',‘ frontiers

in Neural Circuits

ORIGINAL RESEARCH
published: 18 March 2021
doi: 10.3389/fncir.2021.649417

OPEN ACCESS

Edited by:
Teppei Matsui,
The University of Tokyo, Japan

Reviewed by:

Daniele Corbo,

University of Brescia, Italy

Gia Michele Ratto,

National Research Council (CNR), Italy

*Correspondence:
Vince D. Calhoun
vcalhoun@gsu.edu

These authors share first authorship

¥ These authors share senior
authorship

Received: 04 January 2021
Accepted: 24 February 2021
Published: 18 March 2021

Citation:

Sendi MSE, Zendehrouh E, Ellis CA,
Liang Z, Fu Z, Mathalon DH, Ford JM,
Preda A, van Erp TGM, Miller RL,
Pearison GD, Turner JA and

Calhoun VD (2021) Aberrant Dynamic
Functional Connectivity of Default
Mode Network in Schizophrenia and
Links to Symptom Severity.

Front. Neural Circuits 15:649417.
doi: 10.3389/fncir.2021.649417

Check for
updates

Aberrant Dynamic Functional
Connectivity of Default Mode
Network in Schizophrenia and Links
to Symptom Severity

Mohammad S. E. Sendi %%, Elaheh Zendehrouh*', Charles A. Ellis "3, Zhijia Liang?,
Zening Fu?®, Daniel H. Mathalon®°®, Judith M. Ford®®, Adrian Preda’, Theo G. M. van Erp?,
Robyn L. Miller3*, Godfrey D. Pearlson8, Jessica A. Turner®% and

Vince D. Calhoun "%348%%

"Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA,
United States, 2 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA,

United States, ® Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of
Technology, Georgia State University, Emory University, Atlanta, GA, United States, * Department of Computer Science,
Georgia State University, Atlanta, GA, United States, ° Department of Psychiatry, Weill Institute for Neurosciences, University
of California, San Francisco, CA, United States, ¢ Mental Health Service, Veterans Affairs San Francisco Healthcare System,
San Francisco, CA, United States, ” Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA,
United States, © Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States, ° Department
of Psychology, Neuroscience Institute, Georgia State University, Atlanta, GA, United States

Background: Schizophrenia affects around 1% of the global population. Functional
connectivity extracted from resting-state functional magnetic resonance imaging (rs-
fMRI) has previously been used to study schizophrenia and has great potential to
provide novel insights into the disorder. Some studies have shown abnormal functional
connectivity in the default mode network (DMN) of individuals with schizophrenia, and
more recent studies have shown abnormal dynamic functional connectivity (dFC) in
individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN
dFC and symptom severity have not been well-characterized.

Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and
healthy controls (HC) across two datasets were analyzed independently. We captured
seven maximally independent subnodes in the DMN by applying group independent
component analysis and estimated dFC between subnode time courses using a sliding
window approach. A clustering method separated the dFCs into five reoccurring brain
states. A feature selection method modeled the difference between SZs and HCs using
the state-specific FC features. Finally, we used the transition probability of a hidden
Markov model to characterize the link between symptom severity and dFC in SZ subjects.

Results: We found decreases in the connectivity of the anterior cingulate cortex
(ACC) and increases in the connectivity between the precuneus (PCu) and the posterior
cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability
from a state with weaker PCu/PCC and stronger ACC connectivity to a state with
stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.
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Conclusions: To our knowledge, this was the first study to investigate DMN dFC and
its link to schizophrenia symptom severity. We identified reproducible neural states in
a data-driven manner and demonstrated that the strength of connectivity within those
states differed between SZs and HCs. Additionally, we identified a relationship between
SZ symptom severity and the dynamics of DMN functional connectivity. We validated
our results across two datasets. These results support the potential of dFC for use
as a biomarker of schizophrenia and shed new light upon the relationship between
schizophrenia and DMN dynamics.

Keywords: dynamic functional connectivity, schizophrenia, default mode network, interpretable machine learning,

hidden Markov model

INTRODUCTION

In recent years, static functional connectivity (sFC) obtained
from resting-state functional magnetic resonance imaging (rs-
fMRI) time series has revealed a great deal of knowledge
about brain dysconnectivity in schizophrenia (Lynall et al,
2010; Skatun et al., 2017). Among intrinsic brain networks, the
default mode network (DMN)—including the anterior cingulate
cortex (ACC), posterior cingulate cortex (PCC), precuneus
(PCu), medial prefrontal cortex (mPFC), ventral ACC, and the
lateral/inferior parietal cortices—has been widely studied due to
its putative role in external monitoring, spontaneous cognition,
and autobiographical thinking (Hu et al., 2017) and due to its
links to mental disorders like schizophrenia (Du et al., 2016).

In the DMN, the anterior and posterior cingulate cortices
(ACC and PCC) are involved in multiple complex cognitive
functions, including decision-making, empathy, emotion,
socially-driven interactions, and autobiographical memory
(Stevens et al., 2011; Leech and Sharp, 2014). Several studies
showed a functional and structural alteration within and between
the cingulate cortex and other regions that emphasized the
role of this region in the pathology of schizophrenia (Wood
et al,, 2007; Calabrese et al., 2008; Whitfield-Gabrieli et al., 2009;
Woodward et al.,, 2011; Yan et al., 2012; Peeters et al., 2015;
Wang et al.,, 2015, 2017; Guo et al,, 2017; Li et al., 2019). In a
voxel-wise comparison between schizophrenia (SZ) subjects and
healthy controls (HC), SZ individuals show a reduction of ACC
gray matter (Wang et al., 2007). In addition, a reduction of ACC
functional connectivity within DMN has been associated with
SZ (Li et al,, 2019). Regarding the PCC, a reduction of PCC
gray matter volume has been found in both individuals with
schizophrenia and their non-psychotic siblings (Calabrese et al.,
2008). One rs-fMRI study showed higher connectivity between
the PCC and PCu in SZ subjects (Whitfield-Gabrieli et al., 2009).
Consistent with this, an increase in connectivity between the
PCu and PCC has been reported in schizophrenia subjects and
their siblings (Peeters et al., 2015). In a small sample size, lower
functional connectivity of the ACC in the anterior DMN and the
PCu in the posterior DMN of schizophrenia subjects exhibiting
poor insight is reported (Liemburg et al., 2012).

Several studies from our group and others have previously
reported a link between sFC among the ACC, PCC, and PCu

and symptom severity in schizophrenia (Whitfield-Gabrieli et al.,
2009; Hare et al., 2019; Nawaz et al., 2021). One of those studies
reported a positive correlation between PCu/PCC connectivity
and symptom severity as measured by the scale for the assessment
of positive symptoms (SAPS) in a relatively small number of
subjects (Whitfield-Gabrieli et al., 2009). A separate study showed
aberrant connectivity within the DMN and also that DMN
connectivity correlates with symptom severity in schizophrenia
subjects (Garrity et al., 2007), and another study found a link
between the ACC thickness of SZ subjects and the duration of
illness and severity of psychotic symptoms (Wang et al., 2007).

All the studies mentioned above either studied the DMN
as a whole or emphasized the separate role of the PCC,
ACC, and PCu within the DMN and their connectivity to
the pathology of schizophrenia. However, inconsistent results
in the functional connectivity of the regions have been
previously observed. For example, previous studies showed
that SZ subjects had both an increase and a decrease in
ACC connectivity within the DMN compared with HC (Li
et al., 2019; Shukla et al.,, 2019). Although this inconsistency
could, to a limited extent, be attributed to differences in
disease subtypes or symptoms, we theorize that some of the
heterogeneity is driven by the emphasis on sFC, which represents
an average across different brain states during an unconstrained
resting state.

Unlike conventional sFC, which is obtained from the
correlation within an entire time series, dynamic functional
connectivity (dFC) or its network analog, dynamic functional
network connectivity (dFNC) refers to the connectivity between
pairs of brain regions (or networks) within sub-intervals of time
series (Calhoun et al, 2014). In fact, dFC research suggests
that cognitive deficits and clinical symptoms associated with
many psychiatric disorders not only depend on the strength
of the connectivity between any brain regions but also on the
variation of connectivity strength between those regions over
time (Calhoun et al, 2014; Damaraju et al., 2014; Du et al,
2015; Engels et al., 2018; Vergara et al., 2018; Bhinge et al., 2019;
Sanfratello et al., 2019; Schumacher et al., 2019).

The temporal feature of dFC has been reported as a
plausible biomarker for identifying the fundamental mechanisms
differentiating healthy individuals and schizophrenia subjects
(Damaraju et al, 2014; Du et al, 2015; Rashid et al., 2016;
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Sanfratello et al., 2019; Sendi et al., 2021b). A previous whole-
brain dynamic connectivity analysis showed that schizophrenia
subjects spend less time in a highly-connected state (Damaraju
et al, 2014; Sendi et al, 2020). A study from our group
showed an abnormal pattern in the dFNC of the DMN by
comparing state-based connectivity strength, dwell time, and
the number of between-state transitions of HC and SZ subjects
(Du et al., 2015). The study identified a SZ-associated pattern
in the temporal dynamics of the DMN in SZ subjects by
showing that they spend more time in a state with sparsely
connected nodes. The study also demonstrated a state-specific
spatial disruption within the DMN by showing that the central
hubs of the PCC and the anterior medial prefrontal cortex
are significantly impaired in SZ subjects. However, the study
did not show how symptom severity is associated with the
identified abnormal pattern and how dFC patterns differ between
subjects with varying symptom severity. Also, in contrast with the
previously mentioned study that used a seed-based approach to
extract the brain network components (regions), in the current
study, we used a framework called NeuroMark (Du et al,
2020). NeuroMark is a fully automated independent component
analysis (ICA) framework that uses spatially constrained ICA to
estimate comparable features across subjects by taking advantage
of the replicated brain network templates extracted from two
N ~900 normative resting fMRI data sets. We analyzed the
dFC of data-driven DMN subnodes based on the NeuroMark
template and showed an aberrant temporal pattern and a
link between this connectivity pattern and symptom severity
in schizophrenia.

To investigate the temporal dynamics of FNC within DMN
subnode connectivity, we used two different datasets. A sliding
window approach was used to generate dFC samples, and k-
means clustering was applied to identify a set of data-driven
dFC states (Calhoun et al., 2014). Further, to investigate and
model the temporal changes in the dFC, we estimated the
transition probability via a hidden Markov model (HMM)
applied to the dFC data. In the next step, via statistical
analysis on the estimated HMM features, we tested for
links between schizophrenia symptom severity and abnormal
DMN dFC. Finally, to investigate within-state variability across
all subjects, we utilized an interpretable machine learning
approach, called logistic regression with elastic net regularization
(ENR), to identify the features that were most important
to differentiating between SZ and HC subjects (Tibshirani,
2011). This approach can model the differences between SZ
and HC individuals in the connectivity of DMN subnodes
within each state. We hypothesized that the disruption of
state-dependent connectivity within a shorter timescale would
reveal more information about the dynamics among DMN
subnodes in schizophrenia and potentially explain previous
heterogeneous findings regarding these subnodes. Also, the
investigation of the link between symptom severity and dFC
within the three network subnodes provides additional insight
into the link between functional connectivity dynamics and
clinical phenomenology. The application of these methods
to two distinct rs-fMRI datasets enabled the validation our
findings and increased the likelihood of our results being

generalizable across the broader population of individuals
with schizophrenia.

MATERIALS AND METHODS

Participants and Dataset

Data were obtained from the Mind Research Network Center
of Biomedical Research Excellence (COBRE) (Aine et al., 2017)
and the Functional Imaging Biomedical Informatics Research
Network (FBIRN) (van Erp et al.,, 2015) projects. The COBRE
dataset includes 89 HCs and 68 SZ subjects. The FBIRN dataset
contains 151 SZ subjects and 160 HCs. The raw imaging data
were collected from seven sites including the University of
California, Irvine; the University of California, Los Angeles; the
University of California, San Francisco; Duke University/the
University of North Carolina at Chapel Hill; the University of
New Mexico; the University of Iowa; and the University of
Minnesota. In this study, written informed consent was obtained
from all participants. Institutional review boards approved the
consent process of each study site. It is worth mentioning that
the COBRE subjects’ eyes were open during scanning while
the FBIRN subjects’ eyes were closed. SZ patients were on a
stable dose of typical, atypical, or combination antipsychotic
medication for at least 2 months prior to data recording and had
an illness duration of at least 1 year. HC and SZ individuals with
a history of significant medical illness and an IQ of <75 were
excluded from the study. In addition, those HC subjects with
a current or past history of major neurological and psychiatric
disorders in either themselves or a first-degree relative were
excluded from this study. The demographic information for these
subjects is shown in Table 1 and Supplementary Table 1. Using
a two-sample ¢-test, we did not observe a significant difference
between the ages of the HC and SZ groups in either dataset.
A diagnosis of schizophrenia was confirmed with the SCID-IV
interview (First et al., 2002b), and an absence of schizophrenia
diagnosis in HC was confirmed with the SCID-I/NP interview
(First et al., 2002a). In addition, HCs with a first-degree relative

TABLE 1 | Demographic and clinical information of subjects.

74 HC P-value
COBRE Number 68 89 NA
Age 37.79 £ 14.44 38.09 + 11.66 0.52
Gender (M/F) 57/11 64/25 0.61
PANSS (positive) 15.29 £5.05 NA NA
PANSS (negative) 14.72 £5.45 NA NA
FBIRN Number 151 160 NA
Age 38.06 + 11.30 37.04 + 10.68 0.41
Gender (M/F) 115/36 115/45 0.99
PANSS (positive) 156.32 £ 4.92 NA NA
PANSS (negative) 14.32 £ 5.42 NA NA

SZ, Schizophrenia; HC, healthy control; PANSS, Positive and Negative Syndrome Scale;
M, Male; F;, Female; NA, not applicable; all p-values have been calculated using two-
sample t-test.
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with an Axis-I psychotic disorder diagnosis were also excluded.
Symptom scores were determined based on the positive and
negative syndrome scale (PANSS) (Hare et al., 2017).

MRI Data Acquisition System

For the COBRE dataset, the MRI Images were collected on
a single 3-Tesla Siemens Trio scanner with a 12-channel
radiofrequency coil. High resolution T2*-weighted functional
images were acquired using a gradient-echo echo-planar imaging
(EPI) sequence with TE = 29 ms, TR = 2, flip angle = 75°, slice
thickness = 3.5 mm, slice gap = 1.05 mm, field of view = 240 mm,
matrix size = 64, voxel size = 3.75 x 3.75 x 4.55 mm?. Resting-
state scans consisted of 149 volumes. Subjects were instructed
to keep their eyes open during the resting-state scan and stare
passively at a central cross (Aine et al., 2017). For the FBIRN
dataset, six sites used 3T Siemens TIM Trio scanners, and one
site used a 3T GE MR750 scanner for collecting the imaging data.
All sites used the following T2*-weighted AC-PC aligned EPI
sequence: TR = 2s, TE = 30 ms, flip angle = 77°, slice gap =
1 mm, voxel size = 3.4 x 3.4 x 4 mm?>, number of frames = 162,
acquisition time = 5 min and 38 s (van Erp et al., 2015).

Data Processing

Statistical parametric mapping (SPM12, https://www.fil.ion.ucl.
ac.uk/spm/) in the MATLAB2019 environment was used to
preprocess fMRI data. The first five dummy scans were discarded
before preprocessing. Slice-timing correction was performed on
the fMRI data. Rigid body motion correction was then applied
to account for subject head motion in SPM. Next, the imaging
data underwent spatial normalization to an EPI template in the
standard Montreal Neurological Institute (MNI) space and was
resampled to 3 x 3 x 3 mm?>. Finally, a Gaussian kernel was used
to smooth the fMRI images using a full width at half maximum
(FWHM) of 6 mm.

In each dataset, to extract reliable DMN independent
components (ICs), we used the Neuromark automatic ICA
pipeline within the group ICA of fMRI toolbox (GIFT, http://
trendscenter.org/software/gift), which uses previously derived
component maps as priors for spatially constrained ICA (Du
et al., 2020). The Neuromark automatic ICA pipeline was used
to extract ICs by employing previously-derived component maps
as priors for spatially constrained ICA. In Neuromark, replicable
components were identified by matching group-level spatial
maps from two large-sample HC datasets. Components were
identified as meaningful regions if they exhibited peak activations

TABLE 2 | Component labels extracted using neuromark.

Component name Peak coordinate (mm)

(IC 32), Precuneus [PCu1] -8.5 —66.5 35.5
(IC,40), Precuneus [PCu2] —12.5 —54.5 14.5
(IC 23), Anterior cingulate cortex [ACC1] —2.5 35.5 2.5
(IC 71), Posterior cingulate cortex [PCC1] -5.5 —28.5 26.5
(IC 17), Anterior cingulate cortex [ACC2] -9.5 46.5 —-10.5
(IC 51), Precuneus [PCu3] -0.5 —48.5 49.5
(IC 94), Posterior cingulate cortex [PCC2] 2.5 54.5 315

in the gray matter within the DMN. Seven DMN subnodes were
identified based on an anatomical template (Tzourio-Mazoyer
et al., 2002). This set of subnodes included three subnodes in the
PCu, two subnodes in the ACC, and two subnodes in the PCC.
These subnodes are shown in Table 2 and Figure 1 (Step 1). With
seven DMN subnodes, we had 21 connectivity features, where
each feature represented the strength of the connection between
a pair of DMN subnodes.

Dynamic Functional Connectivity

For each subjecti=1... N, the dFC of the seven subnodes in the
DMN was estimated via a sliding window approach, as shown in
Figure 1. A tapered window obtained by convolving a rectangle
(window size = 20 TRs or 40 s) with a Gaussian (o = 3 s) was used
to localize the dataset at each time point. A covariance matrix
was calculated to measure the dFC (Figure 1, Step 2). The dFC
estimates of each window for each subject were concatenated to
form a (C x C x T) array (where C = 7 denotes the number
of subnodes, and T = 124 in COBRE and T = 137 in FBIRN
denotes the number of windows), which represented the changes
in brain connectivity between subnodes as a function of time
(Allen et al., 2014; Calhoun et al., 2014; Fu et al., 2019). Since
the temporal resolution and the eye condition of the two datasets
were different, we did not combine them in our study and chose
to analyze them separately instead.

Clustering and Latent Transition Feature

Estimation

After calculating the dFC of each subject separately, we vectorized
each FC window and concatenated all subjects, including both
the SZ and HC groups, as shown in Step 3 of Figure 1. Next, the
k-means clustering algorithm was applied to the dFC windows
to partition the concatenated matrix into a set of distinct clusters
or states (Allen et al., 2014; Calhoun et al., 2014; Zhi et al., 2018;
Sendi et al,, 2021a). An FC state, which is a conceptual analogy of
an EEG microstate, is a global pattern of DMN connectivity that
remains quasi-stable for a short period of time before changing
to another connectivity pattern that also remains quasi-stable
(Calhoun etal., 2014). The optimal number of centroid states was
estimated to be five using the elbow criterion based on the ratio of
within to between cluster distance. Correlation was implemented
as a distance metric in the clustering algorithm in 1,000 iterations.
The output of k-means clustering includes five distinct states
across all subjects and a state vector for each individual. The state
vector shows how the DMN changes between each pair of states
over time. Next, for each subject, we calculated the transition
probability between states via an HMM, and this probability was
used as a latent feature of the dFC. The transition probability, a;;,
is the probability of the network to transition from state j at time
t to state i at time +1 (Step 3 in Figure 1).

aij = pls(t+ 1) = ils (t) = j) (1)

For each subject, 25 HMM features were obtained from the
five states. This analysis was repeated separately for both the
COBRE and FBIRN datasets, and the results of the analyses were
compared to identify reoccurring patterns.
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Quantifying Group Differences With a

Feature Selection Method

Logistic regression (LR) classification was employed to quantify
the difference between SZ subjects and HCs based on the 21
connectivity features of each state. The process is shown in

Figure 2. In this process, the FC matrix of each window was
converted to a vector. For the seven regions in the DMN, we
obtained a total of 21 features (i.e., C, Cy, ..., Cy1). Elastic net
regularization (ENR), a machine learning-based feature selection
method, was used to model the difference between the HC

Default mode network (DMN:7)

X=-5mm Y =-55 mm Z=33mm

‘ (awn) @1 mopuip

FIGURE 1 | Analytic pipeline. Step 1: The time-course signal of seven regions in the default mode network (DMN) has been identified using group-ICA. Step 2: After
identifying seven regions in the DMN, a taper sliding window was used to segment the time-course signals and calculate the functional connectivity (FC) matrix. Each
FC matrix contains 21 connectivity features. Each feature represents the connectivity between a pair of DMN subnodes. Step 3: After vectorizing the FC matrixes, we
concatenated them and applied k-means clustering to group the FCs into five distinct clusters. Then, 25 hidden Markov model (HMM) features were calculated from
the state vector of each subject. We investigated the association between HMM features and symptom severity in schizophrenia subjects.
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FIGURE 2 | Feature selection. The connectivity features of seven default mode network (DMN) subnodes were used as inputs to fit a logistic regression classifier to
discriminate SZs from HCs. With seven subnodes of the DMN, we had 21 connectivity features. The feature selection method, elastic net regularization (ENR), used
the model generated by the classifier and the input features to identify the most predictive features. ACC, Anterior cingulate cortex; PCC, posterior cingulate cortex;
PCu, Precuneus. Table 2 provides more information about different subnodes.
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and SZ subjects (Zou and Hastie, 2005; Tibshirani, 2011). ENR
applies both L1- and L2-regularization, as shown in Equations
(2) and (3). In this method, the LR model parameters (i.e., feature
coefficients) will move toward zero as A increases, meaning that
their respective features will have progressively less impact upon
the model. This will give a trajectory of the model parameters as a
function of A and form a model regularization path. The features
related to the slowest decaying coefficients had an overall slower
decrease in impact upon the model and were considered to be
most important. The cost function used in ENR is shown in the
equations below:

N
min , 1 o Tyl
ﬂo’ﬁ%;m Bo —xI'B)” + APa(B)) )
1_
=" el O

where N is the number of samples, y; is the label of sample i, x; is
the feature vector of sample i, 8 and Sy are model parameters, A
is the regularization parameter, and P,(f) is the penalty term in
which o (a scaler value) determines the relative contributions of
the L1 and L2 norms where o = 1 is purely an LI norm and o =
0 is purely an L2 norm (Zou and Hastie, 2005).

The LR model was fit using 10-fold nested cross-validation
(CV) with a train-test ratio of 9:1 (Wainer and Cawley, 2018).
In nested CV, the data was divided into training and test sets
in an outer fold, while the training data was further divided
into another training set and a validation set in the inner
fold. The optimized parameters were obtained using the inner-
loop training and validation data. Here, the hyperparameters
of each model were tuned to minimize the inner-fold CV
error of the generalization performance by sweeping the
regularization parameter across 100 logarithmically-distributed
values between 107> and 10°, generating a new model for each
regularization parameter value, and calculating the performance
of the new models on the validation data. Using the results
of the performance of the classifiers upon the test data, we
computed the receiver operating characteristic (ROC) of the
cross-validation and the area under the curve (AUC) as a measure
of separability between SZs and HCs. To identify the most
informative feature to the classification between SZs and HCs, we
calculated the proportion of models for which a given feature was
retained during the regularization parameter sweep in the inner
fold. The model parameters that decayed most slowly across the
regularization parameter values enabled their respective features
to be retained across a greater proportion of models and thus
have a greater relative effect upon more models. As such, this
measurement may be interpreted as the relative importance of
each feature in the classification. We further applied multiple
comparisons in a one-way analysis of variance (ANOVA) test and
found the groups of features that most contributed to the model
classifying between HC and SZ subjects.

Statistical Analysis

To find a link between the 25 HMM features and the PANSS
of the SZ group, we used Pearson’s partial correlation method
accounting for age (both datasets), gender (both datasets), and

scanning site (for FBIRN only). We accounted for scanning site
in the FBIRN dataset to help reduce any bias that may have
resulted from interrater differences across sites. All p-values were
adjusted by the Benjamini-Hochberg correction method for false
discovery rate, or FDR (Benjamini and and, 1995).

RESULTS
Dynamic Functional Connectivity States

Five states were identified in both datasets, as shown in Figure 3.
For easier comparison, we vertically aligned the similar states
of both datasets. The Pearson correlation between the cluster
centroid matrix was used to quantify the similarity between the
states identified within each dataset. The state centroid values
are shown in Table 3. Similar dynamic DMN FC was observed
in both datasets even though the eye condition during recording
was different across datasets. The ACC regions showed negative
connectivity in all states of both datasets except for state 5
in the FBIRN data. The connectivity between the ACC and
PCC (ACC/PCC) was negative in all states of both datasets
according to Table 3, and the connectivity between PCuand PCC
was positive in all states of both datasets except state 3 of the
FBIRN dataset. Within PCu, within PCC, and between PCu and
ACC showed similar positive and negative connectivity patterns
across datasets.

Difference Between SZ and HC

Connectivity in Each State

A feature learning method embedded in a 10-fold LR classifier
was used to identify the differences between SZ and HC subjects
in each state (Figure2). Figures4, 5 show the classification
and feature learning results of each state in the classification
between SZ and HC subjects in the COBRE and FBIRN
datasets, respectively. Multiple features were identified as equally
important for differentiating each state. A detailed description
of the feature learning results can be found in the section,
“Classification and Feature Selection Results for Each State,
of the Supplementary Materials. Figure 6 consolidates results
from Figures4, 5 for easier comparison across datasets. It
depicts differences in features between the SZ and HC groups
(corrected p < 0.05) that were selected by ENR in the COBRE
dataset (Figure 6A) and the FBIRN dataset (Figure 6B). Red
lines show stronger connectivity in HC subjects relative to SZ
subjects, and blue lines show stronger connectivity in SZ subjects
relative to HC subjects. The line width indicates the difference in
connectivity strength between the SZ and HC groups.

Disrupted connectivity between the PCu and PCC (PCu/PCC)
was observed in both datasets. In both datasets, we observed
higher PCu/PCC connectivity in SZ subjects in states 1 and 4
(corrected p < 0.05). State 5 of the FBIRN dataset also displayed
higher PCu/PCC in SZ subjects. In the COBRE dataset, SZ
subjects showed a lower PCu/PCC connectivity in state 2 and
state 5 (corrected p < 0.05), and in the FBIRN dataset, PCu/PCC
connectivity of SZ was lower in state 3 (corrected p < 0.05). Also,
for both datasets, the connectivity between PCu and the cingulate
cortex (including both the ACC and PCC) of SZ subjects was
higher in state 1, state 3, state 4, and state 5 (corrected p < 0.05).
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State1 State2

COBRE

FBIRN

State3

FIGURE 3 | Dynamic connectivity states results. The five dFC states identified with k-means clustering in the COBRE data for both SZ and HC subjects are shown on
the top panels. The five dFC states identified with k-means clustering in the FBIRN data for both SZ and HC subjects are shown on the bottom panels. The similar
states between the two datasets are aligned vertically. The similarity between states was measured by the Pearson correlation of the cluster centroid matrix of the two
datasets. There is not a similar pattern between COBRE and FBIRN in state 5. The color bar shows the strength of the connectivity. The white boxes around some of
the cells indicate those cells that differed across the datasets. Table 2 provides more information about different subnodes.
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TABLE 3 | Mean value of the connectivity in each state based on the cluster centroid matrix from Figure 3.

PCu ACC PCC PCu/ACC PCu/PCC ACC/PCC
COBRE State 1 —0.053 —0.142 0.145 —0.018 0.085 —0.060
State 2 —0.004 —0.166 —0.050 0.003 0.071 —0.055
State 3 0.051 —0.028 —0.204 0.063 0.002 —0.080
State 4 0.068 —0.249 0.077 —0.0619 0.1234 —0.100
State 5 —0.019 —0.139 —0.099 0.025 0.041 —0.024
FBIRN State 1 —0.009 —0.025 0.132 —0.028 0.101 —-0.128
State 2 —0.018 —0.140 —0.099 0.028 0.049 —0.042
State 3 0.064 —0.026 —0.202 0.075 —0.003 —0.100
State 4 —0.010 —0.215 0.086 —0.015 0.080 —0.057
State 5 —0.034 0.088 —0.051 0.061 0.010 —0.090

PCu, Precuneus; ACC, Anterior cingulate cortex; PCC, Posterior cingulate cortex; PCu/ACC, Connectivity between PCu and ACC; PCu/PCC, Connectivity between PCu and PCC;

ACC/PCC, Connectivity between ACC and PCC.

Both datasets showed higher ACC connectivity in HC subjects
in state 2 (corrected p < 0.05), and the FBIRN data showed
a higher ACC connectivity in HC subjects in states 1, 3, 4,
and 5 (corrected p < 0.05). Higher HC PCC/ACC connectivity
was observed in states 2 and 4 of both datasets (corrected
p < 0.05), and higher HC PCC/ACC connectivity was also
observed in states 1 and 5 of the COBRE dataset (corrected p
< 0.05). For state 3 in both datasets, PCC/ACC connectivity was
similar across HC and SZ groups. Additionally, PCC connectivity
of the HC and SZ groups was similar across all states and
both datasets.

Symptom Correlation With HMM Features
It is important to understand how the dynamic aspects of DMN
connectivity correlate with symptom severity. In the COBRE
dataset, one correlation between total PANSS and an HMM
feature was significant after accounting for FDR correction (FDR
corrected p < 0.05). In this instance, symptom severity showed a
positive correlation with transitions from state 2 to state 4 (r =
0.40, FDR corrected p = 0.02, n = 64). Similar results were found
in the FBIRN data in which the transition probability from state
2 to state 4 showed a significant correlation with negative PANSS
(r =0.32, FDR corrected p = 0.002, n = 141).
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FIGURE 4 | Feature selection results in COBRE dataset. The left panel shows the receiver operating characteristic curve of the classification between SZs and HCs in
each state. The right panel shows the relative importance of the features to the classification. The colorful features are groups of equally important features that were
found to be of greater importance than the remaining features by a multiple comparison ANOVA test. The features (C1 — Cp1) are defined in Figure 2. AUC, Area under
the curve.
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FIGURE 5 | Feature selection results in FBIRN dataset. The left panel shows the receiver operating characteristic curve of the classification between SZs and HCs in
each state. The right panel shows the relative importance of the features to the classification. The colorful features are groups of equally important features that were
found to be of greater importance than the remaining features by a multiple comparison ANOVA test. The features (C1 — Cp1) are defined in Figure 2. AUC, Area under
the curve.
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FIGURE 6 | Group difference between SZ and HC connectivity in each state. Group differences in dFC of those connectivity features selected by elastic net
regularization method (see Figures 4, 5) in each state (corrected p < 0.05). Wider line means larger group difference. Red lines represent increased connectivity while
blue lines represent decreased connectivity in HC subjects. (A) COBRE dataset. (B) FBIRN dataset. ACC, Anterior cingulate cortex; PCC, Posterior cingulate cortex;
PCu, Precuneus; HC, Healthy control; SZ, Schizophrenia. Table 2 provides more information about different subnodes.

DISCUSSION used to identify subnodes yields reproducible nodes that should
contribute to the overall generalizability of our results (Du et al.,
Two key goals of the current study were (1) ensuring the  2020).
generalizability of results by identifying similar patterns found Previously, a few studies directly examined ACC functional
in two distinct datasets and (2) offering an explanation for  connectivity in the pathophysiology of schizophrenia. However,
preexisting contradictory findings on DMN connectivity  inconsistent results were observed. One study reported lower
in schizophrenia. We explored the temporal dynamics of  ACC connectivity in SZ (number of subject or N = 58) subjects
functional connectivity among several data-driven DMN  relative to HCs (N = 61) (Shukla et al., 2019). A recent study
subnodes from the PCC, ACC, and PCu regions using rs-  showed a higher ACC connectivity for SZ (N = 32) subjects
fMRI of two schizophrenia datasets. We further explored  at baseline relative to HCs (N = 32) and a decreased ACC
SZ and HC group connectivity differences among the  connectivity after 1 week of olanzapine treatment (Li et al,
subnodes, identifying multiple patterns that generalized  2019). In the current study, we identified a pattern of disrupted
across datasets. ACC connectivity in the smaller dataset (i.e., COBRE), in which
In both datasets, we observed negative connectivity within the =~ one state showed a higher ACC connectivity in HCs and
ACC (except state 5 of FBIRN) and between the ACC and PCC  other states showed no significant differences between HC and
of all states of both datasets. While the connectivity between the =~ SZ groups. On the other hand, in the FBIRN dataset, which
PCu and PCC was positive in all states of both datasets except  is a relatively large dataset compared to the COBRE dataset
state 3 of the FBIRN dataset. On the other hand, the connectivity = and the datasets in the studies mentioned above, we found a
between the PCu and ACC, within the PCu, and within the  consistent increased ACC connectivity of HC subjects in all
PCC demonstrated a similar pattern in both datasets, fluctuating  states. A possible explanation of previous inconsistent findings
between positive and negative connectivity. Here, using data-  is the small sample size of the studies. However, even in the
driven subnodes within the DMN, we showed that the brain  smaller dataset, we highlighted increased ACC connectivity in
network is highly dynamic. Previous literature typically ignored =~ HCs with the dFC approach. As such, the use of sFC obtained
this dynamical DMN behavior. In contrast to the previous study ~ from unconstrained rs-fMRI could be another explanation for
that evaluated DMN dynamics using pre-defined regions of  previous inconsistent results on ACC connectivity. Finally, a
interest (Du et al., 2016), the work presented here is the first  previous study in a relatively small number of subjects (N
study that utilized data-driven subnodes, compared the within- = 13) reported marginally (p = 0.05) greater within-PCC
DMN connectivity between SZ and HC subjects, and linked the ~ connectivity in SZs relative to HCs (Whitfield-Gabrieli et al.,
temporal patterns of the DMN with symptom severity in SZ  2009). However, in the current study, in which both datasets had
subjects. As recent work has emphasized, it is essential to ensure  a relatively larger sample size, no significant differences within-
that data within a node is consistent; otherwise, the results canbe ~ PCC were observed in any state. This supports the importance of
misleading (Yu et al., 2017). This is especially true when studying  using data-driven subnodes to study within-PCC connectivity in
dynamics (Iraji et al., 2020). The Neuromark pipeline that we  schizophrenia pathophysiology.
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Although most previous studies of DMN functional
connectivity focused on the ACC and PCC, we further
highlighted the role of PCu/PCC connectivity via a comparison
between HC and SZ subjects in two different datasets. In three
of five states of both datasets, we found that the PCu/PCC
connectivity was greater in SZs than HCs. However, we observed
unique behavior across dFC states that would not be captured
by sFC. Using sFC, previous studies reported both increases
(Whitfield-Gabrieli et al., 2009; Peeters et al, 2015) and
decreases (Wang et al., 2014) in the PCu/PCC connectivity in
schizophrenia. These contradictory results are possibly due to
focusing on sFC and averaging the functional connectivity across
time. The current study showed a disrupted pattern of PCu/PCC
connectivity with a relatively large sample and potentially
highlighted the importance of studying functional connectivity
sampled from shorter periods.

We investigated the link between symptom severity and
dFC temporal patterns in each subject. Consistent across both
datasets, we found a significant positive correlation between
symptom severity and the transition from a state with lower
PCu/PCC and higher ACC connectivity to a state with
higher PCu/PCC and lower ACC connectivity. These results
emphasize the role of cingulate cortex connectivity and PCu/PCC
connectivity as potential biomarkers of SZ, and the role is further
highlighted in the more severe SZ subjects. A previous study
explored the link between dFC features such as the number of
transitions between states and the dwell times of each state, and
the results were not significant after FDR correction (Rabany
et al, 2019). Our current study shows that HMM features
extracted from dFC are correlated with symptom severity and
supports the importance of exploiting the network dynamics as
potential biomarkers. This also motivates future work studying
the relationship of symptom severity to other dFC features.

The current study extends previous studies performed on
the same datasets that investigated the dynamics of the whole-
brain network connectivity (Damaraju et al., 2014; Sendi et al.,
2020). In a larger brain network, a group of brain networks
such as the visual, sensorimotor, and auditory networks, which
are strongly correlated, may mask less-correlated networks and
limit spatiotemporal resolution (Schlesinger et al., 2017). That
could potentially delineate why the main results of these studies
focused on these dominant networks and reported less on
networks like the DMN that may have been masked. Also,
due to higher DMN activity during resting state, studying the
dynamics of this network can reveal new information that cannot
be found by analyzing the whole-brain connectivity. Although
in the current study we focused on the DMN because of prior
knowledge of the role of the network in the pathophysiology
of schizophrenia, future investigations and methods that can
mechanistically remove irrelevant networks are needed (Cohen
et al,, 2015; Schlesinger et al., 2017; Qiao et al., 2019).

Finally, as mentioned earlier, the eye condition is different
in the COBRE and FBIRN datasets. A previous study reported
that different eye conditions might modulate DMN dynamics
(Zhang et al, 2018), which could explain some differences
in the DMN dynamics between the two datasets. State 5 of
FBIRN dataset was distinguished from all other states in both

datasets by showing higher within-ACC connectivity. Since
previous literature showed higher activity in the ACC during
sleep (Hobson and Pace-Schott, 2002), we wonder whether this
connectivity pattern is possibly linked to the light sleep or
drowsiness that may have occurred during the unconstrained
state of eyes-closed in the FBIRN dataset. This potentially
demonstrated another benefit of dynamic functional connectivity
analysis, separating undesired states from the rest, specifically
when the eye is closed.

Limitations

There are some limitations to this work. Symptom scores are
highly dependent on the skill and knowledge of the rater and
the inclination of the subjects to be accurate in describing their
symptoms (Kay et al., 1987). As such, our use of the FBIRN
dataset, which was collected from multiple sites and raters,
may have introduced a degree of bias into our analyses. Our
use of Pearson’s partial correlation accounting for FBIRN data
collection site should have helped eliminate any bias resulting
from the collection site. The choice of window size is an implicit
assumption about the dynamic behavior of the network in that
a short window captures more rapid fluctuations, whereas a
longer window causes more smoothing. Previous studies suggest
that a window size between 30 and 60s provides a reasonable
choice for capturing dFC variation (Preti et al, 2017). The
duration of scanning was over 5min, which has been shown
to result in reliable and replicable resting-state FNC (Van Dijk
et al.,, 2010; Abrol et al., 2017). While we are encouraged by
the similarity of results across multiple data sets, schizophrenia
is likely a heterogeneous disorder, and more work is needed to
evaluate the potential of multiple types of connectivity patterns
within this group to provide additional insight into the disorder.
Schizophrenia subtyping is outside the scope of the current study.
Additionally, the resting state fMRI data that we used have dated
collection parameters. However, the functional networks at these
parameters tend to be well-represented and comparable to 3 mm
isotropic data. While these parameters should not have adversely
affected our results, it could be beneficial to repeat the current
analysis as newer datasets become available in the future.

Conclusion

Previous studies focused on static connectivity of the DMN,
including the PCC, ACC, and PCu and showed an essential
role of this connectivity in schizophrenia. In the current
work, we extended this existing body of research into
the domain of dynamics by investigating the temporal
patterns of connectivity in the DMN. A comparison of the
DMN connectivity in SZs and HCs identified patterns of
disruption in a shorter timescale that were reproducible
across two relatively large datasets with distinct collection
protocols. These patterns of disruption could possibly
explain why previous studies of DMN connectivity showed
contradictory results. In both datasets, we found that SZ
subjects with higher symptom severity are more likely to
transition from a state with lower PCu/PCC connectivity and
higher ACC connectivity to a state with higher PCu/PCC
connectivity and lower ACC connectivity. This highlights
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the potential relationship between symptom severity and
the dysregulation of the dynamical properties of DMN
functional connectivity.
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