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ABSTRACT

Concerns regarding inappropriate leakage of sensitive personal information as well as unauthorized data use
are increasing with the growth of genomic data repositories. Therefore, privacy and security of genomic data
have become increasingly important and need to be studied. With many proposed protection techniques, their
applicability in support of biomedical research should be well understood. For this purpose, we have organized
a community effort in the past 8 years through the integrating data for analysis, anonymization and sharing con-
sortium to address this practical challenge. In this article, we summarize our experience from these competi-
tions, report lessons learned from the events in 2020/2021 as examples, and discuss potential future research
directions in this emerging field.
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BACKGROUND

and security concerns regarding inappropriate leakage of sensitive
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As sequencing technology advances, the cost of short-read sequenc-
ing at greater depth and higher sensitivity has been significantly
reduced, and personalized whole genome sequencing analysis is
becoming increasingly affordable." As human genome data are cur-
rently available to a limited group of researchers, sharing these data
with the broader scientific community may help accelerate discov-
eries and decrease disparities in access. At the same time, privacy

personal information or unauthorized data access will increase. For
example, recent incidents such as the SolarWinds flaw” allow
attackers to bypass authentication and obtain sensitive data such as
patients’ genomes. The impact of such attacks would be (1) deep:
for example, attackers may be able to find a person’s ancestors and
may try to link to additional data and predict an individual’s health
issues; (2) wide: for example, hackers can link the information to
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the person’s family members; and (3) permanent: the leaked data
will be indelible and cannot be retracted.

It is natural that most genomics researchers focus on genome
data analysis methods, with only a much smaller community of
computer scientists and informaticians working on the preservation
of privacy. Given the rapid growth of genomic data and related
analysis techniques, genome privacy (ie, information leakage)® and
security (ie, unauthorized data access)* have become increasingly
important,® not only for protecting patients’ sensitive biometric data
and complying with regulations (eg, Health Insurance Portability
and Accountability Act,® General Data Protection Regulation,” and
others) but also for supporting biomedical research.

Both genome privacy and security have been attracting great
attention in the past decade, across multiple disciplines such as
Genetics/Heredity, Biotechnology, Microbiology, and Medical
Informatics, as shown in Figure 1 [data collected from the Web of
Science (WOS)®] These categories are predefined by the WOS, and
the counts indicate the number of papers in each category. The sta-
tistics are presented as a Tree Map Chart.

The rest of this article is organized as follows: we first summarize
our prior conference results and impact on the community in the
“The Integrating Data for Analysis, Anonymization and Sharing
Community Effort for Practical Privacy, and Security Protection”
section, followed by a competition topic introduction and analysis
in the “Topics and Methods” section. We then use the competitions
in 2020 (“Lessons Learned from the 2020 iDASH Competition” sec-
tion) and 2021 (“Lessons Learned from the 2021 iDASH Compet-
ition” section) as examples to demonstrate in detail what scientific
results were produced. Finally, we discuss potential future trends in
the “Anticipated Future Research Trends” section and conclusions
in the “Conclusion” section.

THE INTEGRATING DATA FOR ANALYSIS,
ANONYMIZATION AND SHARING COMMUNITY
EFFORT FOR PRACTICAL PRIVACY AND
SECURITY PROTECTION

Computer scientists and informaticians strive to develop practical
and rigorous privacy and security methods to help human genome
researchers protect sensitive data. In an ideal setting, we would be
equipping researchers with tools that tune the amount of data pro-
tection according to consent, trust in the data recipient, as well as
intended use. However, such tools are not yet ready and much needs
to be done to develop, implement, and test systems that rely on spe-
cific privacy protection techniques. A thorough evaluation of the
usefulness of existing privacy and security techniques that are appro-
priate for the biomedical context becomes critical. Although there

9-11
have been surveys

on the protection of privacy and security for
genomic data analysis and sharing, most of them focus on theory.
The research community needs practical benchmarking datasets that
can be used for comprehensive evaluation of privacy and security
techniques in real-world applications. Without direct comparisons
of different methods in real-world scenarios, we cannot effectively
evaluate their capabilities and understand their limitations. Both
methods and technology are evolving fast, so what could be consid-
ered not feasible just a few years ago may now be ready for real-
world applications. To narrow the gap between theory and practice,
we initiated in 2012 the integrating data for analysis, anonymization
and sharing (iDASH) consortium,'? which has become a premier
biomedical privacy and security annual workshop where teams

present their solutions to carefully selected problems in genome pri-
vacy and security. Specifically, we built a community focusing on
the connection of both theoretical and practical aspects of genome
privacy and security. Our goal is to promote the development of
novel and practical protection methods to deal with the critical and
emerging privacy and security challenges in human genomic
research. Our competitions evaluate creative privacy and security
methods with real genomic analysis tasks.

TOPICS AND METHODS

The first step to initiate the community efforts is to determine a set
of highly relevant and critically needed gnomic privacy/security
research topics. During the process of data analysis across multiple
institutions, there are several possible ways to share information,
within which our topics lies (a glossary is shown in Table 1):

1. Sharing raw data. The most straightforward way is to share the
raw data across institutions. However, patient data are too sensi-
tive to be shared directly without any protection due to privacy
concerns and associated institutional data sharing policies.
Therefore, possible methods to enhance data protection during
the data sharing process include data perturbation (eg, adding
noise to the data) to avoid sensitive information leakage (pri-
vacy-preserving data sharing'®) encrypting and outsourcing the
computation to a trusted third party [secure outsourcing,'®

1420 and encryption testing'’]

homomorphic encryption (HE),
linking patients across different institutions without using sensi-
tive data (deduplication'®) hardware-supported secured analysis
(software guard extensions'®1%1?
machine learning (ML)'¥2°) encrypting queries and databases

for genomic data (secure search'”) and adopting a decentralized

and privacy-preserving

architecture to avoid central-server risks such as single point of

failure (blockchain and smart contract!”'$:2%)

2. Sharing intermediate analysis results but not the raw data.
Another possible way is to share partially summarized data (ie,
intermediate results) among institutions, to allow joint analysis
without sharing the raw (ie, observational level) data directly.
However, designing the computational algorithms to allow
intermediate result sharing without leaking patient-level data
can be challenging. Therefore, we focused on topics related to
algorithm developing, such as secure collaboration,'*8-20

14-18 s rivacy-preserving search,'

secure multiparty computation,

and secure ML."8
3. Sharing only the nal analysis results. Yet another way is to only

share analytical results. However, there might still be privacy
concerns (eg, exposing more information than expected by the
differential privacy (DP) criterion with a small privacy budget),
which occurs in particular when the sample size is small that the
patients’ information can be “reversed engineered” from the
shared nal results. Plausible methods to mitigate the risk
include anonymizing genome-wide association studies (GWAS)
and genome sequence comparison results (secure release'®) and
randomly ipping query results to avoid patients’ information
being inferred from repeated queries (eg, through the beacon
service!®)

We summarize topics associated with privacy and security tech-
niques in each track of the iDASH competitions in Table 2. Most of
these 15 topics have only been emerging at the time of competition,
but most of them are now recognized to be important by the scien-
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Figure 1. Publication categories for genome privacy (top panel) and security (bottom panel), using statistics from Web of Science® on December 14, 2021.
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Table 1. Glossary of topics for iDASH competitions

# Topic Description and references

1 Privacy-preserving data sharing Allow differentially private federated data analysis with fragmented data from distrib-
uted sources”’

2 Secure release Support differentially private data release with mitigated risks of information leakage?*

3 Secure outsourcing Delegate data storage and analysis on untrusted third party servers****

4 Homomorphic encryption Support encrypted operations to match the plaintext operation with advanced crypto-
graphic techniques, without leaking information®*:>®

N Secure collaboration Collaboration among two or more parties to perform a computation jointly, without
sharing their own raw data®’

6 Secure multiparty computation Cryptographic techniques to perform computation jointly by two or more parties on
encrypted data®®

7 Beacon service Evaluation of a human genomic data sharing service developed by the GA4GH to check
whether a human genomic dataset contains a genome with a speci ¢ variant (nucleo-
tide) at a speci ¢ chromosomal location®’

8 Privacy-preserving search Support for the calculation of distances between two genome sequences, without reveal-
ing variants®’

9 Encryption testing Allowing genetic testing on encrypted data and results that can only be decrypted by
data owners who have the secret key

10 Deduplication Removal of duplicate records in a database®!

11 Software guard extensions Application of isolation techniques developed by Intel hardware to protect data in use®*

12 Secure search Identi cation of a query record in an encrypted database®?

13 Blockchain and smart contract Distributed ledger technology that allows both decentralized sharing of data (block-
chain®*3) and code (smart contracts®”>?)

14 Secure machine learning Building of machine learning models from encrypted data**~*>

15 Privacy-preserving machine learning Execution of plaintext models on encrypted data to preserve data privacy*>~’

iDASH: integrating data for analysis, anonymization and sharing.

Table 2. Topics for iDASH competitions, by year'>2°

# Topic 2014 2015 2016 2017 2018 2019 2020 2021
1 Privacy-preserving data sharing X

2 Secure release X

3 Secure outsourcing X

4 Homomorphic encryption X X X X X X X
5 Secure collaboration X X X X
6 Secure multiparty computation X X X X X

7 Beacon service X

8 Privacy-preserving search X

9 Encryption testing X

10 Deduplication X

11 Software guard extensions X X X

12 Secure search X

13 Blockchain and smart contract X X X
14 Secure machine learning X

15 Privacy-preserving machine learning X X X

iDASH: integrating data for analysis, anonymization and sharing.

tific community. This can be shown in our publication and citation
analysis (Figure 2). We observe an upward trend, with the top 5 (in
terms of publications) being blockchain, smart contracts, secure
ML, secure search, and secure outsourcing through HE. We also
present the years in which the iDASH competition selected a partic-
ular topic, showing that our community efforts were timely and in
line with current research and development directions. Also, our
competition was organized while many papers in these topics were
being published, thereby allowing us to take advantage of the grow-

ing interest in genome privacy and security as emphasized by
iDASH. To provide more details about the outcomes and lessons
learned from our competition, we use the most recent competitions,
organized in 2020 and 2021, as our examples.

To benchmark and evaluate these important topics, we organ-
ized, with the participation of community members from all over
the world, eight annual iDASH competitions (2014-2021), aimed
at tackling state-of-the-art privacy and security challenges. Each
competition contained two to four different tracks (as shown in

€20z Arenuer L0 uo 1sanb Aq 6G//129/2812/21/62/2101e/elWel/Wwoo"dno-o1wapeoe//:sdjly Woly papeojumod



2186 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 12

mm Citations

(1) Privacy-Preserving Data Sharing

(2) Secure Release

e Publications

(3) Secure Outsourcing

5000 150 7000 250 BO00 450
A 300 600D g 5
amo 200
350
3500 250 5000 "
-, 30
« 3m0 e 1% w §
T 2500 4000 i
o 150 3000 0 F
L= 100 3009 H
1500 100 2000 ~
100 5o | 200 100
500 . I i I 1000 . 50
o m m B 0 ° 0 g = = = W 0
(4) Homomorphic Encryption (5) Secure Collaboration (6) Secure Multiparty Computation
9000 600 10000 400 2500 140
S0
8000 w| 350 1%
7000 |
7000 100
6000 400 250 g
- 6000
§ 5000 e 80 §
= 300 5000 200 ]
U” 4000 60 B
4000 1sp 1000 F
1000 200 3000
40
2000 oy
2000 500
I o=t ll S .
, uil A B o | :
(7) Beacon Service (8) Privacy-Preserving Search (9) Encryption Testing
5000 50 2500 140 8000 600
4500 1 8000 il
4000 200 | 2000 7000
3500 100
6000 w
3000 150 1500 H
H B0 sp00 2
B 2500 300 §
4000
9 2000 100 1000 €0 E
ik o W0 200
500 2000
P I I I ) ) I I h
500 1000 I
o M 0 0 0 ' | W | I 0
(10) De-duplication (11) Software Guard Extension (12) Secure Search
700 50 600 50 14000 800
45 as
600 12000 Too
40 . a0
600
500 10000
as a0 35 -
E‘w 30 30 8000 g
3 25 300 5 a0 §
300 6000 3
© 0 i 20 0 B
15 15
2m o 2 4w0 200
L
100
100 I E s im0 l I I I 100
¥ e, . l o o o [] a
(13) Blockehain and Smart Contract (14) Secure Machine Learning (15) Privacy-Preserving Machine Learning
20000 1800 12000 1000 4500 300
18000 S0 s000
1200
16000 —_— W | 3s00 250
. 14000 1090 eg0n 79 3000 00 =
12000 800 [ ot g
§ 1w 6000 L s 150 §
L e am =
P - 4000 am | 1500 m &
1000
2000 o | 2000 I 2m - I -
2000 1®
o yoR o 0 - = B . 0 o - - | . 0

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

2010 2011 2012 2013 2014 2015 2016 2017 R0UB 2009 2020 2021

2000 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

Figure 2. General trends in scientific publications and citations for iDASH competition topics. The data source is WOS® as of December 14, 2021. We also show
the years (shaded boxes) in which the iDASH competition focused on a particular topic, showing that our community efforts are timely and in line with these

research topics."®”

7 In general, the trends are upwards in both publications and citations, with the largest numbers for blockchain and smart contracts (topic #

13), secure machine learning (topic # 14), secure search (topic # 12), homomorphic encryption (topic # 4), and encryption testing (topic # 9). Citations and publica-
tions for Software Guard Extension seem to be trending down. iDASH: integrating data for analysis, anonymization and sharing; WOS: Web of Science.

Supplementary Table ST1), and the iDASH consortium generated
40 publications!3717:21726:30:40-67 o1 23 tracks. These papers
have been cited 1491 times (max =137, min =3, median =29.5,
average =37.3) as of April 2022,°% demonstrating the impact of
the competition on the field (a diagram of the total citations, as
well as the citations per year published, is shown in Supplementary
Figure SF1). Two meetings were virtual, while the others were
scheduled right before or after a relevant conference in a particular

city (so we referred to them as being “colocated” with a confer-
ence). Participants were mainly from North America in 2014,
while in 2021 the community had expanded to multiple conti-
nents, representing an ever-growing, world-wide group of
researchers whose focus is on tackling practical genome privacy
and security issues. Particularly, the following three regions have
demonstrated strong interest in this field: North America, Europe,
and Asia.
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LESSONS LEARNED FROM THE 2020 iDASH
COMPETITION

The iDASH community effort has promoted pragmatic privacy
research in key biomedical areas; it has been producing new and

promising results that enable practical biomedical data protection at

rest or in use. For example, in 2020:

In track 1 (Secure multilabel tumor classification using HE), we
observed that most teams were utilizing linear/logistic regression
models to implement cancer classi ers. These models had been
improved signi cantly over the years through the HE competi-
tion, and HE is quite scalable and ef cient now. The top solu-
tions achieved a micro-Area Under the receiver operating
characteristic Curve (micro-AUC, a measure for multilabel classi-
cation®®) of >0.97 to classify 11 cancer types from encrypted
genetic variants of 909 samples, within 5 minutes. These results
show the feasibility of applying plaintext ML models to
encrypted data for secure classi cation within acceptable time.
In track 2 [Privacy-preserving clustering of single-cell transcrip-
tomics data in Software Guard eXtension (SGX)], we observed
that two submission teams achieved comparable accuracy for
Clustering through Imputation and Dimensionality Reduction
algorithms”® when running on up to 10 000 single-cell sequences.
However, the computing overhead of the best-performing solu-
tion increased 5 times for the input of 3000 cells up to over 20
times for the input of 10 000 cells, indicating that there is still
plenty of room for further improvement to reduce the computa-
tion overhead of the SGX-based algorithms. These results suggest
that the implementation of clustering algorithms for single-cell
RNA-seq data on SGX is ef cient on a moderate single-cell data-
set but is still not ef cient enough for large datasets.
In track 3 (Differentially private federated learning for a cancer
prediction model), we were impressed by the innovative solu-
tions, which achieved almost perfect model accuracy while
enforcing a high DP standard (ie, DP with a privacy budget of
3.0 or lower). The training process of the best-performing solu-
tion was very fast, comparable with the ef ciency of training an
ML model on all data, unprotected, by a single party. These
results suggest that the federated learning methods have
advanced signi cantly in the past few years and could be ready
for practical applications in biomedical research today.

LESSONS LEARNED FROM THE 2021 iDASH
COMPETITION

Another set of examples comes from our competition in 2021:

In track 1 (Data sharing consent for health-related data using
contracts on blockchain), we found that it was feasible to store
patients’ willingness to share their digital health records in seven
categories (demographics, mental health, biospecimen, family
history, genetic, general clinical information, and sexual/repro-
ductive health) for a given clinical/genomic study on blockchain,
at up to ~6800 records per hour (or ~1.889 records per second).
These results show that this emerging blockchain and smart con-
tract technology has improved over past years and could become
increasingly feasible in supporting real-world applications (eg,
recording patients’ data sharing consents), without requiring
high-throughput storage.

In track 2 (HE-based secure viral strain classification), the per-
formance of the solutions was highly impressive. Almost all

teams did very well in classi cation performance (many reported
micro-AUC >0.99), indicating that secure viral strain classi ca-
tion was a highly practical task. There was large variability for
the time cost in the secure computation, ranging from a few sec-
onds to hours. The best solutions balanced the computation
involved in all steps (preprocessing, key generation, encryption,
classi cation, and decryption), and optimized computational
costs to classify four SARS-CoV2 viral strains from 2000 homo-
morphically encrypted genomes within a few seconds. These
results are highly encouraging for the practical use of HE to safe-
guard data privacy in high-performance classi cation models (eg,
deep learning) for viral strain identi cation.

In track 3 (Confidential computing), we observed that federated
learning algorithms submitted by participating teams were very
ef cient (ie, produced results within a minute) in training an ML
model jointly by two parties (with each holding their individual
training datasets). The task was to predict the potential risk of
wild-type transthyretin amyloid cardiomyopathy from thousands
of features extracted from electronic health records (EHRs).
These solutions achieved comparable accuracy, and the ML
model trained directly on the joint datasets under DP with a
required protection level, ensuring that no private information in
the EHR held by one party was leaked to the other party during
the learning process. These evaluation results suggest that ef -
cient DP-based algorithms could be used to build ML models
from distributed training sets with satisfactory accuracy.

ANTICIPATED FUTURE RESEARCH TRENDS

We identify the following five directions of future genomic privacy
research, which represent the emerging challenges that we plan to
explore in the future competitions:

1.

Combining federated learning and secure computing. There are
some recent trends in this direction to combine the strength of
both techniques to achieve better performance and a stronger

privacy guarantee. Multikey HE”"72

is an example in which HE
and secure multiparty computation can crossfertilize to improve
ef ciency and reduce the memory footprint in federated learning.
Another example is the combination of DP and HE to enable a
“refreshed” calculation of gradient with mitigated privacy and
the development of a DP global ML model.”® A challenge for
these hybrid solutions is the uni cation of security standards so
that the overall security will not be lowered by the least secure
component in the combined architecture. This is a very active
area of research, and we expect highly innovative models to be
developed.

Ef cient training and evaluation of deep learning models on
encrypted genomic data. We observe that many secure opera-
tions on encrypted genomic data, which were originally consid-
ered to be purely theoretical, have become more practical for
real deployment.”* For example, recent work on secure genome
imputation®” demonstrates that well-optimized HE-based regres-
sion models can meet the time and memory requirements that
are comparable to or lower than those of nonsecure methods.
We believe that this is just the beginning of a new era of secure
deep learning on encrypted genomic data and that the commun-
ity will witness the emergence of new models that are highly
secure and ef cient. Despite exciting progress, there are still
many challenges in making encrypted genomics data analysis
practical and scalable. HE algorithms are not friendly to high-
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order polynomials, and ef cient implementation requires a deep
understanding of parallelization. We will focus on closing the
technology gap in future competitions by designing challenges
related to these issues to push the front of encrypted genomic
data analysis with state-of-the-art deep learning models.

3. Trusted hardware/software combinations. Recent studies show
that the hybrid approaches that combine hardware (eg, SGX)
and software (eg, HE and secure multiparty computation) offer
ef cient solutions to genomic data analyses. For example,
SAFETY”® and DyPS”® are hybrid computational frameworks to
perform secure GWAS on distributed genomic datasets using HE
and SGX techniques. Kockan et al”” developed an approxima-
tion algorithm to accelerate a secure GWAS algorithm running
in SGX that achieves comparable accuracy and ef ciency to
those of nonsecure counterparts. Bomai et al”® developed
another hybrid approach combining multikey HE and SGX for

17° devel-

GWAS and human genome computing. Widanage et a
oped an SGX-based big-data analytics work ow HySec-Flow,
which showcases privacy-preserving genomic computing tasks
such as reads’ alignment. The future challenges along the direc-
tion include the extension of the approaches to emerging hard-
ware architectures for con dential computing, such as Intel’s
80 and AMD’s Secure Encrypted Virtu-
alization,®! and the development of novel approaches that com-
bine the hardware and software solutions to achieve stronger
data protection and better performance for privacy-preserving

Trust Domain eXtension

genomic data analyses.

4. Distributed database and secure computing using smart con-
tracts. Recent studies proposed to adopt smart contracts for con-
sent management in genomic data sharing,** COVID-19 data
tracking,®® clinical X-ray image storing,** and biomedical train-
ing certi cate recording.®® As blockchain technology becomes
more mature, we anticipate more genomic/biomedical applica-
tions to be proposed and developed. That said, the scalability of
blockchain is still considered a bottleneck for large-scale data
storage. Therefore, we plan to focus on performance improve-
ment when designing future competition tasks on this topic.

5. Use of genome privacy technologies to support Ethical, Legal
and Social Implications (ELSI) research. Novel genome privacy
technologies can serve as enablers to circumvent ELSI barriers to
support data sharing and federated learning. For example,
researchers are implementing HE and DP within Informatics for
Integrating Biology and the Bedside framework®® to enable an
ef cient privacy-preserving explorer for genetic cohorts. Secure
multiparty computing models have been developed to enable
privacy-preserving drug-target interaction protocols®” and large-
scale GWAS analysis.> We expect that future research in
genomics privacy will be more tightly connected to ELSI require-
ments (speci cally, to understand the emerging ELSI issues) and
provide novel technology solutions to support scienti ¢ discov-
eries.

CONCLUSION

Our efforts to organize competitions and workshops to address
practical privacy and security topics for genomic data analysis have
created a solid global community, attracted interest from interdisci-
plinary teams around the world, and pushed the frontier of safe-
guarding patient data while advancing genomic research. Although
the biomedical and healthcare privacy community is still small and
iDASH competitions have started less than a decade ago, the

impacts of our competitions/workshops start to become prominent
with the citations generated by the 40 papers related to our com-
munity efforts in the past 8 years. From these experiences, we
learned that such a community-driven approach could attract more
researchers to devote themselves to genomic privacy and security
research. We plan to continue this endeavor to grow the interna-
tional community and facilitate biomedical privacy and security
studies. In the 2022 iDASH competition, for example, we are focus-
ing on four emerging topics:*® (1) blockchain-based recording of
human subjects’ compliance training certificates, (2) secure model
evaluation on homomorphically encrypted genotype data, (3) confi-
dential computing for clustering single-cell transcriptomics data,
and (4) secure record linkage. Using cutting-edge technology, theo-
retical developments and practical implementations can be inte-
grated to provide highly deployable solutions that improve privacy
protection and security for genomic data analysis and sharing. Spe-
cifically, we suggest that the following mature technologies can
readily be implemented and even deployed today by entities stew-
arding genomic data: secure genome imputation, homomorphic
encrypted GWAS, secure ancestry inference for admixed popula-
tions, ML-based confidential-computing for disease prognosis,
secure single-cell data analyses, and polygenic risk score.’
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