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Emulating AC OPF Solvers With Neural Networks

Kyri Baker

Abstract—Using machine learning to obtain solutions to AC opti-
mal power flow has recently been a very active area of research due
to the astounding speedups that result from bypassing traditional
optimization techniques. However, generally ensuring feasibility of
the resulting predictions while maintaining these speedups is a chal-
lenging, unsolved problem. In this letter, we train a neural network
to emulate an iterative solver in order to cheaply and approximately
iterate towards the optimum. Once we are close to convergence, we
then solve a power flow to obtain an overall AC-feasible solution.
Results shown for networks up to 1,354 buses indicate the proposed
method is capable of finding feasible, near-optimal solutions to AC
OPF in milliseconds on a laptop computer. In addition, it is shown
that the proposed method can find “difficult” AC OPF solutions
that cause flat-start or DC-warm started algorithms to diverge.

Index Terms—Machine
computation time.

learning, optimal power flow,

I. INTRODUCTION

C OPTIMAL power flow (OPF) is a canonical power
A systems operation problem that is at the heart of optimiz-
ing large-scale power networks. Solving this problem quickly
and efficiently has been the subject of decades of research.
One particularly interesting development in this area is the
use of machine learning (ML), in particular deep learning, to
obtain solutions to AC OPF [1]-[3]. Within this area, ensuring
feasibility of the resulting solution has been a challenge. In
this paper, we propose a neural network model which aims to
emulate an AC OPF solver (in particular, the Matpower Interior
Point Solver (MIPS), although the framework is not specific to
MIPS). The benefit of using an ML model instead of the MIPS
solver directly is that no matrix inverses or factorizations are
needed, and inference is extremely fast, resulting in an overall
faster convergence. While we do not claim that feasibility can
be guaranteed for every single output of the learning-based
model, empirically, we have observed very positive results on
the chosen networks in terms of optimality gap, speed, and
convergence success. The model proposed here is comprised of
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Fig. 1. Using a neural network to approximate fast iterations towards the
optimum, then solving a power flow to recover feasibility.

a fully connected three-layer neural network (NN) Fp with feed-
back, where input x* is the candidate optimal solution vector at
iteration k. Reminiscent of a simple recurrent neural network, the
model iteratively uses feedback from the output layer as inputs
until convergence (||x*+1 — x*|| < €). The model thus bypasses
any construction of a Jacobian matrix or associated inverse, for
example. In order to obtain a final AC feasible solution, a subset
of the learned variables are sent to a power flow solver. See Fig. 1
for an overview of the testing phase of the algorithm, where the
tilde over the variables indicates the candidate optimal solution
produced by the model. Some works have looked at penalizing
constraint violations during training, which can help preserve
AC feasibility, but cannot guarantee it [2], [3]. In addition,
these techniques can result in very cumbersome-to-train loss
functions. Other work using ML for AC OPF has recovered AC
feasibility by using a post-processing procedure with the AC
power flow equations, but requires a restricted training set gen-
erated from a modified AC OPF problem, sometimes requires
PV/PQ switching, and was only tested on small networks [1].
The approach presented in this paper utilizes a similar concept
to the latter technique, but offers advantages over all previous
techniques:
® No restriction on the training set is required; previous AC
OPF runs can be used to train the ML model.
® The model emulates an iterative algorithm, meaning that
each model run is a small step towards the optimum, instead
of directly predicting the AC OPF solution.
® While only a subset of variables is sent to the power flow
solver, the ML model utilizes information about the entire
OPF solution, better informing the model as it iterates
towards the optimum. Evolutions of variable iterations
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towards the optimum can also be observed while using
the model, unlike completely black-box approaches.

® A deep network is not required for this framework; in this

paper, a shallow neural network (only one hidden layer) is
used, which facilitates very fast training (under 12 hours
on a laptop) and simpler parameter tuning.

These works [1]-[3] additionally only perturb the given loads
by 10% or 20% in both training and testing, which results in a
much smaller set of optimal solutions, making it easier for the
model to map these conditions onto optimal values. Here, we
generate data than spans a larger region of the feasible space,
including solutions which represent the state of the system near
voltage collapse. These situations pose challenging situations for
traditional solvers. Results are shown for 30, 500, and 1,354-bus
networks suggesting that the learning-based model may provide
a desirable tradeoff between speed and optimality gap while
maintaining feasibility.

II. ITERATING USING INFERENCE

A nonconvex optimization problem with n-dimensional vari-
able vector x, cost function f(-) : R™ — R, M equality con-
straints g; (z) = 0, ¢;(-) : R™ — R, and P inequality constraints
hj(z) <0, h;(-) : R™ — R can be written as

min £ (x) (1a)
strgi(x)=0,i=1,..M (1b)
hi(x) <0, j=1,...,P (1c)

Many iterative optimization solvers use Hessians of the La-
grangian function to iterate towards the optimal solution of con-
strained nonconvex problems, including the Matpower Interior
Point Solver (MIPS) [4], which leverages a primal-dual interior
point algorithm to update candidate solution x* at iteration
k. Instead of using Lagrangian functions or forming Hessian
matrices, the learning-based method uses a deep learning model
Fg(-) : R™® — R™ that takes in x* as an input and provides x**1
as an output; e.g. x**1 = Fp(x*).

The fully connected three-layer NN has inputs/outputs x* =
[V, 8%, Pk, Q]", where the iteration index is k, v contains
the complex voltage magnitudes at each bus, 8 contains the
complex voltage angles, and P, and Q are the real and reactive
power outputs at each generator, respectively.

A. Network Architecture

A rectified linear unit (ReLU) was used for the input layer; a
hyperbolic tangent (tanh) activation function was used in the hid-
den layer; and a linear function was used on the output. Bounds
on generation and voltages were enforced with a threshold on
the output layer of the NN. Normalization of the inputs was
also performed such that all inputs were in the range [0,1]. In
addition to x*, the network loading was given as an input to the
NN. The data generation, training and testing of the network,
and simulations were performed on a 2017 MacBook Pro laptop
with 16 GB of memory. Keras with the Tensorflow backend was
used to train the neural network using the Adam optimizer.
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TABLE I
THE ML SoLUTION FINDS FEASIBLE AC OPF SOLUTIONS FASTER THAN
TRADITIONAL METHODS AND SOLVES IN A COMPARABLE TIME TO DC OPF

Average Solve | Percent Solve
Network | OPF Type Time (s) Success (%)
AC OPF
w/Flat Start 0.069 s 100%
AC OPF
w/DC Start 0.079 s 100%
AC OPF
30-bus Ww/PF Start 0.068 s 100%
NN with PF 0.050 s 100%
| DC OPF 0.0I0s 100%
DC OPF w/PF | 0.018 s 100%
AC OPF
w/Flat Start 3.26's 100%
AC OPF
Ww/DC Start 334 100%
AC OPF
500-bus Ww/PF Start 315s 100%
NN with PF 0.12 s 100%
| DC OPF 012s 100%
DC OPF w/PF | 0.13 s 100%
AC OPF
w/Flat Start 2012 s 59.4%
AC OPF
w/DC Start 1163 s 59.4%
AC OPF
1354-bus w/PF Start 10.64 s 59.8%
NN with PF 025s 98.00%
DC OPF 033 s 100%
| DC OPF w/PF | 038 s 99.20%

B. Data Generation

The MATPOWER Interior Point Solver (MIPS) [4] was used
to generate the data and was used as the baseline for comparison
with the NN model. A single training sample consists of the pair
[x*,x*+1] obtained from the solver. The termination tolerance
of the MIPS solver was set to 10~ for data generation and 10~*
for testing. The tolerance of the learning-based solver was set to
10~*, where convergence is reached when ||x*+1 — x*|| <.
A smaller tolerance was used for data generation to promote
smoother convergence and “basins of attraction” within the ML
model. For a fair comparison, the same convergence criteria was
used for the NN model and MIPS during testing. 500 different
loading scenarios were randomly generated at each load bus
from a uniform distribution of +40% around the given base
loading scenario in MATPOWER. Each generated set of loads
was used to solve a standard power flow, and if the power flow
could not find a solution, the data was not included.

ITI. SIMULATION RESULTS

The IEEE 30 bus, IEEE 500 bus, and 1,354-bus PEGASE net-
works [5] were considered. All training/testing was performed
locally on a MacBook Pro with 16 GB of RAM. To be consistent
with the constraint set across networks, because some of the
considered networks do not contain line flow limits, these were
neglected in all networks. However, it is not expected that the
inclusion of these constraints would dramatically change the
results shown here. In Table I, the learning-based method (“NN)
was compared with 4 other cases across the 500-sample training
set: AC OPF flat-started, AC OPF warm-started with both a DC
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OPF solution and a power flow solution, a DC OPF, and a DC
OPF with an AC PF in post-processing to pursue AC feasibility.
While the DC OPF never produces an AC feasible solution,
it is often used as an approximation for AC OPF and used in
many LMP-based markets to calculate prices and thus provides
an interesting comparison. Note that no “extra” feasibility steps
were performed; the output of the NN was directly sent to a
power flow solver.

A. Speedups

As Table I shows, especially for the 500 and 1,354-bus net-
works, the learning-based solution can provide solutions with
speedups of over twenty times faster than using a traditional
solver, even one that has been warm-started. A DC OPF, in
comparison, takes about the same amount of time to solve a
much simpler, convex problem, and, considering it entails a
linear set of constraints, has no issues finding a solution. For
smaller networks, the benefit of using a ML-based method is
negligible; sub-second solution times are already achieved by
standard AC OPF methods. Another interesting idea is to use a
ML model to warm-start the AC OPF as in [6] or the AC PF as
in [7], but we only compare with traditional warm-start methods
here. Lastly, it should be mentioned that the NN-based solver
can be trained and tested using data generated from commercial
solvers such as CPLEX or Gurobi which may be able to improve
the performance of all of the test cases here. As the training data
for the NN is simply the variable vector at each iteration, any
iterative algorithm can be used for data generation. We expect
the relative speedups to remain relatively consistent regardless
of the solver, however.

B. Challenging OPF Scenarios

For system loadings that challenge conventional solvers, con-
tinuation methods can be used to robustly solve the AC OPF by
solving a series of simpler OPF problems [8]. While robust,
these methods can be very time consuming and may not be
suitable for real-time operation. The learning-based method may
provide an alternative to these methods, as issues with singular
Jacobian matrices and solutions close to voltage instability do
not affect inference as much. These solutions may still prove
challenging for the post-processing power flow step, however,
which is perhaps why a few failures were still encountered
when using the learning-based method. In Table I, the last
column refers to the percentage of trial runs in which the solver
converged to a feasible solution. For the AC OPF cases, this
refers to successful convergence of the MIPS AC OPF solver.
For the NN and DC OPF w/PF case, this refers to the MIPS
AC PF solver converging to a point which satisfies the AC
power flow constraints. Lastly, for the DC OPF case, this refers
to the percentage of runs in which the MIPS solver found
the optimal solution to the DC OPF problem. Considering
the DC OPF problem is convex, if the initial loading point
was feasible, it is reasonable that the percent solve success is
high.
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TABLE II
PERCENT ERROR FOR THE PROPOSED METHOD AND FOR DC OPF ACROSS THE
500-SAMPLE TESTING SETS

Average | Average | Worst Worst
Network | % Error | % Error | % Error | % Error
(NN) (DC) (NN) (DC)
30-bus 0.20% 1.46% 0.31% 1.82%
500-bus 2.70% 5.30% 10.12% 16.22%
1354-bus | 0.09% 1.40% 0.20% 1.73%
TABLE III

PERCENT ERROR FOR THE PROPOSED METHOD AND FOR DC OPF WITH AN AC
PF ACROSS THE 500-SAMPLE TESTING SETS

Average | Average Worst ‘Worst
Network | % Error | % Error % Error | % Error

(NN) (DC w/PF) | (NN) (DC w/PF)
30-bus 0.20% 0.26% 0.31% 0.37%
500-bus 2.70% 29.13% 10.12% 35.34%
1354-bus | 0.09% 1.87% 0.20% 2.22%

C. Error of the Learning-Based Solution Vs. MIPS

Tables II and III show the difference in cost for the learning-
based solution (“NN”") and DC OPF without and with an AC
power flow (respectively), calculated as follows:

6 = fX)
fx)
Where f(-) is the AC OPF objective function, and x* is the
solution from MIPS, and X is the solution from the method
being compared (i.e., the learning based or the DC solution).
The equation in (2) is akin to the definition of “optimality gap™;
however, we avoid using this specific term here because there is
no guarantee that f(x*) is the globally optimal solution. Other
strategies, such as comparing the learning-based method with
relaxations such as the second-order cone programming (SOCP)
relaxation, could also provide indications of possible optimality

gap.

In the results, the DC OPF solution with and without AC
PF post processing is compared against the AC OPF solution
provided by MIPS. This is a key comparison because in many
markets, DC OPF is used to calculate prices; thus, it is currently
deemed an acceptable way of approximating the cost of network
operation. As the table shows, however, the learning-based
method produces even lower operating costs than DC OPF, on
average and in the worst case throughout the testing set. Sur-
prisingly, the solution obtained with the AC PF post-processing
step, while now AC feasible, were found to overall increase the
cost difference with the AC OPF solution. This may be due to the
fact that when a power flow is run, all generator values except
the slack bus generator are fixed to the given values. This means
that the slack generator must account for losses to obtain AC
feasibility, and this is often not the most optimal solution.

% Error = -100%. (2)

IV. ComMPARISON WITH OTHER POWER FLOW MODELS

Even though DC OPF is used in many existing network opera-
tions, it is useful to compare the proposed method against other
convexifications. In this section, the learning-based method is
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TABLE IV
PERCENT ERROR FOR THE PROPOSED METHOD AND FOR SOCP ACROSS THE
500-SAMPLE TESTING SETS

Average | Average
Solve Solve Average | Average
Network  Time Time Error Error
(NN) (SOCP) (NN) (SOCP)
30-bus 0.05 s 0.15s 0.20% 2.86%
[ 500-bus  0.12 s 348s 2.70% 26.85%
1354-bus 025 s 3372 s 0.09% 0.28%

compared against the popular SOCP relaxation in terms of
speed and accuracy. The particular implementation that will be
used for the comparison is that found in the PowerModels
package [9] for SOCP [10]. Table IV shows a side-by-side
comparison of solving SOCP using IPOPT in Julia compared to
the learning-based method, across the same testing set. While the
learning based method appears to be faster and more accurate,
it is important to note that unlike SOCP, it does not provide
a theoretical lower bound for the true optimum. Additionally,
an AC power flow could be used as a post-processing step
for SOCP, akin to the previous analysis of running a DC OPF
with an AC PF post-processing step. Note that other relaxations
could be considered for comparison in future work; for example,
the semidefinite programming relaxation (SDP). As [11] men-
tions, the SDP relaxation is generally significantly slower than
SOCP (in our simulations, the given computational platform
was unable to solve SDP for the largest considered network),
but provides a tighter relaxation. Tradeoffs are dependent on the
application - the application here focuses on real time AC OPE.

V. CONCLUSION AND DISCUSSION

This paper provided a learning-based approximation for solv-
ing AC optimal power flow. Promising initial results indicate
that the method can achieve fast convergence speeds and high
accuracy. However, there are multiple drawbacks that should be
discussed here; although these results show an effective speed
gain, traditional optimization has multiple upsides. First, the
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model is trained on one static configuration of the network. That
means that for any transformer tap-changing, any line switching,
or switchable shunt control for example, a different model would
have to be trained. Second, the performance of the model is
limited by the dataset from which it was trained on. Lastly,
neural networks do not offer grid operators as much insight or
confidence in the resulting decision-making as traditional opti-
mization does. This heuristic also does not provide a theoretical
lower bound.

Data Availability: The datasets and code used in this paper
may be obtained by emailing the author.
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