proposition 2 are corollaries
of the results in our previous work [6], [7], [9]. In the bDPM, the
injection rate / is chosen as a fixed value in each GPS injection,
which results in nearly fixed innovations in each EKF position
estimation cycle, denoted as A (because I ~ A). Since the Kalman

TABLE 1
Notations used in the bDPM Attack.
A notation may have a subscript N or E representing its North or East

component.
Ky Kalman gain
ce Attack coefficient
VEKF Drone velocity estimation
vr Real drone velocity when under attack
Vi 1t Drone drift velocity
1(t) Position injection rate at interval t
PEKF (1) || Drone position estimation at interval ¢
PCGPS(1) || GPS position input at interval

INJECTION RATE (m/s)
0 5 10 15 20 25 30 35 40 45

o

s
9

=
IS

=4
Y

=)
w0

-1.2

14

DRIFT VELOCITY (m/s)

-1.6

-1.8

2

Fig. 3. Relationship between the drift velocity and the injection rate. As
the injection rate increases, the drift velocity increases proportionally,
and the attack coefficient C“ stays roughly constant.

gain K usually quickly converges to a constant in a steady

state, the deviation of position estimation Vfr’fg = Kj - A also

converges to a constant. Because the deviation will be corrected
by the navigation algorithm in each interval, V) . = —Vi’ff";
also converges to a constant. In addition, C* ~ —Kj, which can
be regarded as the same constant for attacks with the injection
sizes that can pass the bad data detection on the same drone in the
same environment. C¢ is an observed system property that helps us
formulate the attack model for identifying the relationship between
the deviation of a drone’s physical position and the injection on

the GPS inputs.

These propositions have been validated with ArduPilot SITL
simulations. Figure 3 shows the relationship between the injection
rate (x-axis) and the observed drift velocity during bDPM attacks
(y-axis). With the injection rate increasing from 4 m/s to 40 m/s,
the drift velocity increases proportionally to the injection rate with
coefficient C“. Note that the sign of drift velocity only indicates
the direction of the drift. Furthermore, Propositions 1 and 2 have
been validated for injections in any direction in the 2D plane, when
a proper constant injection rate that can pass the bad data detection
is applied in the attack: North-only, East-only, West-only, South-
only, and other combinations. In addition, C% and Cy, are observed
as about —0.0455 and —0.0491 in all of these simulations.

Proposition 3. (Decomposition Proposition) When we apply a
proper 2D injection rate I = (Iy,Ig) that can pass the bad
data detection, the effect is equivalent to the combined effects
of attacking only in the North direction with I1 = (Iy,0) and
attacking only in the East direction with I = (0, Ig).

Proposition 3 holds because the drone state estimation algo-
rithms usually decompose the 3D positions and velocities into
North, East, and Down sub-components [31]. (This is a common
practice such that critical state estimations such as altitude are
obtained first for fast responses.) Based on Propositions 2 and 3,
the analysis of the attack result under an injection rate / in any
direction can be divided in the 2D plane, by decomposing the
injection rate I = (Iy,Ig) into Iy = (Iy,0) and I, = (0, IE).
Using the measured attack coefficients Cg and Cy,, the drift
velocities of the drone in the North and East directions can be
determined as: V) . N = Iy - Cy, and Vgrift,E = Ig - Cg; then
the attack result can be obtained by combining the drift velocities
in the two directions.

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

3.2 bDPM Attack

The main steps of bDPM attack are presented in Algorithm 1.
For ease of illustration, a single track is considered here. Given
the flight track of a drone from origin (Oy,OFg) to destination
(Dn,Dg), a redirected destination R = (Ry, Rg), and drone
position states, the algorithm builds a position injection for each
GPS cycle in order to lead the drone to the redirected destina-
tion R. In particular, given R, in Line 3, a redirection vector
DR = (DRy, DRE) is defined as the vector difference between
the redirected destination (Ry, Rg) and the original destination
(Dn,DE). In Line 4, the total number of n cycles is determined
to achieve the attack goal DR. The “while” loop from Line 5
to Line 12 applies the injections. In Line 6, if more injections
are still needed, an injection is added by Line 7 and Line 8:
distribute the required injection into each cycle, i.e., in cycle ¢,
an injection I(t) = (DRn/(n - Cy),DRg/(n - Cg)) is applied
on the current position state PEXF(¢) to build its position input
PCPS(1),0 <t < n. As aresult, the navigation algorithm observes
that the drone had drifted away from the track, and it will make
an adjustment to “move” the drone back to the track, leading to its
real position actually moves away from the track. The maximum
injection rate /™% = (I, I}“~) per cycle can be determined
based on the parameters associated with the bad-data detector as
illustrated in [9] in theory; it also can be measured in practice.
The attack coefficient C* = (C§,, Cg) is measured in advance. In
Line 9 and Line 10, as sufficient injections have been added, no
extra injections are added and the state estimates are passed as the
GPS inputs. (So, the drone will keep flying in the current heading
without further adjustment.) In Line 11, the GPS inputs are sent to
the drone; in Line 12, the procedure moves on to the next cycle. A
video demonstration of a bDPM attack on SITL is at Youtube [35].

An example of bDPM attack is illustrated in Figure 4 to show
the redirection of a drone to a specific destination in a 2D plane. In
this example, 5 injection cycles are needed to achieve the required
redirection; after 5 cycles, no injections are added and the drone
flies towards the redirected destination in a path parallel to the
original track.

3.3 Feasible Range of Redirected Destination

Obviously, the above attack cannot redirect a drone to an
arbitrary destination due to many factors (such as the attack
duration and the maximum redirection per cycle). Therefore,
a natural question is where a drone can be redirected by the
bDPM attack. In the following, an analysis of a feasible range
of redirected destination for a given target is presented to show

Pr(t) :drone’s real position at t

P(t) :drone’s position estimation at t

P’(t) :drone’s position input at t Redirected

=P : position estimation deviation in a cycle Destination R

== : Scheduled path in a cycle

== :adjustment in a cycle . P’LS) P'L6)

: drone’s real path in a cycle P'(4) /
P’L?:) /
P'&Z) Redirectién Vector DR
P1(1) /
P'(0) =P(0) @ Original Track /

SourceQ—P(1) P2) P@3) P4) PE) P Original

o‘f Ofﬁ Ofﬁ Ofﬁ Olf Destination D

P(0) P(1) P2 P(B) P(4)

Fig. 4. lllustration of the bDPM attack.

Algorithm 1: bDPM Attack Algorithm.

input: Original track from (Oy, Og) to (Dn, DEg);
Redirected destination (Ry, Rg);
Drone position state estimation PEXF (¢).

1 Initialization: {I(#)} «— 0, t «— 0; ny = the remaining
number of cycles on the original track;

2 DR = (DRN, DRE) — (RN - DN’ Rg - DE);

3 ne— max([DRy /(I3 - C{)1. [DRe /(134 - Ca)):
find the total no. of injection cycles;

4 while ¢t < ng do

5 if < n then

6 I(t) «— (DRn/(n-Cy),DRg/(n - Cg));
injecting until ¢ > n;

7 PGPS (1) = I(1) + PEKF (1),
build fake position inputs;

8 else

9 PGPS(Z‘) - PEKF (t);

fly towards R, not add injection;

10 send PYPS(¢) as GPS position inputs;
11 te—1t+1;

the overall capability of bDPM, e.g., the range can be used to test
if a redirected destination is reachable.

Because (vari™ +vari™) - T can be regarded as a constant
in a steady state, and inny and inng are roughly equal to I and
IE, they can be plugged into (1), which results in (3):

Bo+12 =2 (3)

Then, based on (2), the following result is obtained:

(Vz;rifz,N/CIC\lf)Z + (Vgrift,E/Cg)z =4, “

or

(Vzgrift,N)z + (Vc?rift,E/(ClaE/CK/))z =1-(CH% 5)

Equation 5 shows the feasible range of the redirected des-
tination in one attack cycle is an ellipse with its center at the
original destination and eccentricity /1 - (Cg/C%)? (close to 0 in
practice). After n attack cycles, the feasible range of the redirected
destination will be

((Rx = Dx)/C%)* + ((Ry = Dy)/CE)* =n* - A, (©6)

The accuracy and capability of bDPM are evaluated in Sec-
tion 5.

4 PRACTICAL MEASUREMENT-BASED DPM

(MDPM)

Although the bDPM attack is useful to develop the previous
analysis model, it is impractical because it is very hard to obtain
the EKF position estimation from a drone not under the defense’s
control. Therefore, in this section, the mDPM attack is developed,
which builds the attack position inputs based on measured drone
positions, instead of EKF states. In practice, many methods are
available to measure the position and velocity of a drone from a

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

distance [4], e.g., using radar, radio signal triangulation, or other
localization methods. In a restricted area, it is feasible to deploy
measurement tools to obtain drone positions and velocities, and
use such measurements to build spoofed GPS inputs. In this paper,
the measured drone positions and velocities are obtained from the
SITL simulator for tests.

4.1 Identifying a Practical Injection Method

First, let us show why the previous injection method does
not work well in the new practical setting. As shown in Fig. 5,
the thick blue line in the middle is the drone’s original track.
When the drone’s real position is at P (¢), the drone is fed with
a compromised position input by applying a position injection to
the East (indicated by the blue curly brace), such that the autopilot
system believes that the drone deviates from the track to the East
at POPS(1). Consequently, the control algorithm will compensate
the difference by moving the drone to the West (shown as the
red arrow), which makes the drone’s real position move further
to the West at P" (¢ + 1) in the next cycle. However, if the same
injection size (indicating by the blue curly brace) is used to build
the next position input: POPS(¢ + 1) is equal to the real position
P’ (¢t +1) plus the constant injection as in the bDPM, POPS (¢ +1)
will also move to the West, which makes it closer to the drone’s
position estimation PEXF (¢ + 1) in this cycle. In the next cycle,
the smaller difference between PCPS(r + 1) and PEXF(r + 1)
leads to a shorter West drift of the drone’s real position; and the
following GPS position inputs crafted with the same method will
continue to move towards the drone EKF position estimation, as
the drone’s real position moves to the West. After some n cycles,
the difference between the crafted GPS position input P¢S (¢ +n)
and the drone position estimation PEXF (¢ + n) will be close to 0.
After this, the drone’s physical position will stop drifting to the
West, and the drone will move on a track parallel to the original
track at a fixed distance (equal to the injection size). The above
process has been also validated in the simulation.

The analysis of this process is presented in the following.
Let us denote the difference between the crafted GPS position
input and the drone position estimation (i.e., the innovation in
drone state estimation) at cycle ¢ as A(r) = (An (1), Ag(1)); let
us denote the constant injection to the East on the position inputs
as I = (0,1g). In time cycle 0, A(0) = (0, Ig), since the real
position and the drone position estimation are the same at the
beginning. In cycle 1, because the drone’s real position moves
by (0,-Kx gAr(0)) due to the innovation (where Ky g is the
steady-state Kalman gain in the East), the position input will also
move by (0, =Ky e Ag(0)), then Ag (1) = Ag(0) — Ki,p - Ap(0) =
(1 = Kk.g) - Ag(0). Similarly, Ap(2) = (1 - Kx.g) - Ae(1), ...
then, we have Ag(r) = (1 — Ky g)" - Ig. Furthermore, because
0 < K,e < 1, the following result is obtained:

.
e Constant Injection
al |

.
-
.
z -

7 . .

PEC(t1) L oPTS(t+1) L7

f—
R T

Fig. 5. Crafting GPS position inputs based on measured drone positions
with constant injection sizes.

thm AE(I) = thm(l - Kk’E)I -Igp — 0. @)

This analysis shows that the crafted GPS position inputs and
the drone EKF position estimation will eventually converge. Since
the difference between the GPS position input and the drone
real position is the constant injection, the difference between the
drone’s real position and the drone EKF position estimation will
also stabilize.

New Attack Strategy. The above analysis shows that the
previous injection method will have limited effects, because the
maximum drift distance is limited by the injection size. However,
as the injection size must be smaller than a threshold determined
by the bad data detector, the drift distance is also limited by the
threshold. Therefore, a different attack strategy must be identified
in mDPM to achieve larger redirection distances.

With careful analysis and testing, we propose to increase the
injection rate linearly over time. In particular, assume the injection
rate applied to the GPS position input is: 7 = IO+ X/ - ¢, i.e.,

I=(In,Ig) = (IS + X5 -6, 1% + XL - 1) ®)

where the base injection rate /° is a constant determined based on
the drift velocity to be induced on the drone, X I is the increase
of injection in each cycle, and 7 indicates the 7-th attack cycle.
How to determine /° is presented in Section 4.2. Under this attack
strategy, the following propositions are obtained:

Proposition 4. In an mDPM attack, the drift velocity V), . 1t due
to injections that can pass the bad data detection is proportional to
the injection increase rate X! with an attack coefficient C¢ defined
as follows:

¢ = (éa,ég) = (Vgrifz,N/XII\”Vgrift,E/Xé) €))
for X!, # 0 and XL # 0;if X}, =0, C¢ =0;if XL =0, C¢ = 0.

Proposition 5. For attacks on the same drone in the same envi-
ronment, attack coefficient C* keeps unchanged for any injection
size that can pass the bad data detection in any direction.

Proposition 6. When applying an injection rate [= (I, Ig), the
effect is equivalent to the combined effects of attacking only in the
North direction with I; = (Ix,0) and attacking only in the East
direction with I, = (0, Ig), respectively.

The justifications of Propositions 4, 5, and 6 are similar to
Propositions 1, 2, and 3 because they both exploit the same
adjustment of navigation algorithm. In the following, the unique
requirement of mDPM is further explored and more interesting
results are obtained on how the injection size should be increased.

Although there are many potential methods to build the com-
promised position inputs, most of them will not be effective due
to the specific setting of drone control and bad-data detection.
For example, simply increasing the injection rate may not work in
mDPM. (For simplicity, the subscripts indicating the directions are
omitted in the following paragraph. The following analysis works
for any direction.) In particular, when I(¢+1) —1(¢) monotonically
increases, }Lr?o(l(t +1) - I(t)) — oo Vrd”f’ will also increase
over time. When [(7) increases but /(¢ + 1) — I(¢) monotonically
decreases, and th_)nolo (I(t+1) — I(r)) — 0, the innovation will
converge to 0, which results in the similar results as the constant
injection case. Therefore, the following result is discovered.

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

Proposition 7. To successfully perform the mDPM attack, the
injection rate should increase at least linearly, and the increase
amount per cycle should have a finite upper bound.

The proof of Proposition 7 is as follows. Let us denote the
innovation, i.e., the difference between the GPS input and the EKF
position estimation at cycle ¢ as A(t), and the position injection on
the GPS input at cycle ¢ as I(¢). Then, in cycle ¢ + 1, with Kalman
gain Ky, the following relation is obtained:

A+1)=A@) - A) - K +I(t+1) = I(2), (10)

Equation (10) is based on the following facts. First, the change
of A in cycle (¢ + 1) is determined as A(z + 1) — A(z). Although
such a change cannot be directly obtained, it can be decomposed
into two components: (a) the change of the difference between the
real position of a drone and its estimated position; (b) the change
of the difference between the GPS position input and the drone’s
real position. The first component is equal to A(¢) - K because the
real position moves away from the position estimation by A(¢)- Kk,
due to the innovation A(7) at the last cycle. The second component
is I(t + 1) — I(¢) due to the change of the injection. Adding them
up, we have the difference between A(z+1) and A(¢), which leads
to (10).

Based on (10), the following three types of injection methods
can be analzyed:

1) If I1(¢) increases linearly, i.e., () = I° + X! -¢, and I(r +
1) —I(r) = X!. Then, A(r +1) = A(t) = A(t) - K + X' If
—A(1) - K + X' > 0, A(r + 1) will continue increasing until
—A(1) - Ki + X! = 0. Otherwise, if —A(¢) - Kx + X! < 0,
A(t + 1) will continue decreasing until —A(z) - Kz + X! = 0.
In either case, A(f + 1) will be finally equal to A(z). Then,
A(t + 1) will keep unchanged afterwards. Because A(z + 1)
keeps unchanged but the injection increases linearly, the real
drone position moves away from the GPS position input with
a constant V’,

drift’
2) If (I(t +1) — I(¢)) monotonically decreases, and lim (/(r +

1) — I(t)) — 0, let us denote I(t + 1) — I(z) as’Z?} +1).
Therefore,

At+1) = A(f) - (1 - Kx) + At +1).

Now given a time 7 (T » 0), another series is defined as:

A(t) t<T
B(t)=yA(T-1)- (1 -K)+A(T) t=T
B(t-1)-(1-Kp)+A(T) t>T

where the K is the upper bound of K; fort > T, A(T) =
I(T +1) — I(T), then for time interval (¢ — 1) to ¢, then
B(1) = A(T)/Ki = (1 = Ky) - (B(t = 1) = A(T) /Kx)

and after (¢ — T + 1) time intervals,

B(t) = A(T)/Kx = (1 - Kp)"™™*' - (B(T - 1) — A(T)/Kx).

Since 0 < K; < 1, then
lim B(1) — A(T)/Kx > 0,

and

lim B(1) — A(T)/Kx.

Because

Tlim A(T) — 0,
then

tlim B(1) — 0.

As A(t) < B(t), and A(¢) > 0,
lim A(t) — 0.

3) If (I1(t+1)—1I(r)) monotonically increases, and hm (I(t+1) -
I1(1)) — +oo, from (10), A(t+1) > I(z+1) — I(z) Therefore
thrn A(t) — +oo. In practice, the system will be alerted by
the bad data detector after the innovation is over a threshold,
which leads to the attack failure.

Based on the above analysis, we conclude that, to successfully
perform the attack, the injection rate should increase at least
linearly, and the increase step per cycle should have a finite upper
bound.

In summary, we need to carefully determine a proper increas-
ing injection to move the drone away from its original track and
not being detected. Although more complicated injection methods
could be developed, we must carefully monitor the innovations
caused by the injections, which is another problem to be explored
in future investigation.

4.2 mDPM Attack

An mDPM attack has the similar procedure as the bDPM
attack, but with the spoofed GPS position inputs constructed based
on measured drone positions. The main steps of mDPM are shown
in Algorithm 2. Based on the above analysis, the spoofed GPS

Algorithm 2: mDPM Attack Algorithm.

input: Original destination (Dy, DEg);
Redirected destination (Ry, Rg);
Drone position measurements P (¢).

1 Initialization: {I(#)} «— 0,1 <« O;

2 np = the remaining number of cycles on the original track;
3 DR = (DRN,DRE) — (RN DN,RE DE)'

4 ne— max([DRy[(Ig** - Cy) 1, [DRe /(T - CE)1);
5 while ¢t < ng do

6 if ¢+ < n then

7 I(1) «—

(DRN/(n-C%) - t+1%,DRe/(n-C&) -t +1%);
injecting untll t>n;

8 POPS(t) = I(t) + P™(2);

build fake position inputs;

9 else
10 POPS(t) = I(n—1) + P"(1);

fly towards to R, injection size not increasing any more;

1 | send P9PS(z) as position input;
12 te—1t+1;

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

position inputs are constructed with a linearly-increased injection
rate for mDPM attacks in Line 7 and Line 8. Assume that the flight
track of a drone is known in advance, the shifted GPS positions
are built based on the drone’s original destination (Dy,DEg),
a redirected destination (Ry,REg), and the maximum injection
rate (which is determined by the bad-data detector and specific
parameters of a drone [9] and can also be measured). The vector
difference between the redirected destination and the original
destination is defined as DR in Line 3. In Line 4, the total number
of attack cycles n is determined for achieving this redirection
vector. Iy = (19, 19 I;.) is determined as 110\/ = Vgn.f,!N/C,‘(, and I(,)E =
V:,” tE/CE, where (vr, arifr, N,V’rift,E) = (DRy/n,DREg/n) is
the drlft velocity to be achieved; and the attack coefficient C¢ is
defined in Proposition 1. Under this setting of Iy, the innovation
between the GPS input and EKF position estimation in the initial
attack cycle will stabilize at this value and result in the drift
velocity (V7] drift.N° Vi 1, E) immediately. In simulations, we find
that even if Iy is set to different values (e.g., 0), the innovation will
still converge to the previous setting values [/ Vi 11, ~/CR
and 10 =V, F1E /C¢ very quickly. Line 5 to L1ne 12 are used
to 1mplement the mDPM attack. When injections are applied by
Line 6 to Line 8 (in each attack cycle ¢, 0 < ¢t < n,) an injection
I(t) = (DRN/(n-C$)-t+1%, DRg /(n-C&)-1+1%) is added to the
measured position. Attack coefficient C¢ = (C%, ég) is defined
in Proposition 4 and can be measured in advance. Line 9 to Line
10 is the case that sufficient injections have been added; so, after
that, the injection size is not changed. The GPS position input is
sent to the drone in Line 11, and the algorithm goes to the next
cycle in Line 12.

4.3 Range of Compromised Destination under mDPM
attacks

To show the capability of mDPM attack, the feasible range of
redirected destinations under the mDPM attack is further analyzed
for determining if the mDPM attack can achieve a given redirected
destination. According to (3), the feasible range of redirected
destination under one cycle of mDPM attack is as follows:

Varife, N/CK/)Z + Varife, £/CE)? = an
After n injection cycles, the feasible range of the redirected
destination will be

((Ry = Dx)/C&)* + ((Ry = Dy)/CEY* =n*- 2, (12)

The accuracy and capability of mDPM are evaluated in Sec-
tion 5.

5 SYSTEM INSTRUMENTATION AND PERFOR-
MANCE EVALUATION

As the goal is to develop a practical solution, different from
existing methods, this paper focused on a broadly-deployed open-
source system ArduPilot. In the following, the system instru-
mentation is introduced, which not only helps us understand the
critical issues in the system but also allows us to evaluate different
practical attacks.

5.1 System Instrumentation

We have conducted extensive analysis and testing of ArduPilot
Copter code to understand the state estimation and navigation

8

algorithms [6], [7], [9], [11], [36]. The SITL module runs the
same code as a real firmware to simulate a flight with a large set
of common parameters. Although ArduPilot has a logging scheme
that provides many states for debugging, this investigation need
to look into some specific states, which are not supported by the
existing logging facility. In order to better understand system dy-
namics and capture real-time states, we have enhanced the system
log facility by instrumenting the source code of drone control
algorithms (including the key control loops, EKF state estimation
algorithms, and navigation algorithms), such that related system
states are captured into its Dataflash logs for analysis. As a result,
the testing system can observe and capture all key variables for
control algorithms in each cycle, including all sensor readings,
state estimation variables, control parameters, and system states.
Furthermore, at a higher level, the MAVLink interface of a drone
is used to obtain high-level states such as the simulated position
of a drone (i.e., its “physical position” in the simulated world) and
the corresponding position estimation for us to build spoofed GPS
inputs.

Similar to a real drone, a SITL drone can take different types of
GPS input formats, e.g., popular UBLOX and NMEA formats. In
its default setting, it simply uses the simulated (physical) position
of a drone as its GPS position input. We performed a covert
GPS spoofing by making MAVLink messages as its GPS input,
in the same way as it receives GPS messages from a GPS-capable
device. Then, an attack testing program is built with the DroneKit
Developer tools (https://dronekit-python.readthedocs.io/en/latest/)
to obtain real-time drone states, craft GPS_INPUT messages, and
send them to the drone via MAVProxy, same as a common Ground
Control Station (e.g., QGroundControl) communicates with a real
drone. A callback listener is installed to receive position state
updates in the attack program.

As shown in the demonstration video of a bDPM attack [35],
with the source location as (0, 0), the drone’s destination is set to
the waypoint of (500, 500) meters in the Northeast with a velocity
of 4 m/s. After 20 seconds into the mission when the system
entered a steady state, the GPS spoofing is started with an injection
of 4.07 meter/per GPS cycle to the North. (The simulation usually
takes less than 20 seconds for the drone to enter a steady state.)
As shown in Figure 6.(b), the drone state (shown as the top drone
icon) is still on its original track to the Northeast; but its real
position (shown as the bottom drone icon) is shifted down to
the South, below its original track. The drone continued with its
mission, without noticing its real position is gradually shifted away
from its original track. When the drone position state is close to
the original destination, the real drone position is about 100 meters
South to the original destination, as shown in Figure 6.(c).

With significant efforts in the past years, we built this in-depth
instrumentation platform for examining the control algorithms and
the proposed attacks in great detail, which also facilitated the
evaluation presented in the following.

5.2 Evaluation of basic DPM (bDPM)
5.2.1 Simulation Settings

In each simulation, to show the pure attack effect, the attack
is not launched until the system enters a steady state, after the
drone reaches its takeoff altitude and begin to fly to a preset
waypoint. The common settings of drone parameters are used
in the evaluation, e.g., a GPS update cycle is set to 0.1 second;
the horizontal position accuracy of GPS input is 0.1 meter; the

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

-
LInewar I Hawall ot Hanon

(a) Before attack.

Fig. 6. Snapshots in the bDPM Demo on ArduPilot SITL.

velocity accuracy of GPS input is 0.1 meter/second; a default
drone starting velocity is 4 m/s. The simulations are repeated many
times to measure the coefficients for the basic model presented in
Section 3: for example, linear regression is used to find the attack
coefficients CIY = —0.0491, and CE = -0.0455 for this setting.

5.2.2 Accuracy of bDPM

As the goal is to mislead a drone to a redirected destination, the
accuracy of bDPM is first evaluated, i.e., identifying the difference
between the expected redirected destination and the actual final
destination. For easy illustration, the injection direction is set
to the East, and the total attack duration is set to 50 seconds.
Consider the home position as the original point (0, 0), the original
destination was set to (500, 500) meters in the Northeast in a local
frame. Note that various destinations in different directions or
distances have been tested, and the observed attack effects are
similar. So, we use the above example to show the basic effects
here. To evaluate the accuracy under different attack sizes, the size
of DR (the vector difference between the redirected destination
(R, Ry) and the original destination (D, D)) is varied from 20
to 100 meters. We consider a redirection size of 100 meters is
sufficiently large to show the attack effect.

Table 2 shows the attack error rates under different injection
rates. The 1st row shows the size of intended redirection vector
from 20 to 100 meters. The 2nd row is the corresponding injec-
tion size derived based on the size of redirection vector using
Algorithm I. The 3rd row is the size of the actual redirection
vector obtained from simulations. The 4th row shows that the
bDPM attack achieved very small errors (under 1.5%) for different
redirection sizes, i.e., it can accurately redirect a drone to the
intended destination.

TABLE 2
bDPM Attack Error Under Different Injection Rates

Expected DR Size (m) 20 40 60 80 100

Injection (m/GPS-cycle) 0.88 1.76 2.64 3.52 4.40
Actual DR Size (m) 20.22 39.81 60.01 81.14 100.36
Error Rate 1.10% | -0475% | 0.017% | 1.425% | 0.36%

Next, keeping the same source and destination as the above,
the bDPM’s accuracy is evaluated in eight directions: North,
Northeast, East, Southeast, South, Southwest, West, Northwest.
The total attack duration is set to 50 seconds as the above, and

the redirection vector is set to 100 meters. In Table 3 and Table 4,
the 1st row shows the injection direction; the 2nd and the 3rd
rows show the injection sub-components in the North and the East
directions; the 4th and the 5th rows show the errors in the North
and the East directions; the 6th and 7th rows show the error rates
in the North and the East directions. Clearly, the attack errors for
these cases are still very small (under 0.9% in a sub-component),
which shows the bDPM attack can accurately redirect the drone to
different directions.

TABLE 3
bDPM Attack Error Under Different Attack Directions (1)

Injection Direction E w N S
Injection: North (m/GPS-cycle) 0 0 5 -5
Injection: East (m/GPS-cycle) 5 -5 0 0
Error: North (m) / / -0.23 -0.29
Error: East (m) 0.06 -0.13 / /
Error Rate: North / / -0.19% -0.24%
Error Rate: East 0.053% -0.11% / /
TABLE 4

bDPM Attack Error Under Different Attack Directions (2)

Injection Direction NE NW SE SW
Injection: North (m/GPS-cycle) 5 5 -5 -5
Injection: East (m/GPS-cycle) 5 -5 5 -5
Error: North (m) 0.16 0.02 -1.1 -0.59
Error: East (m) 0.62 0.14 0.23 -0.05
Error Rate: North 0.13% | 0.016% -0.90 % -0.48 %
Error Rate: East 0.55% 0.12% 0.20% -0.044%

5.2.3 Injection limitation and Feasible range

Although the above evaluation has shown that the bDPM
can redirect a drone to any direction with high accuracy, the
maximum redirection size is limited by the maximum injection
allowed in each cycle that is limited by the bad data detector
of the drone. To find the maximum injection rate allowed in a
direction, the injection rate is gradually increased until the system
detects the large error term and raises GPS-fail alarms. These
simulations are repeated many times to confirm the maximum
injection rate for bDPM in each direction, which will then give us
the largest redirection size DR for a given attack duration in the
direction. Then the maximum redirection sizes in all directions are
combined to outline the feasible range of the bDPM attack, i.e.,

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION
TABLE 5
bDPM Maximum Redirection Size (1)
Injection Direction E W N S
Max Injection (m/GPS-cycle) 7.56 7.60 7.09 7.14
Max DR Size (m) 171.58 173.32 171.32 173.00
TABLE 6
bDPM Maximum Redirection Size (2)
Injection Direction NE NW SE SW
Max Injection (m/GPS-cycle) 7.24 7.48 7.50 7.37
Max DR Size (m) 169.28 176.77 177.03 173.28

10
TABLE 7
mDPM Attack Error Rate Under Different X!
X (m/s%) 0.5 1 1.5 2 25
Exp. DR Size (m) | 46.65 933 139.95 186.6 23325
Act. DR Size (m) | 46.76 93.34 139.84 186.54 232.96
Error Rate 0.24% 0.043% -0.079% -0.032% -0.12%
TABLE 8

mDPM Attack Error Rate Under Different Attack Directions (1)

the drone can be redirected to any point within this range under
the attack duration. In Table 5 and Table 6, the attack duration
was 50 seconds, and attacks in 8 directions are tested to outline
the feasible redirection range. The 1st row shows the redirection
directions; the 2nd row shows the maximum injection rate in a
direction; the 3rd row shows the maximum size of redirection. The
maximum injection rate for each direction varies from 7.09 to 7.65
meter/GPS cycle; the maximum redirection size in each direction
varies from 169.28 meters to 177.03 meters for the attack duration
of 50 seconds.

Furthermore, to show the feasible ranges of redirected des-
tinations under different attack durations, the attack duration is
varied from 20 to 100 seconds, and the corresponding maximum
redirection sizes in 8 directions are determined. Then the feasible
ranges under different attack durations are outlined in Figure 7. In
this 2D plane, the center location (0, 0) is the original destination;
the smallest circle-like range is the feasible range under an attack
duration of 20 seconds; the largest circle-like range is the feasible
range under an attack duration of 100 seconds. It is easy to see that
the feasible range of a bDPM attack is correspondingly enlarged as
the attack duration grows, which shows that the attack can redirect
a drone further away when giving a longer attack duration.

400

\ Jr /
\ /
~20s \' *20Q
a0s o /
60s . 300 7

Fig. 7. Feasible ranges under different attack durations in bDPM.

5.3 Evaluation of Measurement-based DPM (mDPM)

5.3.1 Settings

The basic simulation settings for mDPM is the same as bDPM.
Extensive simulations have been conducted to measure the attack

Injection Direction E \ N S
X1, (m/s?) 0 0 1 -1
X7 (m/s%) 1 - 0 0
Act. DR Size - North (m) / / 100.13 99.72
Act. DR Size - East (m) 93.34 92.88 / /
Error - North (m) / / 0.13 -0.28
Error - East (m) 0.04 -0.42 / /
Error Rate - North / / 0.13% -0.28%
Error Rate - East 0.043% -0.45% / /

coefficients for the mDPM model presented in Section 4: a re-
gression method is used to identify the measurement-based attack
coefficients C‘,‘f, =-1.00, and Cg = —0.933; we further determine
the parameters of this model as I?V = C,‘Q/C,‘(, . X,’\, =20.37 - X,’V,
1) =C¢/Ce - XL =20.51- XL

5.3.2 Accuracy of mDPM

To evaluate the accuracy of the mDPM attack, as shown in the
Ist row of Table 7, the injection increment velocity X! is altered
from 0.5 to 2.5 meter/second? to examine the difference between
the expected redirected destination and the actual destination. The
2nd row shows the expected redirection size; the 3rd row shows
the actual redirection size; and the 4th row shows the attack error
rates under different X/. Here the injection direction is set to the
East and the total attack duration is set to 100 seconds. Consider
the home position as location (0, 0), the original destination was
set to (500, 500) meters in the Northeast in a local frame. Clearly,
for these X!’s, the mDPM attack shows very small errors (under
0.45%), i.e., it can precisely mislead a drone to the expected
redirection destinations.

Furthermore, the attack accuracy in 8 directions are tested as
shown in Table 8 and Table 9. The 1st row represents the redirec-
tion direction. The 2nd and 3rd rows show the sub-component of
X's in the North and East directions. The 4th and Sth rows show
the actual redirection sizes in the North and East. The 6th and 7th
rows show the errors between the expected DR and the actual DR.
The 8th and 9th rows show the error rates in the North and East.
For all cases, the mDPM showed a very small error rates (under
0.45% in a sub-component).

5.3.3 Injection limitation and Feasible Range

Because the maximum redirection size is determined by the
maximum X/, X is gradually increased to find its maximum value
allowed until the bad data detector is triggered. These simulations
are repeated many time to confirm the maximum X/ for mDPM in
each direction, which will give us the maximum redirection size
in the direction for a given attack duration. Then these maximum
redirection sizes in different directions are combined to outline
the feasible range of redirected destinations under the mDPM
attack, i.e., the attack can redirect the drone to any point within
this range. The attack duration was set to 50 seconds, and attacks
in 8 directions are conducted to outline the range. As shown in
Table 10 and Table 11, the maximum X for each direction varies

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

TABLE 9
mDPM Attack Error Rate Under Different Attack Directions (2)

mDPM Max Redirection Sizes for Different Directions (2)

TABLE 11

Injection Direction NE NW SE SW
Max X! (m/s?) 3.25 3.39 3.39 3.25
Max DR Size (m) 157.36 | 163.89 | 163.88 156.80

11

Injection Direction NE NW SE SW
X1 (m/s%) 1 1 -1 -1
XL (m/s%) 1 -1 1 -1
Act. DR Size - North (m) 100.10 100.18 99.65 99.75
Act. DR Size - East (m) 93.29 9291 93.40 9291
Error - North (m) 0.10 0.18 -0.35 -0.25
Error - East (m) -0.01 -0.39 0.10 -0.39
Error Rate - North 0.10% 0.18% -0.35% -0.25%
Error Rate - East -0.011% -0.42% -0.11% -0.42%
TABLE 10

mDPM Max Redirection Sizes for Different Directions (1)

Injection Direction E W N S
Max X7 (m/s?) 3.6 34 34 32
Max DR Size (m) 167.77 158.09 170.10 159.77

from 3.2 to 3.6 meter/ second?; the maximum redirection size in
each direction varies from 156.80 to 170.10 meters.

Furthermore, the attack duration is varied from 20 to 100
seconds, and the corresponding maximum redirection sizes in 8
directions are determined. Based on the maximum redirection
sizes under different attack durations, the feasible ranges of
redirected destinations are outlined as shown in Figure 8. So, the
feasible range of an mDPM attack is correspondingly enlarged
as the attack duration grows, i.e., the attack can redirect a drone
further away for a longer attack duration.

400
NORTH

300 + ~—

,,’" 200 +

[—t t
-400 \\ -300 -200 -100 \

~20s \« /
40 ‘\m\\ ‘/.f"
60s ""*-\.\\-300 1 _—
80s T

~100 s

-400 L

Fig. 8. Feasible ranges of redirected destinations under different attack
durations in mDPM.

6 RELATED WORK

As some existing drone countermeasures have been discussed
in the introduction, let us further discuss other related work
in this section. As discussed in Section I.LB, a drone may be
attacked at three steps of its control loop, i.e., attacking its onboard
sensors [4], [5], [37], [38], its state estimation scheme [4], [6], [7],
[9], or its navigation algorithms ([10], [11] and this paper).

(1) Sensor-level attacks. A consumer drone often uses an
IMU with MEMS sensors (e.g., rate-gyroscopes, accelerometers,
or magnetometers) to measure three-dimension angular veloc-
ities, accelerations, and magnetic readings, respectively. Based

on these measurements, a drone can estimate its system states
including position, velocity, and attitude [24], [39], [40]. Different
from mission-critical systems (such as military drones), consumer
drones are usually equipped with low-end sensors with limited
protection to reduce costs, which leaves many opportunities for
hardware or software attacks. Hardware attacks include selectively
jamming GPS and radio control channels [41], [42], [43], or
compromising drone hardware components (e.g., MEMS sensors)
via acoustic attacks to disturb its normal operation [4], [5], [37],
[38]. Furthermore, although anecdotes on military GPS spoofing
attacks have been reported (such as the capture of the US Sentinel
drone by Iran [44]), the details have never been revealed. So, these
attacks on military drones are considered beyond the scope of this
paper, and this work focuses the civil GPS system on consumer
drones.

In a closely related project [4], a high-accuracy covert spoofer
is built by manipulating the signal delays in the physical layer
to spoof GPS signals arriving at a drone’s GPS receiver. This
spoofer measures relevant delays to the receiver within a few
nanoseconds, and compensates for these delays by generating a
slightly advanced version of the official GPS signals that the
spoofer receives. Then, it gradually increases power to win the
signal acquisition on the receiver over the official signals. This
covert GPS spoofer is a pioneer work, which can also help us
implement our attack to manipulate GPS signals. Although the
idea of spoofing GPS is similar to our approach, their work
mostly focused on the manipulation in the physical layer, while
our work considers all three levels and focuses on navigation
algorithms. We can use their physical layer solution for covert
spoofing; our work is complementary to theirs because we further
developed a more complete model including both state estimation
and navigation control. Two key differences at the higher level are:
First, they built their own simple state estimator for analysis, while
we exploited the mature state estimation schemes on an open-
source system broadly used on many commercial drones, which
makes our method more closer to practical systems. Second, they
did not consider the navigation control such that they do not have
accurate control over where the victim drone will fly to, while we
exploited the navigation control and are able to accurately control
the position of a drone.

(2) Attacks on State Estimation. Compromising system
states is a common method to cause serious errors in control
systems. The proposed attack utilizes a type of False Data Injec-
tion (FDI) attack to exploit the small tolerance ranges of common
bad-data detection schemes in order to compromise drone state
estimation to achieve accurate position manipulation. Common
FDI attacks aim to manipulate state estimations via modifying
corresponding measurements without being detected by bad data
detectors [45], [46]. These FDI attacks are designed to exploit
data transmission delays and uncertainty in large-scale distributed
systems, different from the local setting on a drone with strict
timing constraints.

Because sensors may generate wrong readings, most systems
apply state estimation methods to handle such errors, as presented

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

in Section 2.2. Extended Kalman Filter (EKF) [24], [25], [26] and
its variants are the most popular estimation algorithms on drones
and many other control systems. Based on our previous research
on state estimation algorithms [6], [7], [9], in this paper, we are
able to determine the GPS spoofing signals that can pass the bad
data detection and also manipulate the system states based on
the attack requirements in order to make the navigation algorithm
properly adjust drone positions.

(3) Attack Drone Navigation Controls. We have pointed out
the weaknesses of the most popular path-following algorithms [33]
in Section 2.2. In this paper, the proposed attack utilizes the
vulnerabilities in both state estimation and path-following to
accurately mislead a drone to a redirected destination. Another
project [10] focuses their attack on the GPS fail-safe mechanisms
of navigation control. They propose an attack strategy for fail-safe
mechanisms. However, they consider the state estimation together
as a semi-blackbox without combining it with the navigation
algorithm. As a result, although they can show some successful
testing cases, they do not specify the conditions and the method
for constructing successful spoofing signals that can pass the
bad data detection and also affect the navigation algorithm to
achieve quantitative control. While they can achieve some control
over a target drone, they cannot achieve quantitative control as
the proposed DPM. In contrast, we develop complete algorithms
on how to guide an invading consumer drone to a redirected
destination, and we can also determine where we can mislead a
drone. To our best knowledge, this paper is the first to explore three
fundamental components (guidance sensing, state estimation, and
navigation control) together to achieve accurate attack effects.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have examined three fundamental control
components of a consumer drone together, identified the vul-
nerabilities at guidance sensing, state estimation, and navigation
adjustment, and developed the DPM attack to exploit these vulner-
abilities. The analysis and evaluation have shown that the DPM
attack can accurately guide an invading drone to a redirected
location for safe handling. We have further analyzed the feasible
attack range to test if a drone can be redirected to a given
destination. We believe this is the first work that is able to guide a
consumer drone accurately to a desired destination.

Although the DPM aimed at common consumer drones, the
idea of exploring the vulnerabilities of sensing, state estimation,
and navigation control in a holistic method is applicable to many
other existing and emerging autonomous systems. Exploring such
a sequence of vulnerabilities could be a generic attack to many
control systems. To stop such an attack, the vulnerability at each
step need to be addressed. First, there have been various proposals
to detect GPS spoofing [47], [48], [49]. However, to implement
these enhancements on consumer drones may still have a long
way to go [4]. Second, the EKF’s anomaly detection algorithm
can be improved to detect attacks such as DPM. We have briefly
discussed the general idea of an effective detector in our previous
work [9], and we will further investigate countermeasures based on
physical properties of drones. Third, secure navigation algorithms
to detect position/velocity manipulations should be investigated.
We are also looking into other interesting research problems, such
as how to apply the DPM to compromise a mission with multiple
waypoints, or how to compromise the mission of a swarm.

12

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. 1662487 and Office
of Naval Research (ONR) Contract No. N000142012049 and
No. N000142112168. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF or
ONR.

REFERENCES

[1] J. Vanian, “Drone Registrations Are Still Soaring,” Fortune, http:
//fortune.com/2017/01/06/drones-registrations-soaring-faa/, Jan. 06,
2017.

[2] A. Michel and D. Gettinger, “Analysis of New Drone Incident Reports,”
http://dronecenter.bard.edu/analysis-3-25-faa-incidents/, May 8, 2017.

[3] M. Schmidt and M. Shear, “A Drone, Too Small for Radar to Detect,
Rattles the White House,” New York Times, https://www.nytimes.com/
2015/01/27/us/white-house-drone.html, Jan. 26, 2015.

[4] A.J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Un-
manned Aircraft Capture and Control via GPS Spoofing,” Journal of
Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

[S] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT:
Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic
Injection Attacks,” in 2017 IEEE European symposium on security and
privacy (EuroS&P), 2017.

[6] W. Chen, Z. Duan, and Y. Dong, “False Data Injection on EKF-based
Navigation Control,” in International Conference on Unmanned Aircraft
Systems (ICUAS), 2017.

[71 'W. Chen, Y. Dong, and Z. Duan, “Manipulating Drone Dynamic State
Estimation to Compromise Navigation,” in 2018 IEEE Conference on
Communications and Network Security (CNS), May 2018.

[8] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of Control: Stealthy
Attacks Against Robotic Vehicles Protected by Control-based Tech-
niques,” in ACSAC ’19: Proceedings of the 35th Annual Computer
Security Applications Conference, Dec. 2019.

[91 W. Chen, Y. Dong, and Z. Duan, “Manipulating Drone Position Control,”
in Proc. of IEEE Conference on Communications and Network Secu-
rity(CNS), June 2019.

[10] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim,
“Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive GPS
Spoofing,” ACM Transactions on Privacy and Security (TOPS), vol. 22,
no. 2, pp. 1-26, April 2019.

[11] W. Chen, Y. Dong, and Z. Duan, “Compromising Flight Paths of
Autopiloted Drones,” in 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), 2019.

[12] E. Deligne, “ArDrone Corruption,” Journal of Computer Virology, vol.S,
pp-15-27, 2012.

[13] A. M. Shull, “Analysis of Cyberattacks on Unmmaned Aerial Systems,”
Master’s thesis, Purdue University, 2013.

[14] A. Kim, B. Wampler, J. Goppert, and I. Hwang, “Cyber Attack Vulnera-
bilities Analysis for Unmanned Aerial Vehicles,” Infotech at Aerospace,
2012.

[15] M. Monnik, “Hacking the Parrot AR.Drone 2.0,” https://dronesec.com/
blogs/articles/hacking-the-parrot-ar-drone-2-0, 2019.

[16] E. Samland, J. Fruth, M. Hildebrandt, T. Hoppe, and J. Dittmann,
“AR. Drone: Security Threat Analysis and Exemplary Attack to Track
Persons,” Proceedings of the SPIE, vol. 8301, 2012.

[17] J. Cao, “Practical GPS Spoofing Aattacks on Consumer Drones,” Mas-
ter’s thesis, University of Hawaii, https://scholarspace.manoa.hawaii.edu/
bitstream/10125/73336/Cao_hawii_00850_10909.pdf, Dec. 2020.

[18] M. Benyamin and G. Goldman, “Acoustic Detection and Tracking of a
Class I UAS with a Small Tetrahedral Microphone Array,” ARL, Tech.
Rep. ARL-TR-7086, Sep. 2014.

[19] Drone Labs, “Drone detector,’
how-drone-detection-works/, 2016.

[20] DeDrone, “Secure your airspace now,’ http://www.dedrone.com/en/
dronetracker/drone- protection-software, 2016.

[21] Paparazzi, “Paparazzi: The Free Autopilot,” http://wiki.paparazziuav.org/
wiki/Main_Page, 2003.

[22] OpenPilot, “DIY Drones: The Leading Community for Personal UAVs,”
https://diydrones.com/page/openpilot-1, 2021.

[23] ArduPilot, “ArduPilot Autopilot Suite,” http://ardupilot.org/ardupilot/,
2021.

http://www.dronedetector.com/

DPM: TOWARDS ACCURATE DRONE POSITION MANIPULATION

[24]

[25]

[26]

(271

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

K. M. Smalling and K. W. Eure, “A Short Tutorial on Inertial Navigation
System and Global Positioning System Integration,” NASA, Tech. Rep.
NASA/TM-2015-218803, Sep. 2015.

G. Welch and G. Bishop, “An Introduction to the Kalman Filter,”
University of North Carolina at Chapel Hill, Chapel Hill, NC, 1995.

P. Gasior, S. Gardecki, J. Goslinski, and W. Giernacki, “Estimation of Al-
titude and Vertical Velocity for Multirotor Aerial Vehicle Using Kalman
Filter,” in Recent Advances in Automation, Robotics and Measuring
Techniques. Springer, 2014.

R. Van Der Merwe, E. Wan, and S. Julier, “Sigma-point Kalman Filters
for Nonlinear Estimation and Sensor-fusion: Applications to Integrated
Navigation,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2004.

C. Hajiyev and S. Y. Vural, “LQR Controller with Kalman Estimator
Applied to UAV Longitudinal Dynamics,” Positioning, vol. 4, no. 1, 2013.
E. Ghahremani and I. Kamwa, “Dynamic State Estimation in Power
System by Applying the Extended Kalman Filter with Unknown Inputs
to Phasor Measurements,” IEEE Transactions on Power Systems, vol. 26,
no. 4, pp. 2556-2566, 2011.

P. Riseborough, “Inertial Navigation Filter,” https://github.com/
priseborough/InertialNav, 2015.

ArduPilot, “Extended Kalman Filter Navigation Overview and Tuning,”
http://ardupilot.org/dev/docs/extended-kalman-filter.html, 2020.

E. A. Wan and R. Van Der Merwe, “The Unscented Kalman Filter for
Nonlinear Estimation,” in IEEE Adaptive Systems for Signal Processing,
Communications, and Control Symposium (AS-SPCC), 2000.

P. Sujit, S. Saripalli, and J. Sousa, “Unmanned Aaerial Vehicle Path Fol-
lowing: A Survey and Analysis of Algorithms for Fixed-wing Unmanned
Aerial Vehicles,” IEEE Control Systems, vol. 34, no. 1, pp. 42-59, Feb.
2014.

MAVLink, “MAVLink Developer Guide,” https://mavlink.io/en/, Dec.,
2019.

W. Chen, Y. Dong, and Z. Duan, “A Video Demo of Drone Position
Manipulation Attack,” https://youtu.be/kE0T4sFJZ70, Feb 16, 2021.

W. Chen, Y. Dong, and Z. Duan, “Attacking Altitude Estimation in
Drone Navigation,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), April 2018.

N. O. Tippenhauer, C. Popper, K. B. Rasmussen, and S. Capkun, “On
the Requirements for Successful GPS Spoofing Attacks,” in Proceedings
of the 18th ACM conference on Computer and communications security,
2011.

Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and
Y. Kim, “Rocking Drones with Intentional Sound Noise on Gyroscopic
Sensors,” in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, 2015.

0. J. Woodman, “An Introduction to Inertial Navigation,” University of
Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-696, Aug.
2007.

K. Gade, “The Seven Ways to Find Heading,” The Journal of Navigation,
vol.69, pp.955-970, 2016.

Silent Archer, INC, “Silent Archer Counter-UAS system,” http://www.
srcinc.com/what-we-do/ew/silent-archer-counter-uas.html, 2016.

B. S. Systems, “AUDS Anti-UAV Defence System,” http://www.blighter.
com/products/auds-anti-uav-defence-system.html, 2016.

Battelle, “DroneDefender Technology,” https://www.battelle.org/insights/
case-studies/case-study-details/dronedefender-technology, 2021.

S. Peterson and P. Faramarzi, “Exclusive: Iran Hijacked US Drone, Says
Iranian engineer,” https://www.csmonitor.com/World/Middle-East/2011/
1215/Exclusive-Iran-hijacked- US-drone-says-Iranian-engineer, 2011.

Y. Liu, P. Ning, and M. K. Reiter, “False Data Injection Attacks Against
State Estimation in Electric Power Grids,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security, ser. CCS
’09. New York, NY, USA: ACM, 2009.

F. Pasqualetti, R. Carli, and F. Bullo, “A Distributed Method for State
Estimation and False Data Detection in Power Networks,” in /[EEE Inter-
national Conference on Smart Grid Communications (SmartGridComm),
2011.

B. M. Ledvina, W. J. Bencze, and 1. Galusha, B.and Miller, “An In-line
Anti-spoofing Module for Legacy Civil GPS Receivers,” in Proc. of the
ION ITM, San Diego, CA. Institute of Navigation, 2010.

13

[48] D. S. De Lorenzo, J. Gautier, J. Rife, P. Enge, and D. Akos, “Adaptive
Array Processing for GPS Interference Rejection,” in Proc. of the ION
GNSS Meeting, Long Beach, CA. Institute of Navigation, 2005.

[49] K.D. Wesson, B. L. Evans, and T. Humphreys, “A Combined Symmetric
Difference and Power Monitoring GNSS Anti-spoofing Technique,” in
Proceedings of the IEEE Global Conference on Signal and Information
Processing, Austin, TX., 2013.

Wenxin Chen Wenxin Chen received the B.E.
from South China University of Technology,
Guangzhou, China, in 2012, and the M.Sc. from
the Chinese University of Hong Kong, Hong
Kong, in 2013, both in Information Engineering.
He recieved his Ph.D. degree in Electrical En-
gineering in Department of Electrical and Com-
puter Engineering at the University of Hawaii at
Manoa. His research interest is about security
and privacy issues in Unmanned Aerial Vehi-
cles (UAVs), Internet of Things (loTs), and cloud

computing.

Yingfei Dong Yingfei Dong received his B.S.
and M.S. degrees in Computer Science at
Harbin Institute of Technology, P.R. China, in
1989 and 1992, Doctor degree in Engineering
at Tsinghua University in 1996, and Ph.D. in
Computer and Information Science at the Uni-
versity of Minnesota in 2003. He is a Professor at
the Department of Electrical and Computer En-
gineering at the University of Hawaii at Manoa.
His current research focuses on computer and
network security, privacy, and secure distributed
systems, including consumer drones, CPS/loT, machine learning, and
real-time control networking. He has published over 100 refereed re-
search papers in international journals and conferences, and has served
as associated editors for several international journals. He has served
as organizers and technical program committee members for many
IEEE/ACM/IFIP conferences. His research is supported by National
Science Foundation, Office of Navy Research, Air Force Research Lab,
Navy Applied Research Lab, and industrial partners.

Zhenhai Duan (S '97-M '03—-SM ’10) received
the B.S. degree from Shandong University,
China, in 1994, the M.S. degree from Beijing
University, China, in 1997, and the Ph.D. de-
gree from the University of Minnesota, in 2003,
all in Computer Science. He is a Professor in
the Department of Computer Science at the
Florida State University. His research interests
include computer networks and network security.
Dr. Duan is a co-recipient of Best Paper Award
of IEEE ICNP 2002, IEEE ICCCN 2006, IEEE
GLOBECOM 2008, and ASE International Conference on Cyber Secu-
rity 2012. Dr. Duan has served as a TPC co-chair of CEAS 2011, IEEE
GLOBECOM 2010 Next-Generation Networking Symposium, and IEEE
ICCCN 2007 and 2008 Network Algorithms and Performance Evaluation
Track.

