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ASYMPTOTIC PROPERTIES OF MAXIMAL p-CORE p'-PARTITIONS

SANJANA DAS

ABSTRACT. For primes p, we study the maximal possible size of a p-core p’-partition (a partition with no
hook lengths or parts divisible by p). McDowell recently proved that the maximum is attained by a unique
partition, say A,. Using his graph-theoretic description of A,, we prove for p > 106 that

L 5 L 1 5

—p° - <|Apl < =p® — —

o TPVP <Al <o p” = o VP,
which shows that |A,| ~ p%/24 as p — co.

1. INTRODUCTION

A partition is called p-core if none of its hook lengths are divisible by p; a partition is called a p’-partition
(or p-regular) if none of its parts are divisible by p. In this paper, we study the largest possible size of a
p-core p'-partition.

Interest in p-core p’-partitions arises from studying zeros in the character table of the symmetric group S,,.
In particular, McSpirit and Ono [3] studied entries of the character table indexed by two p-core partitions
A and p. Using the result that yx(u) = 0 whenever p has a part which is not a hook length in A, they
answered a question of McKay by studying pairs (A, 1) of p-core partitions, where p is also a p’-partition
(see [3, Theorem 1.3]). For each prime p, they proved that there are finitely many p-core p’-partitions — in
particular, they showed that any such partition p must satisfy

1
Il < 57(0° = 29" +2p" = 3p” + 2p).
Using this result, they concluded that for all sufficiently large n, any entry in the character table of S,

indexed by two p-core partitions must be 0, providing a lower bound for the number of zeros indexed by
p-core partitions.

The problem of determining the largest possible size of a p-core p’-partition was recently further studied
by McDowell [2], who proved that any p-core p/-partition A must satisfy

1
ﬂ(p6 —4p°® + 5pt +12p® — 42p? + 52p — 24),

and that there exists a p-core p’-partition A of size

(1) Al <

1
A = 56 (P° +6p" — 129" + 89p* — 120p — 48).

Furthermore, McDowell obtained an elegant graph-theoretic criterion describing the maximal p-core p'-
partition (see [2, Theorem 4.8]), and showed that such a partition is unique for every odd prime p. We
denote this unique partition by A,,.
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2 ASYMPTOTIC PROPERTIES OF MAXIMAL P-CORE P’-PARTITIONS

In view of these results, it is natural to study the asymptotics as p — oo of |[A,|. Our work makes use of
McDowell’s description to improve the upper and lower bounds above. Our main result explicitly restricts
|Ap| to a narrow interval around 5;p°.

Theorem 1. For all primes p > 10°, we have

1 & 5 1 1
— 0 _ A 6 5 /5
24p p\/ﬁ<| p|<24p _20017\/5

Remark. The range p > 10° was chosen so that the constants in the theorem above are nice.

This paper is organized as follows. First, we describe the characterization given by McDowell, which
represents A, in terms of the longest walk on the additive residue graph G,. The challenge is to recover the
size of A, from this description. After recalling this criterion, we establish a few lemmas about the sizes of
individual pieces of this longest walk. Finally, we combine these lemmas to establish the upper and lower
bounds on |A,|.
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National Security Agency (H98230-22-1-0020), and the Templeton World Charity Foundation.

2. A GRAPH-THEORETIC INTERPRETATION AND PROOF OF THEOREM 1

2.1. Abacus Notation and a Graph-Theoretic Interpretation. To describe p-core p’-partitions, we
use abacus notation on a p-abacus, as described in [1, Chapter 2]. The abacus has p vertical runners, labelled
0 through p — 1; positions on the abacus are ordered from left to right and top to bottom (starting with
position 0), so that the ¢th row on runner j is position (i — 1)p + j.

On this abacus, we place some beads, and call positions without beads gaps; we require position 0 to be a
gap. Any such abacus corresponds to the partition where each bead contributes a part equal to the number
of gaps preceding the bead. Under this correspondence, every partition can be represented by a unique
configuration on the abacus.

Lemma 2 ([1, Lemma 2.7.13]). A partition is p-core if and only if all beads of its corresponding abacus are
at the top of their runners (in other words, there is no bead with a gap above it).

Given any p-core partition, for each 1 < i < p — 1, we define the ith bead multiplicity b; to be the number
of beads on runner ¢. By Lemma 2, the list of bead multiplicities uniquely determines a p-core partition.

Given the bead multiplicities of a partition, it is possible to explicitly compute the size of the partition.

Lemma 3 ([2, Lemma 2.2]). If A is a p-core partition with bead multiplicities (b1,ba,...,bp—1), then

1 (P2 2 ppfl p—1 p—1
A =—2 b =) b7 | — —— | b;.
-3 (5) AR ()
Remark. The lemma above is a minor reformulation of [2, Lemma 2.2].

It is possible to further describe the abacus configuration corresponding to a maximal p-core p’-partition.

Lemma 4 ([2, Lemma 2.3]). The abacus corresponding to any mazimal p-core p’'-partition has all beads at
the right end of their rows (in other words, there is no bead with a gap to its right).
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We call an abacus aligned if it has the properties given in Lemmas 2 and 4, i.e., if all beads are topmost
in their runners and rightmost in their rows. Given any aligned abacus, in a row with ¢ gaps followed by
p — i beads, all beads will contribute a part of the same size; this size is exactly ¢ greater than the parts
contributed by the beads in the preceding row.

McDowell provided a graph-theoretic interpretation of this characterization. Consider the additive residue
graph G,, where the vertices are the residues modulo p, and for each residue x and every 1 <7 < p—1, there
is an edge from x to x 4+ ¢ modulo p, labelled 7. Then every aligned abacus corresponds to a walk on the
additive residue graph, where we start at 0, and for every row of i gaps and p — i beads, we walk along the
unique edge labelled i from the current vertex. The labels of the edges on this walk must be nondecreasing;
conversely, any walk on G, starting at 0 which has nondecreasing edge labels corresponds to a unique aligned
abacus.

For every row of the abacus, the parts contributed by this row modulo p are the residue visited at the end
of its corresponding edge. In particular, the partition corresponding to an aligned abacus is a p’-partition if
and only if the walk never returns to 0. In light of this property, we call a walk on G, valid if it begins at 0,
has nondecreasing edge labels, and never returns to 0.

McDowell proved the following interpretation of maximal p-core p’-partitions in terms of walks on G,.

Theorem 5 ([2, Theorem 4.8]). There is a unique p-core p’-partition of maximal size, which corresponds to
the unique longest valid walk on G,.

Furthermore, McDowell also proved a characterization of the longest valid walk on G,.

Theorem 6 ([2, Theorem 4.6]). There is a unique longest valid walk on G,, and for every 1 < i < p —1,
this walk must have an edge labelled © incident to the vertex p — 1. In other words, the longest walk must
consist of the following segments:

(1) Starting from 0, take p — 1 edges labelled 1 to reach p — 1.

(2) For each 1 < i < p—2, starting from p — 1, take some number (possibly 0) of edges labelled i, and
then some number (possibly 0) of edges labelled i + 1, to return to p — 1 (without reaching 0).

(3) Starting from p — 1, take p — 2 edges labelled p — 1 to reach 1.

Example. The mazimal 3-core 3'-partition is A3 = (4,2,2,1,1), which corresponds to the following abacus.

0

O O|mr
O O O|N

The corresponding walk on Gz is (0,1,2,1), consisting of two edges labelled 1 and one edge labelled 2.

We will use the characterization of the walk corresponding to A, given by Theorems 5 and 6 to bound
[Apl-

2.2. Some Lemmas. We establish some notation to describe the walk in Theorem 6. For each 1 <17 < p—2,

define z®* and y"** to be the inverses of ¢ and —(i + 1) mod p respectively (such that z*** and y"** are



4 ASYMPTOTIC PROPERTIES OF MAXIMAL P-CORE P’-PARTITIONS

in {1,2,...,p — 1}) — in other words, x!"®* is the number of steps required to walk from p — 1 to 0 using
edges labelled ¢, and y"®* is the number of steps required to walk from 0 to p — 1 using edges labelled ¢ + 1.
Then the segment described in (2) corresponding to i avoids 0 if and only if it consists of strictly less than
x"®* edges labelled i and strictly less than y;"** edges labelled 7 + 1.

2 K3

Define (z;,y;) to be the solution to
iz+(i+1)y=0 (mod p)
over positive integers z < z"** and y < y**, with minimal x + y (which exists because (z**,y™*) is a
solution, and is unique because z + y uniquely determines z and y mod p). Then the segment of the walk
described in (2) corresponding to i must consist of exactly z*** — z; edges labelled i, followed by y™** — y;
edges labelled ¢ + 1 — this is because the segment must consist of zj"** — x edges labelled ¢ and y"** —y
edges labelled ¢ + 1 for some x and y satisfying these conditions, and its length is maximized when z + y is
minimized. The reason to consider the subtractions x; and y; from the upper bounds on the path lengths
(given by the fact that the path cannot visit 0) rather than the lengths themselves is that proving |A,| ~ ipG
essentially amounts to showing that the subtractions are usually small; these subtractions turn out to be

easier to work with than the original lengths.

In order to use this characterization to bound |A,|, we first establish some results about the size of (x;, y;)
over all possible 1.

Lemma 7. For any 1 <1 < p— 2, either

=— mod
r+s ( r)
for some relatively prime 0 < 1,5 < /p, or
1= mod
—, (modp)
for some relatively prime 0 < r,s < /p which are not both 1. Furthermore, there is at most one such pair
(r,s) with i = —3 (mod p), and at most one such pair with i = - (mod p).

Proof. To prove the existence of such a pair (r, s), consider the residues
ia+ (i+1)b (mod p)

across all pairs of integers (a,b) with 0 < a,b < \/p + 1. Since there are strictly more than p such pairs,
some residue must be repeated; therefore we have

i(al — CLQ) + (Z + 1)(b1 — b2) =0 (mod p)

for some (ay, b1) # (az,bs). We cannot have a; = ag or by = ba, as one equality would imply the other (since
i and i + 1 are nonzero mod p), so 0 < |ay — az|, [b1 — bz| < \/p.

If a1 — a2 and b; — bs have the same sign, then we have
ir+(i+1)s=0 (mod p)
(mod p) for some 0 < 7,5 < /p. Meanwhile, if a; — a2 and by — by have opposite

and therefore 1 = — -2
r+s

sign, then we have

ir—(i+1)s=0 (mod p)

*— (mod p) for some 0 < r,s < /p. In either case, if r and s are not relatively prime, we

T—S8

can divide both by ged(r, s) to get the desired result.

and therefore i1 =

To prove uniqueness, note that if there were two pairs (11, $1) and (r2, s2) corresponding to the same value
of i (in either case), then we would have
r r
1=2 (mod p),
S1 52
which would imply r1s2 — s172 = 0 (mod p). But we have

|r182 — s172] < max(rqs2,s17m2) < D,
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so we must have 7152 = s1rg; then since ged(ry, s1) = ged(r2, s2) = 1, this implies (71, s1) = (r2, s2). d

Let S denote the set of residues 1 < i < p — 2 for which i = *- (mod p) for some relatively prime

0 <r,8 <,/p, and let T denote the set of residues 1 <7 < p — 2 which cannot be written in this form. Then
by Lemma 7, every residue ¢ € T can instead be written as i = —*= (mod p) for some relatively prime
0<rs<,p

Lemma 8. Ifi € S with i =

(mod p), then

r—Ss

<xity < + max(r,s) — 1.

B
max(r, s)

max(r, s)

Proof. We can rewrite the equation iz + (i + 1)y =0 (mod p) as
st4+ry=0 (mod p).

Assume without loss of generality that s > r (the proof of the case s < r is symmetric). Then we must have
s(x+y)>sc+ry=>p

and therefore x+y > £ for any positive integer solution (z,y). On the other hand, by the Chinese Remainder
Theorem there exists some 0 < a < rs such that s | (p — a) and 7 | a; then

o= (222.9)

is a solution, and satisfies z < £ and y < s — 1.

It remains to check that this solution satisfies < z"** and y < y"**. To check the first statement, we

i
max — T—S
have zj*** = == (mod p), so

st —r+s=0 (mod p).
Since the left-hand side is positive, it must then be at least p, which implies

P rTr—S
R il Y
S S
max
3

max max
i .

Then since z and z are both integers and x < z]"** — 1, we must have z < zj

Similarly, we have y;"** = — =2

% T

(mod p), so

ry®* +r—s=0 (mod p).
If r =1, then y"®* = s — 1 > y. Otherwise, we cannot have ry* + r — s = 0 (as this implies r | s, but r
and s are relatively prime), so ry"®* +r — s > p, and

. +s—r
yfmxzpi>2>s.
T T

This means
Tty Sory<tes—1,

as desired. O

Remark. In fact, it is always true that (z;,y;) = (z,y) for the solution described above — we must have
sx; + ry; = p, since otherwise z; + y; > %p > 2 4+ 5. Then (z4,y:) = (55%, 2) for some positive integer a, and
Z; + y; is minimized when a is minimized, which occurs at our choice of a. Note that the stronger bound

B
max(r, s)

ity < + max(r,s) — min(r, s)

is true as well, using the fact that z; +y; = £ +a (% — %) < 2 4 5 —r. However, this does not have a large

impact on the resulting bounds, so we use the weaker bound to simplify computations.

Lemma 9. Ifi € T with i = —3 (mod p), then z; +y; <7 +s.
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Proof. First, the equation iz + (i + 1)y =0 (mod p) can be rewritten as
—szx+ry=0 (mod p),

max max — r+s
maxwe have " = — (mod p), so

so (x,y) = (r, s) is a solution. To check that it satisfies z < x :

st +r+s=0 (mod p).
But if 2"** <y — 1, then we would have
st +r+s<rs+r<pl\/p—1)++pP=Dp,
since we cannot have r = s = [/p] (as  and s are relatively prime); this is a contradiction. The same proof
shows that we cannot have y"** < s —1.
This implies (r, s) is a valid solution for (x,y), which means
ri+y ST+,
as desired. O

Remark. It is again true that we always have (x;,y;) = (r,s). To prove this, assume for contradiction
there is a solution (x,y) with x +y < 7+ s. Then = and y cannot both be less than ,/p, as otherwise by
uniqueness in Lemma 7, we would have m(x, y) = (r,5). On the other hand, we must have x < r+ ,/p
and y < s+ ,/p (as otherwise x or y would be greater than 7 + s). Then considering the equation

i(lz—7)+ (@ +1)(y—s)=0 (mod p)

gives that ¢ € S (since  — r and y — s have opposite sign, and 0 < |z — 7|, |y — s| < \/p), contradiction.

Finally, we will also need the following number theoretic lemma (which arises from the fact that the
residues i € S correspond exactly to pairs of distinct relatively prime (r,s) with 0 < r,s < /p).

Lemma 10. For any positive integer n, we have

. 3
yem 3
— m 5

where @ denotes the Fuler totient function.

Remark. In general, one can obtain better lower bounds than Lemma 10. However, for our purposes, we
are content with this simple argument.

Proof. By using the fact that ¢ = p *id (where % denotes Dirichlet convolution, x denotes the M&bius
function, and id denotes the identity map sending every positive integer to itself) and swapping the order of
summation, we have

m=1 m=1 dlm
)
=>4
> u(d "1 =1
DB SR D
d=1 d=1 d=n+1

To calculate the first term, let 1 denote the function sending every positive integer to 1. Then (u * 1)(n) is
1if n =1 and 0 otherwise, so Y 57, % > ae1 7= = 1, and therefore

— (d) 6

1
2E TR
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This provides the bound

2.3. Proof of Theorem 1. Suppose that p > 106 is prime. We use the above lemmas to establish bounds
on |A,|.

For convenience, we first define a few more pieces of data associated with the abacus corresponding to
|Ap|. Recall that by, ..., bp—1 denote the bead multiplicities of A,. By Lemma 4, we can also define the row
multiplicities mq, ..., mp—_1, where m; is the number of rows consisting of ¢ gaps followed by p — 7 beads.
Then we have

bi=mi+ma+ - +m;
for all 1 <i <p—1. By Theorems 5 and 6, we have m; =p—1, mp_1 =p—2,and forall 2 <i <p—2,

mi =Y =Y+ 3 -z =p— Y1 — @
As noted by McDowell, the row multiplicities have useful symmetry — we have (z;,y;) = (Yp—1—i, Tp—1—4)

for all 1 < ¢ < p—2 (since the conditions used to define them are identical), which means m; = myp—; for all
2<i<p-—2]2, Corollary 4.9].

Now define d; := p—m; for all 1 < i < p—1, so that dy =1, dp—1 = 2, and d; = y;—1 + 2; for all
2 <1i < p—2. Finally, define ¢; := dy +ds + - - - + d;, so that

bi=mi+---+m; =1p—c,

and define
p—2 p—2
ci=Y (@mity) =2+ (yi-1+i)
i=1 i=2

Then we have ¢,—1 = ¢ + 1, while the symmetry property implies that
Ci+cCp_1-5==¢C

forall 1 <i<p-2.

Intuitively, the variables d; and c¢; represent how far m; and b; are from their crude upper bounds — in
particular, McDowell obtained the upper bound (1) by using the fact that m; < p — 2 for all ¢ > 2. Our
strategy is therefore to show that these subtractions are small. More precisely, we use the previous lemmas
to establish upper and lower bounds on ¢ which are both on the order of p,/p, and then translate these
bounds on ¢ to bounds on |A,| via Lemma 3.

Lemma 11. We have® that ¢ < 1—31p\/]3

Proof. Separate the sum as

p—2
c=> (@ity) =Y (@i+uy)+ Y (@i+u)
i=1 €S i€T

S
r—Ss

For the sum over i € S, if i = (mod p) as given by Lemma 7 with max(r, s) = m, then we have

iCz'-l—yiS%-i-m—l

LThis lemma is true for all p > 17.
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by Lemma 8. For each 1 < m < ,/p, there are less than 2m pairs (r, s) with max(r, s) = m, so we have

Lve]
Z(zl—l—yz) < Z 2m(% +m— 1)
€S m=1

<2p\/]3+4i§ <”;)

_2p\/§—|—4<h/§g)+1>

8
< gp\/ﬁ
Meanwhile, for the sum over i € T, if i = — 3= (mod p) as given by Lemma 7, then we have z; +y; <7 +s
by Lemma 9. Since ged(r, s) = 1 for any such pair (r, s), for any fixed s > 2 there are less than /p — 1 values
of r (as r cannot equal s); meanwhile for s = 2 there are less than /p — 2 values of r (as r cannot equal

2 or 4, which are both less than /p), and for s = 1 there are less than ,/p values of . Combining these
estimates, we have

Z(xi—kyi)gZ(T+s)<2(\/ﬁ—1)~w<p\/ﬁ

€T (r,s)

Combining the two sums gives ¢ < %p\/ﬁ ]

We now obtain a lower bound on c.

Lemma 12. We have that ¢ > gp\/ﬁ — 16p.

Proof. We have
p
> . . - -
c> E (w5 +yi) > E po

€S (r,s)

by Lemma 8. For each 2 < m < ,/p, there are 2¢(m) pairs of relatively prime distinct (r, s) with 0 < 7,5 < \/p
and max(r,s) = m, and by uniqueness in Lemma 7, each corresponds to a different value of ¢ € S. This
means

Lv7] ) 5 6
o> 3 Lagm) > 20 (2151 -7) > o 16

using the estimate given by Lemma 10. O

Finally, we will also need the following upper bound on an intermediate sum.

Lemma 13. We have® that c|,/18] < 2p\/D + p-

Proof. We have

Lp/18] p/18]
clps] =1+ Z (Yi1 + ) < Z (w5 + i)
=2 =1

By Lemmas 8 and 9, if ¢ € T' then x; + y; < 2,/p; on the other hand, if i € S is written as i = *= (mod p)
with max(r, s) = m, then z; +y; < £ 4+m — 1. For each 1 <m < ,/p, there are at most m pairs (r, s) with
max(r, s) = m corresponding to indices i < {¢, since swapping r and s maps i — p — 1 — .

2This lemma is true for all p > 256.
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Let t := L\/]?/?)J Then we can bound one entry x; + y; above by p, two entries by § + 1, three by % + 2,
and so on, up to t entries by £ 4 (¢ — 1) — note that 1 +2+-- —|—t>—> &, and £+ (t —1) > 2,/p. This
means

lp/18]

t
Z (zi + i) <Zm( —I—m—l)
i=1 m=

1

t+1
=tp+ 2( + )
o (2 ) L2 Y
3 3 3
This expression is less than %p\/ﬁ +p, as p > 10 > 256. g

Now we are in a position to establish the claimed inequalities in Theorem 1.

Proof of Theorem 1. In order to establish both bounds, we use the formula

1 p—1 2 D p—1 p—1 D 1

2 Ap|=—= bi =N 2 —— ) b
? mi=g(En) 55 (-5
given by Lemma 3. For both directions, we first have

= 1 1
(3) Zb —le—ci)=§]92(p—1)—§]90—17

i=1
using the fact that ¢; +cp,—1—; =cforall1 <i<p—-2,and ¢c,_1 =c+ 1.

We first prove the lower bound
1
|Ap| > 570" = P* VP
For the first term of (2), we use the bound

LN e\ 1 1 1
o b, o - __t6_ Lt a4, L o202
2<Z>> 2< ) > gP TP e ghe

from (3). For the second term of (2), we use the bound

b2 = (ip — ¢;)* > i*p® — 2ipe
forall 1 <i<p-—1 (thisis clear for 1 < i <p—2 as ¢; < ¢, while for ¢ = p — 1, it follows from the fact that
(c+1)2 > 2p(p— 1), as p > 10% > 250, using the bound in Lemma 12), which gives

v Zb2 > —p -1)(2p—-1) - %pg(p— 1e.

Finally, the third term in (2) must be positive, as for each 1 < i < p—;l we have b,_1_; > b;, which means

—1 —1
(i p2 )b +( —1—i—pT)bp1i20.

Combining these bounds and using (2), we have

1 1 1 1
|Ap| > 57p° = ple— ope® — 2p”.
Using the bound ¢ < p\/_ < 4p,/p, we have
1 1
Ap| > 57p° ——p5\/13——p > o0 =P’V

where the second inequality holds as p > 10% > 729.
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We now prove the upper bound
1
|Ap| < 51? —‘566 P’\/D-
The first term of (2) is given by

(sz> <——p —pc—p? —2)?

g 14 Loy 14
< 8p—|—4pc 8pc—l—4

by (3). To bound the second term of (2), we pair terms — for each 1 < ¢ < p—gl, we have
by + by =(ip— )’ +((p—1—-i)p—cp-1-3)?
<ip*+ (p—1—1)*p* —plc — 2¢:)(p — 1 — 2i) —cp( 1)+
where we used the fact that ¢ + cp 1—i < (c;i+cp1-4)? = 2 For all 1 <i < 2= we have ¢ — 2¢; > 0 and

—1—2i > 0. Furthermore, for all i < , by Lemmas 12 and 13 we have

2
c—2¢; > gp\/ﬁ — 18p,

and p—1—2¢ > 8—” — 1. Finally, we have b7_, < p*(p —1)?. Combining these bounds gives

Zb2 é(2p—1) p;2.cp(p_1)—p(%p )<p\/_—18p> (8 )“LTQ 2

15 13 1 4 1 2 14 2 13
< gp°—opie— — = - —p°,
5P~ 5P~ 5P \/2_?+2pc + P+ ptet ep

using the bounds %p -1> %p and gp -1> %p, which hold as p > 10 > 180. So the second term in (2)
is bounded above by

gy 1 1 1 1 1
z b2 < Zp% — pte— — _
2;l<6p 1P 120’)\ij pc+8p+2pc+12p

Finally, the third term in (2) is bounded above by

p—1

Z(z p; )b <Zz 2p<;’p

i=1
Combining these bounds and using (2), we have

1 1 5 1 1 1
|Ap| < p——pf+ p“+ —p’+ =pc+opt+ =

120 8 2 3 127
Using the bound ¢ < 4p,/p then gives
1 1 1 1
A —p - — 2 — —p = —
Ayl < 50” 120’)\ij p+p\f+p+12p<24p 200\f
where the second 1nequahty holds as p > 106. ]
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