
Foundations of Data Science doi:10.3934/fods.2021033
©American Institute of Mathematical Sciences
Volume 4, Number 1, March 2022 pp. 1–36

CAPTURING DYNAMICS OF TIME-VARYING

DATA VIA TOPOLOGY

Lu Xian

School of Information
University of Michigan

Ann Arbor, MI 48109, USA

Henry Adams

Department of Mathematics

Colorado State University

Fort Collins, CO 80523, USA

Chad M. Topaz

Department of Mathematics and Statistics

Williams College
Williamstown, MA 01267, USA

Lori Ziegelmeier∗

Department of Mathematics, Statistics, and Computer Science
Macalester College

Saint Paul, MN 55105, USA

(Communicated by Farzana Nasrin)

Abstract. One approach to understanding complex data is to study its shape

through the lens of algebraic topology. While the early development of topolog-

ical data analysis focused primarily on static data, in recent years, theoretical
and applied studies have turned to data that varies in time. A time-varying

collection of metric spaces as formed, for example, by a moving school of fish or

flock of birds, can contain a vast amount of information. There is often a need
to simplify or summarize the dynamic behavior. We provide an introduction to

topological summaries of time-varying metric spaces including vineyards [19],

crocker plots [55], and multiparameter rank functions [37]. We then intro-
duce a new tool to summarize time-varying metric spaces: a crocker stack.

Crocker stacks are convenient for visualization, amenable to machine learning,
and satisfy a desirable continuity property which we prove. We demonstrate

the utility of crocker stacks for a parameter identification task involving an in-

fluential model of biological aggregations [57]. Altogether, we aim to bring the
broader applied mathematics community up-to-date on topological summaries

of time-varying metric spaces.

2020 Mathematics Subject Classification. 37N99, 55N31, 62R40, 92B99.
Key words and phrases. Topological data analysis, computational persistent homology, dynam-

ics, mathematical models, machine learning.
L.X. was funded by Macalester College through a grant to L.Z. H.A. was supported by NSF

grant 1934725, DELTA: Descriptors of Energy Landscapes by Topological Analysis. C.M.T. was
supported by NSF grant DMS-1813752, Variational and Topological Approaches to Complex Sys-

tems. L.Z. was supported by NSF grant CDS&E-MSS-1854703, Exact Homological Algebra for

Computational Topology (ExHACT).
∗ Corresponding author: Lori Ziegelmeier.

1

http://dx.doi.org/10.3934/fods.2021033

2 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

1. Introduction. Drawing from subfields within mathematics, applied mathemat-
ics, statistics, and computer science, topological data analysis (TDA) is a set of
approaches that helps one understand complex data by studying its shape. The
application of TDA has contributed to the understanding of problems and systems
in the natural sciences, social sciences, and humanities, including granular materi-
als [32], cancer biology [21], development economics [5], political science [29], urban
analytics [30], natural language processing [59], and much more. Classic works
that build and review the fundamental ideas of TDA include [60, 34, 31, 26, 9, 48].
While TDA was originally developed with the study of static data in mind, in re-
cent years, it has found fruitful application to time-evolving data, or as we will say,
dynamically-varying or time-varying metric spaces. For example, for a biological
aggregation such as an insect swarm, the metric space of interest might be the po-
sitions and velocities of all organisms, which vary from frame to frame in the movie
of an experimental trial [56]. For networked oscillators, the metric space of interest
might be the phase of each oscillator in the ensemble, which, similarly, evolves in
time [54]. These systems can produce massive amounts of data, and so there is
sometimes a need to simplify or summarize the dynamic behavior of time-varying
systems. Here, TDA plays a role.

In this paper, we have three overarching goals. First, we aim to provide a lay
reader in the data science community with an overview of topological tools for
studying time-varying metric spaces. Second, we demonstrate an application of
some of these tools to a parameter recovery problem arising in the study of collective
behavior. Finally, we present a new tool for time-varying metric spaces — a crocker
stack — and explore its continuity properties. Overall, we hope that our work will
provide a mechanism to bring newcomers to the field up-to-date on approaches to
time-varying metric spaces, including our own new contribution.

Topological methods for studying time-varying data are built on a technique
called persistent homology. Homology provides a way to (partially) characterize
the topology of an object. The characterization comes in the form of quantities
called Betti numbers βk, where the k indicates a boundary of dimension k enclosing
a void of dimension k+1. Concretely, the number of connected components is β0, the
number of topological loops (circles) is β1, the number of trapped volumes is β2, and
so on up in dimension. For example, suppose we have a filled-in disk next to a hollow
square next to a two-torus, that is, a hollow donut; see Figure 1. The filled-in disk
has Betti numbers (β0, β1, β2, β3, . . .) = (1, 0, 0, 0, . . .) because it is one object that is
contractible and has no higher dimensional structure. The hollow square has Betti
numbers (1, 1, 0, 0, . . .) because it is one object enclosing a flat void. And finally, the
torus has Betti numbers (1, 2, 1, 0, . . .) because it is one object, is generated by two
independent circles (one passing around the equator of the donut and one passing
around the donut’s hole), and encloses an empty volume. Altogether, then, we have
(β0, β1, β2, β3, . . .) = (3, 3, 1, 0, . . .) if we consider the homology of the union of these
three shapes.

In the example above, we have used idealized shapes such as a disk, hollow square,
and torus. However, we want to also think about the topological properties of a data
set, rather than only idealized shapes. Suppose we have N data points in Rm and
we want to know if this set of points has structure that we cannot see by eye. We
can build a simplicial complex (in particular, we describe the process to construct
a Vietoris-Rips simplicial complex, but others exist as well) out of the data by
placing an m-dimensional ball of radius ε/2 around each point, forming a k-simplex

CAPTURING DYNAMICS OF TIME-VARYING DATA 3

Figure 1. A filled-in disk (left) has Betti numbers (β0, β1, β2, β3, . . .) =
(1, 0, 0, 0, . . .). A hollow square (center) has Betti numbers (1, 1, 0, 0, . . .).
A hollow two-torus (right) has Betti numbers (1, 2, 1, 0, . . .). If we consider
the union of these three shapes, the Betti numbers are (β0, β1, β2, β3, . . .) =
(3, 3, 1, 0, . . .). Image of the torus taken from Wikimedia Commons
https://commons.wikimedia.org/wiki/File:Torus.svg, available for
reuse under CCA BY-SA 3.0.

whenever k + 1 points are pairwise within ε (i.e. the balls pairwise intersect), and
then, calculating the Betti numbers of the object formed. Of course, the values
of the Betti numbers will depend on our choice of ε. For ε approaching zero, all
the balls will still be separated, and we have β0 = N with no higher dimensional
topological features. For ε approaching infinity, all the balls will overlap and we
will have a giant, solid mass with β0 = 1 and no higher dimensional features. At
intermediate values of ε, the structure of the simplicial complex may well be sensitive
to ε, and one may see topological holes of various dimensions that are born and
die as ε varies. The persistent part of persistent homology refers to calculating
homology over a range of values of ε and studying how topological features persist
or vary.

Thus far, we have been discussing static data. Three topological summaries of
time-varying data are vineyards [19], crocker plots [55], and multiparameter rank
functions [37]. As we will explain in more detail later, a vineyard is a 3D rep-
resentation of persistent homology over time. A crocker plot is a 2D image that
displays the topological information at all scales and times simultaneously, albeit in
a manner that does not necessarily elucidate persistence. Finally, a multiparameter
rank function is a computable invariant with appealing theoretical properties, pro-
viding lower bounds on strong notions of distance between dynamic metric spaces.
The three topological summaries we have mentioned here will be presented in more
detail in Section 3.

We introduce a new topological summary called a crocker stack, a 3D data struc-
ture that is an extension of the 2D crocker plot. The crocker stack has three
important and useful features. First, as we will prove in Section 7, it satisfies a
continuity property. Roughly, a small perturbation of time-varying data results in
a small perturbation of the crocker stack. Second, the crocker stack inherits appeal-
ing interpretability properties of the crocker plot. A crocker stack is convenient for
visualization purposes since topological information for all times and at all scales
in the data set is displayed as a single 2D plot, and a third dimension captures the
persistence of topological features; see Figure 2 for an example. Third, a crocker
stack can be discretized and converted into a feature vector, which can be used as
input to machine learning tasks. We explain crocker stacks in detail in Section 4.

https://commons.wikimedia.org/wiki/File:Torus.svg

4 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Figure 2. An illustrative example of a crocker stack for H0 computed
from a simulation from the Viscek model with noise parameter η = 0.02;
see Section 5. The variable α is a smoothing parameter which captures the
persistence of topological features.

The rest of this paper is organized as follows. Section 2 synthesizes information
on persistence modules and metric spaces, thus providing the basic topological back-
ground underpinning this work in TDA. Section 3 reviews existing frameworks for
studying time-varying metric spaces, namely vineyards, crocker plots, and multipa-
rameter rank functions. Section 4 presents our new topological summary, crocker
stacks. In Section 5, we use crocker plots and crocker stacks to study a seminal
model of collective behavior: the Vicsek model [57]. Specifically, we show that
when used as inputs to machine learning algorithms for a parameter recovery task,
crocker plots and stacks outperform more traditional summaries of dynamical be-
havior, drawn from physics. Section 6 reviews notions of distances between metric
spaces and persistence modules, which are necessary background for Section 7, in
which we study the continuity properties of crocker stacks. We conclude and de-
scribe possible future work in Section 8.

2. Preliminaries.

2.1. Persistence modules. The construction of persistent homology (as detailed
in [9, 26, 31]) begins with a filtration X(0) ⊆ X(1) ⊆ . . . ⊆ X(n), a nested sequence
of topological spaces. These spaces are often simplicial complexes; we identify
simplicial complexes with their geometric realizations. As an example, a sequence of
Vietoris–Rips complexes parameterized by scale parameter εi is a filtration. Given
a fixed point cloud X (or, more generally, a metric space X) and an increasing
sequence of parameter values εi for i ∈ {0, 1, . . . , n}, denote a sequence of Vietoris–
Rips complexes as X(i) := VR(X; εi) as i varies. Here, the Vietoris–Rips complex
VR(X; εi) at scale εi is the abstract simplicial complex with vertex set X, and with
k-simplices corresponding to k + 1 points in X which are pairwise within distance

CAPTURING DYNAMICS OF TIME-VARYING DATA 5

εi. For ε0 ≤ ε1 ≤ . . . ≤ εn, we have inclusions

VR(X; ε0) ↪→ VR(X; ε1) ↪→ . . . ↪→ VR(X; εn).

We apply k-dimensional homology Hk (with coefficients in a field) to such a filtra-
tion. This generates a vector space Hk(X(i)) for each space X(i), whose dimension
(or rank) is the k-th Betti number βk. Furthermore, the application of homology as-
signs, to each inclusion between topological spaces, a linear map between homology
vector spaces [60].

The k-dimensional persistent homology of the filtration X(0) ⊆ X(1) ⊆ . . . ⊆
X(n) refers to the image of induced homomorphisms Hk(X(i)) −→ Hk(X(j)) for any
i ≤ j. The sequence Hk(X(1)) −→ Hk(X(2)) −→ . . . −→ Hk(X(n)) is a persistence
module denoted by V , with V (i) = Hk(X(i)) for all i. The persistence module for
a fixed homological dimension k is known as the k-dimensional persistent homology
(PH) of a filtration. Persistent homology crucially relies on the fact that homology
is a functor, which means that an inclusion X(i) ↪→ X(j) indeed induces a map
Hk(X(i)) → Hk(X(j)) on homology. More generally, we refer to any sequence of
vector spaces and linear maps V (0) → V (1) → . . .→ V (n) as a persistence module
V , whether or not the vector spaces arise from homology.

2.2. Persistence diagrams and barcodes. Persistence diagrams and barcodes
each provide a way to display the evolution of topological features in a filtration. In
the former, a collection of points in the extended plane R2 is drawn. If a homology
class is born at X(i) and dies at X(j), we represent this homology class by a single
point at the two coordinates (i, j) in the persistence diagram; see Figure 3 (Left).
Since we have i ≤ j for all such points (i, j), these points lie on or above the
diagonal. Points which remain throughout the entirety of the filtration are said
to last to infinity. (A technical point is that for later convenience when defining
bottleneck distances in Definition 2.1, the persistence diagram also includes each
point along the diagonal, which can be interpreted as a feature that is born and
dies simultaneously, with infinite multiplicity.) We denote a persistence diagram of
a persistence module V as Dgmk(V) for each homology dimension k.

Figure 3. Persistence diagram (Left) and corresponding persistence bar-
code (Right). Let the persistence barcode V consist of the intervals [1, 7],
[2, 9], [3, 11], [5, 10], [5, 9], and let 4 = i ≤ j = 8. Then rank(V (4) → V (8))
is two since there are two intervals in the persistence diagram that contain
the interval [i, j] = [4, 8].

Similarly, in the barcode representation, there is a distinct interval (i.e. a bar) cor-
responding to a homology class persisting over a range of scales; see Figure 3 (Right).
The interval begins at scale i, when the feature is born, and ends at scale j, when

6 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

the feature dies. The Betti number βk at scale i is the number of distinct bars that
intersect the vertical line through i.

2.3. The rank invariant. For i ≤ j, the rank of the map V (i) → V (j), denoted
rank(V (i) → V (j)), is the number of intervals in the persistence barcode that
contain the interval [i, j]. In other words, rank(V (i) → V (j)) is the number of
features that are born before scale i and die after scale j. For example, suppose the
persistence barcode V consists of the intervals [1, 7], [2, 9], [3, 11], [5, 10], [5, 9], and
let 4 = i ≤ j = 8 (see Figure 3). Then rank(V (4) → V (8)) is two since there are
two intervals ([2, 9] and [3, 11]) in the persistence diagram that contain the interval
[i, j] = [4, 8]. The function (i, j) 7→ rank(V (i) → V (j)) ∈ N, for all choices of i ≤ j,
is called the rank invariant.

2.4. The bottleneck distance. Let Dgmk(V) and Dgmk(W) be two persistence
diagrams associated with two persistence modules V and W . The distance between
two points x = (x1, x2) in Dgmk(V) and y = (y1, y2) in Dgmk(W) is given by the
L∞ distance ∥x− y∥∞ = max{|x1 − y1|, |x2 − y2|}.

Definition 2.1. The bottleneck distance between the two persistence diagrams
Dgmk(V) and Dgmk(W) is computed by taking the supremum of the L∞ dis-
tance between matched points and then taking the infimum over all bijections
h : Dgmk(V) → Dgmk(W) [26]:

db(Dgmk(V),Dgmk(W)) = inf
h

sup
v∈Dgmk(V)

∥v − h(v)∥∞ .

Note that such a bijection h always exists because we have defined a persistence
diagram to contain each point on the diagonal with infinite multiplicity.

Later in the paper, we use the notation db(PH(VR(X)),PH(VR(Y))) to explicitly
make clear that the persistence diagrams we refer to are the Vietoris–Rips complexes
corresponding to point clouds X and Y . The persistent homology depends on the
chosen homological dimension k, but we make this dependency implicit and suppress
k from the notation as the statements we consider are often identical for any integer
k ≥ 0.

See Figure 4 for an illustration of the bottleneck distance where the round points
correspond to one persistence module and the triangular points correspond to an-
other. The bottleneck distance considers all matchings between the round and trian-
gular points—where unmatched points can be paired with points on the diagonal—
and finds the matching that minimizes the largest distance between any two matched
points.

3. Related work. We now survey related work on vineyards, crocker plots, and
other topological and machine learning techniques for studying time-varying metric
spaces.

3.1. Vineyards. One way to construct a topological summary of a time-varying
collection of metric spaces is a vineyard. This summary represents a metric space
that is varying over time t ∈ [0, T] as a stacked set of persistence diagrams as time
varies, with time-varying curves drawn through the persistence diagram points [19].
A stacked set of persistence diagrams can be thought of as a video for visualiza-
tion purposes, where each frame corresponds to a 2D persistence diagram, and the
persistence diagram points evolve over the time interval t ∈ [0, T]. See for example
Figure 5.

CAPTURING DYNAMICS OF TIME-VARYING DATA 7

Figure 4. Round points (in red) represent points in persistence diagram
A. Triangular points (in blue) represent points in persistence diagram B.
The bottleneck distance between persistence diagrams A and B is computed
by taking the largest L∞ distance between matched round and triangular
points of a bijection between A and B, and then taking the infimum over
all bijections. The three boxes (in green) show the optimal matching of
three pairs of round and triangular points. The unboxed points match to
the closest points on the diagonal.

Figure 5. Vines and vineyard. Each point (in red) represents a point on
a persistence diagram. Each dashed curve (in blue) is a vine traced out
by a persistent point on time-varying persistence diagrams. The horizontal
direction denotes time.

A vineyard contains a set of curves in 3D, and each curve corresponds to a point
in a time-varying persistence diagram in the 3D space [0, T]×R2. That is to say, the
three coordinates are the time coordinate t, the birth scale of a topological feature,
and the death scale of a topological feature. One of the nice properties of persistent
homology is that it is stable [18, 17], which means that small perturbations in a
time-varying metric space lead to small changes in the persistence diagram plots at
each point in time.

Thus, when vineyards are considered only as a stacked set of persistence dia-
grams, they are stable. However, the individual vines are not stable: if two vines
move near to each other but then pull apart without touching, so that their persis-
tence diagram points return to their original locations, then after a small pertur-
bation these two vines may instead cross and have their corresponding persistence
diagram points switch locations [44]. As such, throughout the paper, we will refer

8 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

to a vineyard as a “stacked set of persistence diagrams” or a “vineyard”, when the
distinction between the two notions matters. More formally, for us a stacked set
of persistence diagrams is a continuous map from the interval [0, T] to the space of
persistence diagrams equipped with the bottleneck distance. A vineyard further-
more contains the information of time-varying curves of the persistence diagram
points.

The paper [19] describes the theory of computing vineyards, which are imple-
mented in, for example, the Dionysus software package [45]. More specifically, we
can compute the initial persistence diagram at time t = 0, which has a sub-cubic
running time in the number of simplices [43], and then update the vineyard as t
increases in a linear way (linear in the number of simplices whose orderings in the
filtration get transposed).

3.2. Crocker plots. Given the same input as a vineyard, i.e. a metric space that
is varying over time t ∈ [0, T], the crocker plot gives a topological summary that is
an integer-valued function on R2, where the first input is time t, the second input
is the scale ε, and the value of the function is the k-dimensional Betti number of
the corresponding Vietoris–Rips complex [55]. This function of two variables (t and
ε) can be discretized as a matrix and viewed as a contour diagram; see Figure 9
in Section 5.2.4 as an example. The crocker plot is sometimes better suited for
applications than a vineyard, since most scientific images are in 2D as opposed to
3D. A crocker plot is a vector in Euclidean space, and as such, can naturally be used
as a feature vector in machine learning tasks as opposed to the non-vector vineyard
representation. One drawback of a crocker plot is that it is not stable — perturbing
the dynamic metric space only slightly could produce changes of unbounded size in
the crocker plot (see Example 2 in Section 7.1).

One can think of the crocker plot as a collapsed or projected version of the
vineyard: it is collapsed in the sense that it is lower dimensional (2D instead of
3D), and also in the sense that from a vineyard you can produce the corresponding
crocker plot but not vice-versa. As we will show in Section 4.2, if we fix t, the
crocker plot recovers the k-dimensional Betti curve.

3.3. Time-varying metric spaces. We now review works which analyze the topo-
logical structure of time-varying metric spaces.

In the proof-of-concept paper [55], Topaz et al. develop the crocker plot and
apply it to four realizations of numerical simulations arising from the influential
biological aggregation models of Vicsek [57] and D’Orsogna [25]. Traditionally, order
parameters derived from physics, such as polarization of group motion, angular
momentum, etc., are calculated to assess structural differences in simulations. The
authors compare these order parameters to the topological crocker plot approach
and discover that the latter reveals dynamic changes of these time-varying systems
not captured by the former.

Ulmer et al. [56] use crocker plots to analyze the fit of two mathematical, random
walk models developed by [47] to experimental data of pea aphid movement. One
model incorporates social interaction of the aphids, which is thought to be of im-
portance for pea aphid movement, while the other is a control model. The authors
compare time-varying data from the models to time-varying data from the experi-
ments using statistical tests on three metrics (order parameters commonly used in
collective motion studies, order parameters that use a priori input knowledge of the
models, and the topological crocker plots). The topological approach performs as

CAPTURING DYNAMICS OF TIME-VARYING DATA 9

well as the order parameters that require prior knowledge of the models and better
than the ones that do not require prior knowledge, indicating that the topological
approach may be useful to adopt when one has little information about underlying
model mechanics.

Bhaskar et al. [6] use crocker plots coupled with machine learning for parameter
recovery in the model of D’Orsogna [25]. The authors generate a large corpus of
simulations with varying parameters, which result in different phenotypic patterns
of the simulation. For instance, over time, the particles may exhibit the structure
of a single or double mill, collectively swarm together, or escape. Each simulation
is then transformed into a feature vector that summarizes the dynamics: either the
aforementioned time series of order parameters (polarization, angular momentum,
absolute angular momentum, average distance to nearest neighbors, or the con-
catenation of all four) or vectorized crocker plots corresponding to 0-dimensional
homology H0, 1-dimensional homology H1, or the concatenation of the two. The
feature vectors are then fed into both supervised and unsupervised machine learn-
ing algorithms in order to deduce phenotypic patterns or underlying parameters.
In all cases, the topological approach gives more accurate results than the order
parameters, even with no underlying knowledge of the dynamics.

While these papers highlight that the crocker representation can be effective at
modeling time-varying data and is amenable as a feature vector for machine learning
tasks, crocker plots do not consider the persistence of topological features. At each
time step, a crocker plot summarizes only Betti numbers at each scale independently.
For example, while a H1 crocker plot contains the topological information about
the number of topological 1-dimensional holes at each scale, it does not encode the
information of the scales when holes first appear and subsequently disappear. As a
result, crocker plots cannot show if the 1-dimensional holes at two different scales
are in fact the same features or different. Also as mentioned above, crocker plots
are not stable. In other words, small perturbations in dynamic metric spaces can
produce changes of unbounded size in crocker plots, exemplified by Example 2. We
address this problem and develop a persistent version of crocker plots, a crocker
stack, introduced in Section 4, which can capture persistent structural features of
time-varying systems.

In contrast to the crocker plot approach, Corcoran et al. [20] model swarm be-
havior of fish by computing persistent topological features using zigzag persistent
homology [10, 12]. Briefly, a zigzag persistence module connects topological spaces
via inclusion maps using either forward or backward arrows and tracks topological
features through these inclusions. The authors use inclusions from two consecu-
tive time steps to the union of these time steps to track the evolution of features
through time. The resulting persistence diagram is transformed to a persistence
landscape [7], which is a stable functional representation related to the rank in-
variant. The persistence landscape exists in a normed vector space, and as such,
the authors of [20] use statistical tests to cluster swarm behavior of fish into fre-
quently occurring behaviors named flock, torus, and disordered. However, while
this method is persistent in time, to compute zigzag persistent homology for a fixed
scale parameter requires a priori knowledge of the underlying data to choose an
appropriate scale.

In a more theoretical exploration, Kim and Mémoli [36] develop persistent homol-
ogy summaries of time-varying data by encoding a finite dynamic metric space as a

10 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

zigzag persistence module. They prove that the resulting persistence diagram is sta-
ble under perturbations of the input dynamic graph in relation to defined distances
on the dynamic graphs. In a related research direction, these authors also consider
an invariant for dynamic metric spaces in [37]. They introduce a spatiotemporal
filtration which can measure subtle differences between pairs of dynamic metric
spaces. By producing a 3D persistence module where one of the dimensions is not
the real line but a poset, the invariant obtains higher differentiability power than
a vineyard representation. Intuitively, [37] considers smoothings in both time and
space. By contrast, crocker stacks focus on smoothings in space alone, with the
goal of obtaining vectorizable summaries as input for machine learning tasks.

To a lesser degree, our techniques are also related to multiparameter persis-
tence [13, 14, 15, 16, 38, 42, 53] as we compare how time-varying metric spaces
evolve in both the parameters of time and scale. However, unlike the scale parame-
ter, there is not inclusion from one time step to the next, and as such, there is not an
increasing filtration in time. See also [41] for a functorial model of time, discretized
using cellular cosheaves. The papers [1, 3, 11, 22, 23] consider time-varying notions
of topology applied to coverage problems in mobile sensor networks.

4. Crocker stacks. We now describe the crocker plot summary of a time-varying
metric space, and its extension to a crocker stack. We give a precise definition of
time-varying metric spaces and time-varying persistence modules suitable for our
context, describe crocker plots and α-smoothed crocker plots, and finally introduce
crocker stacks.

4.1. Time-varying metric spaces and persistence modules. We use bold
letters to denote time-varying objects, and non-bold letters to represent objects at
a single point in time.

A time-varying metic space X = {Xt}t∈[0,T] is a map t 7→ Xt from the interval
[0, T] ⊆ R to the collection of all compact metric spaces. Here Xt is a single metric
space at the fixed point in time t. We say X is continuous if this map t 7→ Xt is
continuous with respect to the Gromov–Hausdorff distance (Section 6.2), and we
say X is finite if there is some integer N such that the cardinality of metric space
Xt is at most N for all t ∈ [0, T].

For example, if Z is a fixed metric space (perhaps Euclidean space Z = Rn), and
if x1, . . . , xN : [0, T] → Z are a collection of N continuous maps into Z, then we can
form a time-varying metric spaceX = {Xt}t∈[0,T] by lettingXt = {x1(t), . . . , xN (t)}.
We note that X is both continuous and finite. Many of the time-varying metric
spaces that we consider when studying agent-based collective motion models are
constructed in this way.

Similarly, a time-varying persistence module V = {Vt}t∈[0,T] is a map t 7→ Vt
from the interval [0, T] ⊆ R to the collection of all persistence modules, equipped
with the bottleneck distance. Here Vt is a single persistence module at the fixed
point in time t. We say that V is continous if this map t 7→ Vt is continuous.

If X is a time-varying metric space, then we can form a time-varying persistence
module V = PH(VR(X)) defined for each t ∈ [0, T] by Vt = PH(VR(Xt)). Here
we have fixed the homological dimension k ≥ 0 and supressed it from the nota-
tion. It follows from the stability of persistent homology (Section 6.3) that if X is
continuous, then so is V.

CAPTURING DYNAMICS OF TIME-VARYING DATA 11

We remark that a vineyard contains more information than a time-varying per-
sistence module. Indeed, a vineyard additionally contains a matching between the
points in the persistence diagram Vt and Vt+ε for ε > 0 sufficiently small.

4.2. Crocker plots. Crocker plots were originally defined on time-varying metric
spaces X, after first applying Vietoris–Rips complexes and then homology to get the
time-varying persistence module V = {Vt}t∈[0,T], where Vt = Hk(VR(Xt; ε)) [55].
Here, we take the more general approach and define a crocker plot for any time-
varying persistence module V, regardless of its origins. In fact, we note a crocker
plot can be formed for any two parameter family of topological spaces, such as
a bifiltration, not merely one varying in time. Recall that a higher-dimensional
analogue of a matrix is called a tensor. More generally, given an m-parameter
family of topological spaces, one can create an m-dimensional tensor analogue of a
crocker plot that contains a Betti number at each entry in the tensor, though we
do not pursue that topic here.

Let V be a time-varying persistence module, with Vt the persistence module at
time t. In the 2D crocker plot of homological dimension k, the value at time t
and scale parameter ε is the rank (or dimension) of the vector space Vt(ε). This
function of two variables can be viewed as a contour plot, as shown in Figure 9,
which is suitable for applications as all times are displayed simultaneously. For
discretized values of ε and t (as for computational purposes), the ranks of Vt(ε)
can be represented as a matrix. This matrix can then be vectorized and used as a
feature vector for machine learning algorithms.

If Vt is the k-dimensional homology of the Vietoris–Rips complex of a metric
space Xt, then taking this time-varying metric space as input, we obtain a crocker
plot, which again returns a topological summary that is an integer-valued function
on R2. The rank at time t ∈ [0, T] and scale ε is then the number of “k-dimensional
holes at scale ε”, also known as the Betti number βk. For a fixed t and varying ε,
this is equivalent to the notion of a Betti curve.

4.3. α-smoothed crocker plots. An extension of a crocker plot is an α-smoothed
crocker plot. When applied to a time-varying persistence module V = {Vt}t∈[0,T],
the output of an α-smoothed crocker plot for α ≥ 0 is the rank of the map Vt(ε −
α) → Vt(ε + α) at time t and scale ε. A standard crocker plot can also be called
a 0-smoothed crocker plot. The effect of α-smoothing is shown in Figure 6. Note
that α-smoothing can potentially reduce noise in a crocker plot.

4.4. The crocker stack for time-varying persistence diagrams. The crocker
stack is a sequence, thought of as a video, of α-smoothed crocker plots, in which
each α-smoothed crocker plot is a frame of the video for continuously increasing α,
starting at α = 0.

Definition 4.1. A crocker stack summarizes the topological information of a time-
varying persistence module V in a function fV : [0, T]× [0,∞)× [0,∞) → N, where

fV(t, ε, α) = rank(Vt(ε− α) → Vt(ε+ α)).

In the 3D domain [0, T] × [0,∞) × [0,∞), the horizontal axis displays the time
t ∈ [0, T], and the vertical axis displays the scale ε ∈ [0,∞). The persistence
parameter α ∈ [0,∞) indicates the order of the video frames. In other words, the
crocker stack is a sequence of α-smoothed crocker plots that vary over α ≥ 0. As
examples, see Figures 2 and 10.

12 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

0
1

2
3

2

3

2

1
0

0

1

1

0

1

2

2

Diagram Intervals Column

Figure 6. The effect of α-smoothing. (Top) A persistence diagram, the
corresponding persistence intervals (drawn vertically), and one column of
a crocker plot matrix. If we had points moving in time, then we would
get a time-varying persistence diagram, a time-varying persistence bar-
code, and a complete crocker plot matrix (swept out from left to right as
time increases). (Bottom) A persistence diagram with the thick line (in
red) reflecting the choice of α-smoothing, along with the corresponding α-
smoothed persistence intervals, and one column of an α-smoothed crocker
plot matrix. The y-intercept of the diagonal thick red line is 2α. All persis-
tence diagram points under the thick line are ignored under α-smoothing.

The crocker stack has the property that fV(t, ε, α) ≤ fV(t, ε, α′) for α ≥ α′:
larger α values require features to persist longer, which means that the crocker
stack is a non-increasing function of α. Viewing a crocker stack as α increases could
help one identify interesting smoothing parameter choices α to consider.

In Section 6.5, we describe how the crocker stack and the stacked set of persistence
diagrams are equivalent to one another, in the sense that either one contains the
information needed to reconstruct the other. However, crocker stacks can sometimes
display the equivalent information in a more useful format. This is because in a
crocker stack, all times t ∈ [0, T] are represented in each frame α, whereas in a time-
varying persistence diagram during a single frame t one only ever sees information
about that time. We also explain in Section 7 how crocker stacks are continuous,
though, unfortunately, not in a way that would be the most immediately pertinent
for machine learning applications.

CAPTURING DYNAMICS OF TIME-VARYING DATA 13

5. Experiments with the Vicsek model.

5.1. Background. We now turn to evaluating the utility of α-smoothed crocker
plots for applications. This assessment centers on a parameter identification task
for a mathematical model developed by Vicsek and collaborators [57]. Parameter
identification refers to deducing the parameters of a model from experimental or
simulation data. The Vicsek model is a seminal model for collective motion, in
which agents attempt to align their motion with that of nearby neighbors, subject
to a bit of random noise. Concretely, the question we ask is “given time series data
output from the Vicsek model, can we recover the model parameters responsible for
simulating that data?”

The significance of this parameter identification task stems from the importance
of the Vicsek model itself, which is arguably one of the most widely-adopted models
in the study of active matter. As of the time of the drafting of this manuscript, [57]
has been cited nearly 7,000 times. Originally motivated by the collective motion
of fish, birds, insects, and mammals, the model has also been used or adapted to
describe other types of interacting agents, including vibrating rods, actin filaments,
bacterial colonies, skin pigment cells, and more [58]. It also is closely related to
ferromagnetic behavior, to the liquid-gas transition, and other phenomena. It is a
model that is both simple and universal. The model has three effective parameters:
population density, agent speed, and agent noise. In biological settings, one can
definitively know the population density (by counting agents). The agent speed
is rather straightforward to measure using motion tracking. The most elusive pa-
rameter is the noise parameter, which there is no direct way to measure as it is an
inherent behavioral property of the agent. As such, we study the noise parameter
in the Vicsek model to demonstrate a way to overcome a challenge associated with
an extremely influential model.

More specifically, the noise parameter, η, in the Viscek model measures the
degree of randomness in an agent’s chosen direction of motion. We generate 100
simulations for each of 15 different values of η, for a total of 1500 simulations. We
then create four different experiments, each using simulation data from a chosen
subset of η values.

An experiment consists of the following procedure. For all of the simulations ad-
mitted to the experiment, we compute time series of feature vectors that summarize
the simulation data: an order parameter from the physics literature that measures
alignment of agents, α-smoothed crocker plots, a (discretized) crocker stack, and a
stacked set of persistence diagrams (in one experiment). As a reminder, the termi-
nology “stacked set of persistence diagrams” is used in place of a vineyard when we
do not consider the vines or curves traced out by the persistence points. For the
first three feature vectors, we compute pairwise distances between simulations us-
ing a Euclidean norm, and for the stacked set of persistence diagrams, we compute
(the computationally expensive) supremum bottleneck distance. These pairwise dis-
tances are the inputs to a machine learning algorithm, K-medoids clustering. We
then assess the success of clustering under different choices for the distance metric
by examining how many simulations were clustered to a medoid with the same η
value.

For the remainder of this section, we will present the Vicsek model, describe
the design of our numerical experiments, and present the results of using various
metrics for parameter identification methods. These results allow us to compare
the efficacy of topological approaches to that of more traditional ones.

14 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

5.2. Research design.

5.2.1. Vicsek model. Cited thousands of times in the scientific literature, the Vicsek
model is a seminal model for collective motion [57]. This discrete time, agent-based
model tracks the positions x⃗i and headings θi ∈ [0, 2π) of n agents in a square
region with periodic boundary conditions. The agents are seeded with uniformly
random positions and uniformly random initial headings. At each time step, an
agent updates its heading and its position. The new heading is taken to be the
average heading of nearby neighbors, added to a small amount of random noise
drawn from the uniform distribution (−η/2, η/2). More explicitly, the model is:

θi(t+∆t) =
1

N

 ∑
|xi−xj |≤R

θj(t)

+ U(−η
2 ,

η
2).

Above, R is the distance threshold under which nearby neighbors interact, N is
the number of neighbors within distance R, and U is the uniform distribution. See
Figure 7 for an illustration of this model.

Figure 7. To update the heading of an agent (centered, round blue point)
according to the Vicsek model, we first find the nearby neighbors within a
radius R (denoted by the dashed circle in red) and then take the average
of its neighbors’ headings, plus some noise.

The Vicsek model updates θi and x⃗i according to an Euler’s method type of
update, that is,

vi(t+∆t) = v0(cos θi(t+∆t), sin θi(t+∆t))

xi(t+∆t) = xi(t) + vi(t+∆t)∆t.

Note that all particles move with the same constant speed v0.

5.2.2. Parameters and simulations. The parameters in the Vicsek model are the
number of agents n, the radius of alignment interaction R, the level of noise η, the
length of a side of the periodic domain ℓ, the agent speed v0, and the time step ∆t.
In the literature on this model, ∆t and R are typically set to unity without loss
of generality since one may rescale time and space. This leaves the parameters n,
η, ℓ, and v0. Due to the periodic domain and finite sensing radius of the agents,
these collapse effectively into three parameters, namely v0, η, and an agent density
ρ = n/ℓ2.

For each simulation, we fix length ℓ = 25 and n = 300 agents, which gives that
ρ = 0.48. We also take speed v0 = 0.03. The remaining noise parameter η is the

CAPTURING DYNAMICS OF TIME-VARYING DATA 15

value that we hope to predict from the output of the simulation by using machine
learning. We generate 100 simulations for each of 15 η values:

η ∈ {0.01, 0.02, 0.03, 0.05, 0.1, 0.19, 0.2, 0.21, 0.3, 0.5, 1, 1.5, 1.9, 1.99, 2}.

We compare four methods of predicting η: order parameters, as described in Sec-
tion 5.2.3, crocker plots and stacks, as introduced in Section 5.2.4, and in the case
of one experiment, stacked sets of persistence diagrams, as described in Section 3.1.

Simulation data sets generated from the Vicsek model with different noise pa-
rameters η include four variables: time t, position coordinates x and y, and heading
θ. We then transform the heading θ to velocity v = (vx, vy). This velocity can be
used for computing the alignment order parameter for each simulation at each time
step t, defined in Section 5.2.3.

To compute the persistent homology of simulations for crocker plots, discussed
in more detail in Section 5.2.4, we use both the 2-dimensional position data and
the heading of each agent at each time step. The x and y positions are scaled by
1/ℓ = 1/25, the length of the box, and the heading is scaled by 1/2π, in order for
all data to be in the range from 0 to 1.

In Section 5.2.5, we will design four machine learning experiments by including
different combinations of the 15 η noise values. We choose time steps 1, 10, and
40 for different experiments and will show the effect of the size of time steps on
clustering accuracy.

Vicsek’s original work [57] identifies several different possible qualitative behav-
iors of the system. To quote him directly, “For small densities and noise, the
particles tend to form groups moving coherently in random directions. . . at higher
densities and noise, the particles move randomly with some correlation. For higher
density and small noise, the motion becomes ordered.”

5.2.3. Alignment order parameter. Order parameters are a common way to measure
the level of global synchrony in an agent-based model over time. The alignment
order parameter

φ(t) =
1

nv0

∥∥∥∥∥
n∑
i=1

vi(t)

∥∥∥∥∥
is defined as the normalized magnitude of the average of the velocity vectors at
time t, where n is the number of particles in the model, as above. This creates a
time series recording the degree to which particles are aligned at each time, with 1
indicating a high degree of alignment and 0 indicating no alignment. Calculating
the order parameter is a conventional approach derived from physics. We want to
compare this approach to topological approaches on the task of parameter identi-
fication, by clustering simulations of biological aggregations with the Vicsek model
into corresponding groups based on the noise parameter.

Figure 8 displays the alignment order parameters for three simulations with dif-
ferent noise parameters η = 0.01, 1, 2, and their changes over time. At time zero,
all three values of the order parameter are quite low due to the random initial-
ization of headings. All three simulations exhibit some alignment over time, with
the smaller noise parameters reflecting a higher level of synchrony, consistent with
Vicsek’s description above.

5.2.4. Crockers. Crocker plots, α-smoothed crocker plots, and crocker stacks (col-
lectively referred to as crockers) are three inputs that we will test in our machine

16 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Figure 8. A plot of order parameters for three simulations of the Vicsek
model with different noise parameters η. For smaller values of η, particles
become more aligned, i.e. move in the same direction, over time.

learning experiments. We compute persistent homology using the R software pack-
age “TDA” [28], subsampling to every 10 time steps to speed up computations. At
each subsampled time, we compute the persistent homology of Vietoris–Rips filtered
simplicial complexes, with vertex set given by the scaled location and heading of
each agent. We then compute the crockers from these persistent homology intervals
over all times.

We make the following choices in the computations of our crockers.

• We only compute persistent homology in dimensions zero and one.
• We compute the Vietoris–Rips filtration up to scale parameter ε = 0.35. These
computations are discretized to consider 50 equally-spaced values of ε between
ε = 0 and ε = 0.35, inclusive.

• We consider 18 different smoothing values: from α = 0 to α = 0.17 inclusive,
with steps of size 0.01 in between.

Figure 9 is an example of anH0 crocker plot for a simulation with noise parameter
η = 0.02. We display only the contours of Betti numbers β0 ≤ 5, interpreting
larger contours as noise. In Figure 9, notice the large region with two connected
components, namely β0 = 2, over the time range from approximately t = 1100 to
2000. This can be interpreted as two connected components for a wide range of
both scale parameter ε and simulation time t. By looking only at the 0-smoothed
crocker plot, there is a priori no guarantee that these are the same components
as scale ε varies. However, as we will show in Section 6, since the crocker stack
contains enough information to recover the persistent homology barcodes, one can
confirm these are the same connected components as ε varies by considering the
later smoothings α > 0 in the crocker stack. To verify these are the same connected
components also as time t varies, one would instead want to look at the vineyard
representation.

Figure 10 illustrates a stack of α-smoothed H0 and H1 crocker plots for the same
simulation, with the α values 0, 0.01, and 0.03 shown. In H0, the Betti curves
translate down as α increases; by contrast, in H1, the Betti curves morph shapes
as α increases.

CAPTURING DYNAMICS OF TIME-VARYING DATA 17

Figure 9. An example H0 crocker plot of a simulation from the Viscek
model with noise parameter η = 0.02. This is the same as an α-cross
section of a crocker stack when α = 0. In the region below the lowest curve
(purple) where β0 ≥ 5, there can be many connected components, which
we interpret as noise and is thus not displayed.

We will cluster different simulations based on their crocker representations, in-
cluding crocker plots, single α-smoothed crocker plots, and a crocker stack, and we
compare the clustering accuracies in Section 5.3.

5.2.5. Experiments. We create four different experiments of increasing levels of clus-
tering difficulty by considering different collections of noise values η that we will try
to predict from simulated data.

• Experiment 1. Five η values: η = 0.01, 0.5, 1, 1.5, 2.
• Experiment 2. Three η values: η = 0.01, 0.1, 1.
• Experiment 3. Six η values: η = 0.01, 0.02, 0.19, 0.2, 1.99, 2.
• Experiment 4. Fifteen η values: η = 0.01, 0.02, 0.03, 0.05, 0.1, 0.19, 0.2, 0.21,

0.3, 0.5, 1, 1.5, 1.9, 1.99, 2.

Note that the more similar η is, the more difficult it will be to cluster the data cor-
rectly. As a thought experiment, consider two simulations with η = 0.01 and 0.02,
respectively. Both simulations will very quickly produce an aligned group, and once
the groups are aligned, they are nearly indistinguishable. The most distinguishing
data is during the transient times, but due to the quick equilibration of the system,
there is relatively little transient data.

In all four experiments, we use time step equal to 10 for the crockers; additionally,
we compute the crocker plot for time step equal to 40 in Experiment 2 to see
how subsampling time affects accuracy. When computing the order parameter,
we instead use time step equal to 1 (in order to get the “best” result the order
parameter can provide); in Experiment 2, we also compute the order parameter
with time step equal to 10 and 40 for comparison purposes.

5.2.6. Distance matrices. In each experiment, we vectorize the order parameter
time series and crocker representations for each simulation, calculate the pairwise
Euclidean distance between those vectors, and summarize the distances in a pairwise

18 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

α = 0.00

α = 0.01

α = 0.03

H0 H1

Figure 10. An example H0 and H1 crocker stack for a simulation from
the Viscek model with noise parameter η = 0.02. This figure shows the
shifts of Betti curves in H0 and H1 as smoothing parameter α increases
from 0 to 0.01 and 0.03.

distance matrix. To vectorize the crocker representations, we take the crocker ma-
trix (or α-smoothed crocker matrix) and concatenate the rows, and for the crocker
stack, we further concatenate each level of α. Images of distance matrices for the or-
der parameter and H0,1 crocker plot (where the H0 and H1 vectorized crocker plots
have been concatenated) are shown in Figures 11–14 for each of the four experi-
ments, respectively. The distance matrices for crocker stacks are visually similar to
those for crocker plots and thus will not be shown here. In each of the four pairs of
comparisons, the crocker distance matrix is more structured than the order parame-
ter distance matrix. This is consistent with the higher clustering accuracy based on
crocker plots compared to order parameters, which we discuss in Section 5.3. That
is, distances between simulations arising from the same (or similar) noise parame-
ter(s) typically have a smaller distance than those from different noise parameters,
resulting in a block structure in the crocker distance matrix that is not as apparent
in the order parameter distance matrix.

5.2.7. Clustering method: K-medoids. We use the K-medoids algorithm to cluster
the simulations from each experiment [35, 50]. This is an unsupervised clustering

CAPTURING DYNAMICS OF TIME-VARYING DATA 19

Figure 11. The color scale corresponds to values in the distance ma-
trix; denser color (red) means larger distances, and lighter color (yellow)
means smaller distances. The 100 simulations of each noise parameter
η = 0.01, 0.5, 1, 1.5, 2 are listed in order and annotated in the left matrix.
The H0,1 crocker distance matrix is more structured (Left) than the order
parameter distance matrix (Right).

Figure 12. The H0,1 crocker distance matrix is more structured (Left)
than the order parameter distance matrix (Right).

algorithm, meaning that no labels are used to determine the clusters. The algorithm
minimizes the sum of pairwise dissimilarities between data points by searching for
K objects from the data set, called medoids, and then partitioning the remaining
observations to their closest medoid, resulting in K clusters. The medoid is the
most centrally located object of each cluster and is, in fact, an observation from the
data set. Specifically, a medoid will correspond to a particular simulation in our
clustering experiments. Post clustering, we can trace each medoid to the underlying
noise parameter η of the simulation. The K-medoids algorithm is often more ro-
bust than the ubiquitous K-means algorithm, which minimizes the sum of squared
Euclidean distance and thus, is more sensitive to outliers [4]. Another benefit of
K-medoids is that it can take as input a distance matrix, rather than a set of feature

20 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Figure 13. The H0,1 crocker distance matrix is more structured (Left)
than the order parameter distance matrix (Right).

Figure 14. The H0,1 crocker distance matrix is more structured (Left)
than the order parameter distance matrix (Right).

vectors, which will be important in Section 5.3.3 where we compute a distance on
stacked sets of persistence diagrams, which do not have vector representations.

We use the Partitioning Around Medoids (PAM) algorithm in the R package
“cluster” [39] to perform the K-medoids algorithm, setting K to be equal to the
number of distinct noise parameter values η in each experiment. For instance, K = 5
in Experiment 1, and K = 15 in Experiment 4. We compute the classification
accuracy as the percentage of simulations found to be in a cluster whose medoid
comes from the same noise parameter value, where labels are used post-clustering
to determine this accuracy. Simulations partitioned into a cluster whose medoid
does not come from the same noise parameter are misclassified.

5.2.8. PCA vs. non-PCA. The vectorized version of the alignment order parameter
has 2001 time values (t = 0 to 2000), and accordingly the time series are of dimension
2001. On the other hand, a crocker plot, which has been downsampled by a factor of
10, has 201 time values and 50 ε values, resulting in a 10050-dimensional vectorized
crocker for H0 and H1, and resulting in a 20100-dimensional vectorized crocker for

CAPTURING DYNAMICS OF TIME-VARYING DATA 21

the concatenation H0,1. It might not be “fair” to directly compare the clustering
results based on the different kinds of vectors of vastly differing dimensions. To
address this problem, we reduce the dimension of each vector to three using Principal
Component Analysis (PCA) [33]. This is reasonable as the first three principal
components of each kind of feature vector capture about 90% of the variance. After
reducing both the order parameter and crocker vectors for each simulation to 3-
dimensional vectors, we create distance matrices based on the PCA-reduced vectors
for each experiment, and then compare the PCA clustering accuracy with non-PCA
clustering accuracy.

5.3. Key findings.

5.3.1. Results summary. Table 1 shows a summary of the accuracies from cluster-
ing using K-medoids on each of the four experiments with different input feature
vectors (order parameters, crocker plots, and crocker stacks) using both the full
representations (non-PCA) and dimensionality reduced versions (PCA, italicized).
When we refer to the crocker stacks in the table, we are considering the stack of
the 18 α-smoothed crocker plots discussed in Section 5.2.4, where we vectorize the
crocker for each α and then concatenate. In Section 5.3.2, we consider the clus-
tering accuracy of single α-smoothed crocker plots in comparison with this stacked
version. The crocker representations consider the homology dimensions H0 and H1

as well as the concatenation H0,1 of the two.

Table 1. Summary of the clustering accuracy on four different ex-
periments (abbreviated Exp.) with three different feature vectors:
order parameters, crocker plots, and crocker stacks. For crocker
plots and crocker stacks, we distinguish different homological di-
mensions: H0,1, H0, and H1. The top accuracy scores of each
column are bolded. This table summarizes results with time step
1 for order parameters and time step 10 for crocker representa-
tions. Results with other time steps are discussed in Section 5.3.1.
Clustering results with feature vectors that have been reduced to 3
dimensionsby PCA are shown in italics, while full feature vectors
are not italicized.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Order Parameters 0.63 0.51 0.61 0.59 0.35 0.35 0.21 0.17

Crocker Plots, H0,1 1.00 1.00 0.67 0.67 0.44 0.43 0.42 0.43

Crocker Plots, H0 1.00 1.00 0.67 0.77 0.45 0.43 0.39 0.43

Crocker Plots, H1 0.98 0.99 0.71 0.67 0.36 0.35 0.37 0.33

Crocker Stacks, H0,1 1.00 0.98 0.67 0.67 0.47 0.38 0.41 0.35

Crocker Stacks, H0 1.00 1.00 0.67 0.67 0.49 0.46 0.41 0.41

Crocker Stacks, H1 0.96 0.98 0.63 0.67 0.34 0.37 0.32 0.35

Crocker plot and stack clustering accuracies are higher than order parameter ac-
curacies across all experiments. We perform paired sample t-tests to compare the
means of experiment accuracies between order parameter and crocker plot (H0,1)

22 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

feature vectors and between order parameter and crocker stack (H0,1) feature vec-
tors. The 1-tail p-value for the t-test between order parameters and crocker plots
is 0.04, and the p-value for the t-test between order parameters and crocker stacks
is 0.03, which are both significant at the significance criterion 0.05 level. In other
words, the means of the four experiments’ accuracies for both crocker plots and
stacks are significantly higher than for order parameters. As expected, Experiment 1
accuracy is the highest compared to other experiments for both order parameters
and crocker plots. This is because the noise η parameters are approximately evenly
spaced in Experiment 1. Experiment 4 accuracy is the lowest, since Experiment 4
has both close and very different η parameters, which confuses classification. Gen-
erally speaking, PCA (shown in italics in Table 1) and non-PCA accuracies are
comparable across all four experiments. It is striking to us that even though we
have reduced the dimension of the data down to 3 via PCA, we observe little degra-
dation in cluster accuracy. The accuracies for crocker stacks are comparable with
those for crocker plots.

Since H0,1 distance matrices generally contain more information than either H0

and H1, they often generate comparable or higher clustering accuracies than either
H0 or H1. We observe two exceptions for non-dimensionality reduced crocker plots:
H1 accuracy for Experiment 2 is slightly higher than H0,1 and H0 accuracy; H0

accuracy for Experiment 3 is slightly higher than H0,1 and H1 accuracy. For non-
dimensionality reduced crocker stacks, H0 accuracy is slightly higher than H0,1 in
Experiment 3.

Among order parameters, crocker plots, and crocker stacks, the stacks encode the
most information, since they contain α-smoothed crocker plots over several different
α values. In H0, the contour lines of α-smoothed crocker plots continuously shift
down as α increases. This is because, in a Vietoris-Rips complex, all vertices are
born at scale ε = 0. Thus, the contour lines separating different ranks in the crocker
plot translate as α increases, but are otherwise unchanged. In contrast, in H1, the
contour lines of α-smoothed crocker plots do not continuously shift down but morph
in shape. See the links for videos of H0 and H1 crocker stacks from a simulation
corresponding to noise parameter η = 0.02 of the Viscek model.

To further detail how the clustering accuracies in Table 1 arise, we consider
Experiment 3 as a case study. Misclassifications can occur for two reasons. First,
as alluded to previously, it will be very difficult to accurately cluster simulations
that have different values of η that are all in the small-noise regime, leading to strong
alignment of the system. When the system aligns strongly and quickly, information
contained in the transient state is lost. Second, even when the system is not in
the strong-alignment regime, misclassifications may occur simply when values of η
are sufficiently close together. These difficulties are exemplified in Table 2, which
shows the confusion matrix of the H0,1 crocker plots of Experiment 3 clustered using
K-medoids, which contains simulations with η = 0.01, 0.02, 0.19, 0.2, 1.99, 2. The
rows represent the actual simulations corresponding to each noise parameter η while
the columns represent the parameter of the cluster medoid to which a simulation
is assigned. Even though K = 6 clusters were formed, the six medoids correspond
to simulations from only three distinct noise parameters η = 0.02, 0.2, 2. That is,
there were two medoids from each of these three noise parameter classes selected by
the algorithm, and we group clusters with the same noise parameter together. All
simulations corresponding to noise parameters η = 0.01, 0.19, 1.99 are misclassified
as there are no medoids selected from these parameter classes. Notice that 69 of 100

https://youtu.be/nv9QAYSQTFc
https://youtu.be/_SIrOYUctzY

CAPTURING DYNAMICS OF TIME-VARYING DATA 23

Table 2. Confusion matrix using K-medoids to cluster the
H0,1 crocker plots corresponding to simulations of Experiment 3
(η=0.01, 0.02, 0.19, 0.2, 1.99, 2). The rows represent the ac-
tual simulations corresponding to each noise parameter η while the
columns represent the parameter of the cluster medoid to which a
simulation is assigned. Even though K = 6 clusters were formed,
the six medoids correspond to simulations from only three distinct
noise parameters η = 0.02, 0.2, 2.

K-medoids Clusters

η = 0.02 η = 0.20 η = 2.00

η = 0.01 69 31 0

η = 0.02 64 36 0

η = 0.19 4 96 99

η = 0.2 1 99 0

η = 1.99 0 0 100

η = 2.00 0 0 100

simulations from class η = 0.01 are partitioned into a cluster with a medoid coming
from class η = 0.02, and 64 of 100 simulations from class η = 0.02 are partitioned
into the same cluster. This pattern is consistent for simulations with η values of
the same order of magnitude: simulations from classes η = 0.19 and 0.2 are largely
partitioned into a cluster with a medoid coming from class η = 0.2, and simulations
from classes η = 1.99 and 2 are all partitioned into a cluster with a medoid coming
from class η = 2. In addition, simulations from the first four classes (η = 0.01, 0.02,
0.19, 0.2) are partitioned into either of the clusters with medoids from η = 0.02
or 0.2. Recall that values of η that are in the alignment regime will produce data
that is essentially identical apart from a very brief transient phase and hence, are
difficult to distinguish.

We now consider the effect of subsampling time on classification accuracy. The
order parameter clustering accuracy for Experiment 2 with time step 1 is 0.61, and
this is the same as subsampling the data by time steps of 10 and 40. In addition,
the crocker plot and crocker stack accuracy for Experiment 2 with time steps 10
and 40 are the same. This shows that the effect of these subsamplings of time on
clustering accuracy is negligible in this particular experiment.

5.3.2. α−smoothed crocker plots: Stack vs. single α’s. We compare the clustering
accuracy of the H0,1 stacked α-smoothed crocker plots (with 18 α values combined)
and those with a single α value in Table 3. The crocker stack performs comparably
to the individual α-smoothed crocker plots.

As α increases, accuracy decreases. This makes sense because as α increases,
more smoothing of distinct topological features occurs, which may ignore some
information necessary for parameter identification.

5.3.3. Distances on stacked sets of persistence diagrams. We now want to compare
the clustering accuracy of the crocker plot representations to the stacked set of
persistence diagrams representation. Recall as introduced in Section 3.1, the latter

24 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Table 3. Summary of the clustering accuracy for the four ex-
periments based on single α-smoothed crocker plots in H0,1 as
input feature vectors to K-medoids, and the accuracy based on
the crocker stack (with 18 α values combined). The top accuracy
scores of each column are bolded. Recall that when α = 0, the
α-smoothed crocker plot is equivalent to the standard crocker plot
of [55].

Exp. 1 Exp. 2 Exp. 3 Exp. 4

stack 1.00 0.67 0.47 0.41

α = 0.00 1.00 0.67 0.44 0.42

α = 0.01 1.00 0.67 0.46 0.40

α = 0.03 1.00 0.67 0.49 0.40

α = 0.05 1.00 0.58 0.44 0.38

α = 0.08 0.99 0.67 0.39 0.36

α = 0.11 0.97 0.67 0.33 0.35

α = 0.13 0.92 0.73 0.41 0.28

α = 0.17 0.73 0.66 0.40 0.21

can be thought of as time-varying persistence diagrams, since they contain the births
and deaths of topological features over the scale parameter ε and time t. Suppose
two time-varying metric spaces X and Y have persistence diagrams PH(VR(Xt))
and PH(VR(Yt)) for all t. One way to compute distance between these stacked sets
of persistence diagrams is to compute the bottleneck distance between each pair
of persistence diagrams PH(VR(Xt)) and PH(VR(Yt)) at each time t and then
take the supremum of the bottleneck distances over all time values. This supremum
bottleneck distance (which we henceforth refer to as the bottleneck distance between
stacked sets of persistence diagrams) is defined as follows:

d∞b (PH(VR(X)),PH(VR(Y))) = sup
t
db

(
PH(VR(Xt)),PH(VR(Yt))

)
.

As this computation is extremely expensive, we only compute this bottleneck
distance for Experiment 2, which entails 300 simulations. The K-medoids cluster-
ing accuracies based on this bottleneck distance matrix, along with corresponding
accuracies of the Euclidean distances of the order parameters, crocker plots, and
crocker stacks, are shown in Table 4.

As a stacked set of persistence diagrams is not a vector representation of the
topological features, it cannot be directly fed into a machine learning algorithm as
a feature vector. However, the K-medoids clustering algorithm can take as input
a distance matrix rather than a set of feature vectors. The pairwise bottleneck
distance between stacked sets of persistence diagrams corresponding to simulations
serves as our input for K-medoids. As shown in Table 4, clustering with the bot-
tleneck distance yields higher accuracy in H0 but lower in H1 as compared to order
parameters. While we compute the order parameter at every time step in order to
provide the “best” possible results, we downsample in time with a step size of 10
for the bottleneck computation due to computational complexity. The clustering

CAPTURING DYNAMICS OF TIME-VARYING DATA 25

Table 4. Comparison of the K-medoids clustering accuracy of Experi-
ment 2 of the Euclidean distance on order parameters, crocker plots, and
crocker stacks, as well as the bottleneck distance on the stacked set of per-
sistence diagrams. All topological representations compute homology in
dimensions 0 and 1, denoted H0 and H1. The top accuracy scores of each
column are bolded. The parentheses on the order parameter row indicate
that the same computation is performed in both columns since order pa-
rameters do not incorporate homology dimensions.

H0 H1

Order Parameters (0.61) (0.61)

Crocker Plots 0.67 0.71

Crocker Stacks 0.67 0.63

Stacked Persistence Diagrams 0.67 0.49

accuracy for stacked persistence diagrams is either the same as or lower than crocker
plots.

We now contrast the computational complexities for computing bottleneck dis-
tances of stacked persistence diagrams and Euclidean distances of crocker plots or
stacks. Both processes start with the persistent homology data from our simula-
tions over time. While we can directly compute the bottleneck distance between
simulations from the interval data at a fixed time and then find the supremum over
all times, in the crocker representations, we first need to transform the interval
data to crocker plots or stacks, vectorize the crocker representation, and then com-
pute the pairwise Euclidean distance between simulations. Even though there is a
transformational step to convert the interval data into the crocker representations,
the computational time for bottleneck distance matrices is roughly four orders of
magnitude larger than for Euclidean distance matrices, including the transforma-
tion to crockers. Since clustering with stacked persistence diagrams does not yield
higher clustering accuracy for this experiment and is far more time-intensive than
the crocker representations, we posit that crockers may serve as a better means for
parameter identification. Further, as crockers are vector representations, they are
more amenable to a host of machine learning tools.

This concludes our experimental analysis of parameter identification of the Vicsek
model using order parameters, crocker plots, crocker stacks, and stacked sets of
persistence diagrams.

6. Distances between metric spaces and persistence modules. We now sur-
vey a variety of notions of distances between metric spaces and persistence modules,
which will be useful for describing the continuity properties of crocker stacks in Sec-
tion 7.

6.1. The Hausdorff distance. In order to introduce the stability of persistent ho-
mology, we will need some notion of distance on metric spaces. The Hausdorff dis-
tance [46] measures the distance between metric spaces X and Y that are “aligned”.
More precisely, we mean that X and Y are subsets of a larger metric space (Z, d)
that contains both X and Y as submetric spaces. For X ⊆ Z and δ > 0, let
Xδ := {z ∈ Z | d(z, x) ≤ δ for some x ∈ X} denote the δ-offset of X in Z.

26 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Definition 6.1. If X and Y are two subsets of a metric space Z, then the Hausdorff
distance between X and Y is dZH(X,Y) = inf{δ > 0 | X ⊆ Y δ and Y ⊆ Xδ}, which
is equivalent to

dZH(X,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

An illustration of the Hausdorff distance is shown in Figure 15.

Figure 15. Let Z = R2 with the Euclidean metric. The thicker solid curve
(in red) represents subset X of Z, and the thinner solid curve (in blue)
represents subset Y of Z. To compute the Hausdorff distance between X
and Y , we first take the supremum over all points in Y of the distance to the
closest point in X. In this figure, the distance is a = supy∈Y infx∈X d(x, y).
Then, we do the same for the supremum over all points in X of the distance
to the closest point in Y , as shown by b = supx∈X infy∈Y d(x, y). Finally,
we take the maximum of the two suprema, dZH(X,Y) = max{a, b} = a.

The Hausdorff distance is an extended pseudo-metric on the subsets of Z; two
sets have Hausdorff distance zero if and only if they have the same closure, and
the Hausdorff distance between unbounded sets can be infinite. When restricted to
the set of all non-empty compact subsets of Z, the Hausdorff distance is in fact a
metric. We often write dH , instead of dZH , in order to simplify notation when space
Z is clear.

6.2. Gromov–Hausdorff distance. The Gromov–Hausdorff distance [8] allows
us to define a notion of distance between two metric spaces that are not aligned in
any sense.

Definition 6.2. The Gromov–Hausdorff distance between two metric spaces X
and Y is

dGH(X,Y) = inf
Z,f,g

dZH(f(X), g(Y)),

where the infimum is taken over all possible metric spaces Z and isometric embed-
dings f : X → Z and g : Y → Z.

The Gromov–Hausdorff distance is an extended pseudo-metric on metric spaces
(non-isometric spaces, such as the rationals and the reals, can have Gromov–
Hausdorff distance zero). The Gromov–Hausdorff distance is a metric when re-
stricted to the quotient space of compact metric spaces under the equivalence rela-
tion of isometry.

CAPTURING DYNAMICS OF TIME-VARYING DATA 27

6.3. The stability of persistent homology. By the stability of persistent homol-
ogy [17, Theorem 5.2], if X and Y are compact metric spaces, then the bottleneck
distance satisfies

db(PH(VR(X)),PH(VR(Y))) ≤ 2dGH(X,Y).

An analogous bound is true if Vietoris–Rips complexes are replaced with Čech
complexes.

In many applications, spaces X and Y are usually already embedded in the same
space, in which one can use the bound dGH ≤ dH in order to get a lower bound on
the Hausdorff distance between these particular embeddings. The stability theorem
states that if two metric spaces are close, then the bottleneck distance between
their persistence diagrams (using the Vietoris–Rips or Čech complex to construct
the filtration) will also be close. Stability is a useful property as it allows for small
perturbations of the inputs, and as such, stability of persistence modules has led
to their effectiveness in data analysis. One of our motivations for defining crocker
stacks is their analogous continuity properties.

6.4. The interleaving distance. A closely related notion to the bottleneck dis-
tance between persistence diagrams associated to persistence modules (Section 2.4)
is that of δ-interleaving [49].

Definition 6.3. For two persistence modules V andW , a δ-interleaving (for δ ≥ 0)
is given by two families of linear maps (ϕi : V

i → W i+δ) and (ψi : W
i → V i+δ)

such that the following diagrams commute for all i ≤ j:

V i V j

W i+δ W j+δ

ϕi ϕj

V i+δ V j+δ

W i W j

ψi ψj

V i V i+2δ

W i+δ

ϕi ψi+δ

V i+δ

W i W i+2δ

ϕi+δψi

Note that a 0-interleaving between two persistence modules is nothing more than an
isomorphism between them. The interleaving distance between persistence modules
V and W is defined as

dI(V,W) = inf{δ ≥ 0 | there is a δ-interleaving between V and W}.

Roughly speaking, one should think of the interleaving distance between two per-
sistence modules as a measure of how far they are from being isomorphic.

In this paper, we do not directly use the interleaving distance on persistence
modules. However, by the isometry theorem of Lesnick [38], the interleaving dis-
tance is equal to the bottleneck distance, namely dI = db. As such, whenever we
invoke the bottleneck distance, we could alternatively invoke the interleaving dis-
tance on persistence modules. The morphisms induced on the persistence modules
by interleaving will allow us to prove Lemma 6.4, which is helpful for describing the
continuity of crocker stacks.

6.5. The rank invariant. Let V be a persistence module. We recall that the
collection of all natural numbers rank(V (ε) → V (ε′)) for all choices of ε ≤ ε′

is called the rank invariant. The rank invariant is equivalent to the peristence
barcode, in the sense that it is possible to obtain either one from the other [14,

28 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

Theorem 12]. An interesting historical comment is that persistent homology of a
finite set of points X was first defined as the collection of ranks of all maps of the
form H(VR(X; ε − α)) → H(VR(X; ε + α)), as opposed to a persistence module,
barcode, or diagram. See for example the definition on page 151 of [26], where their
i is ε− α, and where their j is ε+ α.

Given a persistence module V , we encode the rank invariant for V as a function
gV : [0,∞) × [0,∞) → N, where gV (ε, α) = rank(V (ε − α) → V (ε + α)). The
function gV is a function on a 2D domain, where the two dimensions are scale ε and
persistence parameter α.

We describe a connection between one time-slice of a crocker stack and the rank
invariant. Let V be a time-varying persistence module, and consider a fixed time t.
The 2D representation gVt : [0,∞)×[0,∞) → N, for a fixed time t, is a cross-sectional
slice of the 3D crocker stack. Therefore, a crocker stack encodes the rank invariant,
and therefore the persistence barcode, of the persistence module Vt at each time
t. Persistence lanscapes can be interpreted as a sequence of rank functions, and
therefore persistence landscapes [7] are also closely related to these cross-sectional
slices (fixing time) in a crocker stack.

6.6. Relationship of rank invariant and bottleneck distance. We now de-
scribe a relationship between the rank invariant and the bottleneck distance. We
consider two persistence modules V and W which decompose into a finite number
of intervals, equipped with rank invariants gV and gW .

Lemma 6.4. If db(V,W) ≤ δ, then for all ε and α we have

• gV (ε, α+ δ) ≤ gW (ε, α), and
• gW (ε, α+ δ) ≤ gV (ε, α).

Proof. By the equivalence between the bottleneck and interleaving distances of per-
sistence modules [38, 49], since db(V,W) ≤ δ, there exist morphisms ϕε : V (ε) →
W (ε+ δ) and ψε : W (ε) → V (ε+ δ) for all ε, along with the following commutative
diagrams.

V (ε− α− δ) V (ε+ α+ δ)

W (ε− α) W (ε+ α)

W (ε− α− δ) W (ε+ α+ δ)

V (ε− α) V (ε+ α)

Indeed, note that the trapezoids above can be obtained by gluing together a paral-
lelogram and a triangle from Definition 6.3. Define V ji to be the map from V (i) to

V (j). By the first commutative diagram, V ε+α+δε−α−δ = ψε+α ◦W ε+α
ε−α ◦ ϕε−α−δ. Since

the rank of a composition of linear transformations is at most the minimum rank
of the transformations, we have

rank(V ε+α+δε−α−δ) ≤ min{rank(ψε+α), rank(W ε+α
ε−α), rank(ϕε−α−δ)}.

Thus, rank(V ε+α+δε−α−δ) ≤ rank(W ε+α
ε−α), and so gV (ε, α+ δ) ≤ gW (ε, α).

A similar argument for the second diagram shows gW (ε, α+ δ) ≤ gV (ε, α).

CAPTURING DYNAMICS OF TIME-VARYING DATA 29

We remark that the infimum δ ≥ 0 such that gV (ε, α + δ) ≤ gW (ε, α) and
gW (ε, α+δ) ≤ gV (ε, α) for all ε and α is the erosion distance [51, 27, 24, 52] between
the two persistence modules V and W . Lemma 6.4 shows that if two persistence
modules are close in the bottleneck distance (≤ δ), then their rank invariants are
also close in a sense encapsulated by the erosion distance (≤ δ). Could a bound in
the reverse direction also be true?

Question 1. Is the bottleneck distance db(V,W) equal to the erosion distance be-
tween V and W , i.e., the infimum over all δ ≥ 0 such that

• gV (ε, α+ δ) ≤ gW (ε, α), and
• gW (ε, α+ δ) ≤ gV (ε, α)

for all ε and α?

The answer is no, as shown by an example proposed by Amit Patel and Brittany
Terese Fasy.

Figure 16. Consider the persistence diagrams Dgmk(V) = {(3, 6), (2, 8)},
denoted with red circles, and Dgmk(W) = {(1, 7), (3, 7.5)}, denoted with
blue triangles. The bottleneck distance between the two persistence dia-
grams is 1.5, while the erosion distance is 1.

Example 1. Consider persistence diagrams

Dgmk(V) = {(3, 6), (2, 8)} and Dgmk(W) = {(1, 7), (3, 7.5)},
as shown in Figure 16. The bottleneck distance between the two persistence dia-
grams is 1.5. There are two natural bijections between the two persistence mod-
ules, not including matching points with the diagonal (which in this example leads
to higher costs). In bijection (i), we match (3, 6) in Dgmk(V) with (3, 7.5) in
Dgmk(W) and (2, 8) in Dgmk(V) with (1, 7) in Dgmk(W). The L∞ distance be-
tween matched points is 1.5. In bijection (ii), we match (3, 6) in Dgmk(V) with
(1, 7) in Dgmk(W) and (2, 8) in Dgmk(V) with (3, 7.5) in Dgmk(W). The L∞ dis-
tance between matched points is 2. The bottleneck distance is the infimum L∞
distance between matched points over all bijections, which is 1.5.

The erosion distance is the infimum δ ≥ 0 such that for all ε and α, we have
gV (ε, α + δ) ≤ gW (ε, α), and gW (ε, α + δ) ≤ gV (ε, α). For this example, δ = 1,
for the following reasons: The maximum interval over which V has rank two is
[3, 6], whereas the maximum interval over which W has rank two is [3, 7], and these
regions differ by at most δ = 1 in their endpoints. Similarly, the maximum interval

30 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

over which V has rank at least one is over [2, 8], whereas the maximal intervals over
which W has rank at least one is over either [1, 7] or [3, 7.5]: enlarging [2, 8] by
δ = 1 on either endpoint covers either of these intervals in W , and enlarging [1, 7]
by δ = 1 on either endpoint covers [2, 8]. This is an intuitive explanation why for
all ε and α, we have

gV (ε, α+ 1) = rank(V ε+α+1
ε−α−1) ≤ rank(W ε+α

ε−α) = gW (ε, α) and

gW (ε, α+ 1) = rank(W ε+α+1
ε−α−1) ≤ rank(V ε+αε−α) = gV (ε, α).

In this example, the bottleneck distance (1.5) is larger than the erosion distance
(1), answering Question 1 in the negative.

According to personal correspondence with Patel and Fasy, there is an O(n log n)
algorithm for computing the erosion distance, where n is the number of points in
the diagram, which is much faster than computing the bottleneck distance. While
Question 1 reveals that the two distances are not equivalent, the erosion distance
could serve as a bound on the bottleneck distance. The rank invariants are also
Möbius inversions of persistence diagrams [51, 40].

7. Continuity of crocker stacks. If two time-varying metric spaces are close to
one another, then it turns out that the resulting crocker stacks are also (in some
sense) close to one another. This is referred to as the continuity of crocker stacks.
We explain why crocker plots are not continuous, before describing the sense in
which crocker stacks are continuous.

7.1. Discontinuity of crocker plots. We first point out that crocker plots are
not continuous.

Figure 17. Suppose A and B are dynamic metric spaces. The distance
between any two of the four round points (in red) in A is 1 for all times
t. The distance between any two of the four triangular points (in blue) in
B is 1 + ε for all times t. At an arbitrary time step t and scale parameter
1 + ε

2 , we have βA0 = 1 and βB0 = 4.

Example 2. Suppose we have two dynamic metric spaces, each with 4 points in
the metric space, as shown in Figure 17. In the first dynamic metric space A, the
distance between any two points is 1 for all times t. In the second dynamic metric
space B, the distance between any two points is 1+ε for all times t. The two dynamic
metric spaces are ε-close in the Gromov–Hausdorff distance. However, at scale
parameter 1 + ε

2 , the first dynamic metric space A at any time has 0-dimensional

Betti number βA0 = 1. Yet at any time in the second dynamic metric space, βB0 = 4
at this same scale value. Thus, these Betti numbers differ by βB0 − βA0 = 4− 1 = 3
at scale 1+ ε

2 . By increasing n = 4 points to (say) n = 1, 000, 000 points or beyond,

CAPTURING DYNAMICS OF TIME-VARYING DATA 31

we can make the values of these Betti numbers as far apart as we want. Under
most notions of matrix distance, this would make the distance between the crocker
plot matrices as far apart as we want, all while keeping the metric spaces within ε
in the Gromov–Hausdorff distance. This example does not rely on time; it is really
an example showing why Betti curves are not stable (in the traditional sense of L∞
distance between curves).

7.2. Distances between time-varying metric spaces. In order to describe the
continuity properties of crocker stacks, we begin with some preliminaries on dis-
tances between time-varying metric spaces and time-varying persistence modules.

Definition 7.1. Let X and Y be continuous time-varying metric spaces over t ∈
[0, T], and fix 1 ≤ p ≤ ∞. The p-Gromov–Hausdorff distance between X and Y is

dpGH(X,Y) =

(∫ T

0

dGH(Xt, Yt)
p dt

)1/p

.

When p = ∞ we have d∞GH(X,Y) = supt dGH(Xt, Yt).

To see that this is well-defined, note that since X and Y are continuous, the
function [0, T] → R defined by t 7→ dGH(Xt, Yt)

p is a continuous function over a
closed interval, and hence is integrable.

We remark that this is only a pseudo-metric, not an actual metric. Indeed, as
pointed out in Figure 1 of [37], two distinct time-varying metric spaces that are not
qualitatively similar can have Gromov–Hausdorff distance zero from each other at
each time t. The distances between multiparameter rank functions introduced in [37]
are also stable with respect to more refined notions of distance between time-varying
metric spaces. In this paper, we restrict attention to the weaker Definition 7.1
and show that crocker stacks, which are amenable for machine learning tasks, are
furthermore a continuous topological invariant.

7.3. Distances between time-varying persistence modules. We define an Lp
bottleneck distance between corresponding time-varying persistence modules.

Definition 7.2. Let V and W be continuous time-varying persistence modules
over t ∈ [0, T], and fix 1 ≤ p ≤ ∞. The p-bottleneck distance between V and

W is dpb(V,W) = (
∫ T
0
db(Vt,Wt)

p dt)1/p. When p = ∞ we have d∞b (V,W) =
supt db(Vt,Wt).

SinceV andW are continuous, the function [0, T] → R defined by t 7→ db(Vt,Wt)
p

is a continuous function over a closed interval, and hence is integrable.
Recall that our time-varying metric spaces X are defined to have the property

that Xt is compact for all t ∈ [0, T].

Lemma 7.3. If X and Y are continuous time-varying metric spaces over t ∈ [0, T],
then for all 1 ≤ p ≤ ∞ we have dpb(PH(VR(X)),PH(VR(Y))) ≤ 2dpGH(X,Y).

An analogous bound is true if Vietoris–Rips complexes are replaced with Čech
complexes.

Proof. Let p < ∞. For any t ∈ [0, T], we have db(PH(VR(Xt)),PH(VR(Yt))) ≤
2dGH(Xt, Yt) by the stability of persistent homology. Integrating over all t ∈ [0, T]

32 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

gives

dpb(PH(VR(X)),PH(VR(Y))) =

(∫ T

0

db

(
PH(VR(Xt)),PH(VR(Yt))

)p
dt

)1/p

≤

(∫ T

0

(
2dGH(Xt, Yt)

)p
dt

)1/p

= 2

(∫ T

0

dGH(Xt, Yt)
p dt

)1/p

= 2dpGH(X,Y).

The same proof works for p = ∞ by replacing integrals with supremums. Indeed,

d∞b (PH(VR(X)),PH(VR(Y))) = sup
t
db

(
PH(VR(Xt)),PH(VR(Yt))

)
≤2 sup

t
dGH(Xt, Yt) = 2d∞GH(X,Y).

Lemma 7.3 gives a notion of continuity for stacked sequences of persistence di-
agrams. By contrast, the vines in a vineyard are not stable as curves in time, as
explained in Section 3.1.

7.4. Continuity of crocker stacks. The continuity of a stacked set of persistence
diagrams in the section above implies a continuity result for crocker stacks. Recall
from Definition 4.1 that if V is a time-varying persistence module, then

fV(t, ε, α) := rank (Vt(ε− α) → Vt(ε+ α)) = gVt
(ε, α).

Suppose two time-varying metric spaces X and Y have the property that Xt

and Yt are within Hausdorff distance 2δ at all times t. The interleaving distance
between the persistence modules PH(VR(Xt)) and PH(VR(Yt)) is at most δ at all
times t. Hence, for all t, ε, and α, we have that fX(t, ε, α + δ) ≤ fY(t, ε, α) and
fY(t, ε, α+δ) ≤ fX(t, ε, α), where by an abuse of notation we let fX and fY denote
fPH(VR(X)) and fPH(VR(Y)). This can be thought of as a notion of continuity, since
it says the crocker stack fX for X is in some sense “close” to the crocker stack fY
for Y. In this subsection, we provide proofs for these observations.

Lemma 7.4. If V and W are time-varying persistence modules, and if d∞b (V,W) ≤
δ, then for all t, ε, and α we have

• fV(t, ε, α+ δ) ≤ fW(t, ε, α), and
• fW(t, ε, α+ δ) ≤ fV(t, ε, α).

Proof. By hypothesis, we have db(Vt,Wt) ≤ δ for all t ∈ [0, T]. From Lemma 6.4
we have gVt

(ε, α + δ) ≤ gWt
(ε, α) and gWt

(ε, α + δ) ≤ gVt
(ε, α) for all t ∈ [0, T].

The conclusion follows since, by definition, we have fV(t, ε, α) = gVt
(ε, α) and

fW(t, ε, α) = gWt
(ε, α) for all t, ε, and α.

Note that a version of the above lemma for dpb instead of d∞b would not give
inequalities for each t but instead a single pair of inequalities that are integrated
(in an Lp sense) over all t.

The following theorem says that if the time-varying metric spaces X and Y are
nearby, then their crocker stacks are also close. Recall that our time-varying metric
spaces are defined to be compact at each point in time.

Theorem 7.5 (Continuity theorem for crocker stacks). If X and Y are time-
varying metric spaces, and if d∞GH(X,Y) ≤ δ/2, then the crocker stacks for X and
Y are close in the sense that for all t, ε, and α, we have

CAPTURING DYNAMICS OF TIME-VARYING DATA 33

• fX(t, ε, α+ δ) ≤ fY(t, ε, α), and
• fY(t, ε, α+ δ) ≤ fX(t, ε, α).

Proof. By Lemma 7.3 we have that d∞b (PH(VR(X)),PH(VR(Y))) ≤ δ, and hence
the conclusion follows from Lemma 7.4 with V = PH(VR(X)) and W =
PH(VR(Y)).

An analogous result is true if crocker stacks are defined using Čech complexes in
place of Vietoris–Rips complexes.

Though crocker stacks are continous in the above sense, we want to acknowledge
that they are not continuous when they are interpreted as vectors equipped with
the Euclidean norm, which was the norm we used on crocker stacks in Section 5.
More work remains to be done on effectively and stably vectorizing time-varying
topological summaries for use in machine learning applications.

8. Conclusion. In this paper, we have provided an overview of topological tools
for summarizing time-varying metric spaces, developed a new tool called the crocker
stack, investigated the discriminative power of topological descriptors on a param-
eter recovery task, and discussed notions of continuity for these representations.

The crocker plot introduced in [55] is a topological summary of time-varying
data. It has been shown in [55, 56, 6] to be useful in exploratory data analysis,
statistical tests, and machine learning tasks. However, the crocker plot is not stable
in any sense. We proposed the crocker stack as an alternative, which—like the
crocker plot—can be discretized and treated as a vector in Euclidean space, making
it useful in machine learning. Yet, the crocker stack also satisfies a continuity
property, albeit with respect to a non-Euclidean metric.

A crocker stack is a 3D topological representation of a time-varying metric space
that, like the crocker plot, displays all times in a single frame indexed by smoothing
parameter α. This may be better for visualization purposes than, say, the vineyard
representation. Vineyards or stacked sets of persistence diagrams would have to
be further vectorized for use in machine learning, perhaps by using say, persistence
images [2]. The stable multiparameter rank function and distance measures in [37]
are more discriminatory for time-varying metric spaces than the (pseudo-)distances
we consider, but it is not obvious how to vectorize them for use in machine learning.

Through computational experiments, we show that crocker plots and stacks are
more effective than the alignment order parameter, a traditional method derived
from physics, at parameter identification in an ubiquitous model of biological aggre-
gations. However, computing crocker plots and stacks is more time-intensive than
computing order parameters. At each time step, a single number—the normalized
average velocity—is computed in the order parameter, while persistent homology
is computed in order to produce crocker plots and stacks. In our experiments,
computing persistent homology is roughly two orders of magnitude more expen-
sive than computing order parameters. The discriminative capability of the crocker
representations may provide benefits that outweigh this computational complexity,
however.

We end with a collection of questions and possible directions for researchers to
explore.

1. How do different choices of metrics affect the discriminatory power of crocker
stacks in Section 5? For every 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, there exists a (p, q)
metric on crocker stacks: to compare two fixed persistence diagrams, we can

34 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

choose any 1 ≤ p ≤ ∞ and use an Lp Wasserstein distance. To compare two
time-varying persistence diagrams, we then could weight these distances over
all times by choosing any 1 ≤ q ≤ ∞ averaging.

2. What is the discriminatory power of a time-varying erosion distance say, for
example, in the experiments in Section 5?

3. How well do time-varying persistence images [2] or time-varying persistence
landscapes [7] work for machine learning classification tasks?

4. What are other notions of time-varying topological invariants that are both
stable and also vectorizable in a way that is useful in machine learning?

Acknowledgments. We are grateful to Matraiyee Deka, Brittany Terese Fasy,
Tom Halverson, Michael Lesnik, Dmitriy Morozov, and Amit Patel for helpful con-
versations.

REFERENCES

[1] H. Adams and G. Carlsson, Evasion paths in mobile sensor networks, International Journal

of Robotics Research, 34 (2015), 90–104.
[2] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova,

E. Hanson, F. Motta and L. Ziegelmeier, Persistence images: A stable vector representation

of persistent homology, J. Mach. Learn. Res., 18 (2017), Paper No. 8, 35 pp. http://jmlr.
org/papers/v18/16-337.html.

[3] H. Adams, D. Ghosh, C. Mask, W. Ott and K. Williams, Efficient evader detection in mobile

sensor networks, arXiv preprint, arXiv:2101.09813.
[4] P. Arora, D. Deepali and S. Varshney, Analysis of K-means and K-medoids algorithm for big

data, Procedia Computer Science , 78 (2016), 507–512.

[5] A. Banman and L. Ziegelmeier, Mind the gap: A study in global development through per-
sistent homology, in Research in Computational Topology , Springer, 2018, 125–144.

[6] D. Bhaskar, A. Manhart, J. Milzman, J. T. Nardini, K. M. Storey, C. M. Topaz and

L. Ziegelmeier, Analyzing collective motion with machine learning and topology, Chaos: An
Interdisciplinary Journal of Nonlinear Science , 29 (2019), 123125, 12 pp.

[7] P. Bubenik, Statistical topological data analysis using persistence landscapes, J. Mach. Learn.
Res., 16 (2015), 77–102.

[8] D. Burago, Y. Burago and S. Ivanov, A course in Metric Geometry , vol. 33, American Math-

ematical Society, Providence, 2001.
[9] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255–308.

[10] G. Carlsson and V. de Silva, Zigzag persistence, Found. Comput. Math., 10 (2010), 367–405.

[11] G. Carlsson, V. de Silva, S. Kalǐsnik and D. Morozov, Parametrized homology via zigzag
persistence, Algebr. Geom. Topol., 19 (2019), 657–700.

[12] G. Carlsson, V. de Silva and D. Morozov, Zigzag persistent homology and real-valued func-

tions, in Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry ,
ACM, 2009, 247–256.

[13] G. Carlsson, G. Singh and A. Zomorodian, Computing multidimensional persistence, Algo-

rithms and computation , 730–739, Lecture Notes in Comput. Sci., 5878, Springer, Berlin,
2009.

[14] G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete Com-

put. Geom., 42 (2009), 71–93.
[15] A. Cerri, B. D. Fabio, M. Ferri, P. Frosini and C. Landi, Betti numbers in multidimensional

persistent homology are stable functions, Math. Methods Appl. Sci., 36 (2013), 1543–1557.
[16] W. Chachólski, M. Scolamiero and F. Vaccarino, Combinatorial presentation of multidimen-

sional persistent homology, J. Pure Appl. Algebra , 221 (2017), 1055–1075.
[17] F. Chazal, V. de Silva and S. Oudot, Persistence stability for geometric complexes, Geometriae

Dedicata, 174 (2014), 193–214.
[18] D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, Discrete

Comput. Geom., 37 (2007), 103–120.
[19] D. Cohen-Steiner, H. Edelsbrunner and D. Morozov, Vines and vineyards by updating per-

sistence in linear time, in Computational Geometry (SCG’06), ACM, 2006, 119–126.

http://www.ams.org/mathscinet-getitem?mr=MR3625712&return=pdf
http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
http://arxiv.org/pdf/2101.09813
http://dx.doi.org/10.1016/j.procs.2016.02.095
http://dx.doi.org/10.1016/j.procs.2016.02.095
http://www.ams.org/mathscinet-getitem?mr=MR3905005&return=pdf
http://dx.doi.org/10.1007/978-3-319-89593-2_8
http://dx.doi.org/10.1007/978-3-319-89593-2_8
http://www.ams.org/mathscinet-getitem?mr=MR4043359&return=pdf
http://dx.doi.org/10.1063/1.5125493
http://www.ams.org/mathscinet-getitem?mr=MR3317230&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1835418&return=pdf
http://dx.doi.org/10.1090/gsm/033
http://www.ams.org/mathscinet-getitem?mr=MR2476414&return=pdf
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
http://www.ams.org/mathscinet-getitem?mr=MR2657946&return=pdf
http://dx.doi.org/10.1007/s10208-010-9066-0
http://www.ams.org/mathscinet-getitem?mr=MR3924175&return=pdf
http://dx.doi.org/10.2140/agt.2019.19.657
http://dx.doi.org/10.2140/agt.2019.19.657
http://dx.doi.org/10.1145/1542362.1542408
http://dx.doi.org/10.1145/1542362.1542408
http://www.ams.org/mathscinet-getitem?mr=MR2792770&return=pdf
http://dx.doi.org/10.1007/978-3-642-10631-6_74
http://www.ams.org/mathscinet-getitem?mr=MR2506738&return=pdf
http://dx.doi.org/10.1007/s00454-009-9176-0
http://www.ams.org/mathscinet-getitem?mr=MR3083259&return=pdf
http://dx.doi.org/10.1002/mma.2704
http://dx.doi.org/10.1002/mma.2704
http://www.ams.org/mathscinet-getitem?mr=MR3582717&return=pdf
http://dx.doi.org/10.1016/j.jpaa.2016.09.001
http://dx.doi.org/10.1016/j.jpaa.2016.09.001
http://www.ams.org/mathscinet-getitem?mr=MR3275299&return=pdf
http://dx.doi.org/10.1007/s10711-013-9937-z
http://www.ams.org/mathscinet-getitem?mr=MR2279866&return=pdf
http://dx.doi.org/10.1007/s00454-006-1276-5
http://www.ams.org/mathscinet-getitem?mr=MR2389318&return=pdf
http://dx.doi.org/10.1145/1137856.1137877
http://dx.doi.org/10.1145/1137856.1137877

CAPTURING DYNAMICS OF TIME-VARYING DATA 35

[20] P. Corcoran and C. B. Jones, Modelling topological features of swarm behaviour in space and
time with persistence landscapes, IEEE Access, 5 (2017), 18534–18544.

[21] D. B. Damiano and M. R. McGuirl, A topological analysis of targeted in-111 uptake in SPECT

images of murine tumors, J. Math. Biol., 76 (2018), 1559–1587.
[22] V. de Silva and R. Ghrist, Coordinate-free coverage in sensor networks with controlled bound-

aries via homology, The International Journal of Robotics Research , 25 (2006), 1205–1222.
[23] V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr.

Geom. Topol., 7 (2007), 339–358.

[24] T. K. Dey and C. Xin, Computing bottleneck distance for 2-d interval decomposable modules,
arXiv preprint, arXiv:1803.02869.

[25] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with

soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
[26] H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction , American Math-

ematical Society, Providence, 2010.

[27] H. Edelsbrunner, D. Morozov and A. Patel, The stability of the apparent contour of an
orientable 2-manifold, Topological Methods in Data Analysis and Visualization. Mathematics

and Visualization., 27–41, Math. Vis., Springer, Heidelberg, 2011.

[28] B. T. Fasy, J. Kim, F. Lecci, C. Maria, D. L. Millman and V. Rouvreau, Tda: Statistical tools
for topological data analysis, https://cran.r-project.org/web/packages/TDA/index.html.

[29] M. Feng and M. A. Porter, Persistent homology of geospatial data: A case study with voting,
SIAM Rev., 63 (2021), 67–99.

[30] M. Feng and M. A. Porter, Spatial applications of topological data analysis: Cities, snowflakes,

random structures, and spiders spinning under the influence, Phys. Rev. Research , 2 (2020),
033426.

[31] R. Ghrist, Barcodes: The persistent topology of data, ull. Amer. Math. Soc. (N.S.), 45

(2008), 61–75.
[32] C. Giusti, L. Papadopoulos, E. T. Owens, K. E. Daniels and D. S. Bassett, Topological and

geometric measurements of force-chain structure, Physical Review E , 94 (2016), 032909.

[33] I. T. Jolliffe, Principal Component Analysis , Springer Verlag, 1986.
[34] T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology , vol. 157, pringer-

Verlag, New York, 2004.

[35] L. Kaufman and P. Rousseeuw, Clustering by Means of Medoids, North-Holland, 1987.
[36] W. Kim and F. Mémoli, Stable signatures for dynamic metric spaces via zigzag persistent

homology, arXiv preprint, arXiv:1712.04064.
[37] W. Kim and F. Mémoli, Spatiotemporal persistent homology for dynamic metric spaces,

Discrete Comput. Geom., 66 (2021), 831–875.

[38] M. Lesnick, The theory of the interleaving distance on multidimensional persistence modules,
Found. Comput. Math., 15 (2015), 613–650.

[39] M. Maechler, Finding groups in data: Cluster analysis extended rousseeuw et al, https:

//cran.r-project.org/web/packages/cluster/cluster.pdf.
[40] A. McCleary and A. Patel, Bottleneck stability for generalized persistence diagrams, Proc.

Amer. Math. Soc., 148 (2020), 3149–3161.

[41] A. McCleary and A. Patel, Edit distance and persistence diagrams over lattices, arXiv
preprint, arXiv:2010.07337.

[42] E. Miller, Data structures for real multiparameter persistence modules, arXiv preprint,
arXiv:1709.08155.

[43] N. Milosavljević, D. Morozov and P. Škraba, Zigzag persistent homology in matrix multipli-

cation time, in Computational geometry (SCG’11), 2011, 216–225.

[44] D. Morozov, Personal communication.
[45] D. Morozov, Dionysus, http://www.mrzv.org/software/dionysus/.

[46] J. R. Munkres, Topology, Prentice-Hall Englewood Cliffs, NJ, 1975.
[47] C. Nilsen, J. Paige, O. Warner, B. Mayhew, R. Sutley, M. Lam, A. J. Bernoff and C. M.

Topaz, Social aggregation in pea aphids: Experiment and random walk modeling, PLoS

ONE , 8 (2013), e83343.
[48] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod and H. A. Harrington, A roadmap for the

computation of persistent homology, EPJ Data Science, 6 (2017), 17.

[49] S. Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis , vol. 209,
American Mathematical Society Providence, RI, 2015.

http://dx.doi.org/10.1109/ACCESS.2017.2749319
http://dx.doi.org/10.1109/ACCESS.2017.2749319
http://www.ams.org/mathscinet-getitem?mr=MR3771430&return=pdf
http://dx.doi.org/10.1007/s00285-017-1184-8
http://dx.doi.org/10.1007/s00285-017-1184-8
http://dx.doi.org/10.1177/0278364906072252
http://dx.doi.org/10.1177/0278364906072252
http://www.ams.org/mathscinet-getitem?mr=MR2308949&return=pdf
http://dx.doi.org/10.2140/agt.2007.7.339
http://www.ams.org/mathscinet-getitem?mr=MR3824276&return=pdf
http://arxiv.org/pdf/1803.02869
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://www.ams.org/mathscinet-getitem?mr=MR2572029&return=pdf
http://dx.doi.org/10.1090/mbk/069
http://www.ams.org/mathscinet-getitem?mr=MR2798444&return=pdf
http://dx.doi.org/10.1007/978-3-642-15014-2_3
http://dx.doi.org/10.1007/978-3-642-15014-2_3
https://cran.r-project.org/web/packages/TDA/index.html
http://www.ams.org/mathscinet-getitem?mr=MR4209654&return=pdf
http://dx.doi.org/10.1137/19M1241519
http://dx.doi.org/10.1103/PhysRevResearch.2.033426
http://dx.doi.org/10.1103/PhysRevResearch.2.033426
http://www.ams.org/mathscinet-getitem?mr=MR2358377&return=pdf
http://dx.doi.org/10.1090/S0273-0979-07-01191-3
http://dx.doi.org/10.1103/PhysRevE.94.032909
http://dx.doi.org/10.1103/PhysRevE.94.032909
http://www.ams.org/mathscinet-getitem?mr=MR841268&return=pdf
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://www.ams.org/mathscinet-getitem?mr=MR2028588&return=pdf
http://dx.doi.org/10.1007/b97315
http://arxiv.org/pdf/1712.04064
http://www.ams.org/mathscinet-getitem?mr=MR4310597&return=pdf
http://dx.doi.org/10.1007/s00454-019-00168-w
http://www.ams.org/mathscinet-getitem?mr=MR3348168&return=pdf
http://dx.doi.org/10.1007/s10208-015-9255-y
https://cran.r-project.org/web/packages/cluster/cluster.pdf
https://cran.r-project.org/web/packages/cluster/cluster.pdf
http://www.ams.org/mathscinet-getitem?mr=MR4099800&return=pdf
http://dx.doi.org/10.1090/proc/14929
http://arxiv.org/pdf/2010.07337
http://arxiv.org/pdf/1709.08155
http://www.ams.org/mathscinet-getitem?mr=MR2919613&return=pdf
http://dx.doi.org/10.1145/1998196.1998229
http://dx.doi.org/10.1145/1998196.1998229
http://www.mrzv.org/software/dionysus/
http://www.ams.org/mathscinet-getitem?mr=MR0464128&return=pdf
http://dx.doi.org/10.1371/journal.pone.0083343
http://www.ams.org/mathscinet-getitem?mr=MR3408277&return=pdf
http://dx.doi.org/10.1090/surv/209

36 LU XIAN, HENRY ADAMS, CHAD M. TOPAZ AND LORI ZIEGELMEIER

[50] H.-S. Park and C.-H. Jun, A simple and fast algorithm for k-medoids clustering, Expert
Systems with Applications , 36 (2009), 3336–3341.

[51] A. Patel, Generalized persistence diagrams, J. Appl. Comput. Topol., 1 (2018), 397–419.

[52] V. Puuska, Erosion distance for generalized persistence modules, Homology Homotopy Appl.,
22 (2020), 233–254.

[53] M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam and S. Öberg, Multidimensional
persistence and noise, Found. Comput. Math., 17 (2017), 1367–1406.

[54] B. J. Stolz, H. A. Harrington and M. A. Porter, Persistent homology of time-dependent

functional networks constructed from coupled time series, Chaos, 27 (2017), 047410, 17 pp.
[55] C. M. Topaz, L. Ziegelmeier and T. Halverson, Topological data analysis of biological aggre-

gation models, PloS One, 10 (2015), e0126383.

[56] M. Ulmer, L. Ziegelmeier and C. M. Topaz, A topological approach to selecting models of
biological experiments, PloS One, 14 (2019), e0213679.

[57] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition
in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1229.

[58] T. Vicsek and A. Zafeiris, Collective motion, Physics Reports , 517 (2012), 71–140.

[59] X. Zhu, Persistent homology: An introduction and a new text representation for natural lan-
guage processing, in Twenty-Third International Joint Conference on Artificial Intelligence,

2013.

[60] A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete Comput. Geom.,
33 (2005), 249–274.

Received June 2021; revised October 2021; early access December 2021.

E-mail address: xianl@umich.edu

E-mail address: henry.adams@colostate.edu
E-mail address: cmt6@williams.edu

E-mail address: lziegel1@macalester.edu

http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://www.ams.org/mathscinet-getitem?mr=MR3975559&return=pdf
http://dx.doi.org/10.1007/s41468-018-0012-6
http://www.ams.org/mathscinet-getitem?mr=MR4040293&return=pdf
http://dx.doi.org/10.4310/HHA.2020.v22.n1.a14
http://www.ams.org/mathscinet-getitem?mr=MR3735858&return=pdf
http://dx.doi.org/10.1007/s10208-016-9323-y
http://dx.doi.org/10.1007/s10208-016-9323-y
http://www.ams.org/mathscinet-getitem?mr=MR3641608&return=pdf
http://dx.doi.org/10.1063/1.4978997
http://dx.doi.org/10.1063/1.4978997
http://dx.doi.org/10.1371/journal.pone.0126383
http://dx.doi.org/10.1371/journal.pone.0126383
http://dx.doi.org/10.1371/journal.pone.0213679
http://dx.doi.org/10.1371/journal.pone.0213679
http://www.ams.org/mathscinet-getitem?mr=MR3363421&return=pdf
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://www.ams.org/mathscinet-getitem?mr=MR2121296&return=pdf
http://dx.doi.org/10.1007/s00454-004-1146-y
mailto:xianl@umich.edu
mailto:henry.adams@colostate.edu
mailto:cmt6@williams.edu
mailto:lziegel1@macalester.edu

	1. Introduction
	2. Preliminaries
	2.1. Persistence modules
	2.2. Persistence diagrams and barcodes
	2.3. The rank invariant
	2.4. The bottleneck distance

	3. Related work
	3.1. Vineyards
	3.2. Crocker plots
	3.3. Time-varying metric spaces

	4. Crocker stacks
	4.1. Time-varying metric spaces and persistence modules
	4.2. Crocker plots
	4.3. -smoothed crocker plots
	4.4. The crocker stack for time-varying persistence diagrams

	5. Experiments with the Vicsek model
	5.1. Background
	5.2. Research design
	5.3. Key findings

	6. Distances between metric spaces and persistence modules
	6.1. The Hausdorff distance
	6.2. Gromov–Hausdorff distance
	6.3. The stability of persistent homology
	6.4. The interleaving distance
	6.5. The rank invariant
	6.6. Relationship of rank invariant and bottleneck distance

	7. Continuity of crocker stacks
	7.1. Discontinuity of crocker plots
	7.2. Distances between time-varying metric spaces
	7.3. Distances between time-varying persistence modules
	7.4. Continuity of crocker stacks

	8. Conclusion
	Acknowledgments
	REFERENCES

