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Abstract— In this article, we present a recursive least squares
(RLS) and adaptive Kalman filter (AKF)-based state and para-
meter estimation (SE and PE) for series arc fault (SAF) detection
and identification on dc microgrids. It is evident from the state-of-
the-art research on dc SAFs that due to the lack of zero crossings
and low current of the fault, the detection/identification of a
SAF is difficult. Furthermore, due to the unplanned placement
of sensors and the effect of SAF’s noise signatures on the adjacent
sensors, we present a RLS-based SE for voltages and injection
currents. The injection currents and nodal voltages from the
states are then used by the AKF for a quick SAF detection,
by estimating line admittances on the microgrid. The simulation
results, control hardware in loop (CHIL), and experimental
results are presented to manifest the SE–PE technique’s potential.

Index Terms— Adaptive Kalman filter (AKF), dc microgrid,
fault detection, fault identification, parameter estimation (PE),
recursive least squares (RLS), series arc fault (SAF), state
estimation (SE).

I. INTRODUCTION

THE series arc fault (SAF) is one of the primary challenges
that hinder a full-scale deployment of dc microgrids.

In accordance with the rise in demand of renewable energy
as a power source and a consistent choice of loads being
dc, it is easier to deploy the microgrids/buses in dc. As most
sources and loads require a dc stage, dc microgrids can also
help in reducing the number of power conversion stages
compared to ac networks [1], [2]. Furthermore, the power
losses in dc transmission are lesser in comparison to an
ac transmission. On this premise, a dc microgrid is an apt
choice for modern microgrid deployment and it is necessary
to find solutions to challenges like the SAF. The SAF is a
consequence of line breakage which is caused by wear and
tear or loosely connected wires. The SAF further induces noise
in the circuit due to an ionized air gap that forms between the
two conductors which have a high relative charge [3]–[5]. The
low-current characteristic feature of a SAF makes detecting
and identifying it far more difficult than parallel/ground faults.
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In recent years, the state-of-the-art research in SAF detec-
tion/identification includes frequency- and time domain-based
approaches. Fourier transform [6], [7] and wavelet decomposi-
tion [4], [8] are few of the common procedures that constitute
the frequency domain-based analysis for SAF detection. In [9],
a method of SAF detection is presented for the load side
power electronics, based on the electrode-dependent initial
voltage drop that occurs at the arc initiation. While the
detection of a SAF is achievable, identifying the faulted line
is difficult using frequency domain-based approaches since
the arc noise propagates to the adjacent lines in the network.
Typical time domain-based approaches include parameter esti-
mation (PE)/state estimation (SE) algorithms like least squares
(LS), Kalman filter (KF) and their variants, and other convex
minimization algorithms. Fault detection and identification on
a distribution node using gradient algorithm is shown in [10].
Recursive LS (RLS) and KF are used for detecting a SAF
and identifying the faulted line on a distribution node in [11].
Detection and identification of SAF on a dc microgrid using
KF and adaptive-KF (AKF) is presented in [12]. A SAF
detection algorithm is proposed in [13] which analyzes line
current drops, line current average value change rates, the
standard deviations of the line current, and the ac component
of the supply voltage. A time domain technique based on the
mathematical morphology called the decomposed open-close
alternating sequence (DOCAS) is proposed in [14] for SAF
detection and identification on a typical PV system.

Application of ensemble machine learning algorithm for
SAF detection is presented in [15] and [16]. The algorithm
is trained with experimental arc fault data, and an adaptive
normalization function is designed to mitigate false positive
classification caused by load changes. A domain adapta-
tion combined with deep convolutional generative adversarial
network (DA-DCGAN) approach for SAF detection on a
PV circuit is presented in [17]. A dual state and PE is proposed
in [18], where the SE is performed using LS algorithm. In this
approach of SE, the measurement samples are collected over
a period of time and the cost function is formulated over a
window to provide real-time state estimates. However, this
causes a delay in the detection of SAF and identification
of the faulted line due to the time consumed in collect-
ing the samples. Furthermore, the LS-based SE requires the
calculation of a large matrix inverse, making this approach
computationally expensive. Using RLS method presented in
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this article, we can estimate the states at every iteration making
the execution and fault detection much faster.

Recently, SE for distribution grids has gained popularity
in an effort to keep the microgrid under control, because
of frequent fault scenarios and cyber-attacks/bad data injec-
tions. A two-step method to identify topology, estimate line
parameters, and recover missing voltage angles in common,
is proposed in [19]. The algorithm was further tested on an
IEEE 33 and IEEE 123 bus systems. The step 1 of the algo-
rithm includes basic identification, obtain basic topology and
line parameters through linear regression, while step 2 corrects
them by a specialized Newton–Raphson method. In [20], the
error in-variables model in a maximum-likelihood estimation
framework for joint line parameter and topology estimation in
distribution grids is proposed. A novel maximum likelihood
blind estimation of states and topology (ML-BEST) method
for power systems by formulating the problem as graph blind
source separation with a Laplacian mixing matrix is proposed
in [21]. In addition to estimation of the topology and event
detection, Ardakanian et al. [22] presents a linear regression
form of the nodal equation to estimate the line admittances.

Our contributions in this article include, a faster dual SE and
PE in comparison to [18], where the objective is to evaluate the
line admittance of a dc microgrid when every node does not
contain all the measurement sensors. The RLS technique using
a sparse tableau analysis (STA) [23], [24] is presented for SE
at every iteration, when measurements are obtained. The nodal
currents and voltages from the SE are forwarded to the AKF
for PE, which provides real-time line admittance values for
all the lines in a microgrid. When a line admittance shows
a significant drop in its value, the SAF is instantaneously
detected and the faulted line is identified.

This article is structured as follows. In Section II, the SE
by RLS is explained and in Section III, PE by AKF is dis-
cussed. In Section IV, case studies and simulation results are
presented and in Section V, control hardware in loop (CHIL)
result is demonstrated. Experimental result obtained from a
small microgrid test-bed is shown in Section VI and finally,
conclusion and future work are stated in Section VII.

We use the following notations in this article. For a
matrix A ∈ R

m×n , its vectorization is denoted as vec(A) =
(A11, . . . , Am1, A12, . . . , Am2, . . . , A1n, . . . , Amn)

T . An iden-
tity matrix is denoted by I. For a set X , its cardinality (number
of elements) is denoted by |X |. A column vector of ones of
length m is written as 1m . The notation ‖x‖2

J denotes x T J x .
The symbol ⊗ is used to define the Kronecker product.

II. STATE ESTIMATION

In this section, we describe a typical dc microgrid with
respect to its states and present the RLS algorithm for esti-
mating them when a reduced number of sensors are used.

A. Microgrid Description for SE

A dc microgrid can be defined by a directed graph

G = (V̄, E) (1)

where V̄ and E represent the set of nodes and edges, respec-
tively. The nodes are of the form V̄ = {0, 1, . . . , N}, where
0 is defined as the ground or reference node. The total number
of nodes are given by |V̄| = N + 1 and the number of edges
are |E | = E . A reduced set of nodes can then be defined as
V = V̄ − {0} (i.e., excluding the ground node) with |V| = N .
The set of edges E ⊆ V̄ × V̄ will be defined as follows
E = {

(p, 0g), . . . , (q, 0L), . . . , (i, j), . . .
}

where (i, j) implies
current direction from node i ∈ V̄ to node j ∈ V̄, the edge
(p, 0g) implies a generator is connected to node p ∈ V , and
(q, 0L) implies a load is connected to node q ∈ V .

The STA analysis will be used to formulate the Kirchhoff
current/voltage laws (KCL and KVL) and the branch equations
which govern the behavior of the microgrid defined by G.
The STA can be used to include a larger variety of sensors
(e.g., line current, generation current, load currents, etc.)
and components (e.g., nonlinear elements) which may not
be explicitly defined using the more traditional nodal
analysis [24].

The set of line currents will be defined by l ∈ R
E , the

branch voltages as e ∈ R
E , and the node voltages as V ∈ R

N .
These vectors are of the following form:

l = (
Ip0g · · · Iq0L · · · Ii j · · ·)T

e = (
Vp0g · · · Vq0L · · · Vi j · · ·)T

V = (
V1 · · · VN

)T
(2)

written in the same order as E and V . The reduced oriented
incidence matrix, A ∈ R

N×E , can then be used to derive
the KCL and KVL equations. The matrix A associates each
node/bus with its incident edges/lines. For example, for a line
(i, j) ∈ E , the i th row of A will have a “1” in the column
related to this edge and a “-1” in the j th row.

The STA [23]–[25] is then composed of

Al = 0, (KCL) (3)

AT V = e, (KVL) (4)

and the branch equations

Ŷi j Vi j − Ii j = 0 ∀(i, j) ∈ E, i, j ∈ V (5)

which can be written in matrix form as

Ke(ϒ̂)e + Kll = 0. (6)

The dimension of matrices Ke and Kl is Ein × E , where
Ein ≤ E is the number of lines (excluding generator and
loads) in the network. The vector ϒ̂ ∈ R

Ein consists of the
line admittances Yi j (to be estimated by AKF). The matrix
Ke(ϒ̂) is then updated after every update of the PE iteration.

The states of the dc microgrid are then defined as

x = (
eT V T lT

)T
(7)

and (3), (4), and (6) can be written as⎛
⎝ 0 0 A

I −AT 0
Ke 0 Kl

⎞
⎠

︸ ︷︷ ︸
T

⎛
⎝ e

V
l

⎞
⎠

︸ ︷︷ ︸
x

=
⎛
⎝0

0
0

⎞
⎠, (T x = 0). (8)
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The voltage and line current measurements are stored in the
vector y and the estimate of the state vector represented
by x̂(k) is updated by RLS at every iteration k. The linear
regression form relating the output vector to the microgrid’s
state vector is given by(

V T
meas lT

meas

)T

︸ ︷︷ ︸
y

= C
(
êT

i V̂ T
j l̂T

j

)T

︸ ︷︷ ︸
x̂

. (9)

B. Recursive Least Squares-Based SE

Using (8) and (9), a quadratic optimization problem can be
formulated as follows [18]:

min
x̂

1

2
‖y − Cx̂‖2

J + 1

2
‖T x̂‖2

D (10)

where matrices J and D are positive definite matrices used
as weights. Rather than solving (10) at every iteration or after
a collection of samples, we consider a recursive approach to
obtain faster estimates. For this purpose, we can combine (8)
and (9) as follows:

ỹ(k) = C̃ x̂(k) + vse(k) (11)

where

ỹ =
(

y
0(rows(T ),1)

)
, C̃ =

(
C
T

)
(12)

and vse(k) ∼ N (0, Rse(k)) is the measurement noise at time
k.

Using the RLS algorithm, the state estimate x̂(k) is updated
at every kth interval of time by

x̂(k) = x̂(k − 1) + Kse(k) [y(k) − C̃(k) x̂(k − 1)]. (13)

Defining the error as x̂(k)−x , its covariance matrix is denoted
by Pse(k)

Pse(k) = E[(x̂(k) − x)(x̂(k) − x)T ] (14)

with initial condition Pse(0) = mPse. The matrix Pse is an
identity matrix of appropriate dimension. We calculate Pse(k)
at every kth instant as

Pse(k) = 1

λ
[Pse(k − 1) − Kse(k)C̃(k)Pse(k − 1)]. (15)

The gain used to minimize error between the state and its
estimate is given by

Kse(k) = Pse(k − 1)C̃T (k) [C̃(k) Pse(k − 1)C̃T (k) + λRse]−1
.

(16)

The forgetting factor λ ∈ (0, 1] acts as the weight pro-
vided on the previous estimates obtained by RLS [26]–[28].
As λ = 1, more weight is placed on the older estimates,
implying any changes in the system/measurement may not
have an immediate impact to the SE. On the other hand, for
λ < 1, the recent measurements/estimates have more weight
and changes in the network impact the SE faster [28]–[30].
The measurement covariance matrix Rse is defined as

Rse = diag
(
nvRT

v , nwRT
w

)
. (17)

In the above equation, variables nv and nw are scalars while
Rv and Rw are vectors containing the covariance of y − Cx̂
and 0(rows(T ),1) + T x̂ , respectively. The steps involved in
implementing the RLS algorithm are shown in Table I.

TABLE I

RLS ALGORITHM [27]

III. PARAMETER ESTIMATION

In this section, we present the AKF based PE algorithm
through which we obtain real-time admittance estimation. The
line admittances then help us to detect/identify a SAF on the
microgrid.

A. Formulation of Admittance Equation for PE

As discussed in Section II, the estimate of microgrid’s states
comprising of nodal voltages V (k) ∈ R

N , branch voltages
e(k) ∈ R

E and line currents l(k) ∈ R
E are obtained by using

the RLS algorithm and the measurement data. Since all of the
line currents are estimated, an injection current vector can be
obtained as

I (k) = (
I1(k) · · · IN (k)

)T
. (18)

The nodal equation, consisting of admittance matrix Y (k) ∈
R

N×N at time interval k, can then be derived as

I (k) = Y (k) V (k). (19)

The admittance matrix Y (k) contains the unknown elements
to be estimated. We then transform the nodal equation (19) to
linear regression form for AKF-based PE

γ (k) = �(k) ϒ(k) + vpe(k) (20)

where vpe(k) ∼ N (0, Rpe(k)) is the measurement noise, the
output vector is defined by γ (k), the line admittances are
collected in ϒ(k), and �(k) is a matrix obtained from (19) as
follows [22]:

vec(I (k)) = vec(Y (k)V (k))

	⇒ I (k)︸︷︷︸
γ (k)

= (
V (k)T ⊗ IN

)
︸ ︷︷ ︸

��Y (k)

vec(Y (k))︸ ︷︷ ︸
ϒY (k)

. (21)

Since the admittance matrix Y (k) is symmetric and can
be considered a Laplacian (for a weighted graph of the
dc microgrid without line to ground resistors [31]–[35]),
it is possible to reduce the dimension of vector ϒY (k) to
include only the lower triangular matrix elements of Y [as the
diagonal elements can also be ignored (Laplacian property)].
Therefore, the number of parameters in this new vector is
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[([N][N − 1])/2] which is a significant reduction in compar-
ison to the earlier N × N elements.

For the following admittance matrix of size N × N :

Y (k) =
⎛
⎜⎝

Y1,1(k) · · · Y1,N (k)
...

. . .
...

YN,1(k) · · · YN,N (k)

⎞
⎟⎠ (22)

the vector consisting of the parameters being estimated is given
by

ϒT
utop = (

Y2,1 Y3,1 · · · Y3,2 Y4,2 · · · YN,N−1
)
.

(23)

Since ϒY (k) = QY ϒutop(k), for a proper matrix QY , (21) can
be simplified as

γ (k) = [(
V (k)T ⊗ IN

)
QY

]
ϒutop(k). (24)

Finally, as the topology of a dc microgrid is known a priori,
we can further reduce the vector containing the parameters to
be estimated, to include only the lines that actually exist in
the network. This is given by

γ (k) = [(
V (k)T ⊗ IN

)
QY M

]
︸ ︷︷ ︸

�(k)

ϒ (25)

where

vec(Y ) = ϒY = QY ϒutop = QY Mϒ (26)

where ϒ contains only the line admittances. Hence, over every
iteration k, the line admittances are estimated through which
a SAF can be detected.

B. AKF-Based PE

In this section, we present the implementation of AKF
for PE. The line admittances estimated by AKF help in
detecting/identifying a SAF on the microgrid. We begin by
formulating the vector ϒ(k) which consists of the parameters
being estimated in a discrete linear system of the form

ϒ(k) = F(k − 1)ϒ(k − 1)

+ G(k − 1)u(k − 1) + wpe(k − 1). (27)

The process noise is represented by vector wpe(k), and vector
u(k) is the input. However, for PE of line admittances,
(27) is modified as

ϒ(k) = ϒ(k − 1) + wpe(k − 1). (28)

The estimate of ϒ(k) at time k is given by ϒ̂(k). The
covariance matrices using the above terms are defined as
follows:

Ppe(k) � E
[
(ϒ̂(k) − ϒ)(ϒ̂(k) − ϒ)

T
]

(29)

Rpe(k) � E
[
vpe(k)vpe(k)T

]
(30)

Qpe(k) � E
[
wpe(k)wpe(k)T

]
. (31)

The error matrix P is initialized as follows:
Ppe(0) = E

[
(ϒ̂(0) − ϒ)(ϒ̂(0) − ϒ)

T
]

Fig. 1. Schematic of SE and PE.

which updates over each iteration. We typically fix the mea-
surement and process noise covariance matrices in a KF [18].
However, for AKF only the measurement covariance matrix
is fixed, Rpe = n I where n is positive gain. The gain of the
AKF is given by

Kpe(k) = P−
pe(k)�T (k)

[
�(k)P−

pe(k)�T (k) + Rpe

]−1
. (32)

The matrix Ppe(k)− denotes a priori error covariance estimate,
and is computed as follows:

P−
pe(k) = F(k − 1)P+

pe(k − 1)FT (k − 1)

+ Qpe(k − 1) (33)

	⇒ P−
pe(k) = P+

pe(k − 1) + Qpe(k − 1). (34)

Considering, ϒi to be the i th element of ϒ , the process noise
covariance matrix denoted by Qpe(k) is evaluated at every step
k as follows:

wpei
� ϒ̂i (k)+ − ϒ̂i (k)− (35)

Qpe(k) = α diag
[[

wpe1

]2; [
wpe2

]2; [
wpe3

]2; . . .
]
. (36)

Variable α in the above equation is a positive gain. Similarly,
the a priori parameter estimate is given by

ϒ̂−(k) = F(k − 1)ϒ̂+(k − 1) + G(k − 1)u(k − 1)

(37)

⇒ ϒ̂−(k) = Iϒ̂+(k − 1). (38)

Finally, at time k, the optimal estimate is

P+
pe(k) = P−

pe(k) − Kpe(k)�(k)P−
pe(k) (39)

ϒ̂+(k) = ϒ̂−(k) + Kpe(k)
[
y(k) − �(k)ϒ̂−(k)

]
. (40)

The steps involved in the implementation of AKF are
summarized in Table II. Fig. 1 illustrates the SE–PE algo-
rithm being implemented in this article. The fault detection
and identification through the SE–PE technique is presented
through a flowchart in Fig. 2.

IV. CASE STUDY AND OFFLINE SIMULATION RESULTS

In this section, we illustrate the ability of the proposed
algorithm in estimation of line admittances, fault detection/
identification, and robustness during nominal operating condi-
tions of a dc microgrid.
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TABLE II

AKF ALGORITHM [27]

Fig. 2. Flowchart of fault detection and identification.

A. Microgrid Model

The seven node dc microgrid shown in Fig. 3 will be
used for the simulation results. The network can be defined
as a graph G = (V̄, E), where V̄ = {0, 1, 2, . . . , 7},
E = {(1, 0g), . . . , (6, 7)}, and it includes five genera-
tors, three CPLs. The reduced set of nodes is given by
V = {1, 2, . . . , 7}. The microgrid is varied over three cases

TABLE III

DC MICROGRID SIMULATION PARAMETERS

consisting of different number of sensors and their placement,
as shown in Fig. 3.

The placement of sensors is typically decided by the appli-
cation. However, there are approaches to find an optimal sensor
placement [36]–[38] in a microgrid. Assuming that a total of
p sensors (voltage and current) are to be used/deployed, the
total number of sensor placements possible is given by

OCp =
(O

p

)
= O!

(O − p)!(p)! (41)

where O = N + E , N is the number of nodes in the network
at which a voltage sensor can be placed and E is the number
of edges/lines in the network where a current sensor can
be placed. For the three cases shown in Fig. 3, we chose
p = 16, 14, 13, respectively.

The simulation was conducted using MATLAB Simpower
Systems for 1 s with a simulation time step of 5 μs. Each
generator and load is connected to the network through a buck
converter. The inductance and capacitance of each converter
are 1 mH and 1 mF, respectively. The nominal dc voltage of the
network is assumed to be 390 V. The input voltage of the gen-
erator converters is 600 V. The generators share power through
traditional droop control [39]. The network includes five
sources at nodes 1, 2, 4, 5, 7 and three loads at nodes 3, 4, 6.
The initial value of the load currents at nodes 3, 4, and 6 are
175, 150, and 125 A, respectively, with an output load side
voltage of 220 V. The total power consumed by the loads
is 100 kW.

The resistance and inductance values for each line are
shown in Table III. After a SAF occurs, the line (3, 6) shows
an increase in resistance from 0.15 � to 1.65 �. Similarly,
line (6, 7) increases its resistance from 0.06 � to 0.66 � and
line (5, 6) increases its resistance from 0.18 � to 1.98 �. The
SAF model considered in this article is then composed of a
series resistance, whose value can be computed from a classi-
cal nonlinear arc model (e.g., Paukert equation [40], heuristic
equations [41], etc.), evaluated at the nominal network voltage
(390 V) and steady-state line current [42]. This model helps
simplify the arc (slower time scale) for the faster time step
and scale used in simulation.
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Fig. 3. Simulation results: placement of voltage and line current measuring sensors for the seven node dc microgrid. (a) Case 1: Placement of sensors over
the microgrid. Sensors used: 16. (b) Case 2: Placement of sensors over the microgrid. Sensors used: 14. (c) Case 3: Placement of sensors over the microgrid.
Sensors used: 13.

Fig. 4. Case 1: Simulation result when there is a change in current by load 4 at t = 0.5 s, followed by a series arc at t = 0.66 s on line (3, 6). (a) Plot
of actual nodal voltages (top). Estimated nodal voltages (bottom). (b) Plot of actual injection currents (top). Estimated injection currents (bottom). (c) Plot of
line admittances showing fault detection.

In terms of line admittance, a SAF on a line causes its
admittance value to drop. Three cases are considered as
follows.

1) Case 1: Change in load 4 at t = 0.5 s, followed by a
SAF on line (3, 6) at t = 0.66 s.

2) Case 2: Change in load 6 at t = 0.33 s, followed by a
SAF on line (6, 7) at t = 0.66 s.

3) Case 3: Change in load 3 at t = 0.5 s, followed by a
SAF on line (5, 6) at t = 0.66 s.

B. Case 1

A microgrid with 16 sensors shown in Fig. 3(a) is simulated
for SAF detection and identification on line (3, 6). The
estimation of nodal voltages and nodal current injections are
shown in Fig. 4(a) and (b), respectively. To attest the fact that
change in load currents (nominal dc operations) do not affect
the admittance estimation, we induce a change at the load side
of the buck converter placed at node 4 by reducing its current
from 150 to 90 A at t = 0.5 s, as shown in Fig. 4(b). The
admittance shows minimal fluctuations during the change of
current as seen in Fig. 4(c). Finally, a SAF was triggered on

line (3, 6) at t = 0.66 s which is successfully detected, as the
yellow line showing the admittance value decreases.

In Fig. 4(c), the line admittance estimation of (6, 7) shows a
transient when the SAF is triggered on line (3, 6) at t = 0.66 s.
However, this transient does not affect the line admittance
estimation in long term as the admittance value of (6, 7)
eventually settles to its original value. For SAF detection,
we are interested in the steady-state value (true admittance)
which is attained after such transient stages. To confirm
a SAF, a larger difference in the steady-state value of the
line admittance is needed, as shown in Fig. 2. Furthermore,
a window can be implemented that checks the change in line
admittance with the original pre-fault line admittance. If the
estimated line admittance value remains lower than the original
line admittance over consecutive windows, we can deduce a
SAF occurrence on that particular line.

C. Case 2

In this case, we test the SAF detection on line (6, 7) while
using 14 sensors as shown in Fig. 3(b). Fig. 5(a) and (b) show
the estimation of nodal voltages and nodal current injections
respectively by RLS. At time t = 0.33 s, the load at node 6
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Fig. 5. Case 2: Simulation result when there is a change in current by Load 6 at t = 0.33 s, followed by a series arc at t = 0.66 s on line (6, 7). (a) Plot
of actual nodal voltages (top). Estimated nodal voltages (bottom). (b) Plot of actual injection currents (top). Estimated injection currents (bottom). (c) Plot of
line admittances showing fault detection.

Fig. 6. Case 3: Simulation result when there is a change in current by Load 3 at t = 0.05 s, followed by a series arc at t = 0.66 s on line (5, 6). (a) Plot
of actual nodal voltages (top). Estimated nodal voltages (bottom). (b) Plot of actual injection currents (top). Estimated injection currents (bottom). (c) Plot of
line admittances showing fault detection.

stops drawing current, as shown in Fig. 5(b). However, as seen
in Fig. 5(c), the line admittance estimation shows very little
disturbance caused by the load change. Furthermore, the SAF
on line (6, 7) was successfully detected and identified at time
t = 0.66 s as seen in Fig. 5(c), where the light blue colored
line shows a drop in the admittance value.

D. Case 3

In this case, we test the SAF detection on line (5, 6) while
using 13 sensors as shown in Fig. 3(c). Fig. 6(a) and (b) show
the estimation of nodal voltages and nodal current injections
respectively by RLS. At time t = 0.5 s, the current drawn
at the load side of the buck converter at node 3 is increased
from 175 to 205 A, as shown in Fig. 6(b). However, as seen
in Fig. 6(c) the line admittance estimation shows very little
disturbance caused by the load change. Furthermore, the SAF
on line (5, 6) was successfully detected and identified at time
t = 0.66 s as seen in Fig. 6(c), where the green colored line
shows a drop in the admittance value.

Finally, we would like to state that the RLS- and AKF-
based SE–PE are slightly affected by disturbances such as load
changes and other common dc microgrid operation. In general,
these disturbances do not cause a significant change in the
steady-state value of the estimates, but rather introduce tran-
sients (RLS/AKF estimates) for a very short duration of time.
Afterward, the line admittance estimates settle to their actual
values. When considering a SAF, the line admittance changes

to a lower value caused by the additional resistance added by
the SAF. Hence, unlike the load changes in the dc microgrid,
a SAF fundamentally reduces the steady state value of the line
admittance after the transient stage.

V. CONTROL HARDWARE IN LOOP RESULTS

The microgrid shown in Fig. 3 was built using 16 mea-
surement sensors on the PLECS RT Box [43]. The model
is simulated at a time step of 10 μs. Due to the timing
constraints, buck converters on the load side were excluded
and the line inductances were lowered to 1/10th of their
values used in simulation results (see Table III). The OP-4510
from OPAL RT [44] obtains the measurements from PLECS
RT Box at a time step of 100 μs. The RLS built in
OP-4510 estimates the states e, V , l, using (11) and (12).
The estimate of nodal voltages and injection currents obtained
from the SE is provided to the AKF. The AKF then uses
(25) written in the format shown in (20) for estimating the
parameters (line admittances). The real-time interaction of
the PLECS and OPAL RT boxes is shown in Fig. 7(a) while the
hardware setup consisting of the two RT boxes, oscilloscope,
and the computer can be seen in Fig. 7(b). The estimation
of admittances on lines (2, 4), (3, 6), (5, 6), and (4, 7) is
shown in Fig. 8. A load current change from 150 to 90 A at
node 4 shows no disturbance in the line admittance estimation
while the SAF on line (3, 6) is detected and identified.
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Fig. 7. CHIL results of series arc in line Y(3,6) and admittance estimation.
(a) Real-time interaction of Plecs RT and Opal RT. (b) Overview of the CHIL
setup.

Fig. 8. CHIL: line admittance estimation showing SAF detection on
line (3, 6).

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results through
which we can analyze the potential of the RLS-KF-based
SE–PE for SAF detection and faulted line identification on
a four node dc microgrid test-bed.

A. Test-Bed Description

The four node test-bed includes one generator connected at
node 1 and two CPLs connected at nodes 3 and 4, respectively.
The generator at node 1 is a 20 kW Magna PS [45]. The

Fig. 9. Hardware setup for experimental results.

Fig. 10. Experimental results: sensor placement and the oscilloscope plots.
(a) Sensor placement on the four node dc microgrid. (b) Measurements on
oscilloscope.

input voltage from the generator is 270 V. The bus voltage
is measured at node 2 which acts as an internal node. The
power flow from node 2 then splits to loads at nodes 3 and 4.
The load at node 3 draws a current of 15 A and the load
at node 4 draws a current of 10 A. The CPLs are based
on closed loop-controlled buck converters (shown in Fig. 9)
from Semikron [46]. The 10 mH inductors were purchased
from Hammond Manufacturing [47], and the capacitors rated
at 750 V from Cornell Dubilier Electronics (CDE) [48]. The
sensor placement and the dc microgrid topology is presented
in Fig. 10(a). The real-time data obtained through the oscillo-
scope are shown in Fig. 10(b).

B. Results

For experimental testing of the SE–PE technique, the SAF
was set to trigger on line (2, 3) at time t = 2.29 s on the
dc microgrid shown in Fig. 9. The nodal voltages and current
injections, shown in Fig. 11(a) and (b), are obtained from
the SE performed by the RLS algorithm. The line admittance
estimation by AKF is shown in Fig. 12 from which we can
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Fig. 11. Experimental results for SE by RLS. (a) Plot of actual nodal
voltages (top). Estimated nodal voltages (bottom). (b) Plot of actual injection
currents (top). Estimated injection currents (bottom).

Fig. 12. Line admittance estimation showing fault detection on line (2, 3).

easily conclude that the red line showing a significant drop
in the admittance value is the faulted line. The experimental

result shows that the SAF on line (2, 3) was successfully
detected and identified by the proposed SE–PE approach.

VII. CONCLUSION AND FUTURE WORK

This article presents a RLS and AKF-based SE and PE for
SAF detection and faulted line identification on a dc microgrid.
The RLS state estimator uses measurement data and the STA
to provide the AKF with the estimates of nodal voltages and
injection currents. The AKF parameter estimator uses nodal
voltages and injection currents to estimate admittances of
the lines across the microgrid. The SE and PE technique’s
performance was evaluated through simulation, CHIL, and
hardware-based experimental setup. The results show a quick
and successful detection/identification of a SAF on a dc
microgrid. Furthermore, the objective of the article is to detect
and identify the SAF affected line as early as possible and is
optimized to satisfy this criterion. The results presented in this
article show SAF detection and the identification of the faulted
line within 10 ms while measurements are obtained at 0.1 ms.

In future, we will improve the SE and PE to detect faulty
sensors and cyber-attacks. Furthermore, SE and PE will be
verified using least possible number of sensors, while still
maintaining full observability of every line in the microgrid
which will require optimal sensor placement strategy.
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