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Abstract 

Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on 

differences in the proportion of cell types or on differentially expressed genes. In many cases these 

differences are driven by changes in cell interactions which are challenging to infer without spatial 

information. To determine cell-cell interactions that differ between conditions we developed the 

Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis 

with regression-based modeling to identify differential cell type interactions and the proteins that 

underlie them.  We tested CINS on a disease case control and on an aging mouse dataset. In both 

cases CINS correctly identifies cell type interactions and the ligands involved in these interactions 

improving on prior methods suggested for cell interaction predictions. We performed additional 

mouse aging scRNA-Seq experiments which further support the interactions identified by CINS. 

 

  



Introduction 

The ability to profile the expression of genes at the single cell level has revolutionized gene 

expression studies. Single cell RNA-Seq (scRNA-Seq)  studies resulted in insights related to the 

cell type composition of tissues (1,2), changes in cell type composition in various diseases and 

states (3), various differentiation pathways used within cells (4) and more. However, while 

scRNA-Seq provides valuable information about expression within cells, it is hard to use it to study 

interaction between cells. The main problem is that once cells are extracted it is very challenging 

to determine the spatial relationships among them (5).  

A number of methods have been introduced recently to identify ligand receptor interactions in 

scRNA-Seq studies (6,7). While these methods differ in the exact formulation and statical analysis, 

they all focus on finding correlations between ligands expressed in one cluster (or cell type) and 

receptors expressed in another. This works well for studies that are analyzing a single condition 

(for example expression in a specific tissue or at a specific time point) but does not fully utilize 

information in case-control studies single cell studies (8,9). Unlike single condition studies, in 

addition to differences in expression case-control studies also provide information on differences 

in the proportions of different cell types between the conditions. Such information can be very 

useful in determining which cell types interact. When cell type proportions are correlated between 

two conditions (for example both high in one and low in the other) it may indicate that they are 

likely to interact (10,11). As we show, this information greatly improves the ability to correctly 

infer cell-cell interactions from scRNA-Seq data.  

In addition to methods that attempt to infer cell-cell interaction information from scRNA-Seq, a 

number of technologies have emerged for spatially profiling single cell expression data (12-15). 

These technologies often combine Fluorescence in situ hybridization (FISH) with rapid sequencing 



to provide information on the spatial expression of thousands of genes at various resolutions 

(16,17). A number of recent computational methods have been  developed  to allow for the study 

of signaling pathways involved in cell-cell interactions from this type of spatially-resolved 

expression data (18). However, while spatial transcriptomics studies are promising there are 

several challenges  involved in employing them to study intercellular interactions. First, current 

commercial spatial transcriptomics platforms do not profile cells at the single cell level. Most labs 

do not have access or ability to perform such studies at the single cell resolution. More importantly, 

spatial transcriptomics often requires the fixation of the samples which limits their usage and can 

negatively impact their ability to accurately profile molecular quantities (16). Finally, spatial 

transcriptomics methods can scan only a small region of the tissue and so cannot be applied to 

large number of conditions and samples that are studied using scRNA-Seq. 

Here we present a new method, the Cell Interaction Network Inference (CINS) pipeline, that infers 

cell type interactions in case control scRNA-Seq studies. CINS involves two major steps. First, it 

uses scRNA-Seq data from multiple samples of a similar condition (i.e. disease, age, etc.)  to learn 

Bayesian networks which highlight the cell types whose distributions are co-varying under 

different conditions. Next, for the high scoring differential interactions identified in the Bayesian 

network analysis,  CINS learns a regression model with ligand-target interaction matrix (6) that 

identifies the key ligands and targets that participate in the interactions between these cell types. 

We tested CINS by applying it to both, disease and aging datasets. We show that CINS correctly 

identifies known interacting cell type pairs and ligands associated with these interactions and 

improves upon prior methods for inferring ligand-receptor interactions in scRNA-Seq data. We 

also discuss several novel predictions made by CINS. Finally, we show that a number of CINS 

predicted cell type interactions are supported by a new scRNA-Seq lung aging dataset we profiled.  



Results 

The Cell Interaction Network Inference (CINS) Pipeline 

We developed the Cell Interaction Network Inference (CINS) pipeline which uses single cell (sc) 

RNA-seq expression data to infer cell-cell interactions (Fig. 1). Given repeated experiments of the 

same condition / system CINS uses annotated cell type information to construct a Bayesian 

network (BN) that models causal relationships between different cell types. For this, CINS first 

discretizes the proportion data for each cell type using a Gaussian Mixture Model (GMM) with 

only two components and then learns a BN that models the joint probability distribution of the cell 

type mixtures observed for each sample. High scoring differential causal relationships are 

determined based on bootstrapping. Next, for each of the high scoring differential pairs identified 

we infer the genes involved in the interactions by learning a ligand-target regression (LTR) model 

with ligand-target interaction database from NicheNet (6). The LTR model aims to explain 

changes in target genes as a function of changes in their activating ligands allowing CINS to 

identify the most significant ligands that regulate the cell-cell interactions.  

Inferring cell type interactions using Bootstrapped Bayesian Network 

We first studied a lung disease scRNA-Seq dataset (8). The lung disease dataset contained scRNA-

Seq data for 28 healthy (controls) and 32 Idiopathic Pulmonary Fibrosis (IPF) individuals. A total 

of 250,942 cells were profiled for these individuals. Cell type annotations were assigned based on 

the original study and we used the detailed assignments that provided information on 39 cell types.  

We used CINS to explore differential cell type interactions between IPF and control samples. For 

this, we constructed two different networks based on the cells profiled for each condition. We next 

performed bootstrap analysis to determine the score of each edge in each condition. Edges that 



appear in the majority of bootstrap iterations likely represent real relationships in the data rather 

than noise (19,20).  Resulting BNs for the two conditions are presented in Fig. 2A&B. As the 

figures show, there are some edges that appear for both conditions. These include Basal to Goblet 

cell interactions, which agrees with the fact that club cell’s attachment sites are provided by Basal 

cell (21). However, there are also many differences between edges selected for the two condition 

networks. Tab. 1 summarized the top differences based on the signed difference in edge count in 

100 bootstrap iterations for IPF and control (See Tab. S1 for differences for all detected edges). 

Several of the highest scoring edges are supported by prior work. For example, the edge from Treg 

to Fibroblast cell is supported by a previous study suggesting that Treg’s can negatively regulate 

fibroblast activity (22). The edge between cDC2 and cDC1 is also supported by recent work 

showing that cDC2 and cDC1 are cross-talking with each other (23). Several other top scoring 

edges are supported by the literature as referenced in Tab. 1. We next compared the interactions 

predicted by CINS to interactions predicted by CellPhoneDB, iTALK, and NicheNet (Methods), 

which are all popular methods for inferring ligand-receptor based cell interactions (6,7,24). As can 

be seen, in Tab. S2. unlike CINS which identified a diverse set of cell type interactions, almost all 

interactions predicted by CellPhoneDB involved Goblet cells (18 of the top 20). While there is 

some support for Goblet involvement in IPF (25) they only explain a small fraction (estimated to 

be less than 20%) of individuals with the disease and it is unlikely that they interact with almost 

all other cell types. Similarly, for NicheNet, almost all interactions predicted involved a single cell 

type, Pericyte cells. iTALK performed better, but it has only detected interactions between immune 

cells in the IPF lung dataset. While these are indeed of interest, the more interesting interactions 

are those between immune cells and fibroblast cells in the (injured) lung and none of these were 

identified by iTALK. In contrast, by looking at the overall distribution of cell types CINS was able 



to find a more general and, as we showed, accurate set of interactions between cell types that are 

likely relevant for the disease. 

Inferring ligand-target interactions for high scoring differential cell type pairs  

While the BNs discussed above identify pairs of cell types that likely interact in disease, the 

network does not show which genes and protein products participate in the interactions. To infer 

such gene-gene interactions across cells we developed a ligand-target regression (LTR) model. For 

cell type pairs identified in the BNs our LTR model uses a set of ligands in the first cell type to 

predict the expression values of their known targets in the second cell type. The LTR model uses 

the LASSO algorithm which enables the identification of a small set of key ligands predicted to 

participate in the interaction observed in the BN. We trained the model using a five-fold cross 

validation strategy. See Methods for details.  

The LTR method was applied to all high scoring differential pairs identified by the BN. Tab. S3 

presents top scoring ligands for several cell type pairs. Tab. S4 presents top scoring ligands for 

one cell type pair (Fibroblast -> Lymphatic cell). Several of the top LTR ligands are known to play 

an important role in the activated cell (Lymphatic cell). For example, the highest scoring ligand 

identified by LTR is “FGF2” which was identified as a critical gene for lymphangiogenesis (26). 

Another highly ranked ligand, “TGFB1”, can also accelerate lymphatic regeneration in wound 

repair (27). Tab. S5 presents top ranked ligands for another pair (Treg cell -> Fibroblast), several 

of which have also been shown to participate in the interaction between these cell types. For 

example, fibroblast express IL13 receptor and may behave as an inflammatory cell if stimulated 

by IL-13 (28), and TGFB1-3 (including TGFB1 and TGFB2 in the table) are all involved in 

promoting collagen production in fibroblasts (29).   



Identified ligands are primarily involved in cell-cell interactions  

To test if the predicted ligands are indeed impacting cell type-cell type interactions or mainly 

represent autocrine relationships we compared the activity of top predicted ligands within and 

between cell types. For this, we compared the performance of the LTR method for top edges to 

the performance of a similar method that only uses information from a single cell type. Specifically, 

if the BN predicted a high scoring differential interaction between cell types A -> B, we first trained 

LTR using the ligands of A and the targets of B (as we did above) and compared the performance 

to a LTR model which uses the ligands expressed in B to predict targets in B (autocrine model). 

Results for the high scoring differential edges in the IPF and control datasets is presented in Fig. 

3A. Fig. 3B. presents the results for the same pairs (so x axis is fixed based on the BN score) but 

with the LTR trained using only the ligands of the second cell type. As can be seen, when using 

the ligand of the predicted interacting cell type LTR obtained a higher average correlation with a 

p-value of 0.034 (using the scipy function in Python for computing Pearson correlation p-values). 

In contrast, when using the same cell type for both ligands and targets the Pearson correlation is 

lower (Fig. 3B).  We also evaluated the performance of the LTR method on the predicted cell type 

interactions by comparing the results we obtained with the real ligand-target interaction matrix to 

results obtained using a random ligand-target interaction matrix. We found that for most of the 

random assignments the resulting LASSO models contained only a Bias term with all coefficients 

set to 0 (Fig. S3). This indicates that expression of the ligands did not provide any useful 

information about the expression of the targets when using the random interaction matrix.  

Application to a scRNA-Seq dataset on lung aging 



We  next applied CINS to another, smaller, scRNA-Seq dataset which studied lung aging in  mice 

(9). The dataset profiled lung cells in 15 mice, 8 young (three-month, 3M) and 7 old (24-month, 

24M). The 14,813 cells profiled in this study were assigned to one of 34 cell types in the original 

paper. We again learned 100 bootstrapped BNs for the two conditions (young and old) and 

compared the resulting networks. We found 11 edges to be differentially present between the two 

conditions when using an edge threshold count of 20 (Fig. 4 and Tab. S6). These included an edge 

between Capillary-endothelial-cell and Type 1-pneumocyte cells which are known to jointly form 

thin air-blood barriers used for gas exchange (30). Another pair was Ciliated and Club cells, of 

which the ratio is reported to alert significantly between young and old mouse lung (9).  We next 

performed LTR analysis on the high scoring differential edges. The top ranked ligand in Ciliated 

cells, TNF is known to regulate CC16 gene production, which plays a role in immunomodulatory 

activity in Club cells (31). Apoe, a ligand identified for the macrophage to goblet edge, is produced 

by macrophages to negatively modulate goblet cell hyperplasia (32).  

As we did for the IPF study we compared the performance of the LTR method using ligands from 

the BN identified edges (A -> B) and ligands from the same cell type (B) to predict target 

expression for genes in B. We observed a Pearson correlation of 0.67 when using the ligands from 

the BN identified edges (A->B) vs. Pearson correlation of 0.31 when using the ligands from B 

(Fig. 5). And it is noticed that when randomizing the interactions the LTR method again failed to 

identify any significant correlation between predicted and real expression for the targets (Fig. S3). 

Computational validation of high scoring differential edges using a second aging mouse lung 

dataset 

To test the predictions of the aging BN and to validate them using an independent cohort we next 

performed additional scRNA-Seq experiments on young and old mice to generate a pilot scRNA-



Seq dataset on lung aging. For this, we profiled four young and four old mice of the Fendrr-floxed 

genotype recently generated in the Kaminski laboratory. We obtained 71,562 cells that were 

clustered, annotated, and assigned to 20 cell types that overlapped with the cell types assigned by 

Angelidis I et al. (9). The problem with both aging datasets is their small size 15 and 8 compared 

to 60 in IPF dataset). We could not obtain significant results using the 8 dataset aging data given 

its small size. Thus, we could not use it as a standalone dataset to validate the results of the larger 

(15 samples) datasets. Instead, we looked at the impact of combining the two. We next used the 

combined data (from (30) and from our new experiments) to learn a joint BN. Several of the 

predicted interactions were further supported by our new data. Specifically, we found 19 cell type 

pairs for which the addition of our new data enhanced both the presence of the edge and the 

direction predicted when performing the bootstrap analysis. Tab. S8 presents the top 10 enhanced 

pairs based on the overall bootstrap score (See Tab. S11 for all enhanced pairs). For example, the 

interaction between Neutrophils and Gamma Delta T cell is enhanced from edge count of 40 to 61 

and was reported by recent studies that neutrophils can suppress Gamma Delta T cell’s activation 

involved in the resolution of inflammation (33). And the interaction between B Cell and CD4+ T 

Cell is enhanced from -16 to -19 (being negative means that old lung has less), and is supported 

by other studies that B cell will activate CD4 T cells in human cutaneous leishmaniasis infection 

led by Viannia (34). In addition, we also found that T-cell-B-cell interactions were calculated to 

occur less often in older samples, which further validates the comparison between old and young 

mice (35). 

We next focused on the top five predicted interactions in Tab. S8 (all with an absolute enhanced 

bootstrap score larger than 15). Permutation analysis indicates that identifying such a large number 

of edges supported by both studies is significant (p-value = 0.05, Methods and Fig. 6, and see 



Tab. S13 for result of other threshold values). Specifically, we permutated the cell type fraction 

of the aging dataset with 8 samples, and then did the BN analysis for 1,000 times. We next 

calculated the fraction of enhanced pairs with certain edge threshold over the whole pairs reported. 

We applied LTR to the cell type pairs in Tab. S8 to find important ligand genes. Tab. S9 presents 

the top predicted ligand genes. Several of these (red font) are supported by prior studies on the 

interaction between these cell types. Comparisons to CellPhoneDB, iTALK and NicheNet 

indicated that, similar to what we observed for the IPF data, the predicted interactions are very 

different compared to CINS (Fig. S4). In addition, unlike CINS for which the overlap between the 

pairs identified with and without the new datasets were significant, for CellPhoneDB we did not 

observe significant overlap between predicted interaction pairs (Tab. S13). 

 

Discussion 

To enable the study of cell type – cell type interactions using scRNA-Seq data we developed a 

method termed Cell Interaction Network Inference (CINS). CINS first learns a Bayesian network 

between cell types (BN) using repeated samples. High scoring differential cell type pairs identified 

by the BN are further studied to infer the ligands that regulate these interactions. CINS is 

implemented in python and R and can be downloaded from https://github.com/xiaoyeye/CINS. 

While CINS can be applied to any dataset with multiple samples, it is most appropriate for datasets 

containing case and control or multiple conditions. For such datasets CINS can infer not only the 

high scoring differential interactions within a condition but also those interactions that differ 

between the condition and that may partially explain the differences between the conditions studied. 

Most current cell interaction tools focus on ligand gene expression information, while CINS can 



make use of cell proportion as additional information and the two can prove each other mutually, 

further confirming the findings. The discretization of cell proportion can fit the data very well and 

makes it easier for BN to learn the correct structure of the network which is the major focus of 

CINS. 

We first applied CINS to study a case and control dataset profiling lung expression from IPF 

patients and controls. CINS identified several differences between the interactions observed for 

IPF patients and for healthy individuals. These include the interaction from Treg to Fibroblast cells 

which is supported by a recent study that found Treg can negatively regulate fibroblast activity 

(22) , and the edge between cDC2 and cDC1 is also supported by recent work showing that cDC2 

and cDC1 are cross-talking with each other (23).  

For many of the identified high scoring differential interactions CINS was also able to identify key 

ligands involved in the interactions. For example, “FGF2” which was identified as a critical gene 

for lymphangiogenesis (26), and one more highly ranked ligand, “TGFB1”, can also accelerate 

lymphatic regeneration in wound repair (27).  

We next applied CINS to a lung scRNA-Seq aging dataset and identified a number of high scoring 

differential pairs that differ between young and old mice. To validate predicted interactions we 

performed additional experiments in which we profiled scRNA-Seq expression in 4 additional 

young and old mice and then used the combined dataset to learn a joint network. As we showed, 

the network we learned identified a significant number of interactions that are supported by both 

datasets. These include the interactions between Neutrophils and Gamma Delta T cell (33), and 

between B Cell and CD4+ T Cell (34,35) which are both supported by previous studies. CINS was 

again able to identify key ligands involved in these interactions, TNF, identified as the top ligand 

in the interaction between neutrophils and Gamma Delta T cells was previously identified as 



expressed in neutrophils (36) and as a regulator of immune cells Gamma Delta T cells (37), and 

TNFSF18 identified in interactions between CD4+ T cells and Vascular Endothelial Cells, was 

also previously reported to mediate the interactions between immune cells and endothelial cells 

(38).  

While CINS can be successfully applied to several scRNA-Seq studies, it does have several 

limitations. First, it can only be applied if multiple samples are profiled since the BN part requires 

several repeated samples to compute relationships between cells. In addition, because BNs do not 

allow self edges, interactions between cells of the same type cannot be identified by CINS. Finally, 

since it uses a bootstrap approach to infer edge score it can miss important interactions if not 

enough samples and / or cells are available.  

CINS is one of the first methods to enable the inference of cell type interactions in scRNA-Seq 

data from repeated samples. Given the growing popularity of this method, and its increased use in 

clinical studies which are currently less amenable to spatial transcriptomics techniques we believe 

that CINS provides a solution to an important problem that is not currently addressed.  

Materials and Methods 

We developed a pipeline for modeling interactions between cells of different types from scRNA-

Seq data. Our method first identifies cell types that are likely interacting and then tries to provide 

a mechanistic model to explain how such interactions are manifested at the molecular level.  

Datasets 

We tested CINS using three scRNA-Seq datasets. The first compared gene expression in lungs of 

healthy and Idiopathic Pulmonary Fibrosis (IPF) with accession number of GSE136831 (8). This 

dataset contained 28 controls and 32 IPF patients with a total of 243,472 cells and the expression 



levels for 45,947 genes in each cell. We used the original annotations and included in the model 

all 39 cell types with at least 100 cells. The second dataset studied lung aging in mice with 

accession number of GSE124872 (9). This dataset contained 8 three-month-old mice and 7 24-

month-old mice for which a total of 14,813 cells were profiled. For each cell the expression levels 

of 21,969 genes were provided. Each cell was assigned by the authors to one of 34 cell types. The 

third dataset was a new dataset in which we profiled single cell expression in four young (25 weeks) 

and four old (2x 103 weeks; 2x 120 weeks, Supporting Methods) Fendrr-floxed mouse lungs. This 

dataset contained a total of 71,562 cells with expression values for 45,947 genes. These cells were 

originally assigned to 37 cell types based on the expression of canonical cell type markers. To 

combine the two aging datasets we did the following. We first normalized the gene expression data 

using the same method for both datasets. Next, we manually assigned a common set of cell types 

to both datasets so all cell type match between the two. Specifically, we identified a joint subset 

of 20 cell types identified by both and only used cells assigned to these cell types in our combined 

BN analysis (see Tab. S10 for cell type information details).Information about ligands and their 

targets were obtained from a recent paper (6) which provided targets for 688 ligands. 

Single-cell sequencing of Fendrr-floxed Mice 

Animal procedures had been approved by the Institutional Animal Care and Use Committee 

(IACUC). We created a floxed allele of Fendrr via two-guide, two-oligo CRISPR/Cas mediated 

cleavage and recombination essentially as described in Yang et al. (19). A generated mouse which 

had the expected conditional allele was bred with C57BL/6J mice to establish the colony and to 

sort the floxed allele from any other possible mutant alleles. Three female and five male mice in 

two age groups (young: 23 weeks, old: ranging from 103 to 120 weeks; four mice per group) were 



euthanized, and lungs were harvested and minced in small pieces with a scalpel. Lung pieces were 

dissociated using the enzyme Liberase TL (Roche).  

Single RNA molecules of single cells were barcoded using the 10× chromium single-cell 

technology according to the manufacturer’s instructions (Single Cell 3′ Reagent Kits v2, 10× 

Genomics, USA). Barcodes were used to assign reads to cells and quality control was performed 

to remove low quality cells (Supporting Methods). Generated sequencing data is available at GEO 

accession number GSE165638. A modified version of the standard Seurat pipeline was employed 

to normalize, cluster and annotate the raw counts single-cell expression data for downstream 

analysis (20). Briefly, the percent of mitochondrially-expressed genes was calculated for each 

individual cellbarcode using the PercentageFeatureSet function. Next, unique molecular identifier 

(UMI) counts were log normalized with a scale factor of 10,000 UMIs per cell and then natural 

log transformed using a pseudocount of one. Following log normalization, the top 3500 variable 

genes within the dataset were determined using Seurat’s implementation of the 

FindVariableFeatures function with the “vst” parameter. Next, the gene-level scaling of the data 

was performed using the ScaleData function. Each feature was centered to have a mean of zero 

and scaled by the standard deviation of each feature. The percent of mitochondrially-expressed 

genes captured within each cell were regressed out during scaling by using the “vars.to.regress” 

parameter. To reduce the dimensionality of the dataset and to identify genes contributing the most 

variability to the underlying manifold of the dataset, Principal Component Analysis (PCA) was 

performed using the scaled data and the 3500 variable genes calculated determined for the dataset. 

Following exploration of the PCs (Supporting Methods), the first 75 PCs were selected for 

clustering and following Uniform Manifold Approximation and Projection (UMAP), a 



dimensionality reduction method. The quality of subject and age representation within each cluster 

was assessed prior to cell type annotation to note any subject- or age-specific biases. 

Cell type assignment of Fendrr-floxed mice 

To assign a specific cellular identity to each cluster, differentially expressed markers were 

determined and assessed within the context of canonical marker genes. Briefly, a differential gene 

expression test using Wilcoxon Rank Sum test was performed that compared the gene expression 

within a specific cluster to expression within all cells outside of that cluster. The resulting list of 

cluster-specific marker genes was assessed and cell types were ascribed based on expression of 

canonical marker genes. Clusters displaying canonical markers for multiple cell types were flagged 

as multiplets and were omitted from downstream analysis. 

Cell type quantification and discretization 

We use the cell type annotation information provided by each study. To use Bayesian network to 

learn relationships between cell type we first discretize the proportion of each cell type in each 

sample. Discretization is cell type specific (i.e. different cell type will be assigned different values 

for the same proportion quantity) and is learned using an unsupervised method based on Gaussian 

Mixture Model (GMM) with two components. Specifically, let [𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ 𝑥𝑛
𝑖 ⋯ , 𝑥𝑁

𝑖 ]be the fraction 

(percentage) of the ith cell type in the N samples.  We learn a two components GMM for these 

values and then assign each value to the class with the higher likelihood for this value. The target 

function of the GMM aims to maximize the log likelihood: 

𝑙𝑖(𝜋𝑖 ,  𝜇𝑖, Σ𝑖) =  ∑ log (∑ 𝜋𝑘
𝑖 𝒩(𝑥𝑛

𝑖 , 𝜇𝑘
𝑖 , σ𝑘

𝑖 )1
𝑘=0 )𝑁

𝑛=1                                                                     (1) 



Where 𝒩  represents gaussian distribution and ( 𝜋𝑘
𝑖 , 𝜇𝑘

𝑖 , σ𝑘
𝑖 ) represent proportion, mean and 

standard deviation parameters for the kth component of the ith cell type.  

Following convergence, each proportion value 𝑥𝑛
𝑖  is assigned to one of the two classes. We assign 

labels to the two classes such that the component with lower mean parameter is assigned a value 

of  0 and the second is assigned a value of 1. This leads to a learned cell type specific cutoff such 

that all samples with a value less than that cutoff are assigned to 0 and all those above are assigned 

to 1. However, the number of 0’s and 1’s is not pre-determined and may be highly skewed in either 

direction based on the distribution of the fractions. See Fig. S1 for examples of assignments. To 

learn GMMs we used the Python package “sklearn” with a maximum iteration number of 500 and 

a convergence threshold of 10**-4. 

Learning a cell type Bayesian network  

We use the discretized cell type values to learn a cell type Bayesian network. Bayesian network is 

a probabilistic graphical model that uses directed acyclic graph to represent joint probability 

distributions.  The absence of an edge can indicate independence and / or conditional independence. 

Bayesian networks are parameterized as <G, P> where G = <V, E> is a directed acyclic graph with 

V as variables and E as directed edges, and P is the global joint distribution for all nodes V. Given 

the graph structure this probability can be decomposed into local distribution for each node, 𝑉𝑞, 

conditioned on its parent nodes as follows:  

𝑃(𝑉|Θ, 𝐺) =  𝑃(𝑉1, 𝑉2, … . , 𝑉𝑄|Θ, 𝐺) = ∏ 𝑃(𝑉𝑞|𝑃𝑎(𝑉𝑞|Θ𝑞))𝑄
𝑞=1                                                                     (2) 

Where 𝑃𝑎(𝑉𝑞|Θ𝑞) is parent node set of 𝑉𝑞 according to G. 



To learn a Bayesian network using the discretized cell type proportion data, we iterate between 

network learning and parameter estimation. We initialize the network using the Hiton Parents and 

Children strategy which is based on marginal association among variables (21). Next we iterate a 

search strategy, that uses penalized Hill-Climbing to add, flip or remove edges based on the 

Bayesian Information Criterion (BIC) score when using dataset D, where each sample in D 

contains values for all the variables of V: 

𝐵𝐼𝐶 = 𝑙𝑜𝑔𝑃(𝐷|Θ, 𝐺) −
1

2
𝐷𝑖𝑚(𝐺)𝑙𝑜𝑔𝑁                                                                                      (3) 

where N is the number of samples and 𝐷𝑖𝑚(𝐺) is the number of parameters in the model.  For this, 

we used the “rsmax2” function from the R library “bnlearn”, which implements the iterative 

Penalized Maximization algorithm to construct a Bayesian network.  

To obtain confidence values for edges (predicted interactions) in the network we followed previous 

learning methods that utilized a bootstrap strategy (22-24). For each iteration of the bootstrap we 

first randomly sample 80% of all single cells in the dataset. Next, we used these cells to determine 

cell type frequencies in each sample and to perform the discretization and network learning as 

described above. This step is repeated 100 times, and for which we counted the presence of all 

directed edges. While the direction of an edge in a Bayesian network does not always imply casual 

interactions (25), we observed that high scoring differential edges were also very consistent in 

their direction (Tab. S1).  

Ligand-Target Regression (LTR) Model  

The bootstrapping method presented above provides a small set of high scoring differential 

interactions between some of the cell types in the dataset. To obtain a mechanistic explanation for 

these interactions, and to identify the interacting genes between the two cell types we focused on 



ligand-target interactions between the two cells types. Specifically, for a predicted directed edge 

between cell types A and B we learned a Ligand-Target Regression (LTR) model to determine if 

there is an underlying cell type – cell type interaction between A and B.  Our assumption is that if 

these two cell types indeed interact, then the expression of some of the ligands in cell A type  

should be able to explain some of the expression changes observed in cell type B. Similar 

approaches have been used by others to explore cell-type interactions in non case control studies 

(7).To identify a set of ligands in A predicted to activate or repress target genes in B we optimized 

the following regression model:  

min
𝛼

∑ (  ∑ 𝐼(𝑡,𝑙)𝐿(𝑙)𝛼(𝑙) − 𝑇(𝑡)
𝐿
𝑙 )

2
+ 𝜆‖𝛼‖𝑇

𝑡                                                                                           (4) 

Where 𝐼 represents an input (known) ligand-target interaction matrix (6), 𝐿 is an input vector of 

log values for the expression of ligands in cell type A, 𝛼  represents the (unobserved) ligand 

activation vector, 𝑇 represents the expression levels for target genes in cell type B and 𝜆 is a 

regularization parameter. Here we used a L1 regularization which usually leads to the selection of 

relatively few non zero values (corresponding to relatively few activated ligands in cell type A).  

Using the inputs to sett 𝐴(𝑡,𝑙) =  𝐼(𝑡,𝑙) 𝐿(𝑙), transforms the optimization problem to 

min
𝛼

∑ (∑ 𝐴(𝑡,𝑙)𝛼(𝑙) − 𝑇(𝑡)
𝐿
𝑙 )

2
+ 𝜆‖𝛼‖𝑇

𝑡                                                                                          (5) 

Which is a standard least absolute shrinkage and selection operator (LASSO) model. To learn 

parameters for the model we used the “LASSOCV” function from the Python library “scikit-learn”, 

which implements the LASSO cross validation. Note that the model in equation 5 using the same 

ligand activity parameters for all genes (there is only 1 ligand activity parameter in the model for 

each ligand across all target genes). Thus, we can use this model in a cross validation setting to 

predict the expression levels of held out targets in cell type B. For these, we know the ligand-target 

 



interaction from Matrix I and the ligand expression from L allowing us to evaluate the ability of 

the model to generalize to unseen targets. We also use the model to test if we obtain better 

prediction accuracy for significant pairs identified in the BNs. 

Training and Test for Ligand-Target Regression (LTR) Model  

We used a five-fold cross validation strategy to train and test the LTR model: We split the training 

part of each validation set into two sets to select the hyperparameter 𝜆 (our penalty term) and then 

retrain using all training data for this set and the selected 𝜆 to obtain the model used for the fold 

test data. Evaluation of predicted values is based on the average Pearson correlation between the 

predicted and actual expression changes for each fold. Following testing we use the average 

product between the log fold change and coefficient value 𝛼 in the five-fold training models to 

rank the list of active ligands. 

Joint plots of Bayesian Network and LTR model scores for cell type pairs 

To jointly plot the Bayesian network bootstrap score and the Pearson correlation regression score 

for each cell type pair, we first converted the edge count to log value. For the Pearson correlation 

we used the average correlation for the five-fold results. For both IPF lung data and lung aging 

data, cell pairs with edge count smaller than 20 are removed (See Tab. S12 for details). Note that 

for some of the pairs we tried to model using LASSO the learning terminated with coefficients of 

0 for all ligands (this happened for all runs of the random interaction matrix as we mention in 

Results and to a few of the CV runs of the cell-cell and intra-cell models). In such cases these 

models were removed from the correlation analysis. 

Comparison to CellPhoneDB, iTALK and NicheNet 



All the three methods are based on ligand related gene expression analysis. For CellPhoneDB, the 

result contains all possible cell type pairs with calculated ligand-receptor scores. For each cell type 

pair, we use the sum of all its ligand-receptor scores as its pair score. iTALK detects significant 

ligand- receptor pairs, and provides the mean expression level of them. We then sum the product 

of ligand and receptor expression as the final score for each cell type pair. NicheNet can select top 

functional ligand genes with prediction scores for a given cell type pair. We next sum these 

prediction scores for all selected ligands to rank cell type pairs.   

 

  



Data Availability  

All scripts, and instruction required to run CINS pipeline in Python and R can be found in our 

support website, https://github.com/xiaoyeye/CINS. Generated sequencing data is available at 

GEO accession number GSE165638.  All other public data can be found following the pipelines 

in Methods. 
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Tab. 1 Top differential cell type interactions identified by CINS for the IPF dataset. The IPF-

Control column lists the difference in the number of times the edge between the two cells was 

identified in 100 bootstrap runs for each of the two datasets. Negative values indicate that it was 

identified more for the Control whereas positive numbers mean that the interaction is more 

prevalent in IPF. For all listed edges the interaction was only identified in for one of the two 

datasets (score of 100 or -100).   

cell_type1 cell_type2 IPF-

Control 

Reference 

Macrophage Ciliated -100 There is strong interaction between ciliated cell and 

Macrophage in COVID-19 critical cases (39) 

Fibroblast Lymphatic -100 Fibroblast produce extracellular matrix which is 

critical to lymph node microenvironment (40) 

cDC2 DC_Mature 100  

cDC2 cDC1 -100 cDC2 and cDC1 are cross-talking with each other 

(23) 

Macrophage cDC1 100  

Mesothelial Aberrant_Basaloid 100  

Macrophage_Alveolar pDC -100 Macrophage_Alveolar (AM) and pDC are involved in 

antiviral immune, and pDC will be activated if the 

AM defense line is broken (41) 

Myofibroblast VE_Venous -100 Injury lets endothelial cells transform to 

myofibroblast (42) 

Ciliated ncMonocyte -100 Ciliated cells may contribute to monocyte inflow in 

COVID-19 (39) 

Multiplet VE_Capillary_B 100  

B_Plasma Mesothelial -100 Excess plasma cells are found with mesothelial cells 

on effusion cytology smear (43) 

VE_Capillary_B SMC -100  

Pericyte SMC 100 Brain pericytes and vascular SMC comprise mural 

cells which is important to support blood vessels (44) 

ncMonocyte Multiplet 100  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pericyte
https://www.sciencedirect.com/topics/neuroscience/vascular-smooth-muscle
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mural-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mural-cell


ncMonocyte DC_Mature -100  

T_Regulatory Fibroblast 100 Treg cell regulates fibroblast in lung (22) 

VE_Arterial VE_Venous 100  

T T_Regulatory 100  

VE_Peribronchial Pericyte 100 One pericyte can communicate with more than one 

endothelial cells (45) 

T_Regulatory DC_Langerhans -100  

 

 

 

Figure Legends 

Figure 1. Overview of CINS. (A) Cell type annotation is used to extract cell type fractions in each 

sample. Next cell type fraction is discretized by learning Gaussian Mixture Model (GMM) for this 

type, respectively. (B) A Bayesian network (BN) is learned using the discretized cell abundance 

information. Bootstrapping is performed to identify high scoring differential interactions between 

cell types. (C) For pairs identified in the directed bootstrap BN analysis, a ligand-target regression 

(LTR) model is learned. In this model we use expression of ligands in the cell type with the 

outgoing edge to predict the expression of targets genes in the cell type with incoming edge. (D) 

Finally, LTR is used to select key ligands that underlie the cell-cell interactions identified in the 

BN. cell interaction. 

 

Figure 2. Bayesian Networks (BN) learned for lung cell types in healthy and IPF individual. 

(A) BN for controls (healthy individuals). (B) BN for IPF patients. Nodes represent specific cell 



types and are colored accordingly, edges represent directed interactions between the cell types. 

Edge width corresponds to its bootstrap score.  

 

Figure 3. Interactions learned by the BN are more significant than interactions between cells 

of the same type. Comparison between the ability of the LTR model to predict target expression 

when learning the model using cell pairs identified by the BN (A) and the same cell type (B). The 

x axis represents the bootstrapped edge count (score) of the interaction in the BN for a cell type 

pair, and the y axis represents the LTR model performance (higher is better) for the same cell pair.

  

 

Figure 4. Aging Bayesian Networks. (A) BN for young mice. B) BN for adult mice. Nodes and 

edges notations and colorings are similar to those used in Fig. 2.  

 

Figure 5. LTR comparison for the aging data. Comparison between the ability of the LTR model 

to predict target expression when learning the model using cell pairs identified by the BN (A) and 

the same cell type (B).  

 

Figure 6. Permutation analysis highlights the agreement between the two aging networks. (A) 

Leftmost – learning using the Angelidis (15 samples) dataset. (B) Top – Learning combined 

networks using both Angelidis and real new data. Bottom – Learning combined networks using 

both Angelidis and permutation of cell type fractions in the new data. (C) Overlap in bootstrapped 



edges between the original and combined model when using the real data (red dashed line) and the 

permutation data (blue distribution). 

 


