
1.  Introduction
Real-time, low-latency observations of medium to great earthquake ground motions are vital to rapid hazard 
assessment and earthquake early warning (EEW) systems. These measurements have historically been recorded 
by inertial seismometers. Higher rate (≥1 Hz) continuous Global Navigation Satellite System (GNSS) meas-
urements capture stronger dynamic motions and permanent displacements of propagating seismic waveforms 
(Larson et al., 2003; Nikolaidis et al., 2001). These geodetic strong motion measurements (Larson, 2009) will 
rarely clip nor require double integration that leads to magnitude saturation in the near-field of larger, destructive 
earthquakes common to inertial velocity sensors (Bock et al., 2004; Colombelli et al., 2013; Crowell et al., 2013). 
Furthermore, additional material low-latency observations densify existing seismic ground motion measure-
ments. These observations are particularly valuable when damaging seismic events occur in sparsely instru-
mented regions (Grapenthin et al., 2017) or when networks or infrastructure fails.

Abstract  High rate Global Navigation Satellite System (GNSS) processed time series capture a broad 
spectrum of earthquake strong motion signals, but experience regular sporadic noise that can be difficult 
to distinguish from true seismic signals. The range of possible seismic signal frequencies amidst a high, 
location-varying noise floor makes filtering difficult to generalize. Existing methods for automatic detection 
rely on external inputs to mitigate false alerts, which limit their usefulness. For these reasons, geodetic seismic 
signal detection makes for a compelling candidate for data-driven machine learning classification. In this 
study we generated high rate GNSS time differenced carrier phase (TDCP) velocity time series concurrent 
in space and time with expected signals from 77 earthquakes occurring over nearly 20 years. TDCP velocity 
processing has increased sensitivity relative to traditional geodetic displacement processing without requiring 
sophisticated corrections. We trained, validated and tested a random forest classifier to differentiate seismic 
events from noise. We find our supervised random forest classifier outperforms the existing detection methods 
in stand-alone mode by combining frequency and time domain features into decision criteria. The classifier 
achieves a 90% true positive rate of seismic event detection within the data set of events ranging from 
MW4.8–8.2, with typical detection latencies seconds behind S-wave arrivals. We conclude the performance 
of this model provides sufficient confidence to enable these valuable ground motion measurements to run in 
stand-alone mode for development of edge processing, geodetic infrastructure monitoring and inclusion in 
operational ground motion observations and models.

Plain Language Summary  Continuously operating, high sample rate Global Navigation 
Satellite System (GNSS) sensors that experience ground shaking from an earthquake can provide valuable 
data regarding the nature of the ground motion. If this data is streamed in real-time, these observations can 
complement existing traditional seismic infrastructure measurements that are used for earthquake early 
warning or rapid ground motion assessments. However, the data from these sensors can be noisy and have 
non-earthquake artifacts that are difficult to tell apart from true seismic signals. In this work we used a nearly 
20-years archive of high sample rate GNSS velocities occurring during known seismic events to train, validate 
and test a machine learning model for earthquake detection. This machine learning approach is taken from 
existing algorithms used for a wide variety of challenging classification problems where a label can be applied 
to a sample. We demonstrate that this data-driven method, without any external information, is more likely 
to detect these signals with less false alarms when compared to existing methods. The added confidence this 
algorithm provides will allow these valuable measurements to be included in operational seismic assessment 
and warning decision criteria.
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However, geodetic deformation timeseries are noisier than traditional inertial sensors (Melgar et al., 2020). GNSS 
seismic waveforms are observed from spaceborne radio signals traveling over 20,000 km through often convo-
luted atmospheric signal paths. The radio signals are tracked by a variety of receivers using antenna situated in a 
range of radio frequency environments. As a result, these measurements have relatively high and complex noise 
signatures, making separating signal from noise challenging. Signal amplitudes from the largest, most costly 
events can be difficult to distinguish from non geophysical events, such as filter reconvergence or signal loss 
of lock (Figure 1a). Medium magnitude events, often difficult to detect above the geodetic noise floor, can be 
destructive or tsunamigenic. The ability to make accurate, low-latency distinction between true signals and noise 
in stand-alone mode, without external sensors or information, minimizes points of failure and decision latency 
and maximizes the value of these integral network decision inputs and potential edge processing capabilities.

Current approaches to detect motion use variations of time domain thresholds to flatten the decision to a function 
of signal amplitude. Several existing approaches make use of low-pass filters similar to traditional STA/LTA 
seismological phase picking (i.e., Allen & Ziv, 2011; Goldberg & Bock, 2017; Kawamoto et  al., 2016; Ohta 
et al., 2012; Minson et al., 2014) that extract static offsets for finite fault inversion but filter valuable dynam-
ics information. Recent interest in peak geodetic dynamic signals (Crowell,  2021; Fang et  al.,  2020; Melgar 
et al., 2015; Ruhl et al., 2019) prompted use of unfiltered timeseries to capture peak signals for magnitude scal-
ing laws and ground motion intensity measurements (Figures 1b and 1c). These epoch-wise threshold detection 
methods (i.e., Crowell et al., 2009; Dittmann et al., 2022; Hohensinn & Geiger, 2018; Hodgkinson et al., 2020; 
Psimoulis et al., 2018) use instantaneous measurements to estimate motion onset and therefore are a step-forward 
for inclusion of GNSS-seismology waveforms, but have limited “real-world” testing and most importantly miti-
gate false alerts for operational systems by correlating detections with proximal stations within networks or 
windowing in time from seismic triggers. These processes reduce the usefulness of these measurements for 
rapid, stand-alone decision criteria. The evolution of these detection methods has been vital for the vanguard of 
GNSS-based seismology, but fall short for real-time operational hazard systems to ingest the full temporal and 

Figure 1.  An example of the difficulties of differentiating a relatively weak seismic global navigation satellite system 
(GNSS) signal event and a GNSS noise disturbance using existing detection methods. The signal depicted is the east 
component of station P507 observing a MW5.41 (USGS event ID: ci15200401) at approx. 23 km; velocities are presented 
in seconds relative to the event origin time (OT). The proximal noise disturbance depicted is a non-geophysical processing 
artifact or signal propagation effect that might result from sources such as cycle slips, ephemeris, multipath, or other signal 
path effects. Panel (a) is the 5 Hz timeseries, in addition to a low-pass filtered (corner frequency of 0.5 Hz) timeseries to 
emphasize the signal and noise for the reader. Gray shading represent areas within the noise estimate for each respective 
method. Vertical dashed lines are estimated (iasp91 model) P- and S-wave arrival times. Panel (b) illustrates a static threshold 
taken from (Hodgkinson et al., 2020). This approach is sensitive to the weak signal, but equally sensitive to noise. The 
threshold has limited memory and rapidly alerts to the onset of the noise disturbance, and also issues several additional false 
alerts around 105 s OT. Panel (c) is a variation on an STA/LTA approach implemented from (Psimoulis et al., 2018) called 
RT-Shake with a moving threshold of three times the moving standard deviation. This approach detects the signal event later 
in the waveform with little information regarding the event duration. The noise disturbance adds an initial false alert, after 
which the noise region expands to minimize additional false alerts. However this memory would result in missed detection 
should such a noise disturbance occur immediately prior or during a seismic event.
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frequency range of these valuable measurements into models with minimal 
stand-alone false alerting.

In this work, we evaluate whether existing GNSS hardware can: more relia-
bly detect motion signals that are (a) constellating near the ambient temporal 
noise floor (b) with minimal false alerting (c) in a low-latency, stand-alone 
mode and (d) with no specific fault or network geometry. We trained a 
machine learning classifier on a supervised data set of GNSS velocity time 
series concurrent in space and time with known seismic source signals. We 
assembled, processed and labeled a data set of 1,701 earthquake-station high 
rate (5 Hz) time series pairs. We also include a substantial seismic event-free 
noise data set to improve model generalization. We optimized the classi-
fier on these combined datasets with applied domain knowledge to feature 
selection and feature engineering that is able to combine time and frequency 
domain information. We present the superior performance of this classifier 
relative to existing methods within this motivational context. We offer advan-
tages and implications of deploying this processing and trained model at 
scale for network wide monitoring, with particular emphasis on the improved 
sensitivity and integrity of stand-alone GNSS seismic event detection with-
out external inputs.

2.  Methods
2.1.  Signals of Interest

We define our detection domain as a binary event or no event state classifi-
cation. A critical component of developing a robust classification model is 

a substantial data set from which to train, validate and test the model. For optimal results, this data set requires 
broad spectrum noise and signal samples such that the model can “learn” and generalize our classification and 
distinguish signal from noise. We assembled a catalog of 1,701 station-event pairs from 77 events by cross refer-
encing available 5 Hz GNSS observational data in the UNAVCO geodetic archive with Advanced National Seis-
mic System Comprehensive Earthquake Catalog (COMCAT) of earthquakes greater than MW4.5. While 1 Hz data 
is more readily available, 1 Hz observable decimation undersamples certain event velocity spectra (Joyner, 1984). 
We observe this effect in reduced velocity amplitudes from 1 Hz data when compared to 5 Hz observables in 
several nearfield TDCP velocity timeseries, such as the MW6.2 2021 Petrolia event. For larger magnitude events 
it's likely that sampling closer to 10 Hz is necessary to avoid aliasing (Shu et al., 2018), but we balance this design 
parameter with the need for sufficiently large available datasets for training. We assigned a conservative radius 
of detection for each event using ambient noise estimation from Dittmann et al. (2022). For each station-event 
pair within this spatial footprint, a time series window began 2 min prior to earthquake origin time (OT), and 
extends out in time as a function of radius (Figure 2). We conservatively buffered the radius and time window 
to mitigate limiting this result from the existing model. We also processed the available 5 Hz observables for 
a 30 min window in the hour prior to event times of the event catalog from 2017 to 2021. This noise catalog 
consisted of 1,507 unfiltered station-noise timeseries from 904 unique stations across a range of receiver types, 
geographic locations, antenna environments and atmospheric conditions, among other potential TDCP noise 
variance sources. Inclusion of this extended, real-world noise data set in training and validating will improve the 
model's generalization, or performance on unseen data.

Current use of GNSS-derived seismic ground motion for operational EEW (Murray et al., 2018) use precise point 
positioning (PPP) derived topocentric coordinates to capture dynamic waveforms or static offsets relative to a 
stations a priori position. Instead, we align synchronous carrier phase epoch-wise changes, predicted satellite 
orbital velocity and line-of-sight geometry to accumulate coherent energy with respect to the shared receiver 
clock drift rate and directional velocities in a local reference frame. Variations of this geodetic processing method, 
known as time differenced carrier phase (TDCP) (van Graas & Soloviev, 2004) or variometric velocities, can 
record co-seismic velocity waveforms (Crowell, 2021; Grapenthin et al., 2018; Hohensinn & Geiger, 2018) as 
well as integrated over time into seismic displacement waveforms (Branzanti et al., 2013; Colosimo et al., 2011; 
Fratarcangeli et  al.,  2018). We processed these 5  hz measurements with the open-source SNIVEL package 

Figure 2.  Map of seismic focal mechanisms used in this work and distribution 
of 77 event magnitudes. The number of stations used in each event is a 
function of the ground station network density and the magnitude-dependent 
sensitivity radii.
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(Crowell,  2021) using broadcast ephemeris and narrow lane phase combi-
nations. We chose TDCP over PPP because it is more sensitive to motion 
(Dittmann et al., 2022; Fang et al., 2020), and it is “lightweight” in that it does 
not require sophisticated corrections and is computationally inexpensive. 
From a machine learning perspective, this could be considered a first step in 
our feature engineering, or applying domain knowledge to extracting features 
that are correlated with motion in observed carrier phase measurements.

2.2.  Feature Engineering Pipeline

Data-driven supervised machine learning models are widely used in computer 
vision and natural language processing due to their superior accuracy for 
challenging classification, regression and clustering problems. Earth scien-

tists have adopted many of these models for geoscience research (Kong et al., 2019). Recent catalogs of historic 
seismic data training sets (e.g., Stanford Earthquake Data Set (Mousavi et al., 2019), INSTANCE (Michelini 
et al., 2021)) have contributed to benchmarking improvements of earthquake detection, phase picking, locali-
zation, and magnitude estimation (e.g. Meier et al.  (2019); Mousavi et al.  (2020); Kong et al.  (2019)). These 
extensive labeled data sets enable sophisticated data-driven classifiers and deep learning models using inertial 
seismic data. Several geodetic applications of machine learning algorithms have demonstrated promising results 
with respect to seismic processes. Crocetti et al. (2021) used a random forest classifier for antenna offset detec-
tion, including due to earthquake offsets, from low-rate, 24-hr position solutions. Habboub et al. (2020) applied a 
neural network to coordinate time series anomaly detection applicable to specific regional datasets well above the 
noise floor. Dybing et al. (2021) used neural networks for earthquake detection and Lin et al. (2021) employed 
deep learning used for rapid event magnitude estimation; both of these studies used extensive synthetic displace-
ment waveforms derived from real-world fault geometries and real-world PPP noise models.

In our study, we used a random forest algorithm for our classifier (Breiman, 2001) of GNSS velocities. Random 
forest is an ensemble of decision trees; a single decision tree is a classifier where input features are split along 
thresholds to separate source, or root, data from end node classifications, or leaves. An ensemble or forest of 
trees each vote on the feature decision criteria to select the optimal decisions toward minimizing correlated noise. 
Due to the infrequent nature of larger magnitude earthquakes, the event classes are naturally imbalanced but by 
pre-selecting specific time series of events, we have reduced this imbalance for training (Table 1) and testing. 
Random forest hyperparameters were selected using a grid search over the number of decision trees used, the 
maximum decision splits within a tree, and imbalance classification weighting strategies.

SNIVEL TDCP processing generates 5  Hz time series of the three topocentric velocity components and the 
clock drift rates. From these event-station pair time series of velocities, we generated feature sets to label for 
our supervised classification (Figure 3). Our feature samples consisted of three directional components of 30 s 
windows overlapping every 10 s; within these windows we included the four maximum component norm window 
values, window median, window median absolute deviation and window power spectral densities from the lowest 
frequencies bins containing periods 1–30 s as features. These features and windowing allowed our model to incor-
porate signal and noise amplitude in the time domain, akin to the traditional threshold approach, as well as power 
spectra in the frequency domain. In our binary classification, an event is seismic ground motion in an individual 
component. Labels were assigned through visual inspection as not event or 0, event or 1, and maybe for windows 

East (n = 135,671) North (n = 135,671) Up (n = 135,671)

Non-event 94% 94% 99%

Event 5% 5% 1%

Maybe a 1% 1% <1%

Note. For more information regarding the distribution of peak values, see 
Figure 5c.
 aMaybe's excluded from training/testing.

Table 1 
Distribution of Classification Sample Labels Used in Training/Testing 
Datasets by Component and Label

Figure 3.  Schematic of our classification workflow: Inputs were 5 Hz GPS phase measurements and broadcast ephemeris, 
which are processed using narrow lane combinations using SNIVEL. Target labeling combined with feature extraction were 
used for training a supervised random forest classification model to predict event classification on testing subsets.
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that we are not able to distinguish and excluded from testing and training. 
Each directional component was labeled independently. This resulted in 
140,334 labels for the on-average 30 samples for 1,701 station event pairs of 
three component velocity time series. The event-free, noise data set included 
an additional 266,739 labels of three component, non-overlapping velocity 
time series.

We evaluated two feature extraction models. Feature set #1 was a combined 
array of all three directional components with a single label at each window. 
The horizontally concatenated components resulted in 3 × m features and 
n samples, where m is the number of features per component (m  =  36 in 
our pipeline) and n is the number of window samples. If any component 
was labeled “1” for event, the feature set #1 sample label was “1” for event. 
If a maybe label was present without yes events on the other concurrent 
components, the window was excluded from training/testing. Feature set two 
included a target vector for each component but excluded the noisier vertical 
signals. These vertically concatenated components resulted in m features and 
2 × n samples. In this extraction case any maybe labels were excluded from 
training and testing.

We employed a nested cross validation approach for unbiased testing of our 
data set. We initialized 10 different folds of randomly splitting the 77 events 
and noise catalog samples into 90% training and 10% testing. By splitting on 

events we avoided “leakage” of information from our training into our testing, including correlation of seismic 
waveforms from any given event observed across a network. By cross validating over 10 folds we minimized 
biasing our result by the relatively small testing subsets of events, and can quantify the ability of our classification 
model to generalize for future events. Each event was observed by a different number of stations depending on 
network density and sensing radius, and each station-event pair had differing number of time samples; conse-
quently the feature vectors of training and testing were not precisely 90/10 split in samples. In each fold, we held 
the test set aside as “unseen,” and tuned our model using K-fold cross validation (Bishop & Nasrabadi, 2007) on 
the remaining training set. We implemented five inner folds in our K-fold cross validation to find the best hyper-
parameters. This cross validation approach allowed us to minimize overfitting the training data set and evaluate 
the performance of our model on unseen data as though it were running such a classifier on yet-to-occur events.

The traditional “accuracy” metric, or the ratio of the correctly classified labels relative to the total number of 
labels, of our classification will be less sensitive regardless of optimization choices due to the infrequent events of 
our imbalanced classification. Instead, we optimized on metrics that reflect accurately classifying the infrequent 
events. Precision, or positive predictive value, is equal to the number of true positives (TP) over the sum of TP 
and false positives (FP).

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
� (1)

recall, or sensitivity, is the number of TP over the sum of TP and false negatives (FN).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
� (2)

F1 is the harmonic mean of precision and recall:

𝐹𝐹1 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� (3)

Here, positive denotes motion and vice versa.

Precision and recall are approximately inversely related and each is a function of our random forest decision 
threshold (Figure 4). Quantifying missed detections and false alert rates is imperative for the effectiveness of 
any EEW system (Minson et al., 2019). We optimized hyperparameters on F1 scores, a balance of precision and 

Figure 4.  Mean precision, recall and F1 as a function of decision thresholds 
for the 10 fold nested cross validation evaluation. The shaded regions are 
the standard deviations across the 10 folds as a function of threshold. The 
dashed vertical lines are the maximum F1 decision threshold, with the dashed 
horizontal lines being the corresponding maximum F1 score.
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recall, but this parameter is a knob available to tune depending on societal 
missed detection of false alerting tolerances of a future operational system.

3.  Results and Discussion
We evaluate the two optimal feature selection strategies and a range of 
random forest hyperparameters using a grid search. Given the F1 scores of 
our 10 fold nested cross validation approach (Table 2), our optimal model 
used  feature set #1, with all available spatial components with a single 
target label to accumulate as much signal as possible toward our binary 
classification. Each train/test fold selected different optimal hyperparameter 
combinations for optimizing F1 scores, but the majority selected 100–200 
decision  trees, 100 decision splits and no class weighting with a decision 
threshold of 0.4 (Figure 4). This decision threshold was selected inside the 
cross validation of each split and applied to testing sets along with the other 

hyperparameters selected. Our mean and one standard deviation nested cross validation F1 score of 0.70 ± 0.12 
indicates our ability to successfully train a model using random forest. The variance in our results as a justifies our 
nested cross validation approach to quantify the variability in results as a function of the testing set; presumably 
some variability will resolve with expanded target catalogs.

3.1.  Feature Importance

A benefit of random forest is that individual feature importance is readily extracted from the trained model. When 
evaluating feature set one, we find several aspects of the feature importances that align with our domain knowl-
edge and therefore contribute to the explainability of our trained model. The horizontal velocity components 
dominate the contribution to the model (Figure 5a). GNSS ambient noise on the vertical component is much 
higher than that of the horizontal components and vertical seismic signal amplitudes are diminished relative to 
horizontal motion along horizontal strike-slip fault mechanics that are common in the spatial region of this study. 
These less frequent signals amidst a higher relative noise floor were harder to detect and thus contributed less to 
the empirical classification model. Within a horizontal component, the lower frequency spectral features had the 
most influence (Figure 5b). The most important frequency bins were between 6 and 15 s periods, aligned with 
the dominant frequencies of seismic surface waves. Our 5 Hz sampling, as compared to lower rates, boosted the 
detectability around the noise floor, and avoided corner frequency aliasing of certain magnitudes.

The time domain features contributed to the model, albeit much less than the lower frequency spectral content 
and with a more complex relationship. Figure 5c shows increasing F1 score with increasing peak velocity up until 
approximately a peak velocity of 25 cm/s in the east, followed by diminishing performance. We infer this to be the 
result of readily visibly identifiable signal events experiencing strong to very-strong shaking around 5–20 cm/s 
(Worden & Wald, 2020), well above the median noise floor. Infrequent, highest peak velocities (≥25 cm/s) might 
either be the result of the largest events or noise disturbances; the latter are likely degrading the performance 
within these peak velocity bins. Figure 5d presents a more straightforward feature relationship in the frequency 
features, where the greater the accumulated power in the frequency bands of greatest importance (b), the higher 
the performance metrics (F1, recall, precision). After an initial evaluation, we removed the highest frequency 
power spectral densities from our features; these are logically “noise” in our classification and not contributing. 
Altogether, these feature importances illustrate a key attribute of such a machine learning approach: combining 
features in an explainable way into an effective decision process.

3.2.  Comparison With Existing Methods

A critical performance indicator is evaluating how our classification model performs over a range of test events 
relative to existing threshold approaches. Logic was applied to map existing continuous epoch-wise time domain 
threshold detection to our 30 s overlapping window target labels. For a threshold method comparison similar to 
the approach of Hodgkinson et al. (2020) and Dittmann et al. (2022), we estimated the noise threshold in the 2 min 
window prior to seismic origin time. Hodgkinson et al. (2020) characterized the stand-alone sensitivity of detec-
tion using ambient noise antecedent to an event as a Gaussian heuristic threshold. Dittmann et al. (2022) approx-

Feature set #1 Feature set #2

Precision Mean 0.72 0.64

stdev 0.19 0.19

Recall Mean 0.70 0.65

stdev 0.10 0.15

F1 Mean 0.70 0.63

stdev 0.12 0.14

Table 2 
10-Fold Nested Cross Validation Results Comparing Feature Set 1 Is Where 
All 3 Components Are Combined For Each Window, And Feature Set 2 Is 
Where Each Horizontal Component Is Tested Independently
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imated the 2 min window of ground velocities as a non central chi-square 
(NCX2) distribution with three degrees of freedom, and then set the 0.995 
confidence level value of this distribution as a noise floor approximation. 
Any three dimensional GV magnitude above this noise threshold after this 
window is considered an event, and evaluated on whether it falls within a 
window labeled motion or not. RT-Shake (Psimoulis et al., 2018) evolved the 
previous geodetic STA/LTA algorithms (Allen & Ziv, 2011; Ohta et al., 2012) 
by differencing instantaneous measurements from 80 epoch moving averages 
and then related these values to a moving window noise threshold estimate 
set to three times the standard error of the previous 80 epochs. This method 
was run on each component independently, with a single Boolean for the 
presence of motion on any component, and each sample window assigned 
a boolean based on the presence of any motion. The Dittmann et al. (2022) 
implementation of the threshold window in time was based upon S-Wave 
speeds (Crowell et al., 2013), and Psimoulis et al. (2018) modified STA/LTA 
correlated with surrounding stations to minimize false alerts; we did not add 
this logic so that we could simulate running as a stand-alone instrument.

The mean precision, F1 and accuracy from our 10 fold test of our random 
forest classifier outperforms the existing threshold approaches (Figure  6). 
In the threshold approach, recall is higher than the random forest classifier; 
given the large number of FP that this method triggers, we believe this value 

Figure 5.  Panel (a) are the distribution of the feature importances across the horizontally concatenated, three spatial 
components feature set #1 testing. Panel (b) is a close up of the east component, with the features labeled across the x axis 
for closer inspection. From the left, the first six of each component are time domain features (max, min, mad) within the 
30 s windows; the next 15 are the power from given frequency bins of the periodogram of the 30 s 5 Hz data, increasing in 
frequency from left to right, with the periods indicated. Panel (c) are precision, recall and F1 scores binned by peak velocity 
of each sample's east component (denoted in (b) with **). The gray shading are the counts of samples falling within the bins. 
Panel (d) is a similar performance measure to (c) but binned by accumulated power in the lowest frequency bins that had the 
highest feature importance in the model, 5–30 s period (denoted in (b) with *).

Figure 6.  Performance metrics for three methods in stand-alone mode without 
external triggers or correlation. Threshold is the NCX2-995 approach used 
by Dittmann et al. (2022) that thresholds the noise based upon the 0.995 
significance of a non-central chi-square distribution of the ambient noise. 
STA/LTA is based on Psimoulis et al. (2018) global navigation satellite system 
(GNSS) motion detection modified STA/LTA algorithm. RF-ML is the method 
presented in the work here. Optimizing on F1 in this study allows us to balance 
missed detections (recall) with false alerts (precision); given the amount of 
false alerts of the Threshold and STA/LTA, the higher recall score could be a 
result of regular noise triggering events.
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is boosted by chance noise triggers occurring in windows of true motion triggering the motion boolean. This 
further demonstrates the value of optimizing on F1 as a balance of precision and recall to reduce biasing one 
decision criteria. Precision is low for both the threshold method and the STA/LTA, but for different reasons; while 
the precision values (Equation 1) are nearly identical, the threshold method suffers from a relatively high amount 
of FP, whereas the STA/LTA method low score is due to a lower amount of TP. This discrepancy is evident in the 
accuracy scores, where the STA/LTA outperforms the threshold approach. False positives would be decreased 
if using additional external information as their authors' suggest, such as stricter time window approaches and 
correlating in space within networks. Such an approach would also likely improve the random forest classifiers 
performance but limit the utility of a stand-alone detection node. Spatio-temporal information could be incorpo-
rated into future network decision criteria.

3.3.  Edge Sensitivity Detection

Detecting the largest amplitude velocity waveforms relative to ambient noise does not present a significant chal-
lenge outside of mitigating false alerting from sporadic outliers (Figure 7a), with a 98% true positive rate of 
events greater than MW6.0 and less than 100 km radius. The random forest classifier's balance of improved false 
alerting relative to thresholds and improved sensitivity relative to the STA/LTA is evident for these highest seis-
mic risks. To further investigate the random forest model performance we evaluate detecting signals closer to 
the noise floor. For simplicity, we bin seismic motion edge case detection into two distinct classes in what is a 
continuous distribution: large magnitude event seismic motion detection in the far field, and smaller magnitude 
events detected in the nearfield.

In the relative nearfield, much of the seismic energy passes through a station in shorter duration, varied frequency 
signals. Earthquake focal depth and fault slip distribution in time and space can significantly vary these wave-
forms as observed. Critically, the waveform signatures can appear similar to those of non geophysical processing 
outliers which we wish to ignore for this classification. Most existing STA/LTA methods filter these noise signals 
but also these valuable higher frequency dynamics. In the previous threshold methods, detection of these edge 
cases was a function of the ambient noise level, with low precision resulting (Figure 6) as a result of a high false 
positive rate. Our classifier has far less false alerts than the threshold approach in these signals, but nevertheless 
still presents the hardest detection domain for our classifier, evident in the missed detections of Figure 7b of 
events less than MW6.0. The left Panels of Figure 8 is an example of a smaller magnitude event (MW5.4) in the 
relative nearfield (21 km). The top four Panels ([a:d]-0) on the left of Figure 8)) demonstrate that accurately 
detecting such an event using the threshold or modified STA/LTA approach is difficult; not only does the true 
signal barely exceed the noise floor, but there are numerous false alerts using both methods. The random forest 
classifier captures the majority of labeled motion window in addition to “ignoring” the spurious disturbance 
around 100 s OT that triggers all other methods evaluated 8 (e−0).

The sensitivity of GNSS to longer period surface waves are apparent at relatively great radii in the 5 hz TDCP 
velocity time series (Figure 7). The model detects teleseismic surface waves in unfiltered GNSS velocities from 

Figure 7.  Performance of Random forest model developed in the work here across the entire event catalog. We reduce 
detection of events to a single binary for the figure. In this, each event is evaluated in a “test” split during the nested 
validation pipeline. This approach ensures each result depicted was evaluated as “unseen” relative to the best fit model from 
the training subset, and therefore representative of our model's future performance.
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a MW8.2 (USGS event ID: ak0219neiszm) at 1,780 km epicentral radius in real-time with no external correc-
tions; the right-hand Panels of Figure 8 provides an example of this detection. Future analysis could investigate 
the range of geodetic teleseism detection with respect to larger magnitude event directivity, attenuation and 
observational networks. In Figure 8d-1, the amplitude of the ground velocity magnitude of these long period 
signals is insufficient to cross the traditional noise threshold with consistency, and there are many antecedent 
false alerts. The modified STA/LTA RT-Shake approach does not identify the majority of the long period waves 
either (Figures 8a and 8c-1), while the random forest classifier in the bottom Panel only misses the first window 
(Figure 8e-1).

3.4.  Decision Latency

Delay in alerting is critical to EEW. While our model is trained, tested, and validated on overlapping windows 
every 10 s, we evaluate running the model at once per second, the current US EEW (Murray et al., 2018) geodetic 
input rate (Figure  9)). On testing data not used in model training, we find a delay relative to the estimated 
P-wave, ∼3–5 s under 15 km exists in the current approach. Coarse P- and S-wave arrivals are estimated using 
the iasp91 model (Kennett & Engdahl, 1991); future work more accurately quantifying these phase arrivals such 
as the approach of Goldberg et al. (2018) would not only more accurately represent timing performance but also 
useful for training more sophisticated ground motion models. GNSS velocities using this current approach cannot 

Figure 8.  Velocity and detection time series two stations observing different events. The left column is from P507 observing 
a M5.41 at 21 km epicentral radius; the right is from AB18 observing a MW7.9 from ∼1,400 km epicentral radius. In the 
top velocity component Panels (a–c), we include a downsampled running mean so that the reader may readily visualize the 
lower frequency surface waves passing through. The teal vertical lines are alerts from the STA/LTA classifier (Psimoulis 
et al., 2018) on each component. Panel (d) green timeseries is the three component ground velocity; the red horizontal line 
is the sensitivity threshold of a 0.995 non central chi-square (ncx2) noise model (Dittmann et al., 2022), with orange vertical 
lines indicating a potential alert where GV greater than the threshold. (e) Panels are a comparison of the labeled feature 
set 1 for these event-station pairs in purple, and the results of the model prediction in red. Shading is used to distinguish 
overlapping windows. This event-station pair prediction is extracted from the test or unseen event collection.
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reliably be used for earliest phase picking, but can rapidly contribute to 
ground motion models or peak motion scaling laws (Fang et al., 2020). Given 
the feature importances of the classifier (Figure 5a), we interpret delays to be 
the result of the classifier trained on the relatively longer period signals visi-
ble within the noise. Depending on source magnitude and travel path, these 
could be P-, S-, surface-waves or some convolution of the energy traveling 
through the GNSS location. Variance in delays in the near field are likely 
due to inherent limitations of modeling rupture as a point source at proximal 
locations (Goldberg et al., 2021) and possibly related to errors of the iasp91 
travel time model. Future work will address the possible limitations or delays 
introduced by our visual classification labeling. It is worth repeating that this 
assessment uses no external input or seismic triggering.

3.5.  Ambient Noise Data Set

In addition to evaluating the performance within the bespoke event and noise 
data sets, we also evaluated the performance of the method during periods 
of quiescence to further quantify relative false alert rates. Our unseen test-
ing set consisted of 1,321 30-min velocity timeseries from 2019 to 2021, 
not included with the original nested cross-validation data. We ran five-fold 
cross validation on the entire event and noise labeled data set from the nested 

cross-validation pipeline (Section 2.1) to select hyperparameters for training a complete model on all availa-
ble labeled data for future “unseen” events. Such “unseen” events include this set-aside noise testing set. We 
confirmed there were no concurrent events greater than MW4.0 in the USGS COMCAT catalog within the rele-
vant spatial footprint and all other sources of noise or disturbances (signal multipath, oscillators, atmospheric 
anomalies, etc) remained in the test set. We assigned labels of non event to all target vectors associated with 
feature extraction. This allowed us to quantify ambient noise performance, or false alarm rate (Figure 10a) using 
the detection methods previously described in Section 3.2 from 860 unique stations from Alaska to the Caribbean 
across a range of potential TDCP noise or disturbance sources.

The random forest classifier was less susceptible to false alerts over the window tested than the threshold and 
STA/LTA approaches. The two threshold models have the highest rates to false alerting, an anticipated result 
based upon the precision metric reported in Figure 6. Station variations present in the random forest approach 
(Figure 10b) suggest the current random forest model has some station or time noise dependence not correlated 
with the variations of other detection methods. Future inclusion of more extensive noise training datasets into 
our detection classifier and possibly data augmentation techniques would likely be beneficial toward training on 
the widest variety of noise scenarios and optimizing feature engineering for these complex noise environments.

4.  Conclusion
We applied an existing machine learning algorithm and sample splitting pipeline techniques to training, validating 
and testing a seismic motion detection classifier from 5 Hz TDCP GNSS velocities. We leveraged nearly 20 years 
of 5 Hz GNSS data archives for training a classification model that outperforms existing threshold approaches 
for detecting motion in stand-alone mode. The classifier combines time domain and frequency domain features 
to match the sensitivity of the threshold method without the false alerts, and matches the minimal false alerting 
of the STA/LTA with improved sensitivity. Given the agreement that GNSS velocities have with existing ground 
motion models (Crowell et al., 2022) and the increased confidence in separating signal from noise demonstrated 
here, these GNSS velocities can operationally contribute to ground motion measurements. The alert latency of 
this current model does not match the sensitivity of existing inertial infrastructure. A complementary approach 
using the information available at the time, including lowest latency p-wave characterization from inertial sensors 
and unsaturated velocity estimation from GNSS provides an optimal solution for existing dense multi-sensor 
networks. For less dense networks of either sensor type, it is more critical to establish a decision criteria for 
balancing timing, noise and accuracy of these independent observation systems. Further investigation of integrat-
ing the processing and classifying approach of this manuscript with the sensitivity of co-located MEMS sensors 
(Goldberg & Bock, 2017) would advantageously overlap seismic and geodetic traditional boundaries.

Figure 9.  Time of first detection of all individual event-station pairs within 
70 km radius relative to estimated P-wave arrival time (iasp91 travel time 
model) as a function of radius. Green dots are the estimated S-wave arrivals 
at the event-station pairs used in this study shown for reference. Purple circles 
are centered on the time of first detection after the origin time (OT), where the 
diameter is scaled to the event magnitude. These results are from the classifier 
run at 1 Hz on unseen testing sets to simulate a real-time operational mode.
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Current 5 Hz GNSS observation data streams are too verbose for many bandwidth limited remote hardware; this 
presents an exciting opportunity for edge processing at potentially much higher rates (Shu et al., 2018), or exper-
imental lean 5 Hz carrier phase data streams. Our method presented here does not use a sophisticated machine 
learning model, yet has improved detection relative to existing approaches; much improvement remains, espe-
cially with expanded datasets across global geodetic networks and/or synthetics or data augmentation for training, 
validation and testing of neural networks and deep learning models.

With an expanding availability and access to real-time GNSS streaming networks, the seismological commu-
nity stands to benefit from this signal of opportunity for rapid ground motion detection for earthquake and 
tsunami source characterization. Furthermore, the vast industry of GNSS position, navigation and timing users 
catalyzing the expansion of these GNSS real-time networks will benefit from improved automated alerting of 
reference station motion onset. Future work will include integrating this classifier amongst existing and future 
automated GNSS carrier phase disturbance characterization methods, including space weather disturbances (Jiao 
et al., 2017), oscillator anomalies (Liu & Morton, 2022), radio frequency interference and signal multipath.

Data Availability Statement
The 5 Hz global navigation satellite system (GNSS) data used for time differenced carrier phase (TDCP) process-
ing in the study are available from the Geodetic Facility for the Advancement of Geoscience (GAGE) (GNSSs) 
archives as maintained by UNAVCO, Inc. The data are available in RINEX (v.2.11) format at https://data.unavco.
org/archive/gnss/highrate/5-Hz/rinex/. Earthquake depths, locations, and magnitudes came from the Advanced 
National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products (https://earthquake.
usgs.gov/data/comcat/). Arrival times are calculated using the iasp91 velocity model as implemented by Incor-
porated Research Institutions for Seismology (IRIS) Web Services (http://service.iris.edu/irisws/traveltime/). 
SNIVEL code used for TDCP velocity processing is developed openly at https://github.com/crowellbw/SNIVEL 

Figure 10.  Panel (a) is mean false positive rates (FPR) from 1,321 spatially distributed, 30 min duration of TDCP 5 Hz 
velocities from windows prior to events in 2019–2021. Methods include: median plus three times the median absolute 
deviation threshold of Hodgkinson et al. (2020), non-central chi-square of Dittmann et al. (2022) NCX2 using alpha value 
of 0.995, the modified STA/LTA implemented by Psimoulis et al. (2018) and the random forest machine learning classifier 
developed in this work (RF-ML). Panel (b) is a distribution of each method of a randomly chosen subset of stations to 
illustrate some of the station variability to the reader.

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024854, W
iley O

nline Library on [01/01/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://earthquake.usgs.gov/data/comcat/
https://earthquake.usgs.gov/data/comcat/
http://service.iris.edu/irisws/traveltime/
https://github.com/crowellbw/SNIVEL


Journal of Geophysical Research: Solid Earth

DITTMANN ET AL.

10.1029/2022JB024854

12 of 13

(Accessed December 2021) (Crowell, 2021). SNIVEL 5 Hz velocity timeseries used in this study are preserved 
at https://doi.org/10.5281/zenodo.6588601. Version 1.0.1 of the scikit-learn software used for random forest 
classification is preserved at https://doi.org/10.5281/zenodo.5596244 and developed openly at https://github.
com/scikit-learn/scikit-learn (Pedregosa et al., 2011). Version v0.5.0 of PyGMT used for generating the map is 
preserved at https://doi.org/10.5281/zenodo.5607255 and developed openly at https://github.com/GenericMap-
pingTools/pygmt (Wessel et al., 2019). Figures were made with Matplotlib version 3.5.1 (Caswell et al., 2021), 
available under the Matplotlib license at https://matplotlib.org/.
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