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SUMMARY

Markers are increasingly being used for several high-throughput data analysis and experimental design

tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving

bulk gene expression data, and for selecting marker proteins in single-cell spatial proteomics studies. Most

marker selection methods focus on differential expression (DE) analysis. Although such methods work well

for data with a few non-overlapping marker sets, they are not appropriate for large atlas-size datasets where

several cell types and tissues are considered. To address this, we define the phenotype cover (PC) problem

for marker selection and present algorithms that can improve the discriminative power of marker sets. Anal-

ysis of these sets on several marker-selection tasks suggests that these methods can lead to solutions that

accurately distinguish different phenotypes in the data.

INTRODUCTION

Several international efforts focus on characterizing gene

expression in different tissues, organs, disease states, and

more. Examples include HuBMAP, a large NIH effort to recon-

struct a three-dimensional (3D) map of the human body at the

single-cell resolution,1 the Human Cell Atlas,2,3 the Cancer Cell

Atlas,4 and the Brain Atlas.5 One of the first steps of studies at

the single-cell level is to characterize cell states or cell types.

Typically, this relies on marker genes whose expression or co-

expression with other such markers indicates a cell type.6–8 To

find suchmarkers, researchers often perform differential expres-

sion (DE) testing, where a statistical hypothesis test is used to

compare the expression of genes in one group of cells versus

all other groups (one versus all). These groups are usually

defined by cluster, cell type, or condition labels.

To date, marker selection has mainly focused on the most sig-

nificantDEgenesor proteins for eachgroup.While thisworkswell

with a small number of distinct groups (e.g., major cell types), it

may not work well when there is a much larger number of groups

with overlapping DE genes. In such cases, markers are not just

useful for defining a specific group or type but are also critical

for discriminating between similar types. Consider these large

multiorgan single-cell RNA sequencing (scRNA-seq) datasets.

In such datasets, we may be interested in markers that are spe-

cific for bothacell typeanda tissue (i.e.,markers that are uniquely

foundonly in cell types from this tissue). Suchmarkers canbe less

significant than overall DE genes since they may only distinguish

between two similar types, but they are still of major importance.

An example is given by the Tabula Muris dataset,9 a collection of

scRNA-seq profiles of over 100,000 cells from over 20 different

organs and tissues in Mus musculus. When analyzing these

data, the authors used traditional clustering and DE analysis

without considering the issue of cell-type/tissue combination.

Another example are T cells, which mature in the thymus.10,11

While T cells later migrate and reside in tissues throughout the

body, the identification of T cells that have recently left the thymus

(recent thymic emigrants [RTEs]) plays a role in treatment deci-

sions.12 Similarly, the role of resident and infiltrating immune

cell types is still an active area of research for neurodegenerative

diseases. A key challenge is the current inability to distinguish the

resident central nervous system (CNS) immune cells and the

MOTIVATION Todate,marker selection is based onmethods that focus on each cell type separately and do

not consider the relationship between different types. Suchmethods can select overlappingmarker sets for

different cell types, making it hard to discriminate between similar cell types. To address this issue and to

improve the ability to select a discriminating set of markers, we defined an optimization function for

biomarker selection that takes the overlap into account.
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bone-marrow-derived immune cells.13Better signatures of CNS-

specific immune cells and signatures of infiltrating immune cells

are needed to understand the immune responses to therapies.

In addition to cell-type/tissuemarkers, multivariable label parti-

tioning is central to many other questions in functional genomics.

Cell type or disease states are often simultaneously considered

when identifying markers,14 and so state-specific markers for

cell types are of interest. Deconvolution of cell types from bulk

data is also highly dependent on the ability to select not just

goodmarkers for each individual cell typebutalsoa setofdiscrim-

inatorymarkers between all types.15,16 Finally, a number of recent

single-cell proteomics technologies, including CODEX17 and Cell

DIVE, require the pre-selection of markers to profile. The ability to

identify a subset ofmarkers thatwould suffice for distinguishingall

cell types in the sample is a key criterion for such a selection.18

Broadly, marker selection represents a feature-selection prob-

lem. Feature-selection methods can be largely divided into three

categories: filters, wrappers, and embedded.19–21 Wrapper and

embedded methods interact with a specific classifier. Wrapper

methods select (often in a greedy manner) a subset of the fea-

tures that lead to a classifier with the highest accuracy. Exam-

ples include sequential forward and backward selection

methods.22,23 Embedded methods use the output of the classi-

fier itself, which comes in the form of an explicit ranking of the

features or implicitly via a scoring system (e.g., information

gain in decision trees24). Since thesemethods are geared toward

classification, they may not be applicable to other problems,

including deconvolution.

Filtermethods, on theother hand, are not tied to a specific clas-

sifier. For example, scGeneFit25 selects those genes that main-

tain a separation of the different cell types similar to that of the

original space. This method supports both a flat partition or a hi-

erarchyof labels (e.g.,major cell typesandsubtypes).RankCorr26

works in a one-versus-all fashion and selects markers for a fixed

cell type by performing a rank transformation. Another algorithm,

Relief,27 and its extension ReliefF28 penalize features that cannot

distinguish a given instance from its negative (having a different

label) neighbors, while assigning high scores to features that

take similar values among instances from the same class. Mini-

mum-redundancy-maximum-relevance (mRMR)selects features

that are relevant to the target class but are not similar to each

other.29 CIBERSORT15 and a number of prior methods16,30,31

analyzed a signature matrix of DE genes to identify submatrices

with a low condition number for use in deconvolution of bulk mix-

tures. Thus,while thesemethodscansuccessfully select discrim-

inative featureswhen theoverlapbetween sets is small, the ability

of such methods to select markers that discriminate all pairs of

phenotypes has not been extensively studied.

In this article,weexplore the problemofdetermining aglobal set

of biomarkers. These represent features that collectively distin-

guish between higher context phenotypes. We assume we are

given a phenotype3 feature, binary or real scorematrixM, whose

(i,s) entry represents the relevance of feature s (e.g., average gene

expression) for phenotype i. We formulate the task as a combina-

torial optimizationproblemwhere thegoal is to identify thesmallest

set of features such that for every phenotypic pair (i,j) there exists a

set of features that can be used to ‘‘distinguish’’ between i and j.

We term this problem phenotype cover (PC). We show that PC is

equivalent to multiset multicover, which is nondeterministic poly-

nomial-time (NP)-complete32 and propose two algorithms that

can approximate it in polynomial time (STAR Methods). The first

is based on the extended greedy algorithm to set cover (G-

PC),33 and the second is based on the cross-entropy method

(CEM-PC).34,35 By analyzing several marker-selection problems,

we show that the greedy algorithm outperforms competitors

across a variety of tasks. We also analyze some of the specific

markers selected by the method and discuss their ability to distin-

guish between similar cell types.

RESULTS

We developed methods to select discriminative features from a

largeset of (potentiallyoverlapping) signatures. Thegoalof the fea-

tures we select is to enable the separation of the different compo-

nents in the set. This can either be for a supervised learning (for

example, classification) or for other learning approaches such as

deconvolution or dimensionality reduction. Our method takes as

input a signature or score matrix M, which is used to estimate

the importance of a feature for a phenotype of interest. Features

are then selected by reformulating the problem as amultisetmulti-

cover instance where the goal is to select features such that every

phenotypic pair is covered at least K times, for some positive K

Figure 1. Graphical illustration of (binary) phenotype cover and its reformulation as a set cover problem

Given a binary score matrix (left), each feature induces a bipartite graph between classes (center left). Edges in this graph form a set εs. Multiset multicover is then

performed on the collection of εs to select a small number of features that ‘‘distinguish’’ all phenotypic pairs (at least K times). The idea can be naturally extended

to non-binary score matrices by assigning a multiplicity to each element ei;j ˛ εs (STAR Methods).
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(Figure 1). We developed two solutions to the multiset multicover

problem: the first is based on a greedy approach (G-PC), and the

second based on the cross-entropy method (CEM-PC). See

STAR Methods for details.

We tested G-PC and CEM-PC and compared them with eight

prior methods: scGeneFit,25 decision trees,36 top differentially ex-

pressed genes (TopDE), RankCorr,26 ReliefF,28 mRMR,29 ANOVA

F values, and mutual information.37,38 We used three scRNA-seq

datasets from lung,mousecortex, andahumancell atlas (Table 1).

We vary the coverage factor K from 1 to 20 for the idiopathic pul-

monary fibrosis (IPF) dataset, from 1 to 40 for mouse cortex

(MC), and from 1 to 9 for human cell atlas (HCA). For all baselines

but TopDE and RankCorr, we select a number of features that

matches the solution size returned by G-PC. For TopDE, we take

the union of the top k differentially expressed genes for each

phenotype (k varying from 1 to <10). For RankCorr, we tuned the

hyperparameters until a similar number of features was returned.

Finally, for CEM-PC, all features with a probability score greater

than 0.98 after convergence were chosen (Methods S1, alg. 3).

We compare all methods in terms of phenotype classification per-

formance, deconvolution of bulk mixtures, and feature stability.

We also validate the features selected by G-PC by performing

gene set enrichment analysis and comparing them with known

markers in the literature.

Classification

We first test the ability of a classifier to predict the correct pheno-

type given only a subset of the features. For each method, we

select a feature set S using a subset of the data, train a logistic

regression model on the same subset, and evaluate perfor-

mance on left-out data. G-PC exhibits strong performance on

the IPF and MC datasets across a wide range of coverage fac-

tors. For example, when 42 genes are selected on the IPF

data, G-PC obtains an F1 score of 0.70, followed by scGeneFit

(0.65) and CEM-PC (0.61) (Figure 2A). On the MC data (Fig-

ure S1A), G-PC again performs best when 30–140 genes are

selected (F1 z 0.94–0.95). mRMR also performs well on these

data except when the number of genes selected is small (<30).

Decision trees, on the other hand, do not improve in performance

when more than 30 genes are selected (F1 z 0.92).

These two datasets are obtained from a single tissue. We

thus next tested the ability of PC to differentiate between

the same cell types across multiple tissues. For this, we

used all tissue and cell-type combinations present in the

HCA dataset. Decision trees outperform other methods on

this classification task (Figure S2A). G-PC is the second-

best method when more than 100 genes are selected, while

scGeneFit is the second best when less than 100 genes are

selected. scGeneFit, however, does not improve in perfor-

mance when more than 100 genes are selected. At 235 genes,

decision trees converge at 0.70, while G-PC and mutual infor-

mation reach an F1 of 0.68.

We note that scGeneFit can take the hierarchy of labels into

account and that the authors describe improved performance

when cell subtypes are considered in the MC dataset. For a

fair comparison, we ran three different variants of scGeneFit

that take advantage of this hierarchical structure and evaluated

performance by using a nearest centroid classifier fit on the

entire data. All the hyperparameters we used were identical to

those provided by the authors. While G-PC does not use cell

subtype information, it still outperforms all three variants across

a different number of markers (Figure S4B).

We also tested an additional classifier (k nearest neighbors)

and observed very similar results to those obtained with logistic

regression (Figures S3A–S3C). Finally, we tested the impact of

batch effects by using two pancreas datasets42,43 and observed

that our method, G-PC, along with TopDE are the most robust to

batch effects (Figure S4A).

Deconvolution

Inferring cell-type proportions from bulk transcriptomics data is

an important task in understanding composition of tumors and

other tissues. Many methods have been developed to perform

deconvolution of bulk mixtures.16,30,31,44 Deconvolution typically

requires solving a linear equation of the formm = Sp, wherem is

a given mixture vector, S is a signature matrix containing cell-

type-specific expression signatures (known), and p is the un-

known class proportion vector. One widely used method for de-

convolution is CIBERSORT,15 which uses n -support vector

regression (n -SVR). CIBERSORT constructs the signaturematrix

S by considering the top k DE genes for every cell-type subset

(which leads to the exact same selection as the TopDE baseline

we consider in this study). Next, CIBERSORT selects the k that

leads to a signature matrix S with the lowest condition number.

Finally, n -SVR is fit on the data, and the regression coefficients

in the solution are used to estimate p.

To test the usefulness of the features selected by our method

for deconvolution, we constructed pseudo-bulk mixtures

using the IPF, MC, and HCA datasets by averaging expression

levels across all single cells in the test sets. The signature

matrix S was constructed with features selected from the

training set and deconvolution via n -SVR was then applied

to the pseudo-bulk mixtures. As recommended by the

authors, we initialize three linear n -SVR instances with

n˛ f0:25;0:5; 0:75g and save the model that achieves the

lowest root-mean-square error between the deconvolution

Table 1. scRNA-seq datasets used in this study

Dataset Genes High var. Cells Tissues Cell types Reference

Idiopathic pulmonary fibrosis (IPF) 4,443 yes 96,301 1 33 Adams et al.39

Mouse cortex (MC) 20,006 no 3,005 1 7 Zeisel et al.40

Human cell atlas (HCA) 2,968 yes 84,363 15 7 He et al.41

For HCA, we consider a combination of tissues and cell types (85). For IPF, only healthy samples were kept. Endothelial-mural and astrocyte-epen-

dymal pairs of cells were grouped for MC.

Cell Reports Methods 2, 100332, November 21, 2022 3

Article
ll

OPEN ACCESS



result Sp and m. We compute the Jensen-Shannon (JS) diver-

gence45 between the predicted mixture p and the ground truth.

G-PC performs well on the IPF data, with RankCorr doing bet-

ter only when 50–80 genes are selected (Figure 2B). For

example, when 163 genes are selected, G-PC achieves an

average JS = 0.045, followed by RankCorr (0.056) and scGene-

Fit (0.062). For the MC dataset, G-PC is also the top-ranking

method, though TopDE and RankCorr also accurately resolve

mixture proportions (Figure S1B). All three methods obtain a

JS score of less than z0.025 across all K. CEM-PC performs

well on some instances for both datasets; however, the results

are unstable and vary between runs. None of the methods

clearly outperforms all others on the HCA dataset (Figure S2B).

These results demonstrate the challenges of trying to distin-

guish cell types across tissues.

Finally, we also tested another version of deconvolution that

uses linear least squares (LLS) as the target. We observed

that, for LLS, G-PC performs no worse than other methods on

IPF and MC (Figures S3D–S3F).

Stability

The focus of the comparison so far has been on accuracy.

However, other considerations are also important, especially

when selecting features that will be used across different plat-

forms and potentially modalities. One such important issue is

feature stability.46 The stability index measures the

average size of the overlap divided by the size of the union

for all pairs of feature sets (STAR Methods). To test stability,

we randomly sample half the data and compute the stability in-

dex for the features selected by each method over 5 runs.

A B C

E

D

Figure 2. Comparison of feature selection methods for the IPF dataset

(A and B) Performance scores for (A) and (B) were averaged across five different random train and test splits. SD is shown as a shaded region.

(A) Performance of a logistic regression model trained on the selected features. G-PC achieves the highest F1 score across all coverage factors, followed by

scGeneFit and CEM-PC.

(B) Jensen-Shannon divergence (lower is better) between CIBERSORT-predicted mixture proportions and the ground truth.

(C) Stability scores for all eight methods over 5 runs. Sequential methods like G-PC, decision trees, and CEM-PC suffer slightly in stability compared with other,

more global methods. Nonetheless, G-PC shares about 70% of the features across runs.

(D) Selected biomarkers assigned to each cell type (rows [columns] are differentiated by color [shape]). Gene s (column) is assigned to cell type i (row) if there

exists another cell type j such that Mi,s � Mj,s R 1 (S. Biomarker validation). Rows and columns were ordered via hierarchical clustering.

(E) For every phenotypic pair, we compute the coverage (i.e., the score difference between the two phenotypes) provided by the selected gene set. A histogram of

these coverage factors corresponding to a coverage of 10 is shown for each method. As can be seen, for G-PC and CEM-PC, which optimize for coverage, each

element is covered at least 10 times. Other methods provide high coverage for some elements but miss out on others.
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A B

C

D

Figure 3. GSEA q values for the HCA dataset

(A and B)We select markers that provide coverage for each cell type for both G-PC and decision trees and perform gene set enrichment analysis (GSEA) using the

HuBMAPASCT +Bgene set.48Wefirst record q values for the top entry, which contains the correct cell type or the correct tissue independently.When comparing

the ability of eachmethod to assign the correct class, G-PC obtains a lower q value, i.e., higher-log(q value), for 42% (3/7) of the cell types (A) and 54% (6/11) of the

tissues (B). We did not find markers for four tissues in the gene set (common bile duct, muscle, rectum, stomach).

(C)When tested for the ability to identify both the correct tissue and the correct cell type, G-PC obtained lower q values in 71% (30/42) of the cases. The remaining

tissue/cell-type pairs (33) either belonged to a tissue that was not present in the marker set or was not identified by either method.

(D) Connected by an edge are known markers for CD4 and myeloid cells that were assigned to the correct tissue/cell-type pair by G-PC. Some markers are

assigned to multiple cell types (multiple outgoing edges), while others are pair specific.
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Stability scores are shown in Figures 2C, S1C, and S2C. G-PC

is more stable than decision trees for IPF and MC. However,

due to their greedy sequential nature, both G-PC and decision

trees are less stable than more global methods such as

ReliefF and F values. Nonetheless, G-PC uses from 60% to

70% of the same genes across all runs. Perhaps not surpris-

ingly, due to its random sampling nature, CEM-PC is the least

stable method.

Biomarker validation

To validate the set of biomarkers S selected by G-PC and deci-

sion trees, we performed enrichment analysis for the HCA data-

set. We fix a coverage of 8, and for every phenotype i, we select

from the solution S all those genes s for which there exists some

phenotype j satisfying Mi,sRMj,s + 1. We consider each of these

sets as a biomarker set for the given phenotype for both G-PC

(Figures 2D and S6) and decision trees.

We next performed gene set enrichment analysis (GSEA)47 us-

ing the HuBMAP ASCT + B marker set48 to determine if the

selected marker sets for a specific cell type are enriched for

pathways associated with these cell types. We test the ability

of G-PC and decision trees to identify the correct (1) tissue, (2)

cell type, and (3) tissue/cell type combination. G-PC obtains

lower q values for 42% (3/7) of the cell types and 54% (6/11) of

the tissues (Figures 3A and 3B). No markers were found for

four tissues. When tested against the correct tissue and cell-

type pair, G-PC obtained lower q values for 71% (30/42) of the

pairs (Figure 3C). The remaining combinations (33) either be-

longed to a tissue that was not present in the marker set or

was not identified by either method. Some known markers as-

signed correctly by G-PC are shown in Figure 3D. Esophagus

and trachea tissues were mapped to respiratory system in the

ASCT + B set. The top two principal components of the markers

that provide coverage for a given tissue or cell type show visible

separation between different classes (Figure 4).

Due to limitations of the marker set we are using, only 20 cell

types could be identified for IPF. Among these, G-PC obtains

lower q values for 12 (60%) (Figure S5A). We observe good

agreement between genes selected using our greedy proced-

ures and genes known to be involved in specific cell types. For

example, G-PC correctly assigns KRT19 and ADGRF5 to type I

and II epithelial cells (ATI and ATII49–51). CD69 is assigned to

both B and T cells,52,53COBLL1 is assigned to B cells,54 JCHAIN

to B and B plasma cells,55CXCL2 to macrophages,56 andCCL5,

A

B

Figure 4. Principal-component analysis (PCA) plots of the selected markers for the different phenotypes present in the HCA dataset

(A and B) A total of 121 markers were selected via G-PC (coverage = 5). For every tissue (A) and cell type (B), the top two principal components of the markers

providing coverage (R1) for that phenotype are plotted. The exact number of markers used is shown in parentheses. There is visible separation between classes.
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PRF1, and CD247 to natural killer cells.57–59 See Figure 2D for a

larger list of identified markers.

In addition to selecting known cell-type markers, G-PC is also

able to select markers that distinguish between similar cell types.

For example, it assignsCXCL2 to ATII and not to ATI60 andCD69

and AFF3 to B cells and not plasma cells.52,53,61 Another

example is A2M and CST7, which are assigned to cytotoxic

T cells,62 whereas NAMPT and TNFRSF18 are assigned to reg-

ulatory T cells.63

DISCUSSION

Selection and use of markers is a common step in many analysis

pipelines. Most recently, this topic received increased attention

due to the large number of new cell types that have been identi-

fied and characterized using scRNA-seq data.64–67 To date,

such selection was mainly based on methods that focused on

each cell type separately and did not consider the relationship

between markers selected for different types. Such methods

can select overlapping marker sets for different cell types, mak-

ing it hard to discriminate between similar cell types. This is

especially important for large datasets where multiple cell types

in multiple tissues are being profiled.9,41

To address this issue and improve the ability to select a

discriminating set of markers, we defined a new optimization

function for biomarker selection that takes the overlap into

account. Specifically, we defined the PC problem that aims to

optimize the accuracy of identifying different sets when using

the selected markers. We presented two heuristic filter methods

since these lead to solutions that can be used in several different

analysis pipelines including classification, deconvolution,

experimental design, and more. The first is based on a greedy

approximation algorithm (G-PC) and the second is based on

the cross-entropy method (CEM-PC).

We evaluated these methods and compared them with prior

methods developed for marker selection using several high-

throughput scRNA-seq datasets. Our analysis indicates that

G-PC assigns equal importance to all different phenotypes in

the data and is affected less by class imbalance as shown by

the F1 score. Other methods tend to select features that

discriminate only dominating classes. Furthermore, G-PC can

be used with signature matrices rather than direct expression

measurements. In such cases, there is only a single score for

all phenotype/gene pairs, which makes using other methods

difficult. This allows G-PC to construct signature matrices for

deconvolution, which leads to an accurate estimation of cell-

type proportions from bulk mixtures. While G-PC is slightly

less stable than some other methods, it nonetheless retains

most of the features (�70%) across runs.

Decision trees outperform G-PC with regard to the F1 score

in one of the datasets we analyzed (HCA). However, even for

HCA, G-PC seems to obtain a more accurate list of cell-type

markers based on enrichment analysis. We note that

our method is best suited for datasets that require detailed an-

notations, which usually means that several cell types partially

overlap in their markers. In contrast, for large datasets where

the focus is on coarser cell types, we see less advantage

compared to standard marker selection methods. Finally, we

provide a C++ implementation of G-PC with Python bindings,

which makes it the fastest method we tested (Table 2). Speed

is an important consideration when working with large scRNA-

seq datasets.

We observed that CEM-PC sometimes selects a smaller set

of genes that achieves the same coverage as G-PC. However,

due to its random sampling nature, CEM-PC is very

unstable and can lead to a completely different set of features

across runs.

Limitations of study

The biological analysis relied on computing the overlap with ex-

isting genemarker lists thatmay be incomplete. Amore thorough

biological analysis of the selected genes and their relation to

each cell type might provide more insight into the performance

of our algorithms.

While G-PC worked well for the data analyzed in this paper, it

does not provide an optimal solution. It is interesting to see if

other approximation algorithms that optimize for coverage will

lead to better results when tested on biological data.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Notation

B Problem formulation and complexity

B Approximating a solution to phenotype cover

B Baselines

Table 2. Runtimes of all feature selection methods for all three datasets used in this study (s)

Data G-PC CEM-PC DT scGF DE RC FVal ReliefF MI mRMR

IPF 1.3 55 304 102 41 90 1.5 388 1039 980

MC 0.17 227 5 39 2.7 3 0.15 11 116 139

HCA 1.25 88 50 52 30 95 0.8 340 790 310

Method names were abbreviated. 178 features were selected for IPF, 66 for MC, and 121 for HCA. Our C++ implementation of G-PC takes less than 2 s

for all three datasets, making it the fastest along with F value computation. Performance tests are conducted on amachine with a 2.3 GHz 8-Core Intel

Core i9 CPU and 32 GB memory.
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B Datasets and preprocessing

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2022.100332.
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METHOD DETAILS

Notation

LetM˛R
P3F represent a score matrix. We denote by P the number of phenotypes (e.g., cell types) and by F the number of features

(e.g., genes). In this paper, we use scRNA-seq read count data denoted by X˛R
N3G
R 0 . Here, N denotes the number of cells and G

denotes the number of genes. Given a known vector y of lengthN representing class labels, we derive amatrixM fromX by averaging

expression values of cells with the same class label. In this case, P = {number of distinct classes} and F =G. We denote by [n] the set

f1;2;.; ng. Finally, let (x) + = max{x,0}.

Problem formulation and complexity

Phenotype cover (PC)

Given a score (signature) matrixM˛R
P3F , find a subset S3½F� of minimal cardinality, such that for every i; j˛ ½P�with is j , and some

fixed positive K, the following holds
X

s˛S

ðMi;s � Mj;sÞ
+

RK

PC is asking for a small subset of features such that for any given ordered pair of phenotypes (i,j), one can find enough features

which collectively distinguish i from j by a factor of at least K. This problem allows the selection of a gene which could cover several

phenotypic pairs, e.g., multiple cell subtypes vs another major cell type, but also demands sufficient coverage between subtypes

themselves. The straightforward solution of iterating over all possible feature subsets satisfying the requirements above and selecting

the onewith the smallest cardinality, suffers from an exponential complexity in the number of subsets considered. In fact, PC is equiv-

alent to multiset multicover which is NP-complete.33

To establish this equivalence, it may help to first consider a simplified version of the problem where we restrictM to be binary and

K = 1; call this problem PC-B. In this case, we require a small subset of features S, such that for any two phenotypes is j there exists

some index s˛S where Mi,s�Mj,s = 1. Note that in this simplified form, every feature s induces a bipartite graph Gs = ðus; vs; εsÞ,

where

us =

�

i
�

�Mi;s = 1
�

; vs =
�

j
�

�Mj;s = 0
�

= ½P�\us

Every edge e˛ εs corresponds to an ordered pair of phenotypes (Figure 1).

Now, given the collection of sets ε = fεsjs ˛ ½F�g, set cover asks to find the smallest subset εsol3ε such that for every element e˛

W εs, there exists a set in εsol which contains e. It is easy to see that the features corresponding to εsol are the solution to PC-B.

So far, we only considered a binary scorematrix. However, a solution to the binary problem can be naturally extended to solve non-

binary scoring matrices by assigning multiplicities to the elements of εs. To every e = (i,j) we assign the multiplicity
�

Mi;s � Mj;s

�

+

and

view εs as a multiset. Note that since we are working with real numbers, we need to round the multiplicities to integers. Higher pre-

cision can be easily obtained by first scaling both M and K by some scalar c and performing the rounding after. Finally, the require-

ment K = 1 can also be relaxed by solving for amulticover, where we require each element to be contained at least K times inW εsol

(counting multiplicities).

Approximating a solution to phenotype cover

Given the NP-Completeness of PC, we present two greedy solutions that run in polynomial time.

Greedy phenotype cover (G-PC)

First, we consider the well-known greedy approach to solving set cover that iteratively picks the set which covers the greatest num-

ber of elements not covered yet.70,71 The algorithm can be trivially extended to solve multiset multicover.33 The full algorithm is pre-

sented in Methods S1, algorithms 1 and 2. Every time we select a set, we need to correct the multiplicities of all the remaining O(F)

sets, each of whichmay contain up toO(P2) elements (all phenotypic pairs). Therefore, if we denote the solution size by k, the run-time

complexity of G-PC is OðkP2FÞ. In practice, P is small and k � F, therefore, the method is almost linear in the number of features

considered. The approximation accuracy for this solution was previously analyzed and it was shown that the greedy algorithm for

multiset multicover is upper bounded by a factor of Hm increase in the solution size, where Hm = 1+ 1
2+.+

1
m
% logðmÞ+ 1 and m

is the cardinality of the largest multiset.33

Cross-entropy method phenotype cover (CEM-PC)

In addition to the greedy multiset multicover approach, we developed a new method based on cross-entropy (CEM).34 CEM was

originally used to estimate probabilities of rare events and it was later extended to solve combinatorial problems.72 Roughly, CEM

consists of two steps: 1) generate a random sample based on a specific distribution, and 2) update distribution parameters such

that ‘‘high-scoring’’ samples are more likely to be produced in the next iteration. This two-step procedure is repeated until conver-

gence, or until amaximal number of iterations is reached. The final parameters determine the solution to the combinatorial problem (in

our case, selecting features whose probability is greater than some threshold). For a more detailed analysis of CEM, the reader may

refer to the excellent tutorial of De Boer et al.35
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We present a variant of CEM for solving set cover by introducing a scoring function that encourages high coverage but penalizes a

large number of features (Methods S1, alg. 3). The run-time complexity of CEM-PC depends on the maximum number of iterations I,

the number of random samples per iteration Rs, and the complexity of the scoring function (in this case, the smallest coverage at-

tained per random sample). This leads to a total run-time complexity of OðIR sP
2FÞ. In this paper, we use I = 500 and Rs = 1000.

In practice, convergence is attained in fewer iterations.

Baselines

As mentioned above, several prior methods have been developed for marker and feature selection. We thus compared our method

against several baselines on traditional supervised learning tasks, ability to construct signature matrices for deconvolution of bulk

mixtures, and feature stability. Specifically, we compare our method to scGeneFit25 and RankCorr26 which were used for discrimi-

nativemarker selection. We use the implementations provided by the authors of eachmethod. For scGeneFit, we used a redundancy

of 0.1 and kept the remaining parameters at defaults. We compare against an embedded method that uses decision trees with the

Gini Index criterion to rank features. Note that here we use decision trees as a feature selection method and not as a classifier. The

performance of decision trees as a classifier wasworse than that of Logistic Regression using the same features, hence, we excluded

these results from the manuscript. We also compare against several other filter methods. We consider the union of the top differen-

tially expressed genes per phenotype as determined byWelch’s t-test73 (TopDE). We compare against ReliefF28 which uses nearest

neighbors’ information to update feature weights. Since computing exact neighbors is slow for the single cell data we are using, we

developed a variant of ReliefF that uses approximate neighbors based on the faiss package.69Wecompute 30 neighbors per sample.

ANOVA F-values and mutual information between gene expression and phenotype are also computed using the popular package

scikit-learn.68 Finally, we compare against minimum-redundancy-maximum-relevance (mRMR).29 For mRMR, we use the open-

source Python package mrmr (https://github.com/smazzanti/mrmr) which measures relevance via the F-value and measures redun-

dancy via Pearson’s correlation. For all the baselines but TopDE andRankCorr, we take the top k scoring features, where k equals the

size of the solution returned by G-PC.

Datasets and preprocessing

We use three public scRNA-seq datasets to validate our method (Table 1). For all three datasets we remove classes with less than

50 cells. This leads to 75 tissue/cell type pairs for HCA.We also filter for genes expressed in at least 10 cells, and for runtime efficiency

purposes, we only consider highly variable genes for IPF and HCA for all methods. Also, scGeneFit was slow for MC, so we consid-

ered only highly variable genes for MCwhen running this method. Each dataset is normalized using Scanpy74 so that the total counts

for all cells are equal. The data is then log(x+1) transformed and each feature scaled to unit variance and zero mean. scGeneFit per-

formed very poorly when the data was scaled, hence, for a fair comparison we skipped the scaling step when running scGeneFit.

Log-transforming and scaling the data had a positive effect on the F1 score for all the other methods. We show these results

for the MC dataset in Figure S4D. On the other hand, deconvolution via CIBERSORT works best if the data is in linear space as rec-

ommended by the authors, hence, we did not log the data during deconvolution. Feature selection, however, is applied on logged

data.

We split all datasets into a train and test set of equal size in a stratified fashion. To obtain a signature matrixM for G-PC and CEM-

PC, we average expression values for every phenotype. While it is true that this operation summarizes the data and leads to infor-

mation loss, we note that our goal is not reconstruction or dimensionality reduction but rather marker selection. We argue that for

such a task the individual cell-based expression is less important since we are looking for markers that are generally observed across

most or all cells. Furthermore, commonly used DE tests such as t-test also rely on a small set of sufficient statistics.

Regarding the choice of K, in this paper we test the performance of our methods across multiple values of K. In practice, a single

value for K could be obtained in a cross-validation fashion.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the performance of Logistic Regression classifiers, we use the macro-average F1 score. This score equally weighs the

F1 score of each class, which is desirable as we are interested in finding markers for all phenotypes, regardless of any class imbal-

ance in the data. For a single class p, the F1 score is the harmonic mean between precision and recall

F1p =

2

1
�

Precisionp + 1
�

Recallp
= 2

Precisionp,Recallp
Precisionp +Recallp

The macro-average F1 score is simply the unweighted mean of per-class F1 scores

F1macro =

1

P

X

P

p = 1

F1p

To evaluate deconvolution performance, we use the Jensen-Shannon divergence45 which is a symmetric measure between two

probability distributions. Given two discrete probability distributions P and Q, the Kullback-Leibler divergence75 is given by
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KLðPkQÞ =

X

x˛c

PðxÞlog

�

PðxÞ

QðxÞ

	

where c is a probability space. Letting M =
1
2 ðP +QÞ, the Jensen-Shannon divergence is

JSðPkQÞ =

1

2
KLðPkMÞ+

1

2
KLðQkMÞ

Feature stability computes the average size of the overlap divided by the size of the union for all pairs of feature sets. More pre-

cisely, given a collection of feature sets ε = fS1;.Skg, stability is given by

s =

2

kðk � 1Þ

X

k

i = 1

X

k

j > i

�

�SiXSj

�

�

�

�SiWSj

�

�

Finally, we performed gene set enrichment analysis (GSEA) using the Python package GSEApy (https://gseapy.readthedocs.io/)

and the Enrichr API.76We used theHuBMAP_ASCTplusB_augmented_2022 gene set.48 All p values reported in this paper were cor-

rected for multiple testing.
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