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Abstract— Multi-view classification with limited sample size
and data augmentation is a very common machine learn-
ing (ML) problem in medicine. With limited data, a triplet
network approach for two-stage representation learning has
been proposed. However, effective training and verifying the
features from the representation network for their suitability
in subsequent classifiers are still unsolved problems. Although
typical distance-based metrics for the training capture the overall
class separability of the features, the performance according to
these metrics does not always lead to an optimal classification.
Consequently, an exhaustive tuning with all feature–classifier
combinations is required to search for the best end result. To over-
come this challenge, we developed a novel nearest-neighbor (NN)
validation strategy based on the triplet metric. This strategy
is supported by a theoretical foundation to provide the best
selection of the features with a lower bound of the highest end
performance. The proposed strategy is a transparent approach
to identify whether to improve the features or the classifier.
This avoids the need for repeated tuning. Our evaluations on
real-world medical imaging tasks (i.e., radiation therapy delivery
error prediction and sarcoma survival prediction) show that
our strategy is superior to other common deep representation
learning baselines [i.e., autoencoder (AE) and softmax]. The
strategy addresses the issue of feature’s interpretability which
enables more holistic feature creation such that the medical
experts can focus on specifying relevant data as opposed to
tedious feature engineering.
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I. INTRODUCTION

CLINICIANS often consider medical information from all
data sources available (e.g., blood tests, patient history,

clinical physiology) before making clinical decisions. Simi-
larly, machine learning (ML) systems designed for medical
decision support also need to incorporate data from various
clinical sources. The sources range from medical scans of
different modalities [1] to a list of expert-defined variables [2]
in combination with other patient data and profiles. In ML
research, the context of using such diverse information from
complex sources and data definitions is commonly studied
under the topic of multi-view learning [36], [37]. An increas-
ing number of widely used approaches lie in the utilization
of deep learning architectures to engineer and enrich fusional
features. A major difficulty for the approaches under the
clinical settings is a lack of the available training samples due
to several factors such as restrictive patient privacy laws and
procedures in data acquisition/access, extreme heterogeneity of
clinical settings across institutions and patient cohorts, high
medical imaging study costs, and low numbers of patient
enrolment in the study. Moreover, traditional data augmen-
tation and generation techniques are ineffective because the
distributions of the patient data are often unknown or hard to
verify. Under such scarcity, transfer learning via representation
is an alternative strategy to train the architecture for an actual
prediction task.
Three approaches are commonly used for representation

transfer: end-to-end transfer training, autoencoders (AEs), and
metric learning. While all the approaches have found successes
in diverse domains [3]–[5], previous studies suggested that
metric learning has the potential for the small-sample prob-
lem [6], [7]. Triplet network is an applicable architecture under
the metric approach trained for extracting class-separable fea-
tures. Training the network for the best classification features
is, however, a tedious task. Although the training for the
class-separable features is generally sensible, there is a lack of
effective strategies to translate the metric loss to an achievable
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Fig. 1. Comparison of the three commonly used deep learning architectures as the embedding network for the two-stage multi-view representation learning
strategy. From left to right: end-to-end classification network, AE network, and triplet network for metric learning.

classification result such that similar losses among the training
epochs may provide features with drastically different clas-
sification performances. One needs to exhaustively tune and
compare all possible feature–classifier combinations to decide
the best classification architecture. Consequently, it is also
difficult to determine whether underperformance was caused
by the trained features, the classifier, or both.
This article presents a novel strategy to optimize the training

of the triplet network with theoretical support to guarantee the
quality of training. The strategy uses key information from
the separation metric loss to fine-tune hyperparameters of an
adaptive nearest-neighbor (NN) validation, which evaluates a
lower bound on the achievable end performance. The valida-
tion guarantees that the features with the best classification
potential would be selected while providing an achievable
target result. This approach can overcome the need of the
repeated tunings on both the features and the subsequent final
classifiers. To demonstrate the effectiveness of the proposed
strategy, this study applied it to two real-world medical data
classification problems: quality assurance of radiation therapy
delivery and sarcoma patient survival. Both real-world data
sets have small sample sizes (e.g., <200 sample/class) and
multi-view inputs.

II. RELATED WORKS

A. Representation Learning Strategies

Given multi-source raw input data I = (I 1, I 2, . . . , I s)
where s is the number of information sources, the purpose
of representation learning is to extract a fusional feature
embedding X = f (I ) for subsequent prediction tasks. In the
past, the features were often obtained through time-consuming
feature engineering. Recent approaches, however, use some
forms of parameterized deep networks trained with related
data or surrogate tasks. Training and using the networks are
often organized as two-stage operations. Intuitively, the first

stage trains the network for surrogate tasks or helper tasks.
Through surrogate training, the network learns to extract X
with some inductive bias [40] useful for solving the target
tasks in the second stage. Fig. 1 illustrates a conceptual
difference between the architectures of the three commonly
used representation learning strategies.
The end-to-end transfer learning organizes the feature

extraction as a by-product of an end-to-end training (e.g., using
output from the penultimate layer as features). Specifically,
the strategy uses f (I ) = hc(I ; θ) where θ is a set of parame-
ters and hc(I ; θ) is from the end-to-end network gc(hc(I ); θ)
tuned for the surrogate task. To train for the second stage,
gc(X; θ) is subsequently fine-tuned (e.g., soft-max) or replaced
by other classifiers. The end-to-end strategy is common in
many domains, especially for Computer Vision where pre-
trained networks from large-scale image data sets [8], [9]
are available for surrogate learning. There are also some
adaptations to the feature fusion problems in the medical
domain [10]–[12].
The AE approach trains an architecture for a latent rep-

resentation using an unsupervised self-reconstruction as the
surrogate task. An intermediate layer of the trained network
is used as the low-dimensional representation extractor. The
main intuition for using the layer is to capture a manifold
of compressed patterns with reduced complexity to ease the
second-stage training. Specifically, an AE network is trained to
reconstruct input I = gae(hae(I ; θ)). After training, gae(X; θ)
for the reconstruction is removed. Then, the latent representa-
tion extractor f (I ) = hae(I ; θ) is designated from its hidden
layer hae(I ; θ) to extract features from the multi-format I for
the second-stage classification task. The approach has found
some success in signal processing and classification in the
medical domain [13]–[15]. However, training the AE networks
to reduce the reconstruction loss can be less effective with
diverse forms of input (e.g., more loss from larger inputs).
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In contrast to the first two approaches, the metric learning
approach trains the feature extraction architecture to satisfy a
suitability metric (e.g., loss function) such that the extracted
features can ease the subsequent tasks. Triplet network is
an example of this approach that trains for general class
separation within the feature space. The class separability
distance metric was introduced in [16] and [17]. The distance
function d( f (Ii; θ), f (Ij; θ)) is maximized if Ii and Ij belong
to different classes and is minimized if Ii and Ij belong to the
same class. After training, X = f (I ; θ) is used for subsequent
tasks. The approach has been applied generally to image
retrieval [19], [20] and adapted for medical classification [21].
The literature suggests that X with better surrogate perfor-

mance implies better target results. However, the suitability of
X in terms of the target performance has not been quantified
during the first-stage training. To train the system efficiently,
prior quantification is necessary for identifying whether the
prediction with X should be improved at the first stage (fea-
tures) or the second stage (classifiers). Otherwise, all possible
feature–classifier candidates have to be tested. We propose to
avoid the repetition such that only the features with the best
potential are selected for target task training.

B. Triplet Network

In this work, we develop the validation based on infor-
mation during the triplet network training. Triplet network
is an architecture under the metric learning approach. The
network consists of three identical extractors with a shared
parameter set θ and a comparator network [7]. The choice of
the extracting architecture is selected based on the input data
characteristics, such as feed-forward networks for 1-D vector
data and convolutional neural networks (CNNs) for 2-D data.
The extractors create feature vectors for an anchor input Ia,
a same = class or positive input Ip, and a different-class or
negative input In, which results in Xa, Xp, and Xn, respec-
tively. Afterward, the comparator evaluates the vectors and
backpropagates the error gradient to adjust θ . The general
idea of the metric loss criteria was originally proposed in [16],
where the features of same-class samples should be clustered
together and positioned away from that of the different classes
in the feature space. The idea is simplified in subsequent works
as fixed-margin triplet loss

Ltri = max
(
0, Da,p − Da,n + m

)
(1)

where Da,p = ‖Xa − Xp‖2, Da,n = ‖Xa − Xn‖2, and m is the
fixed margin. Minimizing the loss results in a separation of at
least m distance among samples of different classes.
With this architecture, the input data need to be organized

into a set of triplets. Given I = {I1, I2, . . .} and C =
{C1,C2, . . .} as the input data set and its corresponding class,
a triplet is organized as T = (Ia, Ip, In) where Ia is any sample
in I, and Ip and In are sampled based on their class relationship
with Ia. After training with metric loss, one of the extractors
is then used to calculate for X = f (I ; θ). Triplet sampling
results in a larger input data set. For a two-class example, let
n be the number of input sample, p be the number of positive
among the n inputs, and n − p be the number of negative.

Let class 1 be positive class. For each Ia from class 1, the
number of triplet combinations is Tp = p × p × (n − p).
For class 2, the number is Tn = (n − p) × (n − p) × p. Thus,
the total number in the triplet data set is Tp+Tn = n2 p−np2 or
O(n2) expansion from the original size. Note that the increase
in the inputs for the network does not increase the number of
the network parameters due to parameter sharing. Therefore,
it is also an alternative to data augmentation, which is limited
in the medical context as it increases the risk of learning
with invalid data. Applying the expansion also leads to better
classification [6], [7], [18] for small-sample setting.

C. Nearest Neighbor Estimation and Classification

Our validation criteria are formulated based on NN esti-
mation. NN is a classical approach to estimate the local
distribution of relevant value p(V | X), where V is either
a discrete class label C for classification or a continuous
response R for regression. Given known feature–value pairs
{(X1, V1), (X2, V2), . . .} and a query with unknown value
(Xq, Vq), p(Vq | Xq) can be estimated as

p
(
Vq = v | Xq

) =
∑

i∈Nq,rq

�(Vi = v)

|Nq,rq |
. (2)

Once p(Vq = v | Xq) is estimated, Vq can be decided for a
classification task in which Vq = Cq and

Cq = argmax
v

p
(
Cq = v | Xq

)
(3)

or for a regression task in which Vq = Rq and

Rq =
∑

i∈Nq,rq

vi p
(
Vi | Xq

)
(4)

where rq and Nq,rq are, respectively, a radius and a set of sam-
ple indices belonging to the neighborhood in the estimation
such that any known sample X i located within the distance rq
away from Xq is considered a neighbor of Xq. i belongs to the
set of indices Nq,rq . rq is also a hyperparameter that defines the
neighborhood boundary and indirectly determines the number
of neighbors for estimation. Note that rq can also be set as
dq,k or the distance to kth NN of Xq. The estimation under
the setting is called k-nearest-neighbor (KNN) estimation.
In theory, increasing value of k for rq = dq,k leads to more
confidence in the estimation as the upper bound estimation
error decreases according to the law of large number [24].
In practice, however, it also detrimentally increases the chance
of including samples that do not belong to p(Vq | Xq). Deter-
mining the best value of rq or k remains largely open
research. The typical ways involve cross-validation or separate
optimization [22]–[23], [34]–[35]. The NN is also a suitable
nonparametric tool for non-linear analysis of deep learning
features [21], [25].

III. PROPOSED METHOD

This article proposes a new strategy to optimize the training
of the triplet network for classification. While the typical
metric loss roughly reflects the degree of class separation,
the difficulty in translating the first-stage loss to classification
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performance leads to ambiguity whether improvement should
be emphasized on representation learning or the classifier
training. Due to the need for translation, we introduce a new
adaptive NN criterion as the validation in the triplet network
training. The proposed strategy can be used for comparison of
candidate features prior to the second stage.

A. Using NN Performance as Metric Loss in
Triplet Training

The key idea of the strategy is using the empiri-
cal performance of NN classification with an appropriate
hyper-parameter as a quality measure of features and an
achievable baseline. NN classification has close ties with
Bayes error rate Ebayes or the minimum error possible for a
distribution of input [24]. With a sizable K in KNN, it can be
established that

Ebayes ≤ ÊKNN ≤ EKNN ≤ ENN ≤ 2Ebayes (5)

or equivalently

ANN ≤ AKNN ≤ ÂKNN ≤ Abayes (6)

where EKNN is the upper bound of KNN error, ENN is the
upper bound for 1-NN, A = 1 − E is the lower bound of
accuracy rate, and ÊKNN and ÂKNN are the empirical error
and accuracy, respectively.
Asserting Â ≈ Abayes using the validation data set,

the empirical measure suggests that the features with better
Â may perform better when optimally classified. Asserting
Â ≤ Abayes using the testing data set, the empirical measure
suggests that there is some room for improving the classifi-
cation result with an appropriate subsequent process. Thus,
the measure can select features from a first-stage training
epoch that attains the best Â. Then, the subsequent classifiers
should be trained with the selected features for end perfor-
mance. The second-stage classifier and the validated features
with the best performance can then be designated for the final
classification framework. These validation steps can replace
the training with exhaustive combinations of feature–classifier
candidates.

B. Adaptive Neighbor Scope for Validation

The quality of the empirical estimation Â depends on the
appropriate number of neighbors. However, setting such a
hyper-parameter is often done by repeated tuning processes
which we try to avoid. The issue can be alleviated by
setting the hyper-parameter according to information from
the representation learning step. A naive method, instead of
setting a fixed k value, is to set the neighbor radius rq = m.
However, the setting may detrimentally lead to finding less or
no neighbor, which will be discussed in Section III-C.
To overcome this challenge, we propose a new adaptive

neighborhood scope to determine the radius rq for each query
point using a closed-form evaluation on the first-stage metrics.
After completing the representation training, our approach
calculates an adaptive neighbor radius for each represented Xa

in the training set. Then, each radius is used to approximate the
radius for each query. The key idea for finding the radius on

each Xa is to start the NN estimation from a large radius and
then reduce the search radius based on class distribution within
the larger neighborhood. The reduction of search scope is done
such that the new neighborhood is more homogeneous. All
steps of the proposed strategy are summarized in Algorithm 1.
The first step is to record an arbitrarily large value for an

initial search radius ra of each Xa. We set ra = da,k where k is
a sizable value such that the initial neighborhood area contains
sufficient samples. The second step is to use the radius to find
all positive and negative samples within the neighborhood of
Xa in the validation set. The third step is to collect local
statistics D̄a,p and D̄a,n, which are the means of distances
to the positive samples and the negative samples within the
neighborhood defined by Na,ra . The fourth step is to use the
statistics to suggest a better boundary distance r∗ as

r∗ = D̄a,p +
√(

D̄a,p
)2 + 8D̄a,p D̄a,n

4
. (7)

Details on deriving r∗ will be discussed in Section III-C. The
fifth step is to compare the neighborhoods of the old and
new radius values. If the probability of having the same-class
sample within the new radius p(Ca = Ci|Xa, i ∈ Na,r∗) is
greater or equal to that of the old psame = p(Ca = Ci|Xa, i ∈
Na,ra ), then ra = r∗ such that the new radius is accepted.
Both probability terms are calculated empirically. Note that
the terms of the new radius p(Ca = Ci|Xa, i ∈ Na,r∗) and
that of the old radius psame are calculated with the training
data, whereas the radius r∗ is calculated with local statistics
from the validation data to avoid diverging too much from the
actual distribution. The process repeats until no new r∗ can be
calculated (e.g., no samples within new Na,r∗ , only samples of
the same class or different classes are present in the validation
neighborhood, D̄a,p > D̄a,n, r∗ is equal to previous ra, etc.)
It is worth noting that every new r∗ is smaller or equal to
the previous candidates. Also, every replaced radius ra is not
discarded but recorded and used in the query step.
After the search radius values are prepared for all Xa,

they are used for the classification of the query data set.
Note that the query data set can be either a validation data
set for treating the proposed method as the validation step
to gauge the potential performance or a testing data set
when considering the proposed method as the classifier for a
performance baseline. To do the inference, 1NN is applied for
a query sample first to find the training NN with pre-recorded
radius values. The goal of 1NN is to estimate the best neighbor
radius for a query point such that rq ≈ ra. Then, the smallest
rq is used to estimate the class label from the training set.
In the case of no neighbors attained from the radius, the larger
radius recorded for the same training sample is used instead.
A default KNN search is applied when the recorded values
yield no neighbor.
The importance of the proposed method is that the triplet

loss metric provides a guideline on how to adaptively tune a
hyperparameter for NN classification. Specifically, D̄a,p and
D̄a,n can be simply calculated from the comparator part of the
network for each available Xa. Thus, the NN classification
lower bound can be quantified prior to the second stage.
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Algorithm 1 Adaptive Neighbor Scope for the NN Validation
Input: θ trained triplet network parameter set,
Ra list of ra the radius distances for Xa,
IiεI training inputs from the training data set,
IvεV validating inputs from the validation data set,
ItεT validating inputs from the query data set
k initial number of neighbors for setting the initial radius
Begin:

\\ extracting the features and NN search model
Xi ← f (I; θ),Mi ← NN model from the training features
Xi

Xv ← f (V; θ),Mv ← NN model from the validation
features Xv

Xt ← f (T; θ)
For each Xa ∈ Xi do:

\\ setting the initial search radius
ra ← Mv .distance_to_kth_neighbor(Xa, k)
Ra.append(ra)
\\ calculate psame with the training set
Na,ra ← Mi.neighbors(Xa, ra)
psame ← sameClassProb(Na,ra ,Xi)
Repeat:

\\ find the positive and the negative for radius suggestion
ra ← Ra.get_last_element ()
Na,r ← Mv .neighbors(Xa, ra)
If Na,r contains both positive and negative samples
then:
D̄a,p, D̄a,n ← local_stati stics(Na,r) \\ get the local
statistics
r ← calculate_r∗(D̄a,p, D̄a,n) \\ calculated the new
radius
\\ calculate and compare the current psame of the
training set
Na,ra ← Mi.neighbors(Xa, r)
If psame ≤ sameClassProb(Na,ra,Xi) then:
psame ← sameClassProb(Na,ra ,Xi)
Ra.append(r)

End if
End if

Until no new r∗ candidate
End for
\\ end of training phase
For each Xq ∈ Xt do:
Xa ← Mi.get_nearest_neighbor(Xq)
Repeat:
r ← Ra.remove_last_element ()
Nq,r ← Mi.neighbors(Xq, r)
If Nq,r is not ∅ then:
Cq ← NNClassi f y(Nq,r,Xi)

End if
Until Nq,r is not ∅ or Ra is ∅
\\ apply default KNN classification if no neighbors
If Cq is undetermined then:
Cq ← K NNClassi f y(X i, k)

End if
End for
End
Return all Cq

We assert that the NN performance is the translation result
from the suitability metric such that the class-separable fea-
tures from the metric learning step push the lower bound up to
that performance. Thus, a more sophisticated classifier should
be able to use the features to achieve better performance.

C. Theoretical Insights From Adaptive Neighbor Scope

To obtain theoretical insights from the proposed adaptive
neighbor scope, we make the three following assumptions.
In the NN step, each feature vector Xq in the query set

is independent and identically distributed (iid) to the feature
vector Xa of the training and validation sets. This assumption
is very common in ML research as it is often assumed that data
samples in training, validation, and testing sets are iid. It also
suggests that an outlier query of sparse or null neighborhoods
is rather rare. Thus, the frequency of the null neighborhood is
negligible if it is not present in the training set. We exclude
outlier cases out of the scope of our study.
The correct classification of Xq is more probable if the

neighborhood of Xq has a larger probability of having samples
from the same class than that of having samples from the
different class. This assumption is intuitively an extension of
the first assumption such that the neighborhood with a more
homogeneous distribution is less susceptible to the NN errors.
The best radius for Xq is r∗

q ≈ r∗
a for Xa that is closest to

Xq. This assumption presumes that the neighbor distribution
surrounding Xq is very similar to that of its NN Xa. This is
in line with other known literature of the NN estimation.
Based on the second assumption, rq should be set to retrieve

samples from the neighborhood containing only one class.
If triplet loss in (1) is minimized, samples of different classes
are separated at least m distance. However, the following
propositions and theorem show that simply setting rq = m
does not always lead to the correct results even if the loss is
minimized.
Proposition 1.1: GivenNa,ra , Da,i ≤ ra is true for any known

sample X i where i ∈ Na,ra . Otherwise, Da,i > ra and i /∈ Na,ra .
Proposition 1.2: Given a query with unknown class Xq

which is closest to a known sample Xa, Xq is either a sample
within the area covered by a radius ra from Xa such that
Da,q ≤ ra or an outlier such that Da,q > ra.
These propositions define obvious conditions for a feature

point to be a neighbor of Xa such that the sample coordinate
is covered by the defined radius around Xa to be considered
one of the neighbors. The same condition is also applied to
query a sample of unknown class closest to Xa.

Theorem 1: If the triplet fixed-margin loss Ltri is minimized
for all Xa, then rq ≤ m − Da,q can be used to form a
neighborhood Nq,rq of which all the samples X j where j ∈
Nq,rq have the same class label as that of Xa for any Xq closest
to Xa.

Proof: Consider minimized Ltri = 0. Then, the following
statement can be rearranged from (1):

Da,n ≥ Da,p + m > m. (8)

Consider setting ra = m, (8) implies that no negative sample
is in Na,m. For any Xq closest to Xa and fall within ra radius
from Xa, the largest radius from Xq that does not cover an
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Fig. 2. Example of the neighborhood surrounding Xa, X j , and Xq when Ltri
is minimized. Under the loss condition, all the negative samples are outside
the radius of m, and rq is the potential radius from Xq such that the known
samples covered by the radius are of the same class corresponding to the label
of Xa .

area outside that of Na,m is m − Da,q, and the neighborhood
Nq,m−Da,q ⊆ Na,m. Then, Dq,j ≤ m − Da,q is true according
to Proposition 1.2 for any X j where j ∈ Nq,m−Da,q . From
Proposition 1.1, Da,j ≤ m is true as all j are also contained
in Na,m. From Proposition 1.2, Da,q ≤ m is true as Xq is
the closest to Xa. Subsequently, consider a triangle formed by
X j, Xq, and Xa as shown in Fig. 2. The following triangle
inequality holds:

Da,j ≤ Da,q + Dq,j ≤ Da,q + m − Da,q ≤ m. (9)

We can then prove this theorem by contradiction. Assuming
that one of X j belongs to a negative class denoted by n( j),
where j∈ Nq,m−Da,q . Then, according to (9), Da,n( j) ≤ m
contradicts the condition in (8), which asserts that the distance
from Xa to any negative sample is greater than m.
The implication of Theorem 1 is that m has less utility in

specifying the radius to the neighborhood boundary. The best
neighborhood area with no probability of having a different-
class sample after optimizing the loss for a query is confined
in rq ≤ m − Da,q, which is smaller than m. Thus, setting m as
the radius may not guarantee the single-class neighborhood.
Although the theorem encourages setting a smaller radius,
it introduces the risk of having no sample within the smaller
radius when fewer samples exist in the limited training set
and when m � E[Da,p] as there is no limit on how large
Da,p can increase. It is also possible that the theoretical radius
can approach 0. Thus, the constant m alone is insufficient
for specifying the radius rq for NN classification even if the
network optimally separates the features by the fixed constant.
Corollary 1: If triplet fixed-margin loss Ltri is minimized

for all Xa, then E[Da,n] ≥ E[Da,p] for any Xa.
Equation (8) in Theorem 1 also establishes that Da,n ≥ Da,p

is true when the loss is minimized. It also implies that the
inequality from applying expectation on both sides of the
statement is true for any positive m value. The corollary
suggests that attaining a smaller number of different-class
samples than that of the same class is likely when the search
radius rq is sufficiently small. It gives an opportunity for
setting rq ≥ m − Da,q if a small portion of the different-class
samples in the neighborhood can be tolerated. Under such a
scenario, a good neighborhood area should be alternatively

defined as an area containing same-class samples as the
majority as opposed to a single-class neighborhood.
To search for the alternative best rq, the following proposi-

tions and theorems lay the foundation for our method.
Proposition 2.1: Given Xa, Na,ra , and Na,ra containing

indices of both the same-class and different-class samples,
there exist Ls

a,ra and Ld
a,ra , which are random variables of

distances to the same-class sample and a different-class sample
within the neighborhood radius ra from Xa.
The proposition expresses the existence of the samples in

terms of the distances to the same-class and different-class
samples from an anchor point. Specifically, any X i in the
neighborhood can be used to calculate Ls

a,ra = Da,i|Xa, Na,ra
if Ca = Ci, or Ld

a,ra = Da,i|Xa, Na,ra if Ca �= Ci.
Proposition 2.2: Given an alternative radius r ≤ ra, the

lower bound of p(i ∈ Na,r,Ca = Ci|Xa, i ∈ Na,ra) can be
defined by

S
(
r; μs

a,ra

)

=
⎧⎨
⎩

(
1 − μs

a,ra

r

)
p
(
Ca = Ci|Xa, i ∈ Na,ra

)
, if r > μs

a,ra

0, if r ≤ μs
a,ra

(10)

where μs
a,ra = E[Ls

a,ra ].
Proof: Consider that p(i ∈ Na,r,Ca = Ci|Xa, i ∈ Na,ra) is

equal to p(Da,i ≤ r,Ca = Ci |Xa, i ∈ Na,ra)

= p
(
Da,i < r |Ca=Ci, Xa, i ∈Na,ra

)
p
(
Ca = Ci|Xa, i ∈ Na,ra

)
= p(Ls

a,ra ≤ r)p(Ca = Ci|Xa, i ∈ Na,ra).

Then, consider Markov inequality for random variable Ls
a,ra

p
(
Ls
a,ra ≥ r

) ≤ μs
a,ra

r
. (11)

Equation (11) can be rearranged as

p
(
Ls
a,ra ≤ r

) ≥ 1 − μs
a,ra

r
. (12)

Regardless of the r value, p(Ls
a,ra ≤ r) must be nonnegative

and upper bounded at 1. Thus, p(Ls
a,ra ≤ r) ≥ 0 if r ≤ μs

a,ra .
From (12), the lower bound from Markov equality leads to

p
(
Ls
a,ra ≤ r

)
p
(
Ca = Ci|Xa, i ∈ Na,ra

)
≥

(
1 − μs

a,ra

r

)
p
(
Ca = Ci|Xa, i ∈ Na,ra

)
. (13)

Therefore, the term on the right-hand side becomes the
lower bound probability S(r; μs

a,ra) in the proposition.
Proposition 2.3: Given a radius distance r ≤ ra, the upper

bound of p(i ∈ Na,r,Ca �= Ci|Xa, i ∈ Na,ra) is defined by

Q
(
r; μd

a,ra , σ
d
a,ra

)

=

⎧⎪⎨
⎪⎩

(
σ d
a,ra

)2
(
μd
a,ra −r

)2 p(Ca �=Ci|Xa, i ∈Na,ra

)
, if μd

a,ra − r > σ d
a,ra

p
(
Ca �= Ci|Xa, i ∈ Na,ra

)
, if μd

a,ra − r ≤ σ d
a,ra

(14)

where r < μd
a,ra , μd

a,ra = E[Ld
a,ra], (σ d

a,ra)
2
is variance of Ld

a,ra .
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Fig. 3. Example of the distributions of the distances to the same-class and
different-class samples from Xa . Setting the value of r determines which
portions of the samples are included in the neighborhood defined by Na,r .

Proof: Similar to Proposition 2.2, consider that probability
p(i ∈ Na,r,Ca �= Ci|Xa, i ∈ Na,ra) is equal to

p
(
Da,i ≤ r,Ca �= Ci |Xa, i ∈ Na,ra

)
= p

(
Da,i≤r |Ca �=Ci , Xa, i ∈ Na,ra

)
p
(
Ca �= Ci|Xa, i ∈ Na,ra

)
= p

(
Ld
a,ra ≤ r

)
p
(
Ca �= Ci|Xa, i ∈ Na,ra

)
. (15)

Then, the Chebyshev inequality for random variable Ld
a,ra is

p
(∣∣Ld

a,ra − μd
a,ra

∣∣ ≥ kσ d
a,ra

) ≤ 1

k2
. (16)

Let k = (μd
a,ra − r)/σ d

a,ra . Then, the inequality can be expressed
as

p
(∣∣Ld

a,ra − μd
a,ra

∣∣ ≥ μd
a,ra − r

) ≤
(
σ d
a,ra

)2
(
μd
a,ra − r

)2 .

Fig. 3 depicts the line distance from Xa to μd
a,ra according to

(16). Any Ld
a,ra < r must have its difference from μd

a,ra larger
than μd

a,ra − r . Thus, the left-side probability term p(|Ld
a,ra −

μd
a,ra | ≥ μd

a,ra − r) covers a fraction of Ld
a,ra population that is

less than r . Then, we can posit that

p
(
Ld
a,ra ≤ r

) ≤ p
(∣∣Ld

a,ra − μd
a,ra

∣∣ ≥ μd
a,ra − r

)
(17)

and

p
(
Ld
a,ra ≤ r

) ≤
(
σ d
a,ra

)2
(
μd
a,ra − r

)2 . (18)

Regardless of the r value, p(Ld
a,ra ≤ r) must not exceed 1.

Thus, p(Ld
a,ra ≤ r) ≤ 1 if μd

a,ra − r ≤ σ d
a,ra . Then, the upper

bound from Chebyshev inequality leads to

p
(
Ld
a,ra ≤ r

)
p
(
Ca �= Ci|Xa, i ∈ Na,ra

)

≤
(
σ d
a,ra

)2
(
μd
a,ra − r

)2 p(Ca �= Ci|Xa, i ∈ Na,ra

)
. (19)

Consequently, the term on the right-hand side becomes the
upper bound probability Q(r; μd

a,ra , σ
d
a,ra) in the proposition.

Propositions 2.2 and 2.3 define limits on the local distribu-
tions of the same-class and different-class samples as functions
of the radius distance r from Xa. If a new neighborhood of
Xa is to be re-defined using r instead of ra, then the limits
can provide information on the portion of same-class and
different-class samples within the new neighborhood.

Theorem 2: Given Xa, ra, and μd
a,ra ≥ μs

a,ra , according to
the local distributions in Na,ra , there exists r∗

a that results in
the highest lower bound on probability of having same-class
samples when Na,r∗ define a new neighborhood where

r∗
a =

μs
a,ra +

√(
μs
a,ra

)2 + 8μs
a,raμ

d
a,ra

4
(20)

and

μs
a,ra ≤ r∗

a ≤ μd
a,ra (21)

r∗
a ≤ ra. (22)

Proof: Consider using the radius r to define Na,r ⊆ Na,ra
where r ≤ ra. Fractions of the same-class and different-class
populations would be contained in the new neighborhood.
Then, the lower bound on probability of having the same-class
samples in the new neighborhood is λ(r) defined as

λ(r) = S
(
r; μs

a,ra

)
S
(
r; μs

a,ra

) + Q
(
r; μd

a,ra , σ
d
a,ra

) . (23)

Equation (23) implies the worst case that the least amount
same-class population and the largest amount different-class
population specified by S(r; μs

a,ra) and Q(r; μd
a,ra , σ

d
a,ra) are

included in the new neighborhood of Na,r. To find r∗
a with the

largest value of λ(r), we arrange a derivative (∂λ(r))/(∂r) = 0
to solve for r∗

a , which results in

r∗
a = μs

a,ra ±
√(

μs
a,ra

)2 + 8μs
a,raμ

d
a,ra

4
. (24)

The derivative suggests two values of r∗
a candidates. However,

any value of r ≤ μs
a,ra would result in S(r; μs

a,ra) = 0. Thus,
r∗
a value in (20) is true. Proving that μs

a,ra ≤ r∗
a ≤ μd

a,ra in (21)
and r∗

a ≤ ra in (22) can be done by careful consideration of
r∗
a , L

s
a,ra , and Ld

a,ra values. Considering μd
a,ra ≥ μs

a,ra , μs
a,ra can

be rewritten as μs
a,ra = μd

a,ra − τ where τ is a non-negative
constant. Then, r∗ can be expressed as

r∗
a = (μd

a,ra − τ ) +
√(

μd
a,ra − τ

)2 + 8μd
a,ra

(
μd
a,ra − τ

)
4

r∗
a = (μd

a,ra − τ ) +
√
9
(
μd
a,ra

)2 − 10μd
a,raτ − τ 2

4

r∗
a ≤

μd
a,ra +

√
9
(
μd
a,ra

)2
4

≤ μd
a,ra + 3μd

a,ra

4
≤ μd

a,ra .

Given that r∗
a ≤ μd

a,ra , then r∗
a ≤ E[Ld

a,ra ] ≤ max(Ld
a,ra) ≤ ra.

It is easy to see that μs
a,ra ≤ r∗

a ≤ μd
a,ra and r∗

a ≤ ra.
The implication of Theorem 2 is that for any neighborhood

defined by Na,ra in which μs
a,ra ≤ μd

a,ra is true, there exists
a better neighborhood Na,r∗a formed as a subset of Na,ra . The
formulation of Na,r∗a from Na,ra is useful for defining a new
neighborhood for NN classification such that the neighborhood
radius for a query does not have to be restricted by the
optimal condition in Theorem 1, or some fixed value of last
resort. It is also noteworthy that the calculation of r∗

a is also
applicable even if Ltri is not completely minimized. As long
as the conditions E[Da,n] ≥ E[Da,p] or μs

a,ra ≤ μd
a,ra in the

neighborhood hold, r∗
a can still be derived. Using Theorem 2,
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the value of r∗
a can be estimated with local statistics calculated

using samples within a neighborhood area. Replacing μs
a,ra and

μd
a,ra with D̄a,p and D̄a,n in (20), r∗

a calculation is the same as
in (7).
Corollary 2: Given r∗

a , the value of λ(r∗
a ) is larger when

μs
a,r∗a and σ d

a,r∗a are smaller, and μd
a,r∗a is bigger.

According to the definition of λ(r∗
a ), a smaller μs

a,r∗a leads to
a larger value of S(r∗

a ; μs
a,r∗a ). A smaller σ d

a,r∗a and a bigger μd
a,r∗a

result in a decrease in Q(r∗
a ; μd

a,r∗a , σ
d
a,r∗a ). However, μ

s
a,r∗a , μd

a,r∗a ,
σ d
a,r∗a , and λ(r∗

a ) are constants calculated from the features once
the training iteration ends. This corollary encourages controls
over the values of these constants during training. A simple
way is to follow regularization with the global loss as proposed
in [26]. Thus, the triplet loss with regularization is expressed
as

L tri = w f m

∑
a

∑
p

∑
n

max
(
0, Da,p − Da,n + m

)

+ wmsμ
s − wmdμ

d + wsd
(
σ d

)2
(25)

where w f m is the weight value for the triplet loss, μs and μd

are the average distances to the same-class and different-class
samples, respectively, (σ d)

2
is the variance of the distance

to different-class samples, and wms , wmd , and wsd are the
weights for the corresponding means and variances. The result
in this corollary provides a theoretical motivation to apply the
regularization terms in the triplet network training that is used
in this study.

D. Computational Complexity

Let F and n be the number of maximum training epochs
for the triplet network and the total number of training data,
respectively. Without the strategy, the training has to go
back and forth between the feature candidates and classifiers
tuning. Normally, there are O(F) feature candidates from the
first-stage training as each epoch produces one candidate. Let
Z be the worst case number of operations taken to train and
test the second-stage classifiers, then the total operations for
the typical two-stage training are at most O(F × Z).
With the proposed validation strategy, the number of candi-

dates is reduced to O(1), or one to a few candidates with the
best lower bound performance, as opposed to O(F) from the
first stage. The method takes overall n × O(n) × (k − 1) =
O(n2) worst case operations for each of the validation round.
In other words, the calculation for each of the n samples needs
O(n) initial KNN search and computes at most k − 1 times
before stopping when at most one sample is in the new radius.
Thus, the overall complexity is O(F)×O(n2)+O(1)×O(Z)
where O(F)×O(n2) is the first-stage validation on the O(F)
candidates and O(1) × O(Z) = O(Z) is the second-stage
training after the selection for best feature epoch.
Generally, the strategy suits our setting where large F and

Z are desirable. As F is often set according to the number of
data definitions or the problem difficulty, it is often the case
for any deep learning approach that F > n2 in our small-
sample setting. Comparatively, n2 is approximately the size of
the expanded triplet data set. While the larger F improves loss
minimization, the larger Z implies that more classifiers may be

Fig. 4. Three examples of the resulting EPID gamma images in the
experiment in which MLC mispositioning errors can be observed. From left
to right: the EPID gamma images are categorized as no error, systematic error,
and random error. The high image intensity indicates a larger deviation from
the radiation therapy plan.

tuned for best performance. Not only does Z grow according
to the data and difficulty but also it depends on the number
and complexity of the end classifiers. The real advantage is
the decoupling of F and Z on the complexity terms. The
validation allows the flexibility for end classification without
incurring too much overall complexity.

IV. COMPUTATIONAL EXPERIMENTS

In this study, we applied the proposed strategy to two real-
world data sets with the small sample size problem. Both
data sets were acquired for clinical imaging research in which
medical imaging data, expert-defined features, and clinical
factors were captured as the medical information.

A. Data Sets, Clinical Problems, and Multi-View Features

1) EPID Gamma Images: The goal of the classification
task is to classify whether patient-specific quality assurance
images of radiotherapy treatments contain errors. The clini-
cal motivation is described in [7], [41]. Briefly, in radiation
therapy delivery, the electronic portal imaging device (EPID)
is used to capture the radiation beam to form 2-D images.
The images of the patient treatment are compared with the
intended treatment to ensure the safety and quality of the
radiation treatment delivery by trained personnel. The decision
on whether the plans are clinically suitable is based on gamma
maps derived from the images. In clinical practice, the gamma
values >1.0 are considered failing (e.g., indicate that there may
be a problem with the patient treatment) and 90% of the total
number of pixels in the gamma maps must pass to ensure the
integrity of the treatment.
The data set consisted of 558 2-D gamma maps (256 ×

256 pixels) collected for radiation therapy quality assurance.
The data were simulated as in [7] from 23 patient treatment
plans using 186 intensity-modulated radiation therapy (IMRT)
beams. For the gamma maps, one-third of the images had no
introduced errors, one-third had a random mechanical error
[random mispositioning of the multileaf collimator (MLC)],
and one-third had a systematic mechanical error (systematic
misplacement of the MLC). Fig. 4 illustrates examples from
each type of the two errors whose patterns can be non-intuitive.
To keep the semantics, no scaling was applied similar to [7].
Two types of image features were extracted from the

gamma maps. The first type was a set of radiomic features
extracted using the PORTS software [27], which have been
widely used as expert-engineered features for medical imaging
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TABLE I

LIST OF THE RADIOMICS FEATURES INCLUDED IN THE EPID DATA SET

tasks including our problem [2], [7], [28], [29]. A total of
17 radiomic features were calculated as per [41]. The radiomic
features that were selected in this study are shown in Table I.
The second type was from deep networks pretrained with
the ImageNet data set for large-scale image recognition. The
InceptResnetv2 architecture [9] was used for the extraction of
the features after resampling the gamma image to 224 × 224,
which resulted in a 1536-D feature vector for each image.
A total of 558 images along with their extracted data were

randomly divided into two sets of 303 and 255 cases. Thirty
image cases were selected randomly from the former set for
validation leaving 273 cases for training. The latter set became
the out-of-sample images for testing.
2) 3-D MR Images of Sarcoma: The clinical question of this

data set is to determine whether patients with soft-tissue sar-
coma (STS) would survive longer than 1096 days (three years).
STS is a malignancy that represents about 1% of all cancers
and presents many challenges for clinical management. The
clinical motivation is further described in [29], [42], [43].
This data set included a set of magnetic resonance imag-

ing (MRI) scans of patients with sarcoma soft-tissue cancer.
We acquired pretreatment contrast-enhanced T1-weighted 3-D
MRI scans from two independent cohorts of patients diagnosed
with biopsy-proven STS from two different institutes of the
University of Washington (UW cohort) and the Technische
Universität Munich (Munich cohort). Images were accessed
from the institutional picture archiving and communication
system (PACS). All patients who were less than 18 years old
or were diagnosed with Kaposi or primary bone sarcomas
were excluded. The included patients had sarcomas of var-
ious histologies of the extremity, trunk, or retroperitoneum.
This study focused on the American Joint Committee on
Cancer (AJCC) version 7 stage II–III patients only, which
encompasses non-metastatic patients with large (i.e., >5 cm)
and/or higher grade (i.e., >1) tumors. The patients with image
artifacts due to multiple MRI acquisitions were also excluded.
The total patients in the two cohorts were 200 and 72 for UW
and Munich cohorts, respectively.
In both sarcoma cohorts, radiologist and radiation oncologist

experts evaluated each image for quality and manually seg-
mented the gross tumor as the region of interest (ROI), which
was defined as all enhancing tumor on contrast-enhanced
T1 MRI. This was completed using MIM software (version
6.6, MIM Software Inc, Cleveland, OH) for the UW cohort and
iPlan RT (version 4.1.2, Brainlab, Munich, Germany) for the
Munich cohort. Fig. 5 visualizes some samples in the data set.
Each scan contained one ROI which was resampled to

the fixed resolution of 1 × 1 × 1 mm3. All the image

Fig. 5. Example visualization of samples in the Sarcoma MRI data set with
the tumor volume ROI defined by the experts. Top: samples from the UW
cohort patients. Bottom: samples from the Munich cohort patients.

TABLE II

LIST OF CLINICAL VARIABLES INCLUDED IN THE SARCOMA DATA SET.
THE VARIABLES ARE LATER PRE-PROCESSED INTO A 27-D

FEATURE VECTOR

ROIs were then resampled again into fixed-size bounding
rectangles of 64 × 64 × 64 voxels. The bounded data were
normalized with the simple strategy as in [38] because the
tumor data were already contained within expert-delineated
ROIs. Specifically, the voxels’ intensity values were clipped
at the 99th percentile value before subtraction with minimum
intensity values and scaled to the range of [0–1].
As before, the features were extracted using the PORTS

software package. In this case, 45 features were used. Addi-
tionally, clinical variables such as whether the patient received
chemotherapy were defined by experts as additional inputs.
The complete list of the variables is provided in Table II.
The variables were preprocessed into 27-D features where
each ordinal feature value was transformed into a binary level
indicator and each continuous value was z-normalized. In this
study, the UW cohort patients were used in the training and
validation steps. Out of the 200 cases, 180 cases were included
in training and 20 cases were randomly sampled to be included
in validation. The 72 data cases from the Munich cohort were
used as the testing set.

B. Experimental Setups

We evaluated our strategy with two experiments. The pur-
pose was to demonstrate the ability of the method to provide
a competitive final classification performance and to show its
utility as the feature selector for subsequent tasks. In both
experiments, we compared the testing performance of the
proposed method against four baseline approaches, namely,
triplet network with triplet loss validation, AE, end-to-end
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softmax, and expert-defined features. The chosen deep learning
baselines are widely applied transfer learning approaches
capable of solving medical imaging tasks using multiple data
domains [40], which is in line with our problem where the
available data include but are not limited to visual images. All
the baselines were evaluated in three settings: (1) Three-class
classification (no error versus systematic error versus random
error) on EPID data; (2) two-class classification (no error
versus error) on EPID data; and (3) two-class classification
(survive versus not survive after 1096 days) on Sarcoma data.
In addition, we compared the performance of our strategy in
the survival regression setting to predict the survival time of
subjects in the Sarcoma data.
Experiment I: Our Strategy to Optimize the Training in

the Validation Step. In this experiment, the features chosen
from our validation are evaluated both qualitatively and quan-
titatively with the expectation that the features have better
class separation and yield better end performance. We trained
the triplet network and used our adaptive neighbor scope.
The epoch with the best validation performance was chosen
for evaluation with other state-of-the-art baselines, namely,
the typical triplet network validated with triplet loss, AE val-
idated using reconstruction loss, and the end-to-end network
validated using softmax cross-entropy loss.
For qualitative evaluation, we visually compared the homo-

geneity of the validated features with that of the other
baselines. Prior to visualization, we used t-SNE [39] for
dimensional reduction due to its widely regarded advantage
in preserving local proximity between the feature points after
reduction from high dimensions. The reduction is useful
for inspecting local class distribution. All the features were
reduced using T-SNE to two dimensions with the perplexity
parameter set to five for the EPID and ten for the Sarcoma
data sets. Then, scatter plots of the features from the testing
set were created. To capture regions relevant to decision
boundaries, the lower and upper limits on both the horizontal
and the vertical axes were set to the minimum and maximum
values of the features of each baseline. Homogeneous regions
were overlaid onto plots of features from all the baselines. We
define the homogeneous region as the area whose two-third
majority of KNN within the plot belong to the same class.
As the homogeneity implies less difficulty for classification,
better features should result in larger overlays for all classes.
Similar plots and overlays were created for radiomic features
in both data sets for comparison such that the feature plots of
successful baselines should be more homogenous than that of
the existing features.
For quantitative evaluation, the representation baselines

were compared using the classification performance. To further
cope with the small medical data sets, these features were
reduced using principal component analysis (PCA) retaining
99% of the original variance. Compared with t-SNE, PCA
does not try to preserve the local neighborhood structure.
However, it is widely used for its ability to retain large
variance in the original feature space using projection to a
few principal components (PCs). It also presents the possibility
of producing independent features after projection as all the

PCs are orthogonal. Low-dimensional independent features are
desirable for subsequent classifiers.
After reduction, we used four commonly used ML algo-

rithms as the final classifiers in the testing step to classify the
medical data sets. All the algorithms, including support vector
machine (SVM) with linear kernel, decision tree (DT), KNN,
and multi-layer perceptron (MLP) with a 24-dimension hidden
layer, were implemented using Scikit-learn package [31] with
python. The reduced features from all the baselines were
subsequently fed into the four ML classifiers for comparison
of the medical prediction results. We also compared the
performance with the strategy from our previous study, which
used repetitive tuning [7].
To demonstrate that our strategy is applicable to other

related tasks, we also used validated features from the Sarcoma
data set for survival regression. It has been shown that features
from deep learning models for survival classification can
also be used for survival regression [30]. For this setting,
the features were used to train a Cox proportional hazard
model [32], which outputs a relative hazard value based on
the recorded survival time. The results were compared using
the concordance index (C-Index).
Experiment II: Our Strategy as the End Classification.

In this experiment, we evaluated the performance of our
adaptive scope strategy as the final classifier in the testing step.
We compared its effectiveness with a standard KNN as the
final classifier. We used two transfer learning approaches for
features in the training and validation steps: the fixed-margin
triplet network validated with triplet loss in (1) and the adap-
tive scope, and the AE network validated mean-squared-error
(MSE) reconstruction loss. We also compared the result with
an end-to-end softmax classifier validated with an accuracy
measure. The classification accuracies of all the approaches
were obtained from the testing data set for performance
evaluation.

C. Computational Settings

In both experiments, triplet network, AE, and end-to-end
softmax models were trained using the same architecture for
the extractor network, the encoding network, and the network
prior to softmax to ensure a fair comparison among different
representation learning approaches. The organization of the
dedicated and combined representation networks was similar
to the rough description in Fig. 1. For 2-D and 3-D image
inputs, four consecutive convolutional and max-pooling layers
followed by a feed-forward network were used to process
the data down to a low-dimensional vector. For each kind of
vector input (e.g., the features from the pre-trained network,
the radiomic features, and the expert variables), a feed-forward
neural network was used to process the data into the same
dimension as that of the image results. Regardless of the
input types, a leaky rectified linear unit (one-ReLu) defined
as max(0.01x, x) was used as the activation function in all
convolutions and feed-forward layers. On top of the dedicated
networks, a feed-forward neural network processed and com-
bined the vectors of different kinds into unified features for
the training of each specific representation learning strategy.
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The numbers of network parameters in our models are
different in both data sets. For the EPID data, the network for
image data was (32-32-32-32) which referred to the number of
5 × 5 convolutional filters for each layer according to [7]. The
subsequent feed-forward network was (8192-1024-128), which
means that the network takes in an image input of 8192 dimen-
sions and reduces down to 1024 and 128 dimensions at the
end of the network. The feed-forward networks for the fea-
tures from the pre-trained InceptResnetV2 and the radiomics
features were (1536-128) and (17-128), respectively. At the
final encoding part, a feed-forward network of (384-128) was
used to digest the concatenated vector from the three types of
features down to a unified feature vector of 128-dimension.
Similarly, for the Sarcoma data, the filter size used in the 3-D
image network was 3 × 3 × 3. The convolutional network was
(16-32-64-128), and the subsequent feed-forward network was
(8192-1024-128). The feed-forward networks corresponding to
the radiomics features and the clinical variables were (45-128)
and (27-128), respectively. The final encoding architecture of
(384-128) was also used for the Sarcoma data.
All the triplet-based models in the experiment were subject

to regularization in (25). The regularization weights were set
to w f m = 1.000, wms = wmd = 1, and wsd = 0 for
training with both the EPID and Sarcoma data sets. We found
in prior experiments that setting a larger wsd easily led to
overfitting in training with our small data. Thus, we reduced
it to 0 in our experiments. The margin value m in the training
of fixed-margin triplet was set to 1 000 000. The end-to-end
softmax and AE networks were trained under cross-entropy
loss and MSE reconstruction loss, respectively. Unlike the
triplet network and the end-to-end softmax approaches that
backpropagate the error signal back to the rest of the organized
network, the AE network was trained incrementally. Starting
from a dedicated network, the network of each input type was
trained using a decoding network with the same parameter
setting as the encoding network but in reverse order. Decon-
volution layers were used instead of convolutional layers in
the decoding process. After dedicated training, the dedicated
decoding network was removed. Then, the combined encoding
and decoding networks were used to train for combined
representation, which reconstructed the reduced vectors of
all input types. After training, the combined decoding was
removed leaving the final layer of the encoding network as
the representation extractor.
All networks were trained until convergence using Adams

optimizer [33] with the learning rate set to 0.0001. Batch
sizes of all networks were set to 30 for the EPID and 20 for
the Sarcoma data. For all networks, the maximum number of
epochs was set to 1000. The training with the EPID data was
done without data augmentation. For the Sarcoma data, simple
augmentations of random flipping vertically and horizontally
were applied to the image inputs. In all experiments, k = 
√n�
was set for the simple KNN where n is the size of the
training set. Specifically, k = 17 and 15 for the EPID and
Sarcoma data sets, respectively. The same k values were set
for the adaptive neighbor scope for both the initial search
radius and the last-resort KNN when the method failed to find
a neighbor.

TABLE III

COMPARISON OF THE TWO-CLASS ACCURACY (%) ON THE EPID DATA
USING THE PROPOSED METHOD AGAINST THE DIFFERENT FEATURE

VALIDATION CONFIGURATIONS. THE FEATURES WERE REDUCED

WITH PCA RETAINING 99% VARIANCE AND FED INTO DIFFER-
ENT ML ALGORITHMS AS THE FINAL CLASSIFIER

D. Computational Results

1) Experiment I: Our Strategy to Optimize the Triplet in
the Validation Step: Visualization of the features from the
proposed method and the other baselines is presented in Fig. 6.
The plot overlays reflect the degree of difficulty in demarcating
the decision boundary. Overall, the triplet network created
more separable features for all classes. The figure illustrates
larger homogeneous regions formed by triplet-based features
compared with the smaller regions formed by those of the AE,
softmax, and radiomics features. Some baseline plots were also
overly dominated by a single class. The plots of the radiomic
features largely presented non-homogeneous areas without the
overlay suggesting that classification can be done more easily
with deep representation approaches. However, the difference
between the proposed and the typical validation was not clearly
observed without quantitative evaluation.
The quantitative results of this experiment are summarized

in Tables III–V. For the EPID data, the features that were
trained, validated, and selected by the proposed approach
outperformed the other baseline algorithms in almost all set-
tings. The proposed strategy achieved the best testing accuracy
of 78.04% and 69.02% on the two-class and three-class set-
tings of the EPID data using SVM as the final classifier. Simi-
larly, our strategy achieved the best testing accuracy of 66.67%
using a simple KNN on the sarcoma data. When compared
with the current state-of-the-art approach by our group [7],
the strategy proposed in this article outperformed our previous
strategy which involved careful manual tuning with repetitive
selection. Most of the feature–classifier combinations from
the softmax and AE baselines underperformed compared with
the triplet-based approach. Nevertheless, the performances
among the four classifiers in different strategies are consistent
with the qualitative results as the better separated features from
the proposed method achieved better results than that of the
softmax and AE with less homogeneity.
The results in Table VI also showed superior performance

of the proposed validation strategy in survival regression
achieving the highest C-Index of 0.6590 using the Cox model.
Some other representation models achieved C-Index near 0.5,
which means the models learned almost nothing for regression.
It is noted that the underlying regression context here is an
extremely hard problem such that the sources and settings (sar-
coma subtypes, locales, data collection standards) were very
diverse. Moreover, the features were not derived specifically
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Fig. 6. Visualization of the validated testing features in experiment I after reduced by T-SNE to two dimensions along with additional plots of the expert-defined
radiomics features reduced in the same manner. From top to bottom: the visualizations in each row are the plots from the EPID three-class, EPID two-class,
and Sarcoma experiments. From left to right: the plots are from the triplet features validated with the adaptive scope, the triplet features validated with the
triplet loss, the AE features, and the features from the end-to-end softmax network. For the EPID, “x,” “+,” “∇ ,” and “∗” denote the feature points from
the no error, random error, systematic error, and combined error classes, respectively. For the Sarcoma, “x” and “+” denote feature points for the survive
and non-survive classes, respectively. The scatter plots are overlayed with a class-based neighborhood such that the space in the neighborhood has two-third
majority of KNN from the same plot belonging to one class. The larger neighborhoods imply a more homogeneous space and suitability for classification,
whereas the larger white space implies less homogeneity and difficulty in classification. Overall, the triplet-based features are more homogeneous compared
with that of the AE, softmax, and radiomics features.

TABLE IV

COMPARISON OF THE THREE-CLASS ACCURACY (%) ON THE EPID DATA

USING THE PROPOSED METHOD AGAINST THE DIFFERENT FEATURE

VALIDATION CONFIGURATIONS. THE FEATURES WERE REDUCED
WITH PCA RETAINING 99% VARIANCE AND FED INTO DIFFER-

ENT ML ALGORITHMS AS THE FINAL CLASSIFIER

TABLE V

COMPARISON OF THE TWO-CLASS ACCURACY (%) ON THE SARCOMA

DATA USING THE PROPOSED METHOD AGAINST THE DIFFERENT
FEATURE VALIDATION CONFIGURATIONS. THE FEATURES WERE

REDUCED WITH PCA RETAINING 99% VARIANCE AND FED
INTO DIFFERENT ML ALGORITHMS AS THE FINAL CLAS-

SIFIER

for regression in the transferred models. Nevertheless, the per-
formance trend in survival regression followed closely with
that of the classification task, demonstrating that the proposed
strategy can be an effective approach in related learning tasks.
2) Experiment II: Our Strategy as the End Classification:

The results of comparing classification models on both data

TABLE VI

COMPARISON OF C-INDEX ON THE SARCOMA DATA USING THE PROPOSED

METHOD AGAINST THE DIFFERENT FEATURE VALIDATION CONFIGU-
RATIONS. THE FEATURES WERE REDUCED WITH PCA RETAINING
99% VARIANCE AND FED INTO THE COX PROPORTIONAL HAZ-

ARD REGRESSION

sets are presented in Table VII. Using the proposed adaptive
scope on both the validation and testing outperformed all
the other configurations using representation learned from
fixed-margin triplet loss, AE, and softmax trained with
the same architecture. The proposed method achieves the
best accuracies of 73.73% and 67.45% on the two-class
and three-class settings of the EPID data and 65.28% on
the Sarcoma data. However, experiments showed varying
results when the proposed approach was used only as the
final classifier in the testing step. It can be observed that
the proposed approach, as a classifier, gave only minor
improvements for the representation from the fixed margin
approach validated with the triplet loss, while the performance
of the representation from the AE network declined, possibly
due to overfitting. The results suggested that the approach
has the capability to select good features among many
training epochs and yields good end performance. However,
it performs similar to a simple KNN and may overfit when it
plays no role in feature validation.
Overall, the proposed validation strategy performs well

as in the feature validation step. Although our strategy does
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TABLE VII

COMPARISON OF ACCURACY (%) ON THE EPID DATA USING THE PRO-
POSED VALIDATION AND ADAPTIVE SCOPE CLASSIFICATION AGAINST

THE OTHER VALIDATION CLASSIFICATION CONFIGURATIONS. THE

FEATURE UNDERWENT NO REDUCTION PRIOR TO KNN OR

OUR ADAPTIVE SCOPE CLASSIFICATION

not directly affect typical fixed-margin training, it helps
increase the performance of the classification without having
to perform repeated validation and testing steps. Thus, our
strategy may be best applied to the triplet network, whose
metric loss can tune the NN hyperparameter. In general,
the features from the fixed-margin triplet network achieved
better performance compared with the other baselines in
our small multi-view data sets. However, the results showed
some limitations of our strategy on the feature embedding
of AE and end-to-end softmax. We speculate that the
underperformance of the AE was due to the complexity of the
heterogeneous forms of inputs. Such inferior results compared
with that of the class-based triplet training suggested that
the encoded patterns represented by the latent features were
not simplified enough to aid the classifier. It is also worth
noting that the end-to-end softmax overfit our small data
sets and underperformed compared with the triplet-based
models; despite using the label data such that it had a quick
convergence during training, the testing performance was
poor. Nevertheless, the poor results (∼50%) in some settings
do not mean the AE and softmax approaches learned nothing
and gave random results. For the EPID data, the performances
were comparable to the traditional threshold-based approach
done by the experts in clinical setting (∼42%–49% [7]). For
the Sarcoma data, softmax with end-to-end training result
outperformed AE and was close to the typical triplet approach
with KNN in Table VII. The results suggested that the softmax
approach may learn better with end-to-end training. However,
it may not be suitable for transfer learning in the multi-view
sarcoma problem with the small sample size.
Our strategy is designed to investigate whether overall

classification improvement should be emphasized on better
representation or better subsequent classifier. Comparing the
proposed measure against a baseline (e.g., the end-to-end
softmax or the radiomic feature), outperformance means the
features are suitable and can achieve better performance at
the second stage. Otherwise, superior performance is uncer-
tain. The representation network should then be reevalu-
ated for improvement. For example, In Table VII scenario,
the second-stage tuning was worth pursuing due to the superior
lower bound performance than that of end-to-end softmax.
The achievable lower bound in Table VII can then judge
the second-stage classifiers such that the best classifiers from
the results in Tables III–V should outperform the baseline
performances in Table VII. Otherwise, more effort should be
put into the classification stage rather than the feature stage.

The triplet results also present the drawback of triplet loss as
a validation measure. In Table VII, the achievable lower bound
results of features selected with triplet loss were inferior to that
of the proposed method in the three-class EPID and Sarcoma
tasks. The conclusion was also supported by the same trends
of the second stage in Tables III–V.

V. CONCLUSION

We successfully developed a novel NN-based strategy for
evaluating the unified features from the triplet-based clas-
sification training of multi-view medical data. The strategy
provides a theoretical lower bound on classification perfor-
mance of the features to aid training for the final classification.
By comparing the lower bound, the strategy can be used to
validate which training epoch generates the features with better
potential for classification prior to the classification stage.
The lower bound also determines whether the classifier drives
better performance which reduces the burden of the repetitive
tuning between the feature networks and the classifier for
end performance. Our experimental results show that the
triplet network has the potential to outperform the end-to-end
softmax and AE networks in the classification tasks while
retaining similar utility for transferring to other related tasks,
such as survival regression. Our strategy may be useful in
a setting where a limited sample size is available and data
augmentation is limited or infeasible.
The ability to transfer the representation for other related

tasks is particularly in line with modern medical research of
which the patient’s data along with the features are recorded
and processed in a common workflow (e.g., radiomic work-
flow [18], [28]) such that the information can be archived
for future study. In the bigger picture, our proposed strategy
also suggests that the feature development for classification
is neither data-specific nor dependent on the available expert
knowledge. Our multi-view experiments demonstrated that
relevant data sources could be used integrally in a unified
framework. Thus, experts should focus on defining and curat-
ing the relevant data rather than tedious feature engineering.
This study also reveals challenges and opportunities for

the interpretability of deep representation learning networks,
which have been commonly criticized. The proposed method
indicates which phase of the learning to improve but does not
explain how to improve. There are many interesting expan-
sions to tackle this challenge such as exploiting the first-stage
information for classifiers which leads to tighter lower bounds,
investigating how the adaptive methods cope with the outliers,
and exploring more sophisticated end classifiers. These and
other problems are subjects for future work.
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