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Abstract—Increasing levels of renewable generation motivate
a growing interest in data-driven approaches for AC optimal
power flow (AC OPF) to manage uncertainty; however, a lack of
disciplined dataset creation and benchmarking prohibits useful
comparison among approaches in the literature. To instill confi-
dence, models must be able to reliably predict solutions across a
wide range of operating conditions. This paper develops the OPF-
Learn package for Julia and Python, which uses a computation-
ally efficient approach to create representative datasets that span
a wide spectrum of the AC OPF feasible region. Load profiles are
uniformly sampled from a convex set that contains the AC OPF
feasible set. For each infeasible point found, the convex set is
reduced using infeasibility certificates, found by using properties
of a relaxed formulation. The framework is shown to generate
datasets that are more representative of the entire feasible space
versus traditional techniques seen in the literature, improving
machine learning model performance.

I. INTRODUCTION

A significant power systems research area addresses the
challenges power system operators face when determining how
to economically meet electrical demand, referred to as the
optimal power flow problem. The alternating current optimal
power flow (AC OPF) problem can be formulated as an
optimization problem and solved for generator outputs given
demand inputs, but finding the global optimum of an AC OPF
model has been proven to be non-deterministic polynomial-
time (NP) hard due to the nonconvexities in the problem
[1]. Further, this problem can contain thousands of decision
variables and is difficult to solve in real time.
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Additional challenges are introduced by heightened levels
of variable and uncertain power generation from renewable
energy resources, which necessitate faster decision making
when operating grid assets. Linear approximations of network
physics, typically used by grid operators to estimate power
flows throughout the system, are not sufficient for ensuring
overall system reliability [2], and can result in billions of
dollars of economic inefficiencies annually [3]. The “DC OPF”
approximation, for instance, is used by many system operators
and has been shown to result in highly inaccurate estimates of
power flows and associated electricity prices [4]. There is a
clear and growing need for higher-efficiency methods to solve
AC OPF.

One solution is to apply data-driven approaches. Machine
learning (ML) approaches move computing complexity offline,
so that near-optimal AC OPF solutions can be found in real
time. This allows operators to rapidly solve the AC OPF
problem and economically operate larger systems with more
decision variables; however, despite promising results, there
remains a lack of disciplined dataset creation and benchmark-
ing which prohibits useful comparisons among approaches.
These results rely heavily on the underlying dataset used to
train a model, so it is essential that the dataset represents a
wide variety of operating conditions.

Typically, AC OPF datasets used to demonstrate regression
ML approaches are generated by sampling from a uniform
distribution of ±10% to 20% around the nominal load for each
load bus in a network [5]–[10]. In [11], a variation of this
method uses two separate uniform sampling distributions to
generate a lower and upper bound for the demand of each
load, and then the loads are uniformly increased from the
lower bound to the upper bound. Another variation of sampling
around the nominal network load is shown in [12] by using a
truncated Gaussian distribution to find a real power value for
each load. In [13] and [14] a different approach is taken where
sample load profiles are generated based on real historical
hourly load profiles.

These methods can result in datasets that are only rep-
resentative of only a small portion of the feasible region,
meaning models that are trained on these datasets might only
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accurately predict values for loading near the nominal loading
scenario. To gain more confidence in using these models for
real systems, the data that models are trained and tested on
needs to be more representative of the entire feasible space.
This paper demonstrates a method for efficiently creating
datasets by mapping load profiles to optimal generator set
points, that are representative of the full AC OPF feasible
space that will likely be encountered during network operation.
The main contributions of this paper are devising a method
to efficiently create datasets to facilitate the development of
ML approaches to AC OPF, and showcasing the significance
of using the developed datasets within a simple ML model
compared with typical dataset creation methods.

II. AC OPTIMAL POWER FLOW FORMULATION

A power network is defined with N buses collected in set
N , with set G collecting the set of nodes with generators and
set L collecting the set of load buses. The admittance matrix,
denoted as Y , represents the admittance of lines connecting
buses in the network, with Y ij indicating the (i,j) element of
Y . The set E collects direct edges representing the network
lines originating from the ‘from’ end, and the set Et collects
the network edges originating from the ‘to’ end of the lines.
The power injection at bus n ∈ N is denoted by sn = pn +
jqn. Further, sl,n = pl,n + jql,n and sg,n = pg,n + jqg,n
denote the power generated at bus n ∈ G and the load demand
at bus n ∈ L, respectively. The voltage at bus n is denoted by
vn. The voltage phasors, active power injections, and reactive
power injections at all buses are defined as V := [vn]n∈N ,
P := [pn]n∈N , and Q := [qn]n∈N , respectively. Therein the
AC OPF problem can be formulated as:

min
V,Sg

∑
i∈G

ai<(sg,i)2 + bi<(sg,i) + ci (1a)

s. t: (V, Sg) ∈ Ω(Sl) (1b)

where the nonconvex set Ω(Sl) comprises the AC power
flow equations, the generation limits, the voltage magnitude
constraints, the line flow limits, and the angle limits. The AC
OPF is nonconvex and, in fact, generally NP-hard [15].

III. RELAXATION AND PROPERTIES

Because the AC OPF problem is nonconvex and hard to
solve in general, many heuristic, relaxation, and linearization
approaches have been proposed to solve the problem. Numer-
ous relaxation approaches have been proposed in the literature,
such as the Second-Order Cone relaxation (SOC) [16], and the
Quadratic Convex (QC) relaxation [17]. In general, a relaxed
AC OPF problem can be written as:

min
V,Sg

∑
i∈G

ai<(sg,i)2 + bi<(sg,i) + ci (2a)

s. t: (V, Sg) ∈ Ω̃(Sl) (2b)

where Ω̃(Sl) is a convex set that encompasses the nonconvex
set Ω(Sl). The input to the relaxed problem (2) is the same
input to the original nonconvex AC OPF problem (1) which

comprises the values of pl,i and ql,i at all buses i ∈ N .
An important property of the relaxation (2) is that if the
optimization problem (2) is infeasible for specific values of
Pl and Ql , then the AC OPF problem (1) is also infeasible
for the same load profile Pl and Ql. This property provides a
sufficient condition for the infeasibility of a loading situation.
We will use this property to exclude loading scenarios that are
provably infeasible from the input space.

IV. DATASET CREATION METHODOLOGY

In this section, we present the main elements of the datasets
generation process we used. First, we introduce the format of
the data, then we present sampling mechanisms and the main
steps used to increase the efficiency of the sampling process.
Then we summarize the approach used to create AC OPF data
that can be used for training in machine learn methods.

A. Data Format

To support ML methods working to identify the solutions
or the active constraints, for each data sample, three data
containers (structures) are stored. The first contains the input
information, x := pl,n, ql,n, n ∈ L, which encompasses the
active and reactive load demands at all buses. The second
container includes the optimal solution controllable variables,
y := vrg,n, p

r
g,n, n ∈ G, i.e., the voltage magnitudes at all buses

in G and the active power injections from all the generators.
Given this information, along with the inputs, one can recover
the complete solution, V , by solving the AC power flow
equations [12]. In addition, the third container includes the
information required to identify active constraints. That is, we
include the value of the dual variables corresponding to voltage
magnitude constraints, line flow limits, and generators capacity
constraints. Note that active constraints are defined to be the
constraints with nonzero dual variables.

B. Initializing Input Space

The input load space that the samples are pulled from must
be initialized to a set that contains the AC OPF feasible set
in the load region of interest. When working with test case
networks, the minimum and maximum servable demand at
each load bus must be solved for. This is done by formulating
a convex AC OPF optimization problem with the objective
of maximizing the load at a single bus and solving this
problem for each load bus in the network. This problem can
be formulated as:

pl,i := arg max
V,Sg,Sl

pl,i (3a)

s.t : (V, Sg) ∈ Ω̃(Sl) (3b)

The previous optimization problem identifies an upper
bound on the maximum active load, pi∀i ∈ L, that can be
served by the generation capacity of the network. We bound
the reactive power demand by choosing a lower bound on the
power factor of the loads connected to the feeder. In addition,
we assume that the minimum value of the loads is zero. On
the other hand, we constrain the power factor of the load
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connected at each bus; hence, the reactive power injection is
constrained by 0 < ql < pl, which corresponds to limiting the
power factor of all loads to be at least 1√

2
. We collect these

constraints in a concise form by defining the input space as
A0xl ≤ b0, where:

A0 :=


I|L|×|L| [0]|L|×|L|

−I|L|×|L| [0]|L|×|L|

[0]|L|×|L| −I|L|×|L|

−I|L|×|L| I|L|×|L|

[1]1×|L| [0]1×|L|

 , b0 :=


pl

[0]|L|

[0]|L|

[0]|L|∑
i∈G pg,i

 (4)

This linear equality describes a closed set of load profiles
that will be used as the load sampling space. This unclassified
space contains the relaxed feasible set and the AC OPF feasible
set that could possibly be encountered during operation.

C. Sampling Input Space

Load profiles, xl, are sampled from the unclassified space
using a method for uniformly sampling from convex polytopes.
A uniform sampling method is used to ensure that the samples
are representative of all AC OPF feasible load profiles that
could be seen during operation. Uniform sampling from a
convex polytope is a heavily studied research area [18], [19].
For this paper ‘Hit and Run’ sampling, a Monte Carlo method,
as described in [20], is used to uniformly and quickly sample
high dimensional polytopes. To initialize this sampler, a point
within the polytope must be specified. This can be done by
finding the Chebyshev center of the unclassified space.

D. Constructing Separating Hyperplanes

Separating hyperplanes, as proposed in [21], are used to
classify large regions of the input space as infeasible. These
hyperplanes are based on infeasibility certificates that are
created when a load profile is sampled that is infeasible for
the relaxed AC OPF. When an infeasible load profile, x̂l, is
sampled, the nearest input, x∗l , that is feasible for the convex
relaxed AC OPF is found by solving (5).

x∗l := arg min
V,Sg,xl

‖xl − x̂l‖2 (5a)

s.t : (V, Sg) ∈ Ω̃(xl) (5b)

Once x∗l is found, an infeasibility certificate can be constructed
if x∗l 6= x̂l. The vector from the infeasible sample to the nearest
feasible point, −→n := x∗l − x̂l, defines the normal vector of the
new hyperplane. This normal vector and the nearest feasible
point then define the hyperplane as Alxl ≤ bl, where Al :=

−→n
and bl :=

−→n x∗l . Al and bl are added as new rows to A and b,
respectively, to include the hyperplane in the definition of the
load space polytope to reduce the volume of the input space.

E. Summary of Approach

This methodology finds load samples by uniformly sam-
pling from a convex set, the input space, which contains
the AC OPF feasible set. Samples are then tested for AC
OPF feasibility and are added to the dataset if they are

feasible. The convex set is reduced throughout sampling by
constructing separating hyperplanes to increase the likelihood
of sampling feasible load profiles. Fig. 1 shows the process
used to create the AC OPF datasets. Fig. 2 shows an example
of the sampling processes resulting in the construction of an
infeasibility certificate.

Fig. 1. OPF-Learn procedure flowchart.

Fig. 2. (1) Find the Chebyshev center to use as the initial point, x0. Generate
a random direction vector and travel a random distance along this vector to
find a new load sample, xl. (2) Check if xl is AC OPF feasible. If it is not
feasible, find the nearest relaxed feasible point, x∗

l . Because x̂l 6= x∗
l define

a new infeasibility certificate at x∗
l with normal, ~n = x̂l − x∗

l . (3) Gather
a new sample, xl, as in Step 1. Check if the new sampled load is AC OPF
feasible. Here, it is not, so the nearest relaxed feasible point is found. x̂l = x∗

l
so discard this sample. (4) Sample a new load profile, xl, as in Step 1, but
starting from the last point, now x0. Check if xl is AC OPF feasible. xl is
AC OPF feasible, so store xl and its AC OPF optimal solution.

V. SIMULATION AND RESULTS

Here, we discuss features of the OPF-Learn datasets, and
we compare these datasets to ones created using a typical
dataset creation method as seen in the literature. Using both
datasets, we train and test neural networks to see the possible
implications of using a typical dataset creation method when
evaluating a ML approach to solve the AC OPF problem.

A. Dataset Creation

We evaluate our proposed AC OPF dataset creation method
on 5 PGLib-OPF networks [22] up to 118 buses. For each
of these 5 networks, we create datasets with N = 10, 000
samples. These datasets are created with our Julia package,
OPFLearn.jl. PowerModels.jl [23] with IPOPT [24] is used
to find locally optimal feasible solutions to the nonconvex
AC OPF problem formulated in JuMP [25]. QC-relaxed AC
OPF problems for finding maximum feasible bus demands
and nearest feasible load profiles were formulated in JuMP
and solved with IPOPT. Initially, the stronger semi-definite
relaxation [26] was used, but the run times were found to
be too long with existing conic solvers to justify its use.
The QC relaxation was selected over the SOC relaxation
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TABLE I
TOTAL NUMBER OF UNIQUE ACTIVE SETS FOUND BY OPF-LEARN AND

THE TYPICAL METHOD IN 10,000 FEASIBLE SAMPLES.

OPF-Learn Dataset Typical Dataset

case5 774 13
case14 6938 7
case30 9931 7
case57 9958 33

case118 9980 2731

because it is a tighter relaxation, as demonstrated in [17].
Note that for case118, the maximum loads used to initialize
the sampling input space were set to be twice the nominal
load instead of the found maximum loads to decrease the
dataset creation run time. In practice, it was found that many
infeasibility certificates of the OPF-Learn sampling method
are required to reduce the input space to one with a good
portion of feasible solutions with larger networks, especially
when the initial feasible space contains feasible solutions with
an unrealistically large amount of active power demand at a
single load bus, as seen with networks that have more than
100 buses.

A typical dataset for each network was also created with
N = 10, 000 samples. These datasets were created by sam-
pling from a uniform distribution U(0.8x0,i, 1.2x0,i) for each
i ∈ L, where x0 = (P0, P0) is the nominal load at bus i.
For each load sample generated that was found to be AC OPF
feasible, the sample and AC OPF solution were stored.

Comparing the datasets created from these two methods
shows that the typical datasets have significantly fewer unique
active sets than the OPF-Learn datasets. Table I shows the
number of unique active sets in each dataset.

Fig. 3 shows the rate at which unique active sets were found
for each feasible sample found. The number of unique active
sets in the OPF-Learn datasets were not found to converge in
these 10,000 sample datasets for cases larger than case5. This
indicates that there are likely more unique active sets in the AC
OPF feasible space, and a larger dataset would be required to
classify the entire feasible space within the input space. For
the larger systems, neither the OPF-Learn sampling method
or the typical sampling method are seen to converge for these
10,000 sample datasets, but fewer new unique active sets are
found with the typical sampling method.

The larger number of unique active sets found using OPF-
Learn indicates that the typical dataset is only representative
of a smaller portion of the AC OPF feasible space around the
nominal load, while the OPF-Learn dataset contains points
representative of more loading conditions. Because the map-
pings of loads to AC OPF solutions within a unique active
set are much simpler, the mapping being learned by an ML
model trained on a typical dataset can only be extrapolated
accurately within these unique active sets.

B. Training Neural Networks

We used these datasets to train and test two sets of neural
network (NN) models to demonstrate how ML models trained
on a simpler typical datasets perform on datasets that are more

Fig. 3. The number of feasible unique active sets found throughout dataset
creation with OPF-Learn and with the typical method. Note the difference in
y-axis scales due to the large disparities in the unique active sets found.

representative of the entire AC OPF feasible space that could
be seen during operation. For both NN models, we used a NN
with three hidden layers with a sigmoid activation functions
between all hidden layers. The width of the first two hidden
layers is equal to the number of inputs, 2|L|, and the width
of the last hidden layer is equal to the number of outputs, |G|.
The input data are in per unit and are additionally normalized
before being input to the NN model.

For each test network, four NN models are trained. The
models are trained on a training set of either OPF-Learn data
or typical data, and they predict either Pg or |Vg| for each
generator in the network. Separate models for each output are
used to simplify evaluating which output variable is associated
with the most significant portion of the error. The OPF-Learn
dataset and the typical dataset are split into train and test
datasets with an 80-20% train-test split. For both an output
of Pg and an output of |Vg|, one model is trained on the
OPF-Learn training dataset, and the other is trained on the
typical training dataset. The NN models were implemented
using the Python-based TensorFlow software library [27] and
trained using the Adam optimizer with a mean squared error
cost function. Once trained, we tested these models on test
sets created using both methods to see how well they were
able to predict the AC OPF solution for a given load profile.

The test results for the different NNs are shown in Table II.
For all cases, the typical training set NNs saw a significantly
larger error when tested on the OPF-Learn test set compared
to the typical test set for both Pg and |Vg|. These results show
that the typical dataset-trained Pg NNs performs worse on
the OPF-Learn test dataset than on the typical test dataset by
orders of magnitude from 101 to 105. The largest increase
in error occurred with case30, with the error increasing by
5.09E+5 times. In comparison, the OPF-Learn-trained NNs
had an increase only up to 2.77E+1 times in error, as shown
with the |Vg| case118 NN. These large increases in error with
the typical-dataset trained NNs indicates the possibility that
ML models demonstrated in the literature trained on similar
typical datasets might not see the same level of performance
reported in papers if they are tested on a dataset that is more
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TABLE II
Pg AND |Vg | NN MODEL TEST MEAN SQUARED ERROR RESULTS FOR NN
MODEL TRAINED ON AN OPF-LEARN DATASET OR A TYPICAL DATASET

FOR ALL PGLIB TEST NETWORKS.

Pg models

OPF-Learn Training Dataset Typical Training Dataset

Test
Network

OPF-Learn
Test Dataset

Typical
Test Dataset

OPF-Learn
Test Dataset

Typical
Test Dataset

case5 2.17E-2 1.86E-3 1.33E+0 9.08E-6
case14 2.75E-4 1.01E-4 3.94E-2 9.41E-7
case30 1.55E-4 5.46E-4 8.17E-3 1.60E-8
case57 2.37E-1 1.73E-1 7.54E-1 2.39E-2

case118 6.97E-2 2.35E-1 4.47E-1 4.47E-3

|Vg | models

OPF-Learn Training Dataset Typical Training Dataset

Test
Network

OPF-Learn
Test Dataset

Typical
Test Dataset

OPF-Learn
Test Dataset

Typical
Test Dataset

case5 3.43E-5 5.53E-6 9.51E-3 2.49E-8
case14 1.29E-5 1.60E-5 5.72E-4 2.58E-7
case30 1.26E-5 2.22E-5 2.39E-4 1.08E-8
case57 2.96E-4 2.51E-4 3.25E-4 1.13E-5

case118 3.80E-4 1.05E-2 4.61E-4 7.63E-5

representative of the AC OPF feasible space.
With the Pg case30 typical training set NN, the maximum

sample error, measured as the sum of the absolute value of
the difference of predicted and actual AC OPF solutions, was
found to increase from 4.64E-03 to 8.38E-01, showing that
some load samples in the OPF-Learn dataset produce signif-
icantly more suboptimal solutions than would be predicted
with the typical test set. Similar increases in the maximum
solution suboptimality were seen for all typical dataset-trained
models, and while increases in the maximum error were seen
with the OPF-Learn-dataset trained models, these increases in
suboptimality were smaller.

VI. CONCLUSION

This paper presented OPF-Learn, an open-source software
tool for efficient AC OPF dataset creation to facilitate the de-
velopment of ML methods to solve the AC OPF problem. The
sampling approach starts by considering a space that includes
all load profiles. Then, properties of relaxation approaches
are used to shrink the space to efficiently create feasible
samples. The demonstrations on PGLib networks show that
the generated datasets are more diverse and representative than
typical sampling approaches, which only vary loads around
base values. In addition, assessing the performance of ML
models trained on typical datasets results in ML models that
have limited generalization. The open-source package delivers
a timely requirement for the fair benchmarking of ML methods
developed to tackle the AC OPF problem.
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