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Abstract

Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on
differences in the proportion of cell types or on differentially expressed genes. In many cases these
differences are driven by changes in cell interactions which are challenging to infer without spatial
information. To determine cell-cell interactions that differ between conditions we developed the
Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis
with regression-based modeling to identify differential cell type interactions and the proteins that
underlie them. We tested CINS on a disease case control and on an aging mouse dataset. In both
cases CINS correctly identifies cell type interactions and the ligands involved in these interactions
improving on prior methods suggested for cell interaction predictions. We performed additional

mouse aging sCRNA-Seq experiments which further support the interactions identified by CINS.



Introduction

The ability to profile the expression of genes at the single cell level has revolutionized gene
expression studies. Single cell RNA-Seq (scRNA-Seq) studies resulted in insights related to the
cell type composition of tissues (1,2), changes in cell type composition in various diseases and
states (3), various differentiation pathways used within cells (4) and more. However, while
scRNA-Seq provides valuable information about expression within cells, it is hard to use it to study
interaction between cells. The main problem is that once cells are extracted it is very challenging

to determine the spatial relationships among them (5).

A number of methods have been introduced recently to identify ligand receptor interactions in
scRNA-Seq studies (6,7). While these methods differ in the exact formulation and statical analysis,
they all focus on finding correlations between ligands expressed in one cluster (or cell type) and
receptors expressed in another. This works well for studies that are analyzing a single condition
(for example expression in a specific tissue or at a specific time point) but does not fully utilize
information in case-control studies single cell studies (8,9). Unlike single condition studies, in
addition to differences in expression case-control studies also provide information on differences
in the proportions of different cell types between the conditions. Such information can be very
useful in determining which cell types interact. When cell type proportions are correlated between
two conditions (for example both high in one and low in the other) it may indicate that they are
likely to interact (10,11). As we show, this information greatly improves the ability to correctly

infer cell-cell interactions from scRNA-Seq data.

In addition to methods that attempt to infer cell-cell interaction information from scRNA-Seq, a
number of technologies have emerged for spatially profiling single cell expression data (12-15).

These technologies often combine Fluorescence in situ hybridization (FISH) with rapid sequencing



to provide information on the spatial expression of thousands of genes at various resolutions
(16,17). A number of recent computational methods have been developed to allow for the study
of signaling pathways involved in cell-cell interactions from this type of spatially-resolved
expression data (18). However, while spatial transcriptomics studies are promising there are
several challenges involved in employing them to study intercellular interactions. First, current
commercial spatial transcriptomics platforms do not profile cells at the single cell level. Most labs
do not have access or ability to perform such studies at the single cell resolution. More importantly,
spatial transcriptomics often requires the fixation of the samples which limits their usage and can
negatively impact their ability to accurately profile molecular quantities (16). Finally, spatial
transcriptomics methods can scan only a small region of the tissue and so cannot be applied to

large number of conditions and samples that are studied using scRNA-Seq.

Here we present a new method, the Cell Interaction Network Inference (CINS) pipeline, that infers
cell type interactions in case control sSCRNA-Seq studies. CINS involves two major steps. First, it
uses scCRNA-Seq data from multiple samples of a similar condition (i.e. disease, age, etc.) to learn
Bayesian networks which highlight the cell types whose distributions are co-varying under
different conditions. Next, for the high scoring differential interactions identified in the Bayesian
network analysis, CINS learns a regression model with ligand-target interaction matrix (6) that

identifies the key ligands and targets that participate in the interactions between these cell types.

We tested CINS by applying it to both, disease and aging datasets. We show that CINS correctly
identifies known interacting cell type pairs and ligands associated with these interactions and
improves upon prior methods for inferring ligand-receptor interactions in sScCRNA-Seq data. We
also discuss several novel predictions made by CINS. Finally, we show that a number of CINS

predicted cell type interactions are supported by a new scRNA-Seq lung aging dataset we profiled.



Results

The Cell Interaction Network Inference (CINS) Pipeline

We developed the Cell Interaction Network Inference (CINS) pipeline which uses single cell (sc)
RNA-seq expression data to infer cell-cell interactions (Fig. 1). Given repeated experiments of the
same condition / system CINS uses annotated cell type information to construct a Bayesian
network (BN) that models causal relationships between different cell types. For this, CINS first
discretizes the proportion data for each cell type using a Gaussian Mixture Model (GMM) with
only two components and then learns a BN that models the joint probability distribution of the cell
type mixtures observed for each sample. High scoring differential causal relationships are
determined based on bootstrapping. Next, for each of the high scoring differential pairs identified
we infer the genes involved in the interactions by learning a ligand-target regression (LTR) model
with ligand-target interaction database from NicheNet (6). The LTR model aims to explain
changes in target genes as a function of changes in their activating ligands allowing CINS to

identify the most significant ligands that regulate the cell-cell interactions.

Inferring cell type interactions using Bootstrapped Bayesian Network

We first studied a lung disease scRNA-Seq dataset (8). The lung disease dataset contained scRNA-
Seq data for 28 healthy (controls) and 32 Idiopathic Pulmonary Fibrosis (IPF) individuals. A total
0f 250,942 cells were profiled for these individuals. Cell type annotations were assigned based on

the original study and we used the detailed assignments that provided information on 39 cell types.

We used CINS to explore differential cell type interactions between IPF and control samples. For
this, we constructed two different networks based on the cells profiled for each condition. We next

performed bootstrap analysis to determine the score of each edge in each condition. Edges that



appear in the majority of bootstrap iterations likely represent real relationships in the data rather
than noise (19,20). Resulting BNs for the two conditions are presented in Fig. 2A&B. As the
figures show, there are some edges that appear for both conditions. These include Basal to Goblet
cell interactions, which agrees with the fact that club cell’s attachment sites are provided by Basal
cell (21). However, there are also many differences between edges selected for the two condition
networks. Tab. 1 summarized the top differences based on the signed difference in edge count in
100 bootstrap iterations for IPF and control (See Tab. S1 for differences for all detected edges).
Several of the highest scoring edges are supported by prior work. For example, the edge from Treg
to Fibroblast cell is supported by a previous study suggesting that Treg’s can negatively regulate
fibroblast activity (22). The edge between ¢cDC2 and c¢DCI1 is also supported by recent work
showing that cDC2 and c¢DC1 are cross-talking with each other (23). Several other top scoring
edges are supported by the literature as referenced in Tab. 1. We next compared the interactions
predicted by CINS to interactions predicted by CellPhoneDB, iTALK, and NicheNet (Methods),
which are all popular methods for inferring ligand-receptor based cell interactions (6,7,24). As can
be seen, in Tab. S2. unlike CINS which identified a diverse set of cell type interactions, almost all
interactions predicted by CellPhoneDB involved Goblet cells (18 of the top 20). While there is
some support for Goblet involvement in IPF (25) they only explain a small fraction (estimated to
be less than 20%) of individuals with the disease and it is unlikely that they interact with almost
all other cell types. Similarly, for NicheNet, almost all interactions predicted involved a single cell
type, Pericyte cells. iTALK performed better, but it has only detected interactions between immune
cells in the IPF lung dataset. While these are indeed of interest, the more interesting interactions
are those between immune cells and fibroblast cells in the (injured) lung and none of these were

identified by iTALK. In contrast, by looking at the overall distribution of cell types CINS was able



to find a more general and, as we showed, accurate set of interactions between cell types that are

likely relevant for the disease.

Inferring ligand-target interactions for high scoring differential cell type pairs

While the BNs discussed above identify pairs of cell types that likely interact in disease, the
network does not show which genes and protein products participate in the interactions. To infer
such gene-gene interactions across cells we developed a ligand-target regression (LTR) model. For
cell type pairs identified in the BNs our LTR model uses a set of ligands in the first cell type to
predict the expression values of their known targets in the second cell type. The LTR model uses
the LASSO algorithm which enables the identification of a small set of key ligands predicted to
participate in the interaction observed in the BN. We trained the model using a five-fold cross

validation strategy. See Methods for details.

The LTR method was applied to all high scoring differential pairs identified by the BN. Tab. S3
presents top scoring ligands for several cell type pairs. Tab. S4 presents top scoring ligands for
one cell type pair (Fibroblast -> Lymphatic cell). Several of the top LTR ligands are known to play
an important role in the activated cell (Lymphatic cell). For example, the highest scoring ligand
identified by LTR is “FGF2” which was identified as a critical gene for lymphangiogenesis (26).
Another highly ranked ligand, “TGFB1”, can also accelerate lymphatic regeneration in wound
repair (27). Tab. S5 presents top ranked ligands for another pair (Treg cell -> Fibroblast), several
of which have also been shown to participate in the interaction between these cell types. For
example, fibroblast express IL13 receptor and may behave as an inflammatory cell if stimulated
by IL-13 (28), and TGFB1-3 (including TGFB1 and TGFB2 in the table) are all involved in

promoting collagen production in fibroblasts (29).



Identified ligands are primarily involved in cell-cell interactions

To test if the predicted ligands are indeed impacting cell type-cell type interactions or mainly
represent autocrine relationships we compared the activity of top predicted ligands within and
between cell types. For this, we compared the performance of the LTR method for top edges to
the performance of a similar method that only uses information from a single cell type. Specifically,
if the BN predicted a high scoring differential interaction between cell types A -> B, we first trained
LTR using the ligands of A and the targets of B (as we did above) and compared the performance

to a LTR model which uses the ligands expressed in B to predict targets in B (autocrine model).

Results for the high scoring differential edges in the IPF and control datasets is presented in Fig.
3A. Fig. 3B. presents the results for the same pairs (so x axis is fixed based on the BN score) but
with the LTR trained using only the ligands of the second cell type. As can be seen, when using
the ligand of the predicted interacting cell type LTR obtained a higher average correlation with a
p-value of 0.034 (using the scipy function in Python for computing Pearson correlation p-values).
In contrast, when using the same cell type for both ligands and targets the Pearson correlation is
lower (Fig. 3B). We also evaluated the performance of the LTR method on the predicted cell type
interactions by comparing the results we obtained with the real ligand-target interaction matrix to
results obtained using a random ligand-target interaction matrix. We found that for most of the
random assignments the resulting LASSO models contained only a Bias term with all coefficients
set to 0 (Fig. S3). This indicates that expression of the ligands did not provide any useful

information about the expression of the targets when using the random interaction matrix.

Application to a scRNA-Seq dataset on lung aging



We next applied CINS to another, smaller, scRNA-Seq dataset which studied lung aging in mice
(9). The dataset profiled lung cells in 15 mice, 8 young (three-month, 3M) and 7 old (24-month,
24M). The 14,813 cells profiled in this study were assigned to one of 34 cell types in the original
paper. We again learned 100 bootstrapped BNs for the two conditions (young and old) and
compared the resulting networks. We found 11 edges to be differentially present between the two
conditions when using an edge threshold count of 20 (Fig. 4 and Tab. S6). These included an edge
between Capillary-endothelial-cell and Type 1-pneumocyte cells which are known to jointly form
thin air-blood barriers used for gas exchange (30). Another pair was Ciliated and Club cells, of
which the ratio is reported to alert significantly between young and old mouse lung (9). We next
performed LTR analysis on the high scoring differential edges. The top ranked ligand in Ciliated
cells, TNF is known to regulate CC16 gene production, which plays a role in immunomodulatory
activity in Club cells (31). Apoe, a ligand identified for the macrophage to goblet edge, is produced

by macrophages to negatively modulate goblet cell hyperplasia (32).

As we did for the IPF study we compared the performance of the LTR method using ligands from
the BN identified edges (A -> B) and ligands from the same cell type (B) to predict target
expression for genes in B. We observed a Pearson correlation of 0.67 when using the ligands from
the BN identified edges (A->B) vs. Pearson correlation of 0.31 when using the ligands from B
(Fig. 5). And it is noticed that when randomizing the interactions the LTR method again failed to

identify any significant correlation between predicted and real expression for the targets (Fig. S3).

Computational validation of high scoring differential edges using a second aging mouse lung

dataset

To test the predictions of the aging BN and to validate them using an independent cohort we next

performed additional scRNA-Seq experiments on young and old mice to generate a pilot sScRNA-



Seq dataset on lung aging. For this, we profiled four young and four old mice of the Fendrr-floxed
genotype recently generated in the Kaminski laboratory. We obtained 71,562 cells that were
clustered, annotated, and assigned to 20 cell types that overlapped with the cell types assigned by
Angelidis I et al. (9). The problem with both aging datasets is their small size 15 and 8 compared
to 60 in IPF dataset). We could not obtain significant results using the 8 dataset aging data given
its small size. Thus, we could not use it as a standalone dataset to validate the results of the larger
(15 samples) datasets. Instead, we looked at the impact of combining the two. We next used the
combined data (from (30) and from our new experiments) to learn a joint BN. Several of the
predicted interactions were further supported by our new data. Specifically, we found 19 cell type
pairs for which the addition of our new data enhanced both the presence of the edge and the
direction predicted when performing the bootstrap analysis. Tab. S8 presents the top 10 enhanced
pairs based on the overall bootstrap score (See Tab. S11 for all enhanced pairs). For example, the
interaction between Neutrophils and Gamma Delta T cell is enhanced from edge count of 40 to 61
and was reported by recent studies that neutrophils can suppress Gamma Delta T cell’s activation
involved in the resolution of inflammation (33). And the interaction between B Cell and CD4+ T
Cell is enhanced from -16 to -19 (being negative means that old lung has less), and is supported
by other studies that B cell will activate CD4 T cells in human cutaneous leishmaniasis infection
led by Viannia (34). In addition, we also found that T-cell-B-cell interactions were calculated to
occur less often in older samples, which further validates the comparison between old and young

mice (35).

We next focused on the top five predicted interactions in Tab. S8 (all with an absolute enhanced
bootstrap score larger than 15). Permutation analysis indicates that identifying such a large number

of edges supported by both studies is significant (p-value = 0.05, Methods and Fig. 6, and see



Tab. S13 for result of other threshold values). Specifically, we permutated the cell type fraction
of the aging dataset with 8 samples, and then did the BN analysis for 1,000 times. We next
calculated the fraction of enhanced pairs with certain edge threshold over the whole pairs reported.
We applied LTR to the cell type pairs in Tab. S8 to find important ligand genes. Tab. S9 presents
the top predicted ligand genes. Several of these (red font) are supported by prior studies on the
interaction between these cell types. Comparisons to CellPhoneDB, iTALK and NicheNet
indicated that, similar to what we observed for the IPF data, the predicted interactions are very
different compared to CINS (Fig. S4). In addition, unlike CINS for which the overlap between the
pairs identified with and without the new datasets were significant, for CellPhoneDB we did not

observe significant overlap between predicted interaction pairs (Tab. S13).

Discussion

To enable the study of cell type — cell type interactions using scRNA-Seq data we developed a
method termed Cell Interaction Network Inference (CINS). CINS first learns a Bayesian network
between cell types (BN) using repeated samples. High scoring differential cell type pairs identified
by the BN are further studied to infer the ligands that regulate these interactions. CINS is

implemented in python and R and can be downloaded from https://github.com/xiaoyeye/CINS.

While CINS can be applied to any dataset with multiple samples, it is most appropriate for datasets
containing case and control or multiple conditions. For such datasets CINS can infer not only the
high scoring differential interactions within a condition but also those interactions that differ
between the condition and that may partially explain the differences between the conditions studied.

Most current cell interaction tools focus on ligand gene expression information, while CINS can



make use of cell proportion as additional information and the two can prove each other mutually,
further confirming the findings. The discretization of cell proportion can fit the data very well and
makes it easier for BN to learn the correct structure of the network which is the major focus of

CINS.

We first applied CINS to study a case and control dataset profiling lung expression from IPF
patients and controls. CINS identified several differences between the interactions observed for
IPF patients and for healthy individuals. These include the interaction from Treg to Fibroblast cells
which is supported by a recent study that found Treg can negatively regulate fibroblast activity
(22) , and the edge between cDC2 and ¢DCI1 is also supported by recent work showing that cDC2

and cDCI are cross-talking with each other (23).

For many of the identified high scoring differential interactions CINS was also able to identify key
ligands involved in the interactions. For example, “FGF2” which was identified as a critical gene
for lymphangiogenesis (26), and one more highly ranked ligand, “TGFB1”, can also accelerate

lymphatic regeneration in wound repair (27).

We next applied CINS to a lung scRNA-Seq aging dataset and identified a number of high scoring
differential pairs that differ between young and old mice. To validate predicted interactions we
performed additional experiments in which we profiled scRNA-Seq expression in 4 additional
young and old mice and then used the combined dataset to learn a joint network. As we showed,
the network we learned identified a significant number of interactions that are supported by both
datasets. These include the interactions between Neutrophils and Gamma Delta T cell (33), and
between B Cell and CD4+ T Cell (34,35) which are both supported by previous studies. CINS was
again able to identify key ligands involved in these interactions, TNF, identified as the top ligand

in the interaction between neutrophils and Gamma Delta T cells was previously identified as



expressed in neutrophils (36) and as a regulator of immune cells Gamma Delta T cells (37), and
TNFSF18 identified in interactions between CD4+ T cells and Vascular Endothelial Cells, was
also previously reported to mediate the interactions between immune cells and endothelial cells

(38).

While CINS can be successfully applied to several scRNA-Seq studies, it does have several
limitations. First, it can only be applied if multiple samples are profiled since the BN part requires
several repeated samples to compute relationships between cells. In addition, because BNs do not
allow self edges, interactions between cells of the same type cannot be identified by CINS. Finally,
since it uses a bootstrap approach to infer edge score it can miss important interactions if not

enough samples and / or cells are available.

CINS is one of the first methods to enable the inference of cell type interactions in scRNA-Seq
data from repeated samples. Given the growing popularity of this method, and its increased use in
clinical studies which are currently less amenable to spatial transcriptomics techniques we believe

that CINS provides a solution to an important problem that is not currently addressed.

Materials and Methods

We developed a pipeline for modeling interactions between cells of different types from scRNA-
Seq data. Our method first identifies cell types that are likely interacting and then tries to provide

a mechanistic model to explain how such interactions are manifested at the molecular level.

Datasets

We tested CINS using three sScCRNA-Seq datasets. The first compared gene expression in lungs of
healthy and Idiopathic Pulmonary Fibrosis (IPF) with accession number of GSE136831 (8). This

dataset contained 28 controls and 32 IPF patients with a total of 243,472 cells and the expression



levels for 45,947 genes in each cell. We used the original annotations and included in the model
all 39 cell types with at least 100 cells. The second dataset studied lung aging in mice with
accession number of GSE124872 (9). This dataset contained 8 three-month-old mice and 7 24-
month-old mice for which a total of 14,813 cells were profiled. For each cell the expression levels
of 21,969 genes were provided. Each cell was assigned by the authors to one of 34 cell types. The
third dataset was a new dataset in which we profiled single cell expression in four young (25 weeks)
and four old (2x 103 weeks; 2x 120 weeks, Supporting Methods) Fendrr-floxed mouse lungs. This
dataset contained a total of 71,562 cells with expression values for 45,947 genes. These cells were
originally assigned to 37 cell types based on the expression of canonical cell type markers. To
combine the two aging datasets we did the following. We first normalized the gene expression data
using the same method for both datasets. Next, we manually assigned a common set of cell types
to both datasets so all cell type match between the two. Specifically, we identified a joint subset
of 20 cell types identified by both and only used cells assigned to these cell types in our combined
BN analysis (see Tab. S10 for cell type information details).Information about ligands and their

targets were obtained from a recent paper (6) which provided targets for 688 ligands.

Single-cell sequencing of Fendrr-floxed Mice

Animal procedures had been approved by the Institutional Animal Care and Use Committee
(IACUC). We created a floxed allele of Fendrr via two-guide, two-oligo CRISPR/Cas mediated
cleavage and recombination essentially as described in Yang et al. (19). A generated mouse which
had the expected conditional allele was bred with C57BL/6J mice to establish the colony and to
sort the floxed allele from any other possible mutant alleles. Three female and five male mice in

two age groups (young: 23 weeks, old: ranging from 103 to 120 weeks; four mice per group) were



euthanized, and lungs were harvested and minced in small pieces with a scalpel. Lung pieces were

dissociated using the enzyme Liberase TL (Roche).

Single RNA molecules of single cells were barcoded using the 10x chromium single-cell
technology according to the manufacturer’s instructions (Single Cell 3’ Reagent Kits v2, 10x
Genomics, USA). Barcodes were used to assign reads to cells and quality control was performed
to remove low quality cells (Supporting Methods). Generated sequencing data is available at GEO
accession number GSE165638. A modified version of the standard Seurat pipeline was employed
to normalize, cluster and annotate the raw counts single-cell expression data for downstream
analysis (20). Briefly, the percent of mitochondrially-expressed genes was calculated for each
individual cellbarcode using the PercentageFeatureSet function. Next, unique molecular identifier
(UMI) counts were log normalized with a scale factor of 10,000 UMIs per cell and then natural
log transformed using a pseudocount of one. Following log normalization, the top 3500 variable
genes within the dataset were determined using Seurat’s implementation of the
FindVariableFeatures function with the “vst” parameter. Next, the gene-level scaling of the data
was performed using the ScaleData function. Each feature was centered to have a mean of zero
and scaled by the standard deviation of each feature. The percent of mitochondrially-expressed
genes captured within each cell were regressed out during scaling by using the “vars.to.regress”
parameter. To reduce the dimensionality of the dataset and to identify genes contributing the most
variability to the underlying manifold of the dataset, Principal Component Analysis (PCA) was
performed using the scaled data and the 3500 variable genes calculated determined for the dataset.
Following exploration of the PCs (Supporting Methods), the first 75 PCs were selected for

clustering and following Uniform Manifold Approximation and Projection (UMAP), a



dimensionality reduction method. The quality of subject and age representation within each cluster

was assessed prior to cell type annotation to note any subject- or age-specific biases.
Cell type assignment of Fendrr-floxed mice

To assign a specific cellular identity to each cluster, differentially expressed markers were
determined and assessed within the context of canonical marker genes. Briefly, a differential gene
expression test using Wilcoxon Rank Sum test was performed that compared the gene expression
within a specific cluster to expression within all cells outside of that cluster. The resulting list of
cluster-specific marker genes was assessed and cell types were ascribed based on expression of
canonical marker genes. Clusters displaying canonical markers for multiple cell types were flagged

as multiplets and were omitted from downstream analysis.
Cell type quantification and discretization

We use the cell type annotation information provided by each study. To use Bayesian network to
learn relationships between cell type we first discretize the proportion of each cell type in each
sample. Discretization is cell type specific (i.e. different cell type will be assigned different values
for the same proportion quantity) and is learned using an unsupervised method based on Gaussian
Mixture Model (GMM) with two components. Specifically, let [xi, x5, e xh e, x,i\,]be the fraction
(percentage) of the ith cell type in the N samples. We learn a two components GMM for these
values and then assign each value to the class with the higher likelihood for this value. The target

function of the GMM aims to maximize the log likelihood:

I(rf, uh,28) = TN log (Bhoo mEN (xh, g, b)) (1)



Where V' represents gaussian distribution and (7}, uk, o%) represent proportion, mean and

standard deviation parameters for the k#4 component of the itk cell type.

Following convergence, each proportion value x’, is assigned to one of the two classes. We assign
labels to the two classes such that the component with lower mean parameter is assigned a value
of 0 and the second is assigned a value of 1. This leads to a learned cell type specific cutoff such
that all samples with a value less than that cutoff are assigned to 0 and all those above are assigned
to 1. However, the number of 0’s and 1’s is not pre-determined and may be highly skewed in either
direction based on the distribution of the fractions. See Fig. S1 for examples of assignments. To
learn GMMs we used the Python package “sklearn” with a maximum iteration number of 500 and

a convergence threshold of 10**-4.
Learning a cell type Bayesian network

We use the discretized cell type values to learn a cell type Bayesian network. Bayesian network is
a probabilistic graphical model that uses directed acyclic graph to represent joint probability
distributions. The absence of an edge can indicate independence and / or conditional independence.
Bayesian networks are parameterized as <G, P> where G = <V, E> is a directed acyclic graph with
J as variables and E as directed edges, and P is the global joint distribution for all nodes V. Given

the graph structure this probability can be decomposed into local distribution for each node, V,,

conditioned on its parent nodes as follows:
P(V10,6) = P(Vy, Vs, ..., Vl0,G) = T2, P(VyPa(V,]0,)) Q)

Where Pa(V,|0,) is parent node set of V; according to G.



To learn a Bayesian network using the discretized cell type proportion data, we iterate between
network learning and parameter estimation. We initialize the network using the Hiton Parents and
Children strategy which is based on marginal association among variables (21). Next we iterate a
search strategy, that uses penalized Hill-Climbing to add, flip or remove edges based on the
Bayesian Information Criterion (BIC) score when using dataset D, where each sample in D

contains values for all the variables of V-
BIC = logP(D|®,G) — > Dim(G)logN 3)

where N is the number of samples and Dim(G) is the number of parameters in the model. For this,
we used the “rsmax2” function from the R library “bnlearn”, which implements the iterative

Penalized Maximization algorithm to construct a Bayesian network.

To obtain confidence values for edges (predicted interactions) in the network we followed previous
learning methods that utilized a bootstrap strategy (22-24). For each iteration of the bootstrap we
first randomly sample 80% of all single cells in the dataset. Next, we used these cells to determine
cell type frequencies in each sample and to perform the discretization and network learning as
described above. This step is repeated 100 times, and for which we counted the presence of all
directed edges. While the direction of an edge in a Bayesian network does not always imply casual
interactions (25), we observed that high scoring differential edges were also very consistent in

their direction (Tab. S1).
Ligand-Target Regression (LTR) Model

The bootstrapping method presented above provides a small set of high scoring differential
interactions between some of the cell types in the dataset. To obtain a mechanistic explanation for

these interactions, and to identify the interacting genes between the two cell types we focused on



ligand-target interactions between the two cells types. Specifically, for a predicted directed edge
between cell types A and B we learned a Ligand-Target Regression (LTR) model to determine if
there is an underlying cell type — cell type interaction between A and B. Our assumption is that if
these two cell types indeed interact, then the expression of some of the ligands in cell A type
should be able to explain some of the expression changes observed in cell type B. Similar
approaches have been used by others to explore cell-type interactions in non case control studies
(7).To identify a set of ligands in A predicted to activate or repress target genes in B we optimized

the following regression model:

maiHZZ( YilenLloyaq — T(t))z + Allal| 4)

Where I represents an input (known) ligand-target interaction matrix (6), L is an input vector of
log values for the expression of ligands in cell type A, a represents the (unobserved) ligand
activation vector, T represents the expression levels for target genes in cell type B and 1 is a
regularization parameter. Here we used a L/ regularization which usually leads to the selection of

relatively few non zero values (corresponding to relatively few activated ligands in cell type A).

Using the inputs to sett A1) = Ity L(), transforms the optimization problem to

. 2
min YTt Aepnagy — Tw) + Alall )

Which is a standard least absolute shrinkage and selection operator (LASSO) model. To learn
parameters for the model we used the “LASSOCV” function from the Python library “scikit-learn”,
which implements the LASSO cross validation. Note that the model in equation 5 using the same
ligand activity parameters for all genes (there is only 1 ligand activity parameter in the model for
each ligand across all target genes). Thus, we can use this model in a cross validation setting to

predict the expression levels of held out targets in cell type B. For these, we know the ligand-target



interaction from Matrix I and the ligand expression from L allowing us to evaluate the ability of
the model to generalize to unseen targets. We also use the model to test if we obtain better

prediction accuracy for significant pairs identified in the BNs.

Training and Test for Ligand-Target Regression (LTR) Model

We used a five-fold cross validation strategy to train and test the LTR model: We split the training
part of each validation set into two sets to select the hyperparameter A (our penalty term) and then
retrain using all training data for this set and the selected A to obtain the model used for the fold
test data. Evaluation of predicted values is based on the average Pearson correlation between the
predicted and actual expression changes for each fold. Following testing we use the average
product between the log fold change and coefficient value a in the five-fold training models to

rank the list of active ligands.

Joint plots of Bayesian Network and LTR model scores for cell type pairs

To jointly plot the Bayesian network bootstrap score and the Pearson correlation regression score
for each cell type pair, we first converted the edge count to log value. For the Pearson correlation
we used the average correlation for the five-fold results. For both IPF lung data and lung aging
data, cell pairs with edge count smaller than 20 are removed (See Tab. S12 for details). Note that
for some of the pairs we tried to model using LASSO the learning terminated with coefficients of
0 for all ligands (this happened for all runs of the random interaction matrix as we mention in
Results and to a few of the CV runs of the cell-cell and intra-cell models). In such cases these

models were removed from the correlation analysis.

Comparison to CellPhoneDB, iTALK and NicheNet



All the three methods are based on ligand related gene expression analysis. For CellPhoneDB, the
result contains all possible cell type pairs with calculated ligand-receptor scores. For each cell type
pair, we use the sum of all its ligand-receptor scores as its pair score. iTALK detects significant
ligand- receptor pairs, and provides the mean expression level of them. We then sum the product
of ligand and receptor expression as the final score for each cell type pair. NicheNet can select top
functional ligand genes with prediction scores for a given cell type pair. We next sum these

prediction scores for all selected ligands to rank cell type pairs.



Data Availability

All scripts, and instruction required to run CINS pipeline in Python and R can be found in our
support website, https://github.com/xiaoyeye/CINS. Generated sequencing data is available at
GEO accession number GSE165638. All other public data can be found following the pipelines

in Methods.
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Tab. 1 Top differential cell type interactions identified by CINS for the IPF dataset. The IPF-
Control column lists the difference in the number of times the edge between the two cells was
identified in 100 bootstrap runs for each of the two datasets. Negative values indicate that it was
identified more for the Control whereas positive numbers mean that the interaction is more

prevalent in IPF. For all listed edges the interaction was only identified in for one of the two
datasets (score of 100 or -100).

cell typel cell type2 IPF- Reference
Control

Macrophage Ciliated -100 | There is strong interaction between ciliated cell and
Macrophage in COVID-19 critical cases (39)

Fibroblast Lymphatic -100 | Fibroblast produce extracellular matrix which is
critical to lymph node microenvironment (40)

cDC2 DC_Mature 100

cDC2 cDCl1 -100 | cDC2 and c¢DCI are cross-talking with each other
(23)

Macrophage cDCl1 100

Mesothelial Aberrant Basaloid 100

Macrophage Alveolar | pDC -100 | Macrophage Alveolar (AM) and pDC are involved in
antiviral immune, and pDC will be activated if the
AM defense line is broken (41)

Myofibroblast VE_ Venous -100 | Injury lets endothelial cells transform to
myofibroblast (42)

Ciliated ncMonocyte -100 | Ciliated cells may contribute to monocyte inflow in
COVID-19 (39)

Multiplet VE _Capillary B 100

B_Plasma Mesothelial -100 | Excess plasma cells are found with mesothelial cells
on effusion cytology smear (43)

VE Capillary B SMC -100

Pericyte SMC 100 | Brain pericytes and vascular SMC comprise mural
cells which is important to support blood vessels (44)

ncMonocyte Multiplet 100



https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pericyte
https://www.sciencedirect.com/topics/neuroscience/vascular-smooth-muscle
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mural-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mural-cell

ncMonocyte DC_Mature -100

T Regulatory Fibroblast 100 | Treg cell regulates fibroblast in lung (22)

VE_Arterial VE_ Venous 100

T T Regulatory 100

VE_Peribronchial Pericyte 100 | One pericyte can communicate with more than one

endothelial cells (45)
T Regulatory DC Langerhans -100
Figure Legends

Figure 1. Overview of CINS. (A) Cell type annotation is used to extract cell type fractions in each
sample. Next cell type fraction is discretized by learning Gaussian Mixture Model (GMM) for this
type, respectively. (B) A Bayesian network (BN) is learned using the discretized cell abundance
information. Bootstrapping is performed to identify high scoring differential interactions between
cell types. (C) For pairs identified in the directed bootstrap BN analysis, a ligand-target regression
(LTR) model is learned. In this model we use expression of ligands in the cell type with the
outgoing edge to predict the expression of targets genes in the cell type with incoming edge. (D)
Finally, LTR is used to select key ligands that underlie the cell-cell interactions identified in the

BN. cell interaction.

Figure 2. Bayesian Networks (BN) learned for lung cell types in healthy and IPF individual.

(A) BN for controls (healthy individuals). (B) BN for IPF patients. Nodes represent specific cell



types and are colored accordingly, edges represent directed interactions between the cell types.

Edge width corresponds to its bootstrap score.

Figure 3. Interactions learned by the BN are more significant than interactions between cells
of the same type. Comparison between the ability of the LTR model to predict target expression
when learning the model using cell pairs identified by the BN (A) and the same cell type (B). The
X axis represents the bootstrapped edge count (score) of the interaction in the BN for a cell type

pair, and the y axis represents the LTR model performance (higher is better) for the same cell pair.

Figure 4. Aging Bayesian Networks. (A) BN for young mice. B) BN for adult mice. Nodes and

edges notations and colorings are similar to those used in Fig. 2.

Figure 5. LTR comparison for the aging data. Comparison between the ability of the LTR model
to predict target expression when learning the model using cell pairs identified by the BN (A) and

the same cell type (B).

Figure 6. Permutation analysis highlights the agreement between the two aging networks. (A)
Leftmost — learning using the Angelidis (15 samples) dataset. (B) Top — Learning combined
networks using both Angelidis and real new data. Bottom — Learning combined networks using

both Angelidis and permutation of cell type fractions in the new data. (C) Overlap in bootstrapped



edges between the original and combined model when using the real data (red dashed line) and the

permutation data (blue distribution).



