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In brief

Hasanaj et al. propose a marker-selection
strategy for improving specificity and
selectivity of atlas-scale cell-type
assignments. They define an optimization
problem for selecting a minimal set of
such markers that covers all types. An
analysis of the proposed approximation
algorithms suggests that these marker
sets have high discriminatory power.
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MOTIVATION To date, marker selection is based on methods that focus on each cell type separately and do
not consider the relationship between different types. Such methods can select overlapping marker sets for
different cell types, making it hard to discriminate between similar cell types. To address this issue and to
improve the ability to select a discriminating set of markers, we defined an optimization function for
biomarker selection that takes the overlap into account.

SUMMARY

Markers are increasingly being used for several high-throughput data analysis and experimental design
tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving
bulk gene expression data, and for selecting marker proteins in single-cell spatial proteomics studies. Most
marker selection methods focus on differential expression (DE) analysis. Although such methods work well
for data with a few non-overlapping marker sets, they are not appropriate for large atlas-size datasets where
several cell types and tissues are considered. To address this, we define the phenotype cover (PC) problem
for marker selection and present algorithms that can improve the discriminative power of marker sets. Anal-
ysis of these sets on several marker-selection tasks suggests that these methods can lead to solutions that
accurately distinguish different phenotypes in the data.

INTRODUCTION

Several international efforts focus on characterizing gene
expression in different tissues, organs, disease states, and
more. Examples include HUBMAP, a large NIH effort to recon-
struct a three-dimensional (3D) map of the human body at the
single-cell resolution,’ the Human Cell Atlas,” the Cancer Cell
Atlas, and the Brain Atlas.” One of the first steps of studies at
the single-cell level is to characterize cell states or cell types.
Typically, this relies on marker genes whose expression or co-
expression with other such markers indicates a cell type.®® To
find such markers, researchers often perform differential expres-
sion (DE) testing, where a statistical hypothesis test is used to
compare the expression of genes in one group of cells versus
all other groups (one versus all). These groups are usually
defined by cluster, cell type, or condition labels.

To date, marker selection has mainly focused on the most sig-
nificant DE genes or proteins for each group. While this works well
with a small number of distinct groups (e.g., major cell types), it
may not work well when there is a much larger number of groups
with overlapping DE genes. In such cases, markers are not just
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useful for defining a specific group or type but are also critical
for discriminating between similar types. Consider these large
multiorgan single-cell RNA sequencing (scRNA-seq) datasets.
In such datasets, we may be interested in markers that are spe-
cific for both a cell type and a tissue (i.e., markers that are uniquely
found only in cell types from this tissue). Such markers can be less
significant than overall DE genes since they may only distinguish
between two similar types, but they are still of major importance.
An example is given by the Tabula Muris dataset,® a collection of
scRNA-seq profiles of over 100,000 cells from over 20 different
organs and tissues in Mus musculus. When analyzing these
data, the authors used traditional clustering and DE analysis
without considering the issue of cell-type/tissue combination.
Another example are T cells, which mature in the thymus.'""
While T cells later migrate and reside in tissues throughout the
body, the identification of T cells that have recently left the thymus
(recent thymic emigrants [RTEs]) plays a role in treatment deci-
sions.'? Similarly, the role of resident and infiltrating immune
cell types is still an active area of research for neurodegenerative
diseases. A key challenge is the current inability to distinguish the
resident central nervous system (CNS) immune cells and the
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Figure 1. Graphical illustration of (binary) phenotype cover and its reformulation as a set cover problem

Given a binary score matrix (left), each feature induces a bipartite graph between classes (center left). Edges in this graph form a set 5. Multiset multicover is then
performed on the collection of &5 to select a small number of features that “distinguish” all phenotypic pairs (at least K times). The idea can be naturally extended
to non-binary score matrices by assigning a multiplicity to each element e;; € &5 (STAR Methods).

bone-marrow-derived immune cells.'® Better signatures of CNS-
specific immune cells and signatures of infiltrating immune cells
are needed to understand the immune responses to therapies.

In addition to cell-type/tissue markers, multivariable label parti-
tioning is central to many other questions in functional genomics.
Cell type or disease states are often simultaneously considered
when identifying markers,'* and so state-specific markers for
cell types are of interest. Deconvolution of cell types from bulk
data is also highly dependent on the ability to select not just
good markers for each individual cell type but also a set of discrim-
inatory markers between all types.'*'° Finally, a number of recent
single-cell proteomics technologies, including CODEX'” and Cell
DIVE, require the pre-selection of markers to profile. The ability to
identify a subset of markers that would suffice for distinguishing all
cell types in the sample is a key criterion for such a selection.’®

Broadly, marker selection represents a feature-selection prob-
lem. Feature-selection methods can be largely divided into three
categories: filters, wrappers, and embedded.'®" Wrapper and
embedded methods interact with a specific classifier. Wrapper
methods select (often in a greedy manner) a subset of the fea-
tures that lead to a classifier with the highest accuracy. Exam-
ples include sequential forward and backward selection
methods.”*?® Embedded methods use the output of the classi-
fier itself, which comes in the form of an explicit ranking of the
features or implicitly via a scoring system (e.g., information
gain in decision trees®?). Since these methods are geared toward
classification, they may not be applicable to other problems,
including deconvolution.

Filter methods, on the other hand, are not tied to a specific clas-
sifier. For example, scGeneFit*® selects those genes that main-
tain a separation of the different cell types similar to that of the
original space. This method supports both a flat partition or a hi-
erarchy oflabels (e.g., major cell types and subtypes). RankCorr?®
works in a one-versus-all fashion and selects markers for a fixed
cell type by performing a rank transformation. Another algorithm,
Relief,?” and its extension ReliefF>® penalize features that cannot
distinguish a given instance from its negative (having a different
label) neighbors, while assigning high scores to features that
take similar values among instances from the same class. Mini-
mum-redundancy-maximum-relevance (MRMR) selects features
that are relevant to the target class but are not similar to each

2 Cell Reports Methods 2, 100332, November 21, 2022

other.?® CIBERSORT'® and a number of prior methods'®-30-%"
analyzed a signature matrix of DE genes to identify submatrices
with a low condition number for use in deconvolution of bulk mix-
tures. Thus, while these methods can successfully select discrim-
inative features when the overlap between sets is small, the ability
of such methods to select markers that discriminate all pairs of
phenotypes has not been extensively studied.

In this article, we explore the problem of determining a global set
of biomarkers. These represent features that collectively distin-
guish between higher context phenotypes. We assume we are
given a phenotype X feature, binary or real score matrix M, whose
(i,s) entry represents the relevance of feature s (e.g., average gene
expression) for phenotype i. We formulate the task as a combina-
torial optimization problem where the goalis to identify the smallest
set of features such that for every phenotypic pair (i,j) there exists a
set of features that can be used to “distinguish” between j and j.
We term this problem phenotype cover (PC). We show that PC is
equivalent to multiset multicover, which is nondeterministic poly-
nomial-time (NP)—compIete32 and propose two algorithms that
can approximate it in polynomial time (STAR Methods). The first
is based on the extended greedy algorithm to set cover (G-
PC),%® and the second is based on the cross-entropy method
(CEM-PC).***° By analyzing several marker-selection problems,
we show that the greedy algorithm outperforms competitors
across a variety of tasks. We also analyze some of the specific
markers selected by the method and discuss their ability to distin-
guish between similar cell types.

RESULTS

We developed methods to select discriminative features from a
large set of (potentially overlapping) signatures. The goal of the fea-
tures we select is to enable the separation of the different compo-
nents in the set. This can either be for a supervised learning (for
example, classification) or for other learning approaches such as
deconvolution or dimensionality reduction. Our method takes as
input a signature or score matrix M, which is used to estimate
the importance of a feature for a phenotype of interest. Features
are then selected by reformulating the problem as a multiset multi-
cover instance where the goal is to select features such that every
phenotypic pair is covered at least K times, for some positive K
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Table 1. scRNA-seq datasets used in this study

Dataset Genes High var. Cells Tissues Cell types Reference
Idiopathic pulmonary fibrosis (IPF) 4,443 yes 96,301 1 33 Adams et al.*®
Mouse cortex (MC) 20,006 no 3,005 1 7 Zeisel et al.*®
Human cell atlas (HCA) 2,968 yes 84,363 15 7 He et al.*’!

For HCA, we consider a combination of tissues and cell types (85). For IPF, only healthy samples were kept. Endothelial-mural and astrocyte-epen-

dymal pairs of cells were grouped for MC.

(Figure 1). We developed two solutions to the multiset multicover
problem: the first is based on a greedy approach (G-PC), and the
second based on the cross-entropy method (CEM-PC). See
STAR Methods for details.

We tested G-PC and CEM-PC and compared them with eight
prior methods: scGeneFit,”° decision trees,*® top differentially ex-
pressed genes (TopDE), RankCorr,?° ReliefF,>® mRMR,?° ANOVA
F values, and mutual information.®”*® We used three scRNA-seq
datasets from lung, mouse cortex, and ahuman cell atlas (Table 1).
We vary the coverage factor K from 1 to 20 for the idiopathic pul-
monary fibrosis (IPF) dataset, from 1 to 40 for mouse cortex
(MC), and from 1 to 9 for human cell atlas (HCA). For all baselines
but TopDE and RankCorr, we select a number of features that
matches the solution size returned by G-PC. For TopDE, we take
the union of the top k differentially expressed genes for each
phenotype (k varying from 1 to <10). For RankCorr, we tuned the
hyperparameters until a similar number of features was returned.
Finally, for CEM-PC, all features with a probability score greater
than 0.98 after convergence were chosen (Methods S1, alg. 3).
We compare all methods in terms of phenotype classification per-
formance, deconvolution of bulk mixtures, and feature stability.
We also validate the features selected by G-PC by performing
gene set enrichment analysis and comparing them with known
markers in the literature.

Classification

We first test the ability of a classifier to predict the correct pheno-
type given only a subset of the features. For each method, we
select a feature set S using a subset of the data, train a logistic
regression model on the same subset, and evaluate perfor-
mance on left-out data. G-PC exhibits strong performance on
the IPF and MC datasets across a wide range of coverage fac-
tors. For example, when 42 genes are selected on the IPF
data, G-PC obtains an F1 score of 0.70, followed by scGeneFit
(0.65) and CEM-PC (0.61) (Figure 2A). On the MC data (Fig-
ure S1A), G-PC again performs best when 30-140 genes are
selected (F1 = 0.94-0.95). mRMR also performs well on these
data except when the number of genes selected is small (<30).
Decision trees, on the other hand, do notimprove in performance
when more than 30 genes are selected (F1 = 0.92).

These two datasets are obtained from a single tissue. We
thus next tested the ability of PC to differentiate between
the same cell types across multiple tissues. For this, we
used all tissue and cell-type combinations present in the
HCA dataset. Decision trees outperform other methods on
this classification task (Figure S2A). G-PC is the second-
best method when more than 100 genes are selected, while
scGenekFit is the second best when less than 100 genes are

selected. scGeneFit, however, does not improve in perfor-
mance when more than 100 genes are selected. At 235 genes,
decision trees converge at 0.70, while G-PC and mutual infor-
mation reach an F1 of 0.68.

We note that scGeneFit can take the hierarchy of labels into
account and that the authors describe improved performance
when cell subtypes are considered in the MC dataset. For a
fair comparison, we ran three different variants of scGeneFit
that take advantage of this hierarchical structure and evaluated
performance by using a nearest centroid classifier fit on the
entire data. All the hyperparameters we used were identical to
those provided by the authors. While G-PC does not use cell
subtype information, it still outperforms all three variants across
a different number of markers (Figure S4B).

We also tested an additional classifier (k nearest neighbors)
and observed very similar results to those obtained with logistic
regression (Figures S3A-S3C). Finally, we tested the impact of
batch effects by using two pancreas datasets*>*® and observed
that our method, G-PC, along with TopDE are the most robust to
batch effects (Figure S4A).

Deconvolution

Inferring cell-type proportions from bulk transcriptomics data is
an important task in understanding composition of tumors and
other tissues. Many methods have been developed to perform
deconvolution of bulk mixtures.'®%%2"4* Deconvolution typically
requires solving a linear equation of the form m = Sp, where m is
a given mixture vector, S is a signature matrix containing cell-
type-specific expression signatures (known), and p is the un-
known class proportion vector. One widely used method for de-
convolution is CIBERSORT,'® which uses » -support vector
regression (v -SVR). CIBERSORT constructs the signature matrix
S by considering the top k DE genes for every cell-type subset
(which leads to the exact same selection as the TopDE baseline
we consider in this study). Next, CIBERSORT selects the k that
leads to a signature matrix S with the lowest condition number.
Finally, » -SVR is fit on the data, and the regression coefficients
in the solution are used to estimate p.

To test the usefulness of the features selected by our method
for deconvolution, we constructed pseudo-bulk mixtures
using the IPF, MC, and HCA datasets by averaging expression
levels across all single cells in the test sets. The signature
matrix S was constructed with features selected from the
training set and deconvolution via » -SVR was then applied
to the pseudo-bulk mixtures. As recommended by the
authors, we initialize three linear v -SVR instances with
ve {0.25,0.5, 0.75} and save the model that achieves the
lowest root-mean-square error between the deconvolution

Cell Reports Methods 2, 100332, November 21, 2022 3
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Figure 2. Comparison of feature selection methods for the IPF dataset
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(A and B) Performance scores for (A) and (B) were averaged across five different random train and test splits. SD is shown as a shaded region.
(A) Performance of a logistic regression model trained on the selected features. G-PC achieves the highest F1 score across all coverage factors, followed by

scGeneFit and CEM-PC.

(B) Jensen-Shannon divergence (lower is better) between CIBERSORT-predicted mixture proportions and the ground truth.

(C) Stability scores for all eight methods over 5 runs. Sequential methods like G-PC, decision trees, and CEM-PC suffer slightly in stability compared with other,
more global methods. Nonetheless, G-PC shares about 70% of the features across runs.

(D) Selected biomarkers assigned to each cell type (rows [columns] are differentiated by color [shape]). Gene s (column) is assigned to cell type i (row) if there
exists another cell type j such that M;s — Mj,s > 1 (S. Biomarker validation). Rows and columns were ordered via hierarchical clustering.

(E) For every phenotypic pair, we compute the coverage (i.e., the score difference between the two phenotypes) provided by the selected gene set. A histogram of
these coverage factors corresponding to a coverage of 10 is shown for each method. As can be seen, for G-PC and CEM-PC, which optimize for coverage, each
element is covered at least 10 times. Other methods provide high coverage for some elements but miss out on others.

result Sp and m. We compute the Jensen-Shannon (JS) diver-
gence”’® between the predicted mixture p and the ground truth.
G-PC performs well on the IPF data, with RankCorr doing bet-
ter only when 50-80 genes are selected (Figure 2B). For
example, when 163 genes are selected, G-PC achieves an
average JS = 0.045, followed by RankCorr (0.056) and scGene-
Fit (0.062). For the MC dataset, G-PC is also the top-ranking
method, though TopDE and RankCorr also accurately resolve
mixture proportions (Figure S1B). All three methods obtain a
JS score of less than =0.025 across all K. CEM-PC performs
well on some instances for both datasets; however, the results
are unstable and vary between runs. None of the methods
clearly outperforms all others on the HCA dataset (Figure S2B).
These results demonstrate the challenges of trying to distin-
guish cell types across tissues.

4 Cell Reports Methods 2, 100332, November 21, 2022

Finally, we also tested another version of deconvolution that
uses linear least squares (LLS) as the target. We observed
that, for LLS, G-PC performs no worse than other methods on
IPF and MC (Figures S3D-S3F).

Stability

The focus of the comparison so far has been on accuracy.
However, other considerations are also important, especially
when selecting features that will be used across different plat-
forms and potentially modalities. One such important issue is
feature stability.”® The stability index measures the
average size of the overlap divided by the size of the union
for all pairs of feature sets (STAR Methods). To test stability,
we randomly sample half the data and compute the stability in-
dex for the features selected by each method over 5 runs.
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Figure 3. GSEA ¢ values for the HCA dataset

(A and B) We select markers that provide coverage for each cell type for both G-PC and decision trees and perform gene set enrichment analysis (GSEA) using the
HUBMAP ASCT + B gene set.“® We first record q values for the top entry, which contains the correct cell type or the correct tissue independently. When comparing
the ability of each method to assign the correct class, G-PC obtains a lower q value, i.e., higher-log(q value), for 42% (3/7) of the cell types (A) and 54% (6/11) of the
tissues (B). We did not find markers for four tissues in the gene set (common bile duct, muscle, rectum, stomach).

(C) When tested for the ability to identify both the correct tissue and the correct cell type, G-PC obtained lower q values in 71% (30/42) of the cases. The remaining
tissue/cell-type pairs (33) either belonged to a tissue that was not present in the marker set or was not identified by either method.

(D) Connected by an edge are known markers for CD4 and myeloid cells that were assigned to the correct tissue/cell-type pair by G-PC. Some markers are
assigned to multiple cell types (multiple outgoing edges), while others are pair specific.
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Figure 4. Principal-component analysis (PCA) plots of the selected markers for the different phenotypes present in the HCA dataset
(A and B) A total of 121 markers were selected via G-PC (coverage = 5). For every tissue (A) and cell type (B), the top two principal components of the markers
providing coverage (> 1) for that phenotype are plotted. The exact number of markers used is shown in parentheses. There is visible separation between classes.

Stability scores are shown in Figures 2C, S1C, and S2C. G-PC
is more stable than decision trees for IPF and MC. However,
due to their greedy sequential nature, both G-PC and decision
trees are less stable than more global methods such as
ReliefF and F values. Nonetheless, G-PC uses from 60% to
70% of the same genes across all runs. Perhaps not surpris-
ingly, due to its random sampling nature, CEM-PC is the least
stable method.

Biomarker validation

To validate the set of biomarkers S selected by G-PC and deci-
sion trees, we performed enrichment analysis for the HCA data-
set. We fix a coverage of 8, and for every phenotype i, we select
from the solution S all those genes s for which there exists some
phenotype j satisfying M;s > M; s + 1. We consider each of these
sets as a biomarker set for the given phenotype for both G-PC
(Figures 2D and S6) and decision trees.

We next performed gene set enrichment analysis (GSEA)*” us-
ing the HUBMAP ASCT + B marker set’® to determine if the
selected marker sets for a specific cell type are enriched for
pathways associated with these cell types. We test the ability
of G-PC and decision trees to identify the correct (1) tissue, (2)

6 Cell Reports Methods 2, 100332, November 21, 2022

cell type, and (3) tissue/cell type combination. G-PC obtains
lower g values for 42% (3/7) of the cell types and 54% (6/11) of
the tissues (Figures 3A and 3B). No markers were found for
four tissues. When tested against the correct tissue and cell-
type pair, G-PC obtained lower q values for 71% (30/42) of the
pairs (Figure 3C). The remaining combinations (33) either be-
longed to a tissue that was not present in the marker set or
was not identified by either method. Some known markers as-
signed correctly by G-PC are shown in Figure 3D. Esophagus
and trachea tissues were mapped to respiratory system in the
ASCT + B set. The top two principal components of the markers
that provide coverage for a given tissue or cell type show visible
separation between different classes (Figure 4).

Due to limitations of the marker set we are using, only 20 cell
types could be identified for IPF. Among these, G-PC obtains
lower g values for 12 (60%) (Figure S5A). We observe good
agreement between genes selected using our greedy proced-
ures and genes known to be involved in specific cell types. For
example, G-PC correctly assigns KRT19 and ADGRF5 to type |
and Il epithelial cells (ATl and ATII***®"). CD69 is assigned to
both B and T cells,***® COBLL1 is assigned to B cells,** JCHAIN
to B and B plasma cells,®® CXCL2 to macrophages,”® and CCLS5,
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Table 2. Runtimes of all feature selection methods for all three datasets used in this study (s)

Data G-PC CEM-PC DT scGF DE RC FVal ReliefF Ml mRMR
IPF 1.3 55 304 102 41 90 1.5 388 1039 980
MC 0.17 227 5 39 2.7 3 0.15 11 116 139
HCA 1.25 88 50 52 30 95 0.8 340 790 310

Method names were abbreviated. 178 features were selected for IPF, 66 for MC, and 121 for HCA. Our C++ implementation of G-PC takes less than2 s
for all three datasets, making it the fastest along with F value computation. Performance tests are conducted on a machine with a 2.3 GHz 8-Core Intel

Core i9 CPU and 32 GB memory.

PRF1, and CD247 to natural killer cells.®”~>° See Figure 2D for a
larger list of identified markers.

In addition to selecting known cell-type markers, G-PC is also
able to select markers that distinguish between similar cell types.
For example, it assigns CXCL2 to ATl and not to ATI®® and CD69
and AFF3 to B cells and not plasma cells.®>°*¢" Another
example is A2M and CST7, which are assigned to cytotoxic
T cells,®” whereas NAMPT and TNFRSF18 are assigned to reg-
ulatory T cells.®®

DISCUSSION

Selection and use of markers is a common step in many analysis
pipelines. Most recently, this topic received increased attention
due to the large number of new cell types that have been identi-
fied and characterized using scRNA-seq data.®*®” To date,
such selection was mainly based on methods that focused on
each cell type separately and did not consider the relationship
between markers selected for different types. Such methods
can select overlapping marker sets for different cell types, mak-
ing it hard to discriminate between similar cell types. This is
especially important for large datasets where multiple cell types
in multiple tissues are being profiled.**

To address this issue and improve the ability to select a
discriminating set of markers, we defined a new optimization
function for biomarker selection that takes the overlap into
account. Specifically, we defined the PC problem that aims to
optimize the accuracy of identifying different sets when using
the selected markers. We presented two heuristic filter methods
since these lead to solutions that can be used in several different
analysis pipelines including classification, deconvolution,
experimental design, and more. The first is based on a greedy
approximation algorithm (G-PC) and the second is based on
the cross-entropy method (CEM-PC).

We evaluated these methods and compared them with prior
methods developed for marker selection using several high-
throughput scRNA-seq datasets. Our analysis indicates that
G-PC assigns equal importance to all different phenotypes in
the data and is affected less by class imbalance as shown by
the F1 score. Other methods tend to select features that
discriminate only dominating classes. Furthermore, G-PC can
be used with signature matrices rather than direct expression
measurements. In such cases, there is only a single score for
all phenotype/gene pairs, which makes using other methods
difficult. This allows G-PC to construct signature matrices for
deconvolution, which leads to an accurate estimation of cell-
type proportions from bulk mixtures. While G-PC is slightly

less stable than some other methods, it nonetheless retains
most of the features (~70%) across runs.

Decision trees outperform G-PC with regard to the F1 score
in one of the datasets we analyzed (HCA). However, even for
HCA, G-PC seems to obtain a more accurate list of cell-type
markers based on enrichment analysis. We note that
our method is best suited for datasets that require detailed an-
notations, which usually means that several cell types partially
overlap in their markers. In contrast, for large datasets where
the focus is on coarser cell types, we see less advantage
compared to standard marker selection methods. Finally, we
provide a C++ implementation of G-PC with Python bindings,
which makes it the fastest method we tested (Table 2). Speed
is an important consideration when working with large scRNA-
seq datasets.

We observed that CEM-PC sometimes selects a smaller set
of genes that achieves the same coverage as G-PC. However,
due to its random sampling nature, CEM-PC is very
unstable and can lead to a completely different set of features
across runs.

Limitations of study

The biological analysis relied on computing the overlap with ex-
isting gene marker lists that may be incomplete. A more thorough
biological analysis of the selected genes and their relation to
each cell type might provide more insight into the performance
of our algorithms.

While G-PC worked well for the data analyzed in this paper, it
does not provide an optimal solution. It is interesting to see if
other approximation algorithms that optimize for coverage will
lead to better results when tested on biological data.
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Decision Trees, ANOVA F-values, Pedregosa et afl, Zenodo:
Mutual Information, Logistic Regression scikit-learn https://doi.org/10.5281/zenodo.6968622
T-test for differentially expressed genes Theis Lab; PI: Fabian GitHub:
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This study did not generate new unique reagents.

Data and code availability

® This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources
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o We implemented a general-purpose package for running the greedy multiset multicover algorithm in C++ and expose it to Py-
thon. The code has been deposited at hitps://github.com/euxhenh/multiset-multicover. The G-PC and CEM-PC algorithms for
feature selection can be found at https://github.com/euxhenh/phenotype-cover. Installation instructions are available in each
repository. The code for running experiments in this paper is available from https://github.com/euxhenh/phenotype-

cover-experiments. DOls are listed in the key resources table.

o Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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METHOD DETAILS

Notation

Let M e RP*F represent a score matrix. We denote by P the number of phenotypes (e.g., cell types) and by F the number of features
(e.g., genes). In this paper, we use scRNA-seq read count data denoted by Xe R’\Z”BG. Here, N denotes the number of cells and G
denotes the number of genes. Given a known vector y of length N representing class labels, we derive a matrix M from X by averaging
expression values of cells with the same class label. In this case, P = {number of distinct classes} and F = G. We denote by [n] the set
{1,2,...,n}. Finally, let (x) © = max{x,0}.

Problem formulation and complexity

Phenotype cover (PC)

Given a score (signature) matrix M e RP*F, find a subset S C [F] of minimal cardinality, such that for every i, j e [P] withi# j, and some
fixed positive K, the following holds

> (Mis — M)" =K
seS
PC is asking for a small subset of features such that for any given ordered pair of phenotypes (i,j), one can find enough features
which collectively distinguish i from j by a factor of at least K. This problem allows the selection of a gene which could cover several
phenotypic pairs, e.g., multiple cell subtypes vs another major cell type, but also demands sufficient coverage between subtypes
themselves. The straightforward solution of iterating over all possible feature subsets satisfying the requirements above and selecting
the one with the smallest cardinality, suffers from an exponential complexity in the number of subsets considered. In fact, PC is equiv-
alent to multiset multicover which is NP-complete.*®
To establish this equivalence, it may help to first consider a simplified version of the problem where we restrict M to be binary and
K =1; call this problem PC-B. In this case, we require a small subset of features S, such that for any two phenotypes i # j there exists
some index se S where M; s—M; s = 1. Note that in this simplified form, every feature s induces a bipartite graph Gs = (us, Vs, &),
where

Us = {ilMi,s = 1}7 Vs = {/|M/s = 0} = [P]\US

Every edge e e &5 corresponds to an ordered pair of phenotypes (Figure 1).

Now, given the collection of sets ¢ = {es|s € [F]}, set cover asks to find the smallest subset 5o/ C e such that for every elemente e
U &s, there exists a set in e5,) Which contains e. It is easy to see that the features corresponding to ¢, are the solution to PC-B.

So far, we only considered a binary score matrix. However, a solution to the binary problem can be naturally extended to solve non-
binary scoring matrices by assigning multiplicities to the elements of ¢;. To every e = (i,j) we assign the multiplicity (M,-~S - M,-,s) " and
view ¢ as a multiset. Note that since we are working with real numbers, we need to round the multiplicities to integers. Higher pre-
cision can be easily obtained by first scaling both M and K by some scalar ¢ and performing the rounding after. Finally, the require-
ment K = 1 can also be relaxed by solving for a multicover, where we require each element to be contained at least K times in U &4
(counting multiplicities).

Approximating a solution to phenotype cover

Given the NP-Completeness of PC, we present two greedy solutions that run in polynomial time.

Greedy phenotype cover (G-PC)

First, we consider the well-known greedy approach to solving set cover that iteratively picks the set which covers the greatest num-
ber of elements not covered yet.”>”" The algorithm can be trivially extended to solve multiset multicover.>® The full algorithm is pre-
sented in Methods S1, algorithms 1 and 2. Every time we select a set, we need to correct the multiplicities of all the remaining O(F)
sets, each of which may contain up to O(P?) elements (all phenotypic pairs). Therefore, if we denote the solution size by k, the run-time
complexity of G-PC is O(kPZF). In practice, P is small and k < F, therefore, the method is almost linear in the number of features
considered. The approximation accuracy for this solution was previously analyzed and it was shown that the greedy algorithm for
multiset multicover is upper bounded by a factor of H,, increase in the solution size, where Hy, = 1 +%+ +% <log(m)+1and m
is the cardinality of the largest multiset.**

Cross-entropy method phenotype cover (CEM-PC)

In addition to the greedy multiset multicover approach, we developed a new method based on cross-entropy (CEM).** CEM was
originally used to estimate probabilities of rare events and it was later extended to solve combinatorial problems.”? Roughly, CEM
consists of two steps: 1) generate a random sample based on a specific distribution, and 2) update distribution parameters such
that “high-scoring” samples are more likely to be produced in the next iteration. This two-step procedure is repeated until conver-
gence, or until a maximal number of iterations is reached. The final parameters determine the solution to the combinatorial problem (in
our case, selecting features whose probability is greater than some threshold). For a more detailed analysis of CEM, the reader may
refer to the excellent tutorial of De Boer et al.*®
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We present a variant of CEM for solving set cover by introducing a scoring function that encourages high coverage but penalizes a
large number of features (Methods S1, alg. 3). The run-time complexity of CEM-PC depends on the maximum number of iterations /,
the number of random samples per iteration Rs, and the complexity of the scoring function (in this case, the smallest coverage at-
tained per random sample). This leads to a total run-time complexity of O(IR sP?F). In this paper, we use / = 500 and R = 1000.
In practice, convergence is attained in fewer iterations.

Baselines

As mentioned above, several prior methods have been developed for marker and feature selection. We thus compared our method
against several baselines on traditional supervised learning tasks, ability to construct signature matrices for deconvolution of bulk
mixtures, and feature stability. Specifically, we compare our method to scGeneFit*> and RankCorr“® which were used for discrimi-
native marker selection. We use the implementations provided by the authors of each method. For scGeneFit, we used a redundancy
of 0.1 and kept the remaining parameters at defaults. We compare against an embedded method that uses decision trees with the
Gini Index criterion to rank features. Note that here we use decision trees as a feature selection method and not as a classifier. The
performance of decision trees as a classifier was worse than that of Logistic Regression using the same features, hence, we excluded
these results from the manuscript. We also compare against several other filter methods. We consider the union of the top differen-
tially expressed genes per phenotype as determined by Welch’s t-test’® (TopDE). We compare against ReliefF*® which uses nearest
neighbors’ information to update feature weights. Since computing exact neighbors is slow for the single cell data we are using, we
developed a variant of ReliefF that uses approximate neighbors based on the faiss package.®® We compute 30 neighbors per sample.
ANOVA F-values and mutual information between gene expression and phenotype are also computed using the popular package
scikit-learn.®® Finally, we compare against minimum-redundancy-maximum-relevance (MRMR).>° For mRMR, we use the open-
source Python package mrmr (https://github.com/smazzanti/mrmr) which measures relevance via the F-value and measures redun-
dancy via Pearson’s correlation. For all the baselines but TopDE and RankCorr, we take the top k scoring features, where k equals the
size of the solution returned by G-PC.

Datasets and preprocessing

We use three public scRNA-seq datasets to validate our method (Table 1). For all three datasets we remove classes with less than
50 cells. This leads to 75 tissue/cell type pairs for HCA. We also filter for genes expressed in at least 10 cells, and for runtime efficiency
purposes, we only consider highly variable genes for IPF and HCA for all methods. Also, scGeneFit was slow for MC, so we consid-
ered only highly variable genes for MC when running this method. Each dataset is normalized using Scanpy’* so that the total counts
for all cells are equal. The data is then log(x+1) transformed and each feature scaled to unit variance and zero mean. scGeneFit per-
formed very poorly when the data was scaled, hence, for a fair comparison we skipped the scaling step when running scGenekFit.
Log-transforming and scaling the data had a positive effect on the F1 score for all the other methods. We show these results
for the MC dataset in Figure S4D. On the other hand, deconvolution via CIBERSORT works best if the data is in linear space as rec-
ommended by the authors, hence, we did not log the data during deconvolution. Feature selection, however, is applied on logged
data.

We split all datasets into a train and test set of equal size in a stratified fashion. To obtain a signature matrix M for G-PC and CEM-
PC, we average expression values for every phenotype. While it is true that this operation summarizes the data and leads to infor-
mation loss, we note that our goal is not reconstruction or dimensionality reduction but rather marker selection. We argue that for
such a task the individual cell-based expression is less important since we are looking for markers that are generally observed across
most or all cells. Furthermore, commonly used DE tests such as t-test also rely on a small set of sufficient statistics.

Regarding the choice of K, in this paper we test the performance of our methods across multiple values of K. In practice, a single
value for K could be obtained in a cross-validation fashion.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the performance of Logistic Regression classifiers, we use the macro-average F1 score. This score equally weighs the
F1 score of each class, which is desirable as we are interested in finding markers for all phenotypes, regardless of any class imbal-
ance in the data. For a single class p, the F1 score is the harmonic mean between precision and recall

2 Precision, -Recall,

F1p = = >
? " 1 /Precision, +1/Recall, " Precision, + Recall,

The macro-average F1 score is simply the unweighted mean of per-class F1 scores

1CF
Flmacro = 'BZF1p
p=1

To evaluate deconvolution performance, we use the Jensen-Shannon divergence”® which is a symmetric measure between two
probability distributions. Given two discrete probability distributions P and Q, the Kullback-Leibler divergence’ is given by
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KL(P||Q) = > P(x)log (%)

Xex

where y is a probability space. Letting M = %(P +Q), the Jensen-Shannon divergence is
1 1
JS(PQ) = 5 KL(P||M) + 5 KL(Q||M)

Feature stability computes the average size of the overlap divided by the size of the union for all pairs of feature sets. More pre-
cisely, given a collection of feature sets ¢ = {Sy,...Sk}, stability is given by

2 L &SNS

ST kk—-1) > Z|s,-us,-|

i=1 j>i

Finally, we performed gene set enrichment analysis (GSEA) using the Python package GSEApy (https://gseapy.readthedocs.io/)
and the Enrichr APL.”® We used the HUBMAP_ASCTplusB_augmented_2022 gene set.*® All p values reported in this paper were cor-
rected for multiple testing.

e4 Cell Reports Methods 2, 100332, November 21, 2022



	Multiset multicover methods for discriminative marker selection
	Introduction
	Results
	Classification
	Deconvolution
	Stability
	Biomarker validation

	Discussion
	Limitations of study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Notation
	Problem formulation and complexity
	Phenotype cover (PC)

	Approximating a solution to phenotype cover
	Greedy phenotype cover (G-PC)
	Cross-entropy method phenotype cover (CEM-PC)

	Baselines
	Datasets and preprocessing

	Quantification and statistical analysis



