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Abstract High rate Global Navigation Satellite System (GNSS) processed time series capture a broad
spectrum of earthquake strong motion signals, but experience regular sporadic noise that can be difficult

to distinguish from true seismic signals. The range of possible seismic signal frequencies amidst a high,
location-varying noise floor makes filtering difficult to generalize. Existing methods for automatic detection
rely on external inputs to mitigate false alerts, which limit their usefulness. For these reasons, geodetic seismic
signal detection makes for a compelling candidate for data-driven machine learning classification. In this
study we generated high rate GNSS time differenced carrier phase (TDCP) velocity time series concurrent

in space and time with expected signals from 77 earthquakes occurring over nearly 20 years. TDCP velocity
processing has increased sensitivity relative to traditional geodetic displacement processing without requiring
sophisticated corrections. We trained, validated and tested a random forest classifier to differentiate seismic
events from noise. We find our supervised random forest classifier outperforms the existing detection methods
in stand-alone mode by combining frequency and time domain features into decision criteria. The classifier
achieves a 90% true positive rate of seismic event detection within the data set of events ranging from
M,4.8-8.2, with typical detection latencies seconds behind S-wave arrivals. We conclude the performance

of this model provides sufficient confidence to enable these valuable ground motion measurements to run in
stand-alone mode for development of edge processing, geodetic infrastructure monitoring and inclusion in
operational ground motion observations and models.

Plain Language Summary Continuously operating, high sample rate Global Navigation

Satellite System (GNSS) sensors that experience ground shaking from an earthquake can provide valuable
data regarding the nature of the ground motion. If this data is streamed in real-time, these observations can
complement existing traditional seismic infrastructure measurements that are used for earthquake early
warning or rapid ground motion assessments. However, the data from these sensors can be noisy and have
non-earthquake artifacts that are difficult to tell apart from true seismic signals. In this work we used a nearly
20-years archive of high sample rate GNSS velocities occurring during known seismic events to train, validate
and test a machine learning model for earthquake detection. This machine learning approach is taken from
existing algorithms used for a wide variety of challenging classification problems where a label can be applied
to a sample. We demonstrate that this data-driven method, without any external information, is more likely

to detect these signals with less false alarms when compared to existing methods. The added confidence this
algorithm provides will allow these valuable measurements to be included in operational seismic assessment
and warning decision criteria.

1. Introduction

Real-time, low-latency observations of medium to great earthquake ground motions are vital to rapid hazard
assessment and earthquake early warning (EEW) systems. These measurements have historically been recorded
by inertial seismometers. Higher rate (>1 Hz) continuous Global Navigation Satellite System (GNSS) meas-
urements capture stronger dynamic motions and permanent displacements of propagating seismic waveforms
(Larson et al., 2003; Nikolaidis et al., 2001). These geodetic strong motion measurements (Larson, 2009) will
rarely clip nor require double integration that leads to magnitude saturation in the near-field of larger, destructive
earthquakes common to inertial velocity sensors (Bock et al., 2004; Colombelli et al., 2013; Crowell et al., 2013).
Furthermore, additional material low-latency observations densify existing seismic ground motion measure-
ments. These observations are particularly valuable when damaging seismic events occur in sparsely instru-
mented regions (Grapenthin et al., 2017) or when networks or infrastructure fails.
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Figure 1. An example of the difficulties of differentiating a relatively weak seismic global navigation satellite system
(GNSS) signal event and a GNSS noise disturbance using existing detection methods. The signal depicted is the east
component of station P507 observing a M;;5.41 (USGS event ID: ci15200401) at approx. 23 km; velocities are presented

in seconds relative to the event origin time (OT). The proximal noise disturbance depicted is a non-geophysical processing
artifact or signal propagation effect that might result from sources such as cycle slips, ephemeris, multipath, or other signal
path effects. Panel (a) is the 5 Hz timeseries, in addition to a low-pass filtered (corner frequency of 0.5 Hz) timeseries to
emphasize the signal and noise for the reader. Gray shading represent areas within the noise estimate for each respective
method. Vertical dashed lines are estimated (iasp91 model) P- and S-wave arrival times. Panel (b) illustrates a static threshold
taken from (Hodgkinson et al., 2020). This approach is sensitive to the weak signal, but equally sensitive to noise. The
threshold has limited memory and rapidly alerts to the onset of the noise disturbance, and also issues several additional false
alerts around 105 s OT. Panel (c) is a variation on an STA/LTA approach implemented from (Psimoulis et al., 2018) called
RT-Shake with a moving threshold of three times the moving standard deviation. This approach detects the signal event later
in the waveform with little information regarding the event duration. The noise disturbance adds an initial false alert, after
which the noise region expands to minimize additional false alerts. However this memory would result in missed detection
should such a noise disturbance occur immediately prior or during a seismic event.

However, geodetic deformation timeseries are noisier than traditional inertial sensors (Melgar et al., 2020). GNSS
seismic waveforms are observed from spaceborne radio signals traveling over 20,000 km through often convo-
luted atmospheric signal paths. The radio signals are tracked by a variety of receivers using antenna situated in a
range of radio frequency environments. As a result, these measurements have relatively high and complex noise
signatures, making separating signal from noise challenging. Signal amplitudes from the largest, most costly
events can be difficult to distinguish from non geophysical events, such as filter reconvergence or signal loss
of lock (Figure 1a). Medium magnitude events, often difficult to detect above the geodetic noise floor, can be
destructive or tsunamigenic. The ability to make accurate, low-latency distinction between true signals and noise
in stand-alone mode, without external sensors or information, minimizes points of failure and decision latency
and maximizes the value of these integral network decision inputs and potential edge processing capabilities.

Current approaches to detect motion use variations of time domain thresholds to flatten the decision to a function
of signal amplitude. Several existing approaches make use of low-pass filters similar to traditional STA/LTA
seismological phase picking (i.e., Allen & Ziv, 2011; Goldberg & Bock, 2017; Kawamoto et al., 2016; Ohta
et al., 2012; Minson et al., 2014) that extract static offsets for finite fault inversion but filter valuable dynam-
ics information. Recent interest in peak geodetic dynamic signals (Crowell, 2021; Fang et al., 2020; Melgar
et al., 2015; Ruhl et al., 2019) prompted use of unfiltered timeseries to capture peak signals for magnitude scal-
ing laws and ground motion intensity measurements (Figures 1b and 1c). These epoch-wise threshold detection
methods (i.e., Crowell et al., 2009; Dittmann et al., 2022; Hohensinn & Geiger, 2018; Hodgkinson et al., 2020;
Psimoulis et al., 2018) use instantaneous measurements to estimate motion onset and therefore are a step-forward
for inclusion of GNSS-seismology waveforms, but have limited “real-world” testing and most importantly miti-
gate false alerts for operational systems by correlating detections with proximal stations within networks or
windowing in time from seismic triggers. These processes reduce the usefulness of these measurements for
rapid, stand-alone decision criteria. The evolution of these detection methods has been vital for the vanguard of
GNSS-based seismology, but fall short for real-time operational hazard systems to ingest the full temporal and
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stand-alone false alerting.

5 In this work, we evaluate whether existing GNSS hardware can: more relia-
bly detect motion signals that are (a) constellating near the ambient temporal
noise floor (b) with minimal false alerting (c) in a low-latency, stand-alone
mode and (d) with no specific fault or network geometry. We trained a

~

- machine learning classifier on a supervised data set of GNSS velocity time
series concurrent in space and time with known seismic source signals. We
assembled, processed and labeled a data set of 1,701 earthquake-station high

Magnitude

rate (5 Hz) time series pairs. We also include a substantial seismic event-free

(2]

i noise data set to improve model generalization. We optimized the classi-
fier on these combined datasets with applied domain knowledge to feature
selection and feature engineering that is able to combine time and frequency
domain information. We present the superior performance of this classifier

relative to existing methods within this motivational context. We offer advan-
0246810 tages and implications of deploying this processing and trained model at

Counts scale for network wide monitoring, with particular emphasis on the improved
sensitivity and integrity of stand-alone GNSS seismic event detection with-
out external inputs.

function of the ground station network density and the magnitude-dependent
sensitivity radii.

2. Methods
2.1. Signals of Interest

We define our detection domain as a binary event or no event state classifi-

cation. A critical component of developing a robust classification model is
a substantial data set from which to train, validate and test the model. For optimal results, this data set requires
broad spectrum noise and signal samples such that the model can “learn” and generalize our classification and
distinguish signal from noise. We assembled a catalog of 1,701 station-event pairs from 77 events by cross refer-
encing available 5 Hz GNSS observational data in the UNAVCO geodetic archive with Advanced National Seis-
mic System Comprehensive Earthquake Catalog (COMCAT) of earthquakes greater than M,4.5. While 1 Hz data
is more readily available, 1 Hz observable decimation undersamples certain event velocity spectra (Joyner, 1984).
We observe this effect in reduced velocity amplitudes from 1 Hz data when compared to 5 Hz observables in
several nearfield TDCP velocity timeseries, such as the M,,6.2 2021 Petrolia event. For larger magnitude events
it's likely that sampling closer to 10 Hz is necessary to avoid aliasing (Shu et al., 2018), but we balance this design
parameter with the need for sufficiently large available datasets for training. We assigned a conservative radius
of detection for each event using ambient noise estimation from Dittmann et al. (2022). For each station-event
pair within this spatial footprint, a time series window began 2 min prior to earthquake origin time (OT), and
extends out in time as a function of radius (Figure 2). We conservatively buffered the radius and time window
to mitigate limiting this result from the existing model. We also processed the available 5 Hz observables for
a 30 min window in the hour prior to event times of the event catalog from 2017 to 2021. This noise catalog
consisted of 1,507 unfiltered station-noise timeseries from 904 unique stations across a range of receiver types,
geographic locations, antenna environments and atmospheric conditions, among other potential TDCP noise
variance sources. Inclusion of this extended, real-world noise data set in training and validating will improve the
model's generalization, or performance on unseen data.

Current use of GNSS-derived seismic ground motion for operational EEW (Murray et al., 2018) use precise point
positioning (PPP) derived topocentric coordinates to capture dynamic waveforms or static offsets relative to a
stations a priori position. Instead, we align synchronous carrier phase epoch-wise changes, predicted satellite
orbital velocity and line-of-sight geometry to accumulate coherent energy with respect to the shared receiver
clock drift rate and directional velocities in a local reference frame. Variations of this geodetic processing method,
known as time differenced carrier phase (TDCP) (van Graas & Soloviev, 2004) or variometric velocities, can
record co-seismic velocity waveforms (Crowell, 2021; Grapenthin et al., 2018; Hohensinn & Geiger, 2018) as
well as integrated over time into seismic displacement waveforms (Branzanti et al., 2013; Colosimo et al., 2011;
Fratarcangeli et al., 2018). We processed these 5 hz measurements with the open-source SNIVEL package
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Table 1 (Crowell, 2021) using broadcast ephemeris and narrow lane phase combi-
Distribution of Classification Sample Labels Used in Training/Testing nations. We chose TDCP over PPP because it is more sensitive to motion

Datasets by Component and Label

(Dittmann et al., 2022; Fang et al., 2020), and it is “lightweight” in that it does

East (n = 135,671) North (n = 135,671) Up (n = 135,671) not require sophisticated corrections and is computationally inexpensive.

Non-event 94%
Event 5%
Maybe? 1%

From a machine learning perspective, this could be considered a first step in

94% 99% . . . . .
our feature engineering, or applying domain knowledge to extracting features
5% 1% that are correlated with motion in observed carrier phase measurements.
1% <1%

Note. For more information regarding the distribution of peak values, see

Figure 5c.
aMaybe's excluded from training/testing.

2.2. Feature Engineering Pipeline

Data-driven supervised machine learning models are widely used in computer

vision and natural language processing due to their superior accuracy for

challenging classification, regression and clustering problems. Earth scien-
tists have adopted many of these models for geoscience research (Kong et al., 2019). Recent catalogs of historic
seismic data training sets (e.g., Stanford Earthquake Data Set (Mousavi et al., 2019), INSTANCE (Michelini
et al., 2021)) have contributed to benchmarking improvements of earthquake detection, phase picking, locali-
zation, and magnitude estimation (e.g. Meier et al. (2019); Mousavi et al. (2020); Kong et al. (2019)). These
extensive labeled data sets enable sophisticated data-driven classifiers and deep learning models using inertial
seismic data. Several geodetic applications of machine learning algorithms have demonstrated promising results
with respect to seismic processes. Crocetti et al. (2021) used a random forest classifier for antenna offset detec-
tion, including due to earthquake offsets, from low-rate, 24-hr position solutions. Habboub et al. (2020) applied a
neural network to coordinate time series anomaly detection applicable to specific regional datasets well above the
noise floor. Dybing et al. (2021) used neural networks for earthquake detection and Lin et al. (2021) employed
deep learning used for rapid event magnitude estimation; both of these studies used extensive synthetic displace-
ment waveforms derived from real-world fault geometries and real-world PPP noise models.

In our study, we used a random forest algorithm for our classifier (Breiman, 2001) of GNSS velocities. Random
forest is an ensemble of decision trees; a single decision tree is a classifier where input features are split along
thresholds to separate source, or root, data from end node classifications, or leaves. An ensemble or forest of
trees each vote on the feature decision criteria to select the optimal decisions toward minimizing correlated noise.
Due to the infrequent nature of larger magnitude earthquakes, the event classes are naturally imbalanced but by
pre-selecting specific time series of events, we have reduced this imbalance for training (Table 1) and testing.
Random forest hyperparameters were selected using a grid search over the number of decision trees used, the
maximum decision splits within a tree, and imbalance classification weighting strategies.

SNIVEL TDCP processing generates 5 Hz time series of the three topocentric velocity components and the
clock drift rates. From these event-station pair time series of velocities, we generated feature sets to label for
our supervised classification (Figure 3). Our feature samples consisted of three directional components of 30 s
windows overlapping every 10 s; within these windows we included the four maximum component norm window
values, window median, window median absolute deviation and window power spectral densities from the lowest
frequencies bins containing periods 1-30 s as features. These features and windowing allowed our model to incor-
porate signal and noise amplitude in the time domain, akin to the traditional threshold approach, as well as power
spectra in the frequency domain. In our binary classification, an event is seismic ground motion in an individual
component. Labels were assigned through visual inspection as not event or 0, event or 1, and maybe for windows

AQ\% 'M'—> H e ANASANC

event

Input Processing  Feature Extraction  RF Classification Output

Figure 3. Schematic of our classification workflow: Inputs were 5 Hz GPS phase measurements and broadcast ephemeris,
which are processed using narrow lane combinations using SNIVEL. Target labeling combined with feature extraction were
used for training a supervised random forest classification model to predict event classification on testing subsets.
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Feature Set 1

Feature Set 2 that we are not able to distinguish and excluded from testing and training.

1.0 . . . . .
| | Each directional component was labeled independently. This resulted in
1 1 . .
0.9 1 : 1 ! 140,334 labels for the on-average 30 samples for 1,701 station event pairs of
) . three component velocity time series. The event-free, noise data set included
0.8 7 i ) i an additional 266,739 labels of three component, non-overlapping velocity
1 1
s ! time series.
W 07T T AR T .
= ¥ L . .
§ N N We evaluated two feature extraction models. Feature set #1 was a combined
0.6 1 b . . . . .
1 h array of all three directional components with a single label at each window.
0.5 i i i The horizontally concatenated components resulted in 3 X m features and
. 1 1 . .
: Precision T predision n samples, where m is the number of features per component (m = 36 in
0.4 i — Recall ] —— Recall our pipeline) and n is the number of window samples. If any component
1
— F1 — Ff was labeled “1” for event, the feature set #1 sample label was “1” for event.
0.3 . } . . : —L— > .
0.2 0.4 0.6 08 02 0.4 0.6 0.8 If a maybe label was present without yes events on the other concurrent
Decision threshold Decision threshold

Figure 4. Mean precision, recall and F1 as a function of decision thresholds
for the 10 fold nested cross validation evaluation. The shaded regions are

the standard deviations across the 10 folds as a function of threshold. The
dashed vertical lines are the maximum F1 decision threshold, with the dashed

components, the window was excluded from training/testing. Feature set two
included a target vector for each component but excluded the noisier vertical
signals. These vertically concatenated components resulted in m features and
2 X n samples. In this extraction case any maybe labels were excluded from
training and testing.

horizontal lines being the corresponding maximum F1 score.

We employed a nested cross validation approach for unbiased testing of our

data set. We initialized 10 different folds of randomly splitting the 77 events

and noise catalog samples into 90% training and 10% testing. By splitting on
events we avoided “leakage” of information from our training into our testing, including correlation of seismic
waveforms from any given event observed across a network. By cross validating over 10 folds we minimized
biasing our result by the relatively small testing subsets of events, and can quantify the ability of our classification
model to generalize for future events. Each event was observed by a different number of stations depending on
network density and sensing radius, and each station-event pair had differing number of time samples; conse-
quently the feature vectors of training and testing were not precisely 90/10 split in samples. In each fold, we held
the test set aside as “unseen,” and tuned our model using K-fold cross validation (Bishop & Nasrabadi, 2007) on
the remaining training set. We implemented five inner folds in our K-fold cross validation to find the best hyper-
parameters. This cross validation approach allowed us to minimize overfitting the training data set and evaluate
the performance of our model on unseen data as though it were running such a classifier on yet-to-occur events.

The traditional “accuracy” metric, or the ratio of the correctly classified labels relative to the total number of
labels, of our classification will be less sensitive regardless of optimization choices due to the infrequent events of
our imbalanced classification. Instead, we optimized on metrics that reflect accurately classifying the infrequent
events. Precision, or positive predictive value, is equal to the number of true positives (TP) over the sum of TP
and false positives (FP).

Precision = _TIP €8
TP+ FP
recall, or sensitivity, is the number of TP over the sum of TP and false negatives (FN).
TP
Recall = ————
= TPYFN @
F1 is the harmonic mean of precision and recall:
recision X recall

F=2x2 3)

precision + recall

Here, positive denotes motion and vice versa.

Precision and recall are approximately inversely related and each is a function of our random forest decision
threshold (Figure 4). Quantifying missed detections and false alert rates is imperative for the effectiveness of
any EEW system (Minson et al., 2019). We optimized hyperparameters on F1 scores, a balance of precision and
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Table 2 recall, but this parameter is a knob available to tune depending on societal
10-Fold Nested Cross Validation Results Comparing Feature Set 1 Is Where missed detection of false alerting tolerances of a future operational system.

All 3 Components Are Combined For Each Window, And Feature Set 2 Is
Where Each Horizontal Component Is Tested Independently

3. Results and Discussion

Precision

Recall

F1

Mean
stdev
Mean
stdev
Mean

stdev

Feature set #1 Feature set #2

072 0.64 We evaluate the two optimal feature selection strategies and a range of

random forest hyperparameters using a grid search. Given the F1 scores of
0.19 0.19 our 10 fold nested cross validation approach (Table 2), our optimal model
070 0.65 used feature set #1, with all available spatial components with a single
0.10 0.15 target label to accumulate as much signal as possible toward our binary
0.70 0.63 classification. Each train/test fold selected different optimal hyperparameter
0.12 0.14 combinations for optimizing F1 scores, but the majority selected 100-200

decision trees, 100 decision splits and no class weighting with a decision
threshold of 0.4 (Figure 4). This decision threshold was selected inside the
cross validation of each split and applied to testing sets along with the other
hyperparameters selected. Our mean and one standard deviation nested cross validation F1 score of 0.70 + 0.12
indicates our ability to successfully train a model using random forest. The variance in our results as a justifies our
nested cross validation approach to quantify the variability in results as a function of the testing set; presumably
some variability will resolve with expanded target catalogs.

3.1. Feature Importance

A benefit of random forest is that individual feature importance is readily extracted from the trained model. When
evaluating feature set one, we find several aspects of the feature importances that align with our domain knowl-
edge and therefore contribute to the explainability of our trained model. The horizontal velocity components
dominate the contribution to the model (Figure 5a). GNSS ambient noise on the vertical component is much
higher than that of the horizontal components and vertical seismic signal amplitudes are diminished relative to
horizontal motion along horizontal strike-slip fault mechanics that are common in the spatial region of this study.
These less frequent signals amidst a higher relative noise floor were harder to detect and thus contributed less to
the empirical classification model. Within a horizontal component, the lower frequency spectral features had the
most influence (Figure 5b). The most important frequency bins were between 6 and 15 s periods, aligned with
the dominant frequencies of seismic surface waves. Our 5 Hz sampling, as compared to lower rates, boosted the
detectability around the noise floor, and avoided corner frequency aliasing of certain magnitudes.

The time domain features contributed to the model, albeit much less than the lower frequency spectral content
and with a more complex relationship. Figure Sc shows increasing F1 score with increasing peak velocity up until
approximately a peak velocity of 25 cm/s in the east, followed by diminishing performance. We infer this to be the
result of readily visibly identifiable signal events experiencing strong to very-strong shaking around 5-20 cm/s
(Worden & Wald, 2020), well above the median noise floor. Infrequent, highest peak velocities (=25 cm/s) might
either be the result of the largest events or noise disturbances; the latter are likely degrading the performance
within these peak velocity bins. Figure 5d presents a more straightforward feature relationship in the frequency
features, where the greater the accumulated power in the frequency bands of greatest importance (b), the higher
the performance metrics (F1, recall, precision). After an initial evaluation, we removed the highest frequency
power spectral densities from our features; these are logically “noise” in our classification and not contributing.
Altogether, these feature importances illustrate a key attribute of such a machine learning approach: combining
features in an explainable way into an effective decision process.

3.2. Comparison With Existing Methods

A critical performance indicator is evaluating how our classification model performs over a range of test events
relative to existing threshold approaches. Logic was applied to map existing continuous epoch-wise time domain
threshold detection to our 30 s overlapping window target labels. For a threshold method comparison similar to
the approach of Hodgkinson et al. (2020) and Dittmann et al. (2022), we estimated the noise threshold in the 2 min
window prior to seismic origin time. Hodgkinson et al. (2020) characterized the stand-alone sensitivity of detec-
tion using ambient noise antecedent to an event as a Gaussian heuristic threshold. Dittmann et al. (2022) approx-
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Figure 5. Panel (a) are the distribution of the feature importances across the horizontally concatenated, three spatial
components feature set #1 testing. Panel (b) is a close up of the east component, with the features labeled across the x axis
for closer inspection. From the left, the first six of each component are time domain features (max, min, mad) within the
30 s windows; the next 15 are the power from given frequency bins of the periodogram of the 30 s 5 Hz data, increasing in
frequency from left to right, with the periods indicated. Panel (c) are precision, recall and F1 scores binned by peak velocity
of each sample's east component (denoted in (b) with **). The gray shading are the counts of samples falling within the bins.
Panel (d) is a similar performance measure to (c) but binned by accumulated power in the lowest frequency bins that had the
highest feature importance in the model, 5-30 s period (denoted in (b) with *).
imated the 2 min window of ground velocities as a non central chi-square
(NCX?2) distribution with three degrees of freedom, and then set the 0.995
confidence level value of this distribution as a noise floor approximation.
1.0 e Swe =t Any three dimensional GV magnitude above this noise threshold after this
- window is considered an event, and evaluated on whether it falls within a
. window labeled motion or not. RT-Shake (Psimoulis et al., 2018) evolved the
g% previous geodetic STA/LTA algorithms (Allen & Ziv, 2011; Ohta et al., 2012)
0.4 by differencing instantaneous measurements from 80 epoch moving averages
and then related these values to a moving window noise threshold estimate
set to three times the standard error of the previous 80 epochs. This method

o

N

N
Precision ‘-
Accuracy‘

Figure 6. Performance metrics for three methods in stand-alone mode without
external triggers or correlation. Threshold is the NCX2-995 approach used

by Dittmann et al. (2022) that thresholds the noise based upon the 0.995
significance of a non-central chi-square distribution of the ambient noise.
STA/LTA is based on Psimoulis et al. (2018) global navigation satellite system
(GNSS) motion detection modified STA/LTA algorithm. RF-ML is the method
presented in the work here. Optimizing on F1 in this study allows us to balance
missed detections (recall) with false alerts (precision); given the amount of
false alerts of the Threshold and STA/LTA, the higher recall score could be a
result of regular noise triggering events.

was run on each component independently, with a single Boolean for the
presence of motion on any component, and each sample window assigned
a boolean based on the presence of any motion. The Dittmann et al. (2022)
implementation of the threshold window in time was based upon S-Wave
speeds (Crowell et al., 2013), and Psimoulis et al. (2018) modified STA/LTA
correlated with surrounding stations to minimize false alerts; we did not add
this logic so that we could simulate running as a stand-alone instrument.

The mean precision, F1 and accuracy from our 10 fold test of our random
forest classifier outperforms the existing threshold approaches (Figure 6).
In the threshold approach, recall is higher than the random forest classifier;
given the large number of FP that this method triggers, we believe this value
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Figure 7. Performance of Random forest model developed in the work here across the entire event catalog. We reduce
detection of events to a single binary for the figure. In this, each event is evaluated in a “test” split during the nested
validation pipeline. This approach ensures each result depicted was evaluated as “unseen” relative to the best fit model from
the training subset, and therefore representative of our model's future performance.

is boosted by chance noise triggers occurring in windows of true motion triggering the motion boolean. This
further demonstrates the value of optimizing on F1 as a balance of precision and recall to reduce biasing one
decision criteria. Precision is low for both the threshold method and the STA/LTA, but for different reasons; while
the precision values (Equation 1) are nearly identical, the threshold method suffers from a relatively high amount
of FP, whereas the STA/LTA method low score is due to a lower amount of TP. This discrepancy is evident in the
accuracy scores, where the STA/LTA outperforms the threshold approach. False positives would be decreased
if using additional external information as their authors' suggest, such as stricter time window approaches and
correlating in space within networks. Such an approach would also likely improve the random forest classifiers
performance but limit the utility of a stand-alone detection node. Spatio-temporal information could be incorpo-
rated into future network decision criteria.

3.3. Edge Sensitivity Detection

Detecting the largest amplitude velocity waveforms relative to ambient noise does not present a significant chal-
lenge outside of mitigating false alerting from sporadic outliers (Figure 7a), with a 98% true positive rate of
events greater than M ;6.0 and less than 100 km radius. The random forest classifier's balance of improved false
alerting relative to thresholds and improved sensitivity relative to the STA/LTA is evident for these highest seis-
mic risks. To further investigate the random forest model performance we evaluate detecting signals closer to
the noise floor. For simplicity, we bin seismic motion edge case detection into two distinct classes in what is a
continuous distribution: large magnitude event seismic motion detection in the far field, and smaller magnitude
events detected in the nearfield.

In the relative nearfield, much of the seismic energy passes through a station in shorter duration, varied frequency
signals. Earthquake focal depth and fault slip distribution in time and space can significantly vary these wave-
forms as observed. Critically, the waveform signatures can appear similar to those of non geophysical processing
outliers which we wish to ignore for this classification. Most existing STA/LTA methods filter these noise signals
but also these valuable higher frequency dynamics. In the previous threshold methods, detection of these edge
cases was a function of the ambient noise level, with low precision resulting (Figure 6) as a result of a high false
positive rate. Our classifier has far less false alerts than the threshold approach in these signals, but nevertheless
still presents the hardest detection domain for our classifier, evident in the missed detections of Figure 7b of
events less than M,,6.0. The left Panels of Figure 8 is an example of a smaller magnitude event (M,5.4) in the
relative nearfield (21 km). The top four Panels ([a:d]-0) on the left of Figure 8)) demonstrate that accurately
detecting such an event using the threshold or modified STA/LTA approach is difficult; not only does the true
signal barely exceed the noise floor, but there are numerous false alerts using both methods. The random forest
classifier captures the majority of labeled motion window in addition to “ignoring” the spurious disturbance
around 100 s OT that triggers all other methods evaluated 8 (e—0).

The sensitivity of GNSS to longer period surface waves are apparent at relatively great radii in the 5 hz TDCP
velocity time series (Figure 7). The model detects teleseismic surface waves in unfiltered GNSS velocities from
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Figure 8. Velocity and detection time series two stations observing different events. The left column is from P507 observing
aM5.41 at 21 km epicentral radius; the right is from AB18 observing a M,,7.9 from ~1,400 km epicentral radius. In the

top velocity component Panels (a—c), we include a downsampled running mean so that the reader may readily visualize the
lower frequency surface waves passing through. The teal vertical lines are alerts from the STA/LTA classifier (Psimoulis

et al., 2018) on each component. Panel (d) green timeseries is the three component ground velocity; the red horizontal line

is the sensitivity threshold of a 0.995 non central chi-square (ncx2) noise model (Dittmann et al., 2022), with orange vertical
lines indicating a potential alert where GV greater than the threshold. (e) Panels are a comparison of the labeled feature

set 1 for these event-station pairs in purple, and the results of the model prediction in red. Shading is used to distinguish
overlapping windows. This event-station pair prediction is extracted from the test or unseen event collection.

a M;8.2 (USGS event ID: ak0219neiszm) at 1,780 km epicentral radius in real-time with no external correc-
tions; the right-hand Panels of Figure 8 provides an example of this detection. Future analysis could investigate
the range of geodetic teleseism detection with respect to larger magnitude event directivity, attenuation and
observational networks. In Figure 8d-1, the amplitude of the ground velocity magnitude of these long period
signals is insufficient to cross the traditional noise threshold with consistency, and there are many antecedent
false alerts. The modified STA/LTA RT-Shake approach does not identify the majority of the long period waves
either (Figures 8a and 8c-1), while the random forest classifier in the bottom Panel only misses the first window
(Figure 8e-1).

3.4. Decision Latency

Delay in alerting is critical to EEW. While our model is trained, tested, and validated on overlapping windows
every 10 s, we evaluate running the model at once per second, the current US EEW (Murray et al., 2018) geodetic
input rate (Figure 9)). On testing data not used in model training, we find a delay relative to the estimated
P-wave, ~3-5 s under 15 km exists in the current approach. Coarse P- and S-wave arrivals are estimated using
the iasp91 model (Kennett & Engdahl, 1991); future work more accurately quantifying these phase arrivals such
as the approach of Goldberg et al. (2018) would not only more accurately represent timing performance but also
useful for training more sophisticated ground motion models. GNSS velocities using this current approach cannot
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Figure 9. Time of first detection of all individual event-station pairs within
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Hypocentral radius (km)
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assessment uses no external input or seismic triggering.

3.5. Ambient Noise Data Set

70 km radius relative to estimated P-wave arrival time (iasp91 travel time

model) as a function of radius. Green dots are the estimated S-wave arrivals
at the event-station pairs used in this study shown for reference. Purple circles
are centered on the time of first detection after the origin time (OT), where the
diameter is scaled to the event magnitude. These results are from the classifier
run at 1 Hz on unseen testing sets to simulate a real-time operational mode.

In addition to evaluating the performance within the bespoke event and noise
data sets, we also evaluated the performance of the method during periods
of quiescence to further quantify relative false alert rates. Our unseen test-
ing set consisted of 1,321 30-min velocity timeseries from 2019 to 2021,
not included with the original nested cross-validation data. We ran five-fold
cross validation on the entire event and noise labeled data set from the nested
cross-validation pipeline (Section 2.1) to select hyperparameters for training a complete model on all availa-
ble labeled data for future “unseen” events. Such “unseen” events include this set-aside noise testing set. We
confirmed there were no concurrent events greater than M, 4.0 in the USGS COMCAT catalog within the rele-
vant spatial footprint and all other sources of noise or disturbances (signal multipath, oscillators, atmospheric
anomalies, etc) remained in the test set. We assigned labels of non event to all target vectors associated with
feature extraction. This allowed us to quantify ambient noise performance, or false alarm rate (Figure 10a) using
the detection methods previously described in Section 3.2 from 860 unique stations from Alaska to the Caribbean
across a range of potential TDCP noise or disturbance sources.

The random forest classifier was less susceptible to false alerts over the window tested than the threshold and
STA/LTA approaches. The two threshold models have the highest rates to false alerting, an anticipated result
based upon the precision metric reported in Figure 6. Station variations present in the random forest approach
(Figure 10b) suggest the current random forest model has some station or time noise dependence not correlated
with the variations of other detection methods. Future inclusion of more extensive noise training datasets into
our detection classifier and possibly data augmentation techniques would likely be beneficial toward training on
the widest variety of noise scenarios and optimizing feature engineering for these complex noise environments.

4. Conclusion

We applied an existing machine learning algorithm and sample splitting pipeline techniques to training, validating
and testing a seismic motion detection classifier from 5 Hz TDCP GNSS velocities. We leveraged nearly 20 years
of 5 Hz GNSS data archives for training a classification model that outperforms existing threshold approaches
for detecting motion in stand-alone mode. The classifier combines time domain and frequency domain features
to match the sensitivity of the threshold method without the false alerts, and matches the minimal false alerting
of the STA/LTA with improved sensitivity. Given the agreement that GNSS velocities have with existing ground
motion models (Crowell et al., 2022) and the increased confidence in separating signal from noise demonstrated
here, these GNSS velocities can operationally contribute to ground motion measurements. The alert latency of
this current model does not match the sensitivity of existing inertial infrastructure. A complementary approach
using the information available at the time, including lowest latency p-wave characterization from inertial sensors
and unsaturated velocity estimation from GNSS provides an optimal solution for existing dense multi-sensor
networks. For less dense networks of either sensor type, it is more critical to establish a decision criteria for
balancing timing, noise and accuracy of these independent observation systems. Further investigation of integrat-
ing the processing and classifying approach of this manuscript with the sensitivity of co-located MEMS sensors
(Goldberg & Bock, 2017) would advantageously overlap seismic and geodetic traditional boundaries.
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Figure 10. Panel (a) is mean false positive rates (FPR) from 1,321 spatially distributed, 30 min duration of TDCP 5 Hz
velocities from windows prior to events in 2019-2021. Methods include: median plus three times the median absolute
deviation threshold of Hodgkinson et al. (2020), non-central chi-square of Dittmann et al. (2022) NCX2 using alpha value
of 0.995, the modified STA/LTA implemented by Psimoulis et al. (2018) and the random forest machine learning classifier
developed in this work (RF-ML). Panel (b) is a distribution of each method of a randomly chosen subset of stations to
illustrate some of the station variability to the reader.

Current 5 Hz GNSS observation data streams are too verbose for many bandwidth limited remote hardware; this
presents an exciting opportunity for edge processing at potentially much higher rates (Shu et al., 2018), or exper-
imental lean 5 Hz carrier phase data streams. Our method presented here does not use a sophisticated machine
learning model, yet has improved detection relative to existing approaches; much improvement remains, espe-
cially with expanded datasets across global geodetic networks and/or synthetics or data augmentation for training,
validation and testing of neural networks and deep learning models.

With an expanding availability and access to real-time GNSS streaming networks, the seismological commu-
nity stands to benefit from this signal of opportunity for rapid ground motion detection for earthquake and
tsunami source characterization. Furthermore, the vast industry of GNSS position, navigation and timing users
catalyzing the expansion of these GNSS real-time networks will benefit from improved automated alerting of
reference station motion onset. Future work will include integrating this classifier amongst existing and future
automated GNSS carrier phase disturbance characterization methods, including space weather disturbances (Jiao
et al., 2017), oscillator anomalies (Liu & Morton, 2022), radio frequency interference and signal multipath.

Data Availability Statement

The 5 Hz global navigation satellite system (GNSS) data used for time differenced carrier phase (TDCP) process-
ing in the study are available from the Geodetic Facility for the Advancement of Geoscience (GAGE) (GNSSs)
archives as maintained by UNAVCO, Inc. The data are available in RINEX (v.2.11) format at https://data.unavco.
org/archive/gnss/highrate/5-Hz/rinex/. Earthquake depths, locations, and magnitudes came from the Advanced
National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products (https://earthquake.
usgs.gov/data/comcat/). Arrival times are calculated using the iasp91 velocity model as implemented by Incor-
porated Research Institutions for Seismology (IRIS) Web Services (http://service.iris.edu/irisws/traveltime/).
SNIVEL code used for TDCP velocity processing is developed openly at https://github.com/crowellbw/SNIVEL
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